
760 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Mitigating TCP Protocol Misuse With
Programmable Data Planes

Abir Laraba , Jérôme François, Member, IEEE, Shihabur Rahman Chowdhury , Student Member, IEEE,

Isabelle Chrisment, and Raouf Boutaba , Fellow, IEEE

Abstract—This article proposes a new approach for detect-
ing and mitigating the impact of misbehaving TCP end-hosts,
specifically the Optimistic ACK attack, and Explicit Congestion
Notification (ECN) abuse. In contrast to the state-of-the-art, we
show that it is possible to mitigate such misbehavior leveraging
emerging programmable data planes while not requiring any end-
host or protocol modifications. A key challenge in doing so is to
implement expressive, complex and stateful functions in the data
plane within its restricted programming model. In this regard,
we propose a security monitoring function that uses Extended
Finite State Machine (EFSM) abstraction for monitoring state-
ful protocols in the data plane. We also design a mechanism for
mapping a protocol’s EFSM to programmable data plane primi-
tives. Our evaluation results demonstrate that our approach can
fully or partially restore the throughput loss caused by misbehav-
ing end-hosts that manipulate TCP congestion control through
misinformation.

Index Terms—SDN, P4, programmable data plane, security,
monitoring, EFSM, ECN, optimistic ACK.

I. INTRODUCTION

NETWORK protocols can be subject to attacks from non-
compliant or misbehaving end-hosts that exploit protocol

vulnerabilities. For instance, many amplification Distributed-
Denial-of-Service (DDoS) attacks exploit vulnerabilities of
protocols such as SNMP, NTP or DNS, among others [1].
At the application layer, protocol verification has been used
to reveal potential vulnerabilities such as for the SIP authen-
tication [2] and more recently for 5G networks [3]. Once
exposed, protocol vulnerabilities can be patched with some
effort. However, patching at scale becomes very challenging
when the concerned protocol lies at the core of the Internet and
affects primary services. The slow deployment of DNSSEC [4]
testifies about the difficulty of patching a critical service at
scale.

Manuscript received June 3, 2020; revised October 28, 2020 and December
22, 2020; accepted December 22, 2020. Date of publication January 26, 2021;
date of current version March 11, 2021. This work was partly supported by
the FrenchPIA project Lorraine Université d’Excellence, reference ANR-15-
IDEX-04-LUE. The associate editor coordinating the review of this article
and approving it for publication was T. Zinner. (Corresponding author:
Abir Laraba.)

Abir Laraba, Jérôme François, and Isabelle Chrisment are with the
Université de Lorraine, Inria, LORIA, 54600 Nancy, France (e-mail:
abir.laraba@loria.fr; jerome.francois@loria.fr; isabelle.chrisment@loria.fr).

Shihabur Rahman Chowdhury and Raouf Boutaba are with the David
R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada (e-mail: sr2chowdhury@uwaterloo.ca;
rboutaba@uwaterloo.ca).

Digital Object Identifier 10.1109/TNSM.2021.3054528

Transmission Control Protocol (TCP), one of the fun-
damental building blocks of the Internet, is also prone to
attacks [5], [6] unfortunately. TCP vulnerabilities exist because
TCP was not designed with strong security considerations.
Also, TCP’s evolution over time didn’t address security issues
to maintain backward compatibility. The Optimistic ACK
attack is one such example, where a misbehaving TCP receiver
acknowledges segments before they are received, in this way
manipulating the sender to transmit faster [5]. The impact of
the Optimistic ACK attack can be significant in the presence of
multiple victims, (e.g., up to 5 GB/s for about 512 victims) [6].
Another example is when a misbehaving TCP receiver does
not comply with Explicit Congestion Notification (ECN), and
ignores congestion notification to manipulate the sender to
keep the same transmission rate during congestion [7]. The
research literature discusses several techniques that a mis-
behaving receiver can use for manipulating TCP congestion
control [5], [6], [8]–[10], consequently causing unfair division
of shared bandwidth among competing flows.

One mitigation approach is to modify the TCP proto-
col specification and end-host implementation as new attacks
emerge [5], [6], while such change is hard for practical deploy-
ment. Moreover, attacks such as ECN abuse are difficult
to detect at end-hosts. Typically, network operators deploy
hardware or software appliances [11], [12] for monitoring
anomalies in layer-4 and above stateful protocols. However,
this approach adds cost and operational overhead. In this arti-
cle, we take a different approach for detecting and mitigating
TCP protocol misuse. We leverage data plane programma-
bility enabled by protocol independent switch architecture
(PISA) [13] and P4 programming language [14] for defending
against misbehaving TCP end-hosts directly in the switches.
Our approach does not require changing the end-hosts and
protocol specification. Moreover, as discussed in the litera-
ture [15], our approach leveraging data plane programmability
has the potential to reduce the capital and operational cost
compared to the traditional approaches relying on network
security appliances.

We propose to use Extended Finite-State Machine (EFSM)
for modeling a TCP protocol behavior to monitor. Then, we
design a method to map this EFSM to a P4 program adher-
ing to its restricted computing model. Note that the EFSM
abstraction can be adapted to other layer-4 and above proto-
cols, which we leave for future investigation. The rationale for
using EFSMs is because they avoid state space explosion by
defining variables and actions in addition to state transitions

1932-4537 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7792-8796
https://orcid.org/0000-0002-6232-2027
https://orcid.org/0000-0001-7936-6862

LARABA et al.: MITIGATING TCP PROTOCOL MISUSE WITH PROGRAMMABLE DATA PLANES 761

in a finite-state machine. To the best of our knowledge, this
is the first endeavor for online detection and mitigation of
ECN and Optimistic ACK attacks within the network, with-
out requiring the use of network appliances or requiring
end-host modifications. Specifically, we make the following
contributions:
• A procedure for mapping an EFSM modeling the behav-

ior of a protocol and its possible misuse detection to a
P4 program running on PISA targets [16].

• An application of the proposed method for detecting and
mitigating two representative TCP misuses, namely the
Optimistic ACK attack and ECN abuse.

• Experimental evaluation demonstrating the effectiveness
of the proposed method. The results show that our
solution successfully mitigates unfair bandwidth sharing
caused by both attacks from within the data plane.

This article extends our initial work in [17]. We provide a
formal description of how an EFSM abstraction can be mapped
to P4 primitives. Previously, we used an EFSM-based tech-
nique for detecting and mitigating ECN abuse. In this article,
we extend our application to the Optimistic ACK attack on
TCP congestion control. Specifically, we describe the attack
in Section IV-A followed by the detailed mechanism of how
this can be modeled using an EFSM in Section IV-B. This
section also describes how our method of mapping an EFSM
model to a P4 program can be used with a new attack model.
We give additional evaluation results demonstrating the effec-
tiveness of our proposed approach in detecting and mitigating
Optimistic ACK attacks in Section V. Finally, we present a
more elaborate discussion of the state-of-the-art works.

The rest of this article is organized as follows. We present
the background and overview of the proposed approach in
Section II. Details of our EFSM abstraction and its mapping
to a P4 program are presented in Section III. We describe
the application of our proposed method to the Optimistic
ACK attack in Section IV followed by experimental results
in Section V. Then, we explain the ECN protocol mechanism
abuse use-case and its detection and mitigation leveraging
EFSM in Section VI. Our experimental evaluation of the ECN
abuse use-case is presented in Section VII. Then, we discuss
practical deployment considerations, including the memory
overhead and stateful TCP connection tracking considerations
in Section VIII. Then, we discuss and contrast our solution
with state-of-the-art works in Section IX. Finally, we conclude
with some future research directions in Section X.

II. BACKGROUND AND SOLUTION OVERVIEW

A. Data Plane Programming Using P4

P4 is a language for expressing how packets are parsed,
processed and deparsed by the data plane elements (switches).
P4 allows each hardware vendor to provide a target-specific
compiler, making the P4 programs portable across different
targets. P4 follows a two-step compilation process. The first
step generates an intermediate and hardware-independent rep-
resentation which is compiled in the second step to a specific
hardware target. This intermediate representation is designed

to be generic enough to capture behaviors on a large variety
of targets, such as NetFPGA [18].

P4 assumes an abstract forwarding model consisting of a
programmable parser and a set of match-action tables, divided
between an ingress and an egress control pipeline and a pro-
grammable deparser as defined in the P4-16 version of the
language specification [19]. The parser extracts the headers
from the incoming packets. Each match-action table performs
a lookup on a subset of header fields and applies the actions
within each table. The deparser’s goal is to reassemble pack-
ets after they have been processed. In our context, dedicated
P4 actions will be defined for transitioning state in the EFSM
and so require some states to persist in the data plane across
packets. P4 provides three types of stateful objects:
• Match-Actions tables: consist of the table entries and the

possible actions, table entries are typically modified by
the control plane.

• Registers: stateful memories that maintain state across
packets. P4 actions can read or modify register values.
It is worth mentioning that in the latest P4 specification
(P4-16), registers are supposed to be exposed by extern
functions and are thus not anymore hardware-independent
as in the previous specification [20]. However, assum-
ing registers as basic components to be provided by a
hardware platform is reasonable.

• Metadata: per-packet state which may not be derived
from packet data. It allows carrying information across
multiple P4 processing stages.

B. Solution Overview

Our approach for detecting and mitigating protocol misbe-
havior in the data plane is outlined in Figure 1. The first step
is to transform a protocol specification into an Extended Finite
State Machine (EFSM). The advantage of using EFSM over
regular Finite-State Machine (FSM) is EFSM’s ability to store
persistent values in variables, thereby, limiting state explosion.
For example, maintaining a counter in a FSM would require
one state per counter value, whereas the same can be repre-
sented in an EFSM with one variable corresponding to the
counter. Once the initial protocol specification is modeled as
an EFSM, we extend that EFSM with misbehaviors. In this
stage, the EFSM can be also compressed, as normal states rep-
resenting normal behaviors can be merged. We only consider
intermediate normal states that are necessary to track before
a misbehavior can occur. Once the EFSM of the protocol is
defined and extended with misbehaving states, it is mapped
to a P4 program using the language primitives. This stage of
mapping the EFSM model to a P4 program is essential and is
described in Section III-B.

Finally, when the compiled program is installed on a PISA
target switch, all flows are tracked online by maintaining the
current state of each connection. Network operators can con-
figure the PISA switches to take different actions within the
switch capabilities when the EFSM enters a state labeled as
misbehavior, including dropping or rerouting the packet, gen-
erating an alert and applying corrective actions such as modi-
fying packet field(s), sending a copy of the packets to a remote
server for further inspection and setting queue priorities. The

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

762 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 1. Approach overview.

proposed approach detects and mitigates protocol abuse in
real-time without involving any remote controller.

III. PROTOCOL BEHAVIOR MONITORING

IN THE DATA PLANE

In this section, we describe our approach for monitoring
stateful protocol behavior in the data plane. To this end, we
leverage EFSM for modeling stateful protocol behavior and
map the EFSM to a P4 program that can run on the data
plane. We first describe how we formally represent an EFSM
in Section III-A. Then in Section III-B, we present a mecha-
nism for mapping an EFSM to a P4 program that can run on
a programmable PISA target. Note that our proposed mapping
procedure is generic and is not specific to any protocol. Finally,
we briefly discuss about the checksum recalculation issue in
Section III-C that may arise from modifying the packets while
applying the EFSM actions.

A. EFSM Model

We adopt the EFSM abstraction for modeling protocol
behavior. While there are different ways to formally represent
an EFSM [21], [22], in this article we represent an EFSM by
a 7-tuple (S, E, A, I, V, C, T) (summarized in Table I), where:
• S is the set of possible states. In our case, S consists of all

the protocol states that need to be tracked for detecting
misbehavior.

• I is the set of initial states.

TABLE I
KEY NOTATIONS USED IN THE EFSM MODEL

• E is a finite set of events. An event is triggered by the
content of the monitored packets such as the presence of a
TCP flag in a TCP packet. Events can be parametric [23]
to store the values observed in events. We represent the
value of parameter p of the event e by e[p]. For example,
if TCP.ACK is an event that matches a TCP packet with an
ACK flag, TCP.ACK[AckNo] represents its corresponding
acknowledgement number.

• V is the set of context variables that are persistent and
accessible by all states using read and write operations.
One of the main advantages of EFSM is that the context
variables can be leveraged to avoid creating numerous
states. For example, tracking sequence numbers with a
regular FSM would require one state for each of the
232 possible values compared to using just one context
variable in an EFSM.

• A is a finite set of actions to be performed. A includes
modifications of context variables and other actions that
can be performed within PISA switch capabilities such
as modify, drop or forward a packet, or send an alert.
Actions are split into two categories: packet forwarding
actions, and arithmetic and logic operations to update the
variables in V or the packet headers.

• C is the set of conditions. Each condition c ∈ C is
defined from event parameters and context variables. This
is another major advantage of EFSM compared to regu-
lar FSM where transitions are defined only on symbols.
With EFSM, more complex conditions can be described.
More precisely, each c ∈ C is a conditional expression
composed of operands (events and context variables) to
express logical or numerical calculations (e.g., addition,
logical AND, OR) and comparisons (e.g., less-than and
equal).

• T is the set of transitions, where t ∈ T is defined as
s1, c → a, s2 denotes a transition from state s1 to s2
when condition c is satisfied and that results in the action
a to be performed.

B. Mapping EFSM to P4 Program

For each connection or flow (we assume there are n flows
or connections being tracked in the data plane), an EFSM
is instantiated in the data plane using the P4 core primi-
tives described in Section II-A. In what follows, we describe
how the different components of an EFSM described in

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

LARABA et al.: MITIGATING TCP PROTOCOL MISUSE WITH PROGRAMMABLE DATA PLANES 763

Fig. 2. EFSM mapping to P4 elements and associated I/O operations.

Section III-A are mapped to a P4 program. We also summarize
and present the mapping process in Figure 2.

1) Maintaining Persistent Information: For each connec-
tion or flow, we need to maintain persistent information in the
data plane, including the context variables of the EFSM and
the state that the EFSM is in (i.e., the current state). There is a
one-to-one mapping between the number of executed EFSMs
and the number of monitored flows. We formally define a flow
as a set of packets f = {p0, p1, . . . , pn} sharing the same set
of attributes. Without loss of generality, we define a flow by
the 5-tuple: f = (srcIp, dstIp, srcPort, dstPort, protocol), where
srcIp, dstIp, srcPort, dstPort, protocol represent the source IP
address, the destination IP address, the source port, the destina-
tion port and the transport protocol, respectively. This 5-tuple
also forms the flow key, which we will later use for computing
an index in a hash table. As shown in Fig. 2, the header fields
in the 5-tuple flow key are defined as P4 metadata. Metadata
variables are associated with the processing of each packet and
are used for carrying information across the pipeline stages.
They are deleted when the processing is completed. Metadata
fields along with packet headers are declared in P4 and are
populated by the parsing function.

Once the flow key is extracted from a packet, we compute a
hash function hash(key) to retrieve the persistent information
corresponding to that flow. The hash function hash(key), takes
as input the flow key and outputs a flow identifier. The cur-
rent EFSM state of each flow as well as the context variables
from V are stored as entries in register arrays as shown in
Figure 2. The flow identifier returned by the hash function
acts as the indices of these arrays for retrieving the corre-
sponding information (i.e., the current state of the EFSM or
the context variables of an EFSM). In total we need |V |+ 1
register arrays, each with n entries for keeping track of the
persistent information of the EFSMs of n flows.

In many cases, we need to monitor behavior for both direc-
tions of a flow. For example, monitoring the 3-way TCP
handshake requires monitoring both directions of a TCP flow.

Algorithm 1 Packet Processing
Definitions:
• n: number of monitored flows
• Current [n]: register array of the current states
• ∀v ∈ V ,Val [n]: register array of each context variable

Input: packet pkt
1: p ← parse(pkt)
2: id ← hash(p.srcIp, p.dstIp, p.srcPort, p.dstPort,protocol)
3: current ← Current[id]
4: find t ∈ T , t = s1, c → a, s2 such that s1 = current and

c.check(p,V) = TRUE
5: if t �= None then
6: Current[id] ← s2
7: a.apply(V,p)
8: end if
9: deparse(p)

One solution to this problem proposed in the literature is to
form the 5-tuple flow key in the order (dstIp, srcIp, dstPort,
srcPort, protocol) if (dstIP > srcIP); otherwise form the 5-tuple
flow key in the order (srcIp, dstIp, srcPort, dstPort, proto-
col) [24]. In this way, the source and destination IP address
pair in the 5-tuple always remains the same for both direc-
tions of a flow. The same applies to the source and destination
ports. However, for the sake of brevity in this section, we keep
the regular 5-tuple flow definition. For applications where the
forward and return paths may differ, the solution has to be
deployed at the network edge to see both flow directions.

2) Event Extraction: Events in E are retrieved by matching
ingress packets against the patterns defining the events (e.g.,
the presence of the ACK flag in the TCP header). Additionally,
ingress packets are checked against the conditions defined on
event parameters for event extraction (e.g., an event is detected
if a condition on TCP sequence number is satisfied). The result
of aforementioned pattern matching and condition evaluation
on packet header fields are captured in metadata fields that
we define for tracking the events. These metadata fields are
populated during packet parsing and can be read when the
parsed packet is deparsed at the end of processing. The pro-
tocol header fields that must be extracted for performing such
pattern matching for event detection are identified based on
the events e ∈ E and event parameters e[p].

3) Mapping of the State Transition System: When a switch
receives a new packet, the packet is processed according to
Algorithm 1. While processing the packet, Algorithm 1 may
trigger a state transition within the EFSM corresponding to the
flow that the packet belongs to. In Algorithm 1, we assume
that the current state and the context variable of the EFSMs are
maintained in register arrays as described in Section III-B1.
Except for events derived from ingress packets and persistent
variables defined a priori, actions, transitions and conditions
are implicitly defined within P4 actions.

The control logic of the P4 program starts at line 1 of
Algorithm 1 with the parsing of the newly arrived packet.
Then, the hash-based flow identifier is computed from the flow
key to retrieve the current state of the corresponding EFSM
(lines 2-3). The algorithm then searches for a possible transi-
tion fulfilling two conditions (line 4). First, the transition origin
must be the current state. Second, the condition of the transi-
tion computed using the function c.check(p,V) must evaluate

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

764 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

to true. If a suitable transition is found in T, the transition is
applied. The current state, the context variables and the packet
metadata are modified according to the actions of the applied
transition.

The conditions and the action logic (C and A) are mapped
to the match-action pipeline in P4 in Figure 2. Read operations
are used for checking if a transition can occur and the write
operations apply modifications when a transition is applied.
It is worth mentioning that all states, S, including the initial
states, I, are embedded implicitly in the transitions defined
in the P4 processing logic, eliminating the need to explic-
itly define them. Packet modifications include packet header
field changes as well as changes to P4 standard metadata. The
actions of the mapped EFSM model can be carried alongside
other packet processing actions such as packet forwarding.

C. Checksum Recalculation

An action in an EFSM consisting of modifying a packet
field can be written as (packet′, y) = mod_pkt(packet, x) that
takes as input a packet packet and outputs a new packet packet′
where packet has one field with the value x changed to value
y in packet’s. If x �= y, recomputing a checksum may be nec-
essary depending on the protocol. As we will be focusing on
TCP, the TCP checksum will need to be recomputed. Instead
of performing an expensive full checksum recalculation, we
incrementally update the checksum using the following simple
arithmetic function [25]:

HC ′ = HC− ∼ m −m ′

where:
• HC: old checksum in the packet header,
• HC′: new checksum in the packet header,
• m: old value field including the former packet value field,
• m′: new value of field including the modified packet value

field, ∼ x : the one’s complement of x.

IV. APPLICATION TO OPTIMISTIC ACK

In this section, we present the first use-case demonstrating
the effectiveness of our proposed EFSM-based security moni-
toring mechanism: the detection and mitigation of Optimistic
ACK attack on TCP congestion control [5].

A. Optimisitic ACK Attack Description

The Optimistic ACK attack was introduced in [5] as a way
to mislead end-hosts to increase their TCP congestion window.
This is accomplished by malicious receivers who acknowledge
not yet received TCP segments to the senders. In the context
of TCP, the congestion window limits the number of TCP
segments that can be sent by an end-host without receiving
an acknowledgement (ACK). TCP congestion control mecha-
nisms (e.g., BIC, CUBIC) typically start with a relatively small
congestion window and keep increasing the window based on
received ACKs during the slow start and congestion avoid-
ance phases. Since receiving ACKs of in-flight segments is
considered a sign of good network condition, the malicious
receivers in the Optimistic ACK attack will mislead the sender
and trigger an increase in congestion window. This in turn will

Fig. 3. Optimistic ACK attack.

cause the sender to converge to a sending rate that will have
a detrimental impact on legitimate TCP connections sharing
the same network. The authors in [5] proposed a solution to
Optimistic ACK attack that requires changing the TCP imple-
mentation at the end-hosts. In contrast, we propose to leverage
data plane programmability for detecting and mitigating the
attack without any end-host modification.

We illustrate the Optimistic ACK attack through a sequence
diagram in Figure 3. Here, a receiving host (i.e., the attacker)
is starting a normal TCP connection before abusing it. During
normal operations at the beginning (in blue), the receiving
host (the attacker) initializes the connection. After the 3-way
hand-shake (step (2)), data transfer begins as usual. In this
example, the sender sends a segment of 1000 bytes (step (3))
and the receiving host sends an ACK upon receiving the seg-
ment (step (4)). Then, the sender transmits two more segments
in a row (step(5)-(6)) assuming a slow start.

The Optimistic ACK attack phase is highlighted in red in
Figure 3. During the attack, the receiving host (the attacker)
anticipates the reception of segments by sending ACK for
segments that are not yet received (step (4’)). The receiver
(the attacker) sends these Optimistic ACKs in a way that
they appear to be corresponding to “in-flight” segments. As
a consequence, the sender increases its congestion window
and sends the subsequent segments earlier than it should
(step (5’)). In this example, the sender sends three segments
in a row after receiving the Optimistic ACK from the receiver.
As a consequence of this attack, the sender believes that
network conditions are better than the reality, resulting in
a transmission rate faster than it should be. This way, the

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

LARABA et al.: MITIGATING TCP PROTOCOL MISUSE WITH PROGRAMMABLE DATA PLANES 765

Fig. 4. EFSM for Optimisitic ACK detection and reaction.

malicious TCP connection can exhaust bandwidth on some or
all of the intermediary links on the path between the sender
and the receiver, causing a possible denial of service attack.
Furthermore, Optimistic ACKs can cause other legitimate TCP
connections sharing links with the malicious connection to get
unfair share of bandwidth.

Optimistic ACK can be considered an amplification attack
because the attacker only needs to send many small ACKs
while delegating the flooding of larger segments to a legit-
imate host, the victim. Note that the Optimistic ACKs may
be received by the sender before the corresponding TCP seg-
ments are sent. However, in most of implementations, these
anticipated ACKs will be ignored [5]. There is indeed no ver-
ification of the matching between received ACKs and the sent
segments as it is not necessary for normal operations and adds
overhead.

B. EFSM Model of Optimisitic ACK

We model the normal TCP behavior and the possible
Optimistic ACK attack in a single EFSM. We use the states
represented in Figure 3 as the states in the EFSM in Figure 4
with an additional initial state called init. We define the events
from the relevant TCP flags shown in Figure 3. Once the TCP
connection is established, we use the conditions SYN = 1
and FIN = 1 to identify and ignore a possibly re-transmitted
SYN and FIN (end of connection) segments for the tracked
connection. The detection of the attack requires observing
the TCP segments in both sender-to-receiver and receiver-to-
sender directions. Therefore, we monitor bi-directional flows
and determine the direction of a flow by checking if the source
IP address of a packet, IP.src, is of the receiver (attacker) or
of the sender. The SYN–ACK state allows us to monitor the
beginning of the connection/flow, initiate its monitoring and
identify the receiver and sender in the bi-directional flow. The
identified receiver and sender IP addresses are saved into con-
text variables, receiver and sender, since they are required for
monitoring the connection.

To detect the attack, we have to observe a deviation between
the maximum acceptable acknowledgement number (i.e.,
expected_ackNo) and the acknowledgement number sent by
the potential attacker (receiver). We compute expected_ackNo
from the last seen sequence number TCP.SeqNo and the pay-
load size payload_size. The payload_size in turn is calculated
from IP header length (IP.ihl), IP total length (IP.len) and TCP

header length (TCP.dataOffset) fields extracted during parsing:

payload_size = IP .len − ((IP .ihl + TCP .dataOffset)× 4)

All these per-packet data are stored as packet metadata in P4
while expected_ackNo is tracked using the context variable
since this needs to persist across the TCP segments of a con-
nection (Section III-A). For this attack, we drop the packet
when the attack is detected.

Therefore, the Optimistic ACK attack EFSM model can be
represented as follows:
• S = {init, SYN-ACK, Established, Misbehaving};
• I = {init};
• E ={SYN = 1, ACK = 1, FIN = 1} with the fol-

lowing parameters: TCP.ackNo and TCP.SeqNo are the
acknowledgement and sequence number of the current
packet and IP.src and IP.dst are respectively the source
and destination IP address;

• V = {expected_ackNo, sender, receiver};
• Annotations of arrows in Figure 4 represent A, C and T
It is worth mentioning that the EFSM in Figure 4 does

not represent future actions after the attack is detected. This
is dependent on the operator policy and is orthogonal to the
EFSM model for detecting misbehavior. One possible action
can be to drop all subsequent opportunistic ACKs for the
malicious TCP connection.

V. OPTIMISTIC ACK EVALUATION

We have implemented the data plane program for Optimistic
ACK detection and mitigation using P4-16 [19] and compiled
it for the bmv2 software switch target [26]. We have used
mininet [27] and p4app docker image [28] for conducting the
experiments. Mininet and bmv2 switches are indeed not suit-
able for evaluating performance in a realistic setting, thus a
baseline scenario for comparison is used in different experi-
ments. However, they provide us a way to perform functional
validation of the solutions.

1) Attack Mitigation: The goal of our first experiment is
to evaluate the effectiveness of our approach in mitigating the
Optimistic ACK attack from the data plane. To accomplish
this we perform an experiment similar to that done in [5].
We consider a simple topology with two hosts (a sender and a
receiver) connected to the same switch. We perform the exper-
iment both with and without detection and mitigation in the
switch program. We generate the attack using the tool available
in [29].

Figure 5(a) illustrates how the attack unfolds comparing
sequence numbers of data segments and acknowledgment
numbers assuming a normal client or an attacker. After the first
few data segments, the attacker starts its malicious behavior
at 0.25s by sending a stream of Optimistic acknowledgements
(plotted in green). As a consequence, the sender keeps increas-
ing its congestion window and increases the speed of sending
new segments (plotted in grey). As we can see, the server
completes its transmission (plotted in grey) significantly earlier
than it would normally do without the presence of Optimistic
ACK attack (plotted in blue).

Figure 5(b) demonstrates how our monitoring strategy effec-
tively detects the Optimistic ACK attack and mitigates its

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

766 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 5. Optimistic ACK in action.

impact. When the switch detects Optimistic ACKs, the EFSM
corresponding to that TCP connection transitions to the misbe-
having state. Consequently, the anticipated ACKs are dropped
at the switch and no longer reach the server. Therefore, the
server’s congestion window does not incorrectly grow, hence,
it does not significantly increase the data transmission rate.

2) Throughput Evaluation: In this experiment, we evaluate
the impact of the Optimistic ACK attack flow on the achieved
throuhgput of a normal flow sharing the same path. The topol-
ogy for this experiment is composed of two switches and seven
hosts (Figure 6). Here, host h1 is the sender (the attacked
server). We vary the number of attackers between 1 and 4
(hosts h4 to h7). We generate a normal flow between host pair
(h2, h3) using iperf and measure the impact of the attack on its
throughput. The link between the two switches is shared by all
flows and is thus the bottleneck. We consider two scenarios:
Reaction, where the switch applies the mitigation process and
noReaction, otherwise. The results are presented in Figure 7.

Each box in Figure 7 represents the distribution of results
obtained from 10 emulation runs of 60 seconds each. For a
first baseline experiment, iperf + Normal, we have a non mis-
behaving flow alongside the iperf flow between h2 and h3. In
this case, we observe similar behavior for both the noReaction
and Reaction scenarios. The observed throughput variation due
to the EFSM-based monitoring is very low.

Fig. 6. Topology.

Fig. 7. Optimistic Ack impact on the normal flow.

Once we have a baseline, we incrementally increase the
number of attackers. First, with a single attacker (iperf +
1 attacker), the throughput degrades in the noReaction sce-
nario compared to the baseline, iperf + Normal. When we
activate the reaction process, the throughput improves and
gets even better than the iperf + Normal case. This can be
explained by the fact that the attacker’s Optimistic ACKs are
dropped, causing the server to stop transmitting further data
segments. Consequently, the bandwidth of the bottleneck link
becomes fully available for the iperf flow. When the number
of attackers increases, the impact of the attack becomes higher
as expected. In case of 2 attackers (i.e., 66% of the hosts being
attackers), the reaction process recovers the throughput back to
approximately the same level as the iperf + Normal scenario.
Starting from three attackers, the throughput is not completely
recovered as we can see from the box-plot for the Reaction
scenario. In this case, switch s2’s ingress queues are flooded
with Optimistic ACKs (on the link to the attackers). Although
the Optimistic ACKs are dropped and their impact is miti-
gated on the shared link s1 – s2, the ACKs still need to enter
switch s2 for processing. This consumes the switch resources,
impacting the throughput recovery. Note that 3 attackers cor-
respond to having 75% of the hosts being attackers. This is a
very aggressive scenario and it becomes even worse with four
attackers.

3) Switch Processing Time Evaluation: In this experiment,
we evaluate the overhead of running our mitigation solution in
the data plane by measuring the increase in packet processing
time in the switch. The results of this experiment are presented
in Figure 8. The two groups of box-plot represent when for-
warding is performed with monitoring disabled (forward) or
enabled (reaction).

We deployed a topology with a single switch and two hosts,
a sending and a receiving host. We generated 1000, 5000 and
10000 TCP flows and measured the per packet processing time
in the switch. As we can observe from Figure 8, the median

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

LARABA et al.: MITIGATING TCP PROTOCOL MISUSE WITH PROGRAMMABLE DATA PLANES 767

Fig. 8. Switch processing time.

Fig. 9. ECN (normal behavior in blue, misbehavior in red, ellipses represent
EFSM state updates).

value is 2.9 ms for the forward configuration and 3.3 ms for the
reaction configuration. The switch processing time overhead
of our reaction process is 0.4 ms (≈ 14% additional processing
time compared to forward). As shown also in Figure 8, our
solution has no significant change in processing time overhead
with respect to the number of flows to monitor. Note that
both the processing time and the overhead will be significantly
improved for a hardware target, which we plan to explore as
a future extension.

VI. APPLICATION TO ECN

In this section, we apply our method to model, detect and
mitigate misbehaving end-hosts abusing the ECN protocol
mechanism.

A. ECN Background and Attack Description

TCP end-hosts typically use end-to-end congestion signals
such as packet loss or round-trip-time for adjusting their con-
gestion windows. ECN was proposed as a mechanism for
network devices experiencing congestion to send congestion
signals to end-hosts [30]. The ECN RFC [7] defines the
following codepoints and fields for both IP and TCP protocols:

• Congestion Experienced (CE) and ECN-capable
Transport (ECT) codepoints for the DSCP field of IP
header.

• ECN-Echo (ECE) and Congestion Window Reduced
(CWR) flags in the TCP header.

However, the design of ECN introduces the possibility
of having misbehaving end-hosts in the network, i.e., end-
hosts that do not fully conform to the protocol specification.
We illustrate such misbehavior (messages in red) along with
the expected normal behavior (messages in blue) of ECN
enabled TCP end-host in Figure 9. During the TCP three-way
handshake phase (not shown in the Figure), TCP end-hosts
negotiate the use of ECN. Following the TCP three-way
handshake, the ECN protocol behaves as follows:
• A congested switch detects an ECN-capable TCP connec-

tion (ECT set in IP header) and marks the corresponding
packet with CE ((1) in Figure 9);

• After receiving a packet with CE, the receiver becomes
aware of the congestion and informs the sender by setting
the ECE flag in the TCP header ((2) in Figure 9);

• Once the sender receives a packet with the ECE flag
set, it reacts by reducing its congestion window. Then,
the sender sets the CWR flag to inform the receiver
((3) in Figure 1), which in turn stops sending congestion
notification by unsetting ECE ((4) in Figure 9).

ECN RFC defines a possible misbehavior of an end-host
announcing itself as ECN-capable but ignoring congestion
notification from the switch [7]. As shown in Figure 9, once a
switch notifies about congestion, the receiving host can mis-
behave by not echoing back the congestion information to
the sender, i.e., set the ECE flag to 0 ((2’) in Figure 9). As
a result, the sender does not reduce the congestion window
((3’) in Figure 9). Misbehaving flows can degrade network
performance and create a denial service for the benign flows
at the expense of their own loss in throughput. This is why
the RFC recommends that such flows must be identified and
handled.

For the sake of completeness with respect to the original
ECN procedure, Figure 9 introduces two non compliant behav-
iors. First, the receiver can keep sending packets with ECE set
((4’) in Figure 9) even though the sender has already reduced
its congestion window, forcing the sender to further reduce its
congestion window. Second, the sender can ignore the noti-
fication sent back from the receiver ((2) in Figure 9) by not
reducing the congestion window ((3’) in Figure 9). Similarly
the sender can reduce its congestion window without notifying
through setting the CWR bit. In both cases, the switch can-
not deduce if the congestion window has been really reduced.
That is why these behaviors are qualified as non compliant
rather than misbehaving. These non-compliant behaviors will
allow us to evaluate our method in a more complex scenario.

B. EFSM Model of ECN

We model the expected and unexpected (misbehaving and
non compliant) behaviors of ECN capable end-hosts in a sin-
gle EFSM. Each time a packet is received, the state of the
EFSM illustrated by an ellipse in Figure 9 is updated. Normal

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

768 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 10. EFSM abstraction for ECN.

states are colored in green while all unexpected states are
colored in red. init represents the initial state of the EFSM,
I = {init}. The EFSM model is instantiated into the switch
and the transitions are triggered by events which are derived
from ingress packets as explained in Section III-B2, notably
ECN related flags in these scenarios. Based on these defini-
tions, we illustrate the EFSM corresponding to Figure 9 in
Figure 10. It is defined as follows:
• S = {init, congestion, notified, win_reduction, notifica-

tion_stopped, misbehaving, non compliant};
• I = {init};
• E = {ECT = 1, ECE = 1, ECE = 0, CWR = 1,

CWR = 0} with the following parameters: IP.src and
IP.dst are respectively the source and destination IP
address;

• V = {dstCE};
• Annotations of arrows in Figure 4 represent A, C and T.
Unlike the Optimistic ACK scenario, no additional

information must be maintained alongside the current state
since the states themselves are self-contained in terms of
necessary information. However, recognizing the direction of
packets is still necessary. Therefore, we use a single context
variable dstCE for identifying the host that is supposed to
relay the congestion notified by the switch (i.e., the receiver in
Figure 9). To properly set the dstCE variable, source (IP.src)
and destination (IP.dst) IP addresses are needed, which are
anyway extracted to create the 5-tuple flow key. Once a
misbehavior or non compliant behavior is detected, we take
corrective actions when possible.

For the misbehaving and the second non compliant cases,
the receiver must react according to the congestion signal
(with either CE = 1 or CWR = 1). Therefore, the behav-
ior can be corrected by setting or unsetting ECE accordingly.
Doing so will also require TCP checksum to be updated
(action update_chk as introduced in Section III-C). Correcting
the second non compliant case is also important because a
receiver with an incorrect ECN implementation would penalize
itself by forcing the sender to continue reducing its conges-
tion window. Note that our approach can also be employed
to detect incorrect protocol implementation at end-hosts aside
from being used for the security use cases.

For the first non compliant case, the switch cannot effec-
tively verify that the sender has reduced its congestion window.

Fig. 11. Experimental topology used in mininet.

As a result, it is impossible to deduce from the switch if the
CWR flag must be really set to one in the first non compli-
ant case. Therefore, we resort to sending an alert and forward
the packet. The exact definition of the alert depends on the
switch capabilities and can be of different kinds such as cre-
ating entries in the log files of the switch, sending a packet to
the controller, or generating a postcard [31], [32]. The exact
details of such action is out of the scope of this article. In our
prototype implementation, we let the packet pass through and
change the EFSM state to non compliant.

It is worth mentioning that the congestion is detected by
the switch itself enabling so the transition from init to con-
gestion. It corresponds to the condition cong_detected = 1 in
Fig. 10. In practice, this variable is derived from the occu-
pancy level of the switch queues (intrinsic metadata). When
the occupancy reaches a marking threshold, the packets are
marked and cong_detected is set to 1.

VII. ECN EVALUATION

All experiments were performed using the same setup as
for Optimistic ACK, i.e., bmv2 software switch [26] with
mininet [27], p4app docker container [28] and P4-16 [19].

A. Bandwidth Share and Throughput Evaluation

To assess the impact of the use or misuse of ECN, we eval-
uate if the bandwidth is correctly shared during congestion
assuming the topology presented in Fig. 11. It is composed
of one switch and four hosts (h1, h2, h3, h4). By default, all
TCP hosts are ECN-capable and the link latency is set to 1ms.
To create congestion, we limit the link capacity to 2000 pack-
ets/sec and a UDP flow between h4 and h3 is generated with
8 Mbits/sec to flood the network. The size of UDP packets is
set to 400B to increase the number of packets in the network
and in the switch queue.

We generate TCP flows using iperf between h1 and h3, h2
and h3. h1 acts as a misbehaving host by not echoing the con-
gestion notification ((2’) in Figure 9) (i.e., not setting the TCP
ECE flag). h1-h3 and h2-h3 flows are thus qualified as misbe-
having and normal, respectively. The switch queue capacity is
set according to the Bandwidth Delay Product rule (BDP) [33]:
queue_capacity = RTT * Network_bottleneck_capacity = 8
packets, in our setup since the lowest RTT between two hosts
is 4ms and the bottleneck capacity is limited by the queue rate
of 2000 packets/sec.

We evaluate the misbehaving ECN use-case under different
settings for the ECN marking threshold, i.e., the number of

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

LARABA et al.: MITIGATING TCP PROTOCOL MISUSE WITH PROGRAMMABLE DATA PLANES 769

Fig. 12. Misbehaving and normal flow throughput depending on the marking
threshold.

packets in the switch queue for triggering the sending of con-
gestion notification. First, we consider recommendations from
the data center networking literature. Second, we consider
ECN with an active queue management mechanism, namely,
Random Early Detection (RED) [34], which represents a more
generic scenario.

In the case of data center networks, the research litera-
ture proposes several ECN marking schemes, the majority of
them being deterministic, i.e., switches mark packets when
switch queue length is higher than a pre-determined threshold.
There are different recommendations for the ECN thresh-
old in DCN. DCTCP [30] recommends an ECN marking
threshold greater than queue_capacity/7. Another work on
ECN presented in [35] recommends a marking threshold of:
queue_capacity/

√
n , where n is the number of flows. In the

first case, the threshold should be greater than 1.14 in our
setting. In the second case, the marking threshold should be
4.61. However, we decided to vary the marking threshold from
2 to 7 to consider different values including those calculated
from the recommendations (2 and 5 obtained by rounding the
numbers to the next integer).

In Figure 12, we present the throughput of the normal flow
(h2-h3) and the misbehaving flow (h1-h3) side-by-side from
the following scenarios:
• noMisbehaving-forward: the baseline scenario where all

hosts follow ECN specification and the switch forwards
packets without modification (neither detection nor reac-
tion activated). Even the flow h1-h3 behaves as expected.

• Misbehaving-noReaction: h1 misbehaves but the switch
continues to forward packets (neither detection nor reac-
tion activated).

• Misbehaving-ECEreaction: similar to the previous case
but the switch implements ECN misbehavior detection
and applies corrective measures. The switch partially
implements the EFSM of Figure 10 with S = {init,
congestion, misbehaving}.

The bars in Figure 12 represent the average throughput of 10
emulation runs of 120 seconds each. In the case of no misbe-
having flow (noMisbehaving-forward), a fair bandwidth share

is observed regardless of the marking threshold (each flow is
getting ≈10 Mbits/sec). However, the misbehaving flow takes
the largest share of the available bandwidth for low mark-
ing thresholds (2, 3, 4, 5) when there is no detection. In that
case, the misbehaving host ignores the congestion notification
and increases its sending rate much higher than the benign
flow. Indeed, the benign flow reduces its congestion window
in response to congestion notification, leaving more queue
space to the misbehaving flow. When increasing the marking
threshold, congestion notifications are sent later (i.e., when the
queue is more occupied). Therefore, for higher ECN marking
thresholds (6, 7) the impact of the misbehaving flow on the
normal flow is reduced compared to low marking thresholds.
Even with the most aggressive recommendation [35] with a
threshold of 5, the misbehaving flow gets 11.8 Mbits/sec while
there is only 8.4 Mbits/sec left for the normal flow (59% vs.
42% share). In the presence of the reaction (Misbehaving-
ECEreaction), the bandwidth is properly distributed and an
equitable bandwidth share is observed between the flows in
all cases. This demonstrates the effectiveness of our solution
in detecting and reacting to the attack.

RED is an active queue management mechanism that drops
packets with a certain probability in anticipation of network
congestion [34]. In our case, we employ RED for probabilis-
tic packets marking with congestion notification instead of
dropping the packets. When the average queue length in a
switch is between two thresholds minth and maxth, an incom-
ing packet is marked with a certain probability. The marking
probability is a function of queue length and changes linearly
between 0 and 1 [34]. However, if the average queue length
becomes higher than maxth, then all the incoming packets are
marked [34]. For setting the maxth and minth parameters of
RED, we set maxth to at least twice minth following the rec-
ommendation in [34]. Since the queue capacity is 8 in our
experiments, we used the following combinations of (minth–
maxth) tuples: (2-4), (2-5), (2-6), (2-7), (3-6), and (3-7) for
covering all the possible combinations in our experiments.

We have implemented the RED algorithm in P4 based on the
implementation from [36]. We use the instantaneous outgoing
queue occupancy made available by bmv2 as intrinsic meta-
data for reacting faster to traffic bursts [37]. Note that bmv2
provides queue occupancy in terms of the number of packets.
Therefore, we slightly modify the original RED algorithm that
used the number of bytes to determine queue length. However,
we keep the packet sizes the same in our experiments, hence,
the number of packets is directly proportional to the number
of bytes. Since P4 targets do not support floating-point oper-
ations, we pre-calculate the probabilities, scale the values to
be between 0 and 255, and store the probabilities in a match-
action table in the data plane. For each incoming packet, the
queue length is matched against the entries in this table to
obtain the probabilities. The obtained probability is then com-
pared against a random number to decide if the packet must
be marked [38].

We report the result of our experiments using RED in
Figure 13. We again observe that applying our technique
enables ensuring a fair bandwidth share when an attack takes
place, reinforcing the effectiveness of our solution. Similar to

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

770 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 13. Misbehaving and normal flow throughput depending on the marking
threshold using RED.

the deterministic threshold case, we observe a higher impact
of the attack when the packets are marked at lower queue
occupancy. In the case of RED, this scenario occurs for lower
minth values, when packets are likely to be marked even
when the queue is not substantially occupied. For instance,
for the (2-7) combination, the misbehaving flow reaches ≈
9.31 Mbits/sec, forcing the benign flow to reach only ≈ 6.48
Mbits/sec (58.96% vs. 41.03% share). Finally, we notice each
flow achieving ≈ 8 Mbits/sec throughput, which is lower than
that reported in Figure 12. This is because applying RED also
introduces additional per-packet processing overhead within
bmv2, hence, reducing the throughput.

B. Switch Processing Time Evaluation

In this experiment, our goal is to evaluate the runtime
overhead per packet. We consider different configurations:
• L3: parsing is limited up to the IP header.
• L4: L3 + TCP header parsing.
• ECE-v: the state machine is partially implemented to

model the normal behavior; states S are restricted to {init,
congestion, notified} in Figure 10.

• ECE-v-r: the state machine is partially implemented
to monitor and react against the misbehavior, ((2’) in
figure 9); S is restricted to {init, congestion, notified,
misbehaving}.

• full-v: the full state machine is implemented for misbe-
having and non compliant flow verification except for the
corrective actions and checksum recalculation.

• full-v-r: similar to full-v but including the reaction against
the ECN misbehavior ((2’) in Figure 9) by setting ECE
to 1 and so including checksum recalculation.

In this evaluation, the full-v and full-v-r scenarios are con-
sidered to estimate the overhead induced for monitoring the
whole ECN state machine in the data plane including mis-
behaving and non-compliant flows verification. We deploy a
simple topology with a single switch and two hosts (server and
client). We generate 1000, 5000 and 10000 flows between the
hosts and report the processing time per packet in Figure 14.
The median value is 2.7 ms, 2.7 ms, 3.5 ms, 3.7 ms, 4.6 ms

Fig. 14. Switch processing time.

and 5 ms for L3, L4, ECE-v, ECE-v-r, full-v and full-v-r sce-
narios, respectively. Parsing TCP does not add a significant
cost compared to IP parsing. As expected, the more complex
the EFSM, the higher the overhead. It is worth mentioning that
corrective actions incur less overhead than monitoring using a
more complex EFSM when comparing the increase between
ECE-v and ECE-v-r and between full-v and full-v-r. Therefore,
we recommend a partial implementation of the EFSM to react
only against the misbehavior since the non compliant flows
verification induce a substantial overhead. Therefore, before
deploying a protocol compliance verification solution, it is
necessary to verify its usefulness and its adequacy to network
performance conditions. Finally, as shown in Figure 14, our
approach is scalable with respect to the number of flows to
monitor in parallel similar to the Opt-ACK use case.

These results have been obtained using a deterministic
marking threshold. This is because an additional active queue
management mechanism for ECN marking is independent of
our contribution, and including that for processing time evalu-
ation will not give a real picture. Note that we also evaluated
the processing time with RED included and found it to be
≈4.1 ms for the ECE-v-r scenario. This additional processing
time explains the decrease in throughput between Figure 12
and Figure 13.

VIII. DISCUSSION

A. TCP Connection Tracking

We track each individual TCP connection in the data plane
as a separate flow. For maintaining per-flow persistent data
across packets of a flow, we rely on hashing the 5-tuple flow
key. TCP connection tracking through flow key hashing can
lead to hash collisions that we address in Section VIII-C. After
a TCP connection terminates we do not update the associ-
ated EFSM anymore. The exact mechanism of how connection
termination is detected is out of the scope of our work. A
hardware switch can rely on a variety of mechanisms such as
detecting FIN and RST flags in TCP segments [39] or using a
timeout mechanism for evicting terminated TCP connections
when a new flow with the same hash occurs. For the latter,
the hardware target must be capable of precise timestamping

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

LARABA et al.: MITIGATING TCP PROTOCOL MISUSE WITH PROGRAMMABLE DATA PLANES 771

(available in P4 hardware switches [40]). Furthermore, addi-
tional register entries per tracked connection would be required
for storing the last seen timestamp as a context variable.

Another issue that may arise for TCP connection tracking
in the data plane is sequence number wrap-around (i.e., when
sequence number reaches its upper bound (232−1)), it restarts
from 0. This is particularly problematic for use-cases where
we need to track the sequence numbers in each flow such
as in the optimistic ACK EFSM. The TCP sequence number
wrapping issue can be solved by employing techniques such as
serial number arithmetic [41] or by enabling the TCP segment
timestamp option [42]. Note that the latter will require tracking
the last seen timestamp of each TCP connection as in the
timeout based flow tracking scenario described above. Both
of these techniques can be implemented in the P4 language
and programmable hardware target constraints [19].

B. Scalability and Memory Overhead

A possible implementation issue is the support of P4 externs
such as registers, necessary for maintaining persistent data
across the segments of tracked TCP connections. Although P4
leaves the externs to be target-specific, registers are the most
widely used externs and are expected to be supported by most
P4 targets. For example, in [43], authors propose a P4 com-
piler for various FPGA hardware including stateful objects.
The implementation of our solution on programmable hard-
ware raises the issue of memory constraint. Although metadata
variables that carry information between tables has a negligi-
ble bit overhead [13], the scalability of our method is limited
by the available register memory in the hardware targets. As
highlighted in Section III, we need |V |+1 registers per flow:
one for maintaining the current state of the EFSM and one
for each context variable. For n flows, our method requires
n × (|V | + 1) register entries. For example, the EFSMs for
the ECN and the Optimistic Ack attacks have |V | = 1 and
|V = 3|, respectively. Assuming 32 bit values in registers,
tracking 10,000 TCP connections will lead to allocate less
than 64kB and 128kB, respectively, for these two use-cases.
In comparison, state-of-the-art programmable hardware pro-
vides sufficiently large memory to accommodate state registers
capable of holding tens of thousands of active TCP connec-
tions. For example, P4FPGA [43] can implement up to a 288
bits key for TCAM or hash-based memory and can fit up to
93K entries. Indeed, memory requirement will be higher with
a higher |V |. In that case, we can employ optimizations such
as lowering the size of register entries below 32 bits. In the
current version, the number of states can be up to 232 − 1,
sufficient to support any use case.

C. Hash Collisions

The limited hardware resources in the data plane can pose
challenges for tracking per-flow state [24], [44]. We fol-
low the approach presented in state-of-the-art such as [24],
[44] and maintain the hash of the 5-tuple flow key rather
than maintaining the flow key itself to reduce the width of
flow key used in hardware. This approach creates the risk of
multiple flow keys getting mapped to the same hash value

(i.e., hash collision). For a real deployment we can leverage
techniques such as those described in [24], [44] for tackling
the hash collision issue. Using multiple hash functions in
conjunction with multiple hash tables reduces the number of
collisions [24]. However, collisions are often unavoidable and
therefore must be detected by employing methods such as
checking if the sequence number stored against a hash value is
correct [44]. Some existing hardware switches include mecha-
nisms for handling hash collisions, however, these mechanisms
are hardware-specific and cannot be generalized.

IX. RELATED WORK

Traditionally, network monitoring has relied on tools such
as SNMP and NetFlow or sFlow. Their stateless nature have
forced network operators to use network appliances [11], [12]
for monitoring stateful protocols such as TCP at the expense
of additional operational overhead. The advent of OpenFlow-
based SDN (Software-Defined Networking) and more recently,
programmable data planes enabled by P4, have created new
opportunities for stateful network monitoring. In the following,
we first discuss the research literature on stateful monitor-
ing enabled by the aforementioned technologies. Then, we
focus our discussion on the state-of-the-art in detecting and
mitigating TCP protocol abuse.

A. Stateful Monitoring in the Data Plane

SDN has brought new capabilities for network monitoring.
Initially, the OpenFlow-based SDN [45] centralized controller
has the capability of dynamically controlling parameters such
as the monitoring frequency and the granularity of flow rules
to monitor. This motivated a significant body of research [46]
with a particular emphasis on addressing the trade-off between
monitoring accuracy and overhead in terms of data collection
bandwidth [47], [48] and flow table entries [49], [50].

Despite providing additional flexibility over traditional
network monitoring, OpenFlow does not enable stateful mon-
itoring in the data plane. To address this limitation, sev-
eral research works proposed extensions to OpenFlow. For
instance, OpenState [51] proposes an OpenFlow extension that
enables stateful monitoring using regular FSMs. However, as
discussed earlier, regular FSMs may suffer from state explo-
sion since they cannot compress states into variables storing
persistent values as in EFSMs. Another OpenFlow extension
proposed in the literature is SDPA [52]. The authors in [52]
introduce a new component to manage state machines in the
switch, however, their proposal is hardware specific (i.e., for
FPGA in [52]). Another OpenFlow data plane modification
has been proposed by OFX [53], which uses an external agent
running on OpenFlow switches to handle stateful monitoring.
In contrast to the purely data plane based solutions, the authors
in [54] propose a hybrid control and data plane approach for
maintaining state machines. In the same vein, Oko [55] pro-
poses to extend OpenFlow capabilities with extended Berkley
Packet Filter (eBPF) [56] for stateful processing. However,
Oko is exclusively limited to Linux-based software switches.

The recently emerging PISA architecture and the accom-
panying P4 programming language has inspired many

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

772 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

research works leveraging stateful dataplane processing
such as load-balancing [44], [57], application accelera-
tion [58], [59] or DDoS detection [15], [60], [61], among
others. A substantial body of recent research has taken
advantage of the flexible packet parsing, cross-packet state
retention, and the limited computational capability offered
by PISA switches for advanced network monitoring. For
instance, FlowRadar [62] and TurboFlow [63] proposed
mechanisms for collecting NetFlow like records for all the
flows passing through a switch as opposed to sampling like
in NetFlow. The authors extend their approach proposed
in [63] for supporting dynamic and concurrent flow queries
in [64]. Another line of research focuses on computing
approximate summary of network traffic directly in the
data plane using data stream sketches [65], [66]. Besides
these general directions, many works have focused on
performing specific monitoring tasks leveraging data plane
programmability such as heavy-hitter detection [67]–[70],
congestion monitoring [71]–[73], network connectivity
monitoring [74], and machine learning based packet
classification [75].

Our approach of leveraging EFSM for modeling stateful
protocol behavior in the data plane shares basic principles
with XTRA [76] and FlowBlaze [77]. XTRA [76] provides a
domain specific language and an EFSM abstraction for deploy-
ing transport layer functions in the data plane. XTRA also
proposes a timer management mechanism in the data plane
and demonstrates its viability by implementing timer-based
applications such as SYN-proxy. The key difference between
XTRA and our approach is that the former is target specific
(i.e., NetFPGA and software switch), whereas we build on a
higher level of abstraction (i.e., the P4 language) to support a
wide range of hardware and software targets. FlowBlaze [77]
augments the Reconfigurable Match Tables (RMT) model of
PISA switches with dedicated tables for realizing EFSMs
and a language for utilizing those tables. Indeed, a switch
architecture similar to that of FlowBlaze will ease our imple-
mentation effort. However, in this work, we rely on the RMT
model for its generality and higher adoption in hardware P4
targets [16], [78].

B. TCP Protocol Abuse: Detection & Mitigation

TCP protocol was not originally designed with security
considerations in mind. As a consequence, many exploits
have taken advantage of protocol corner cases for launching
different attacks. These attacks are mainly targeted towards
manipulating the way congestion window converges, in this
way directly impacting the transmission rate along the TCP
connection with the goal of flooding the network. Savage et al.
introduced the Optimistic ACK attack addressed in our work
along with two other attacks, namely, ACK division (dividing
one ACK into multiple smaller ACKs) and spoofed duplicate
ACK attacks (sending multiple forged duplicate ACKs for the
last received segment) [5]. The ECN RFC raised the concern
that a misbehaving host can unjustly manipulate the sender
congestion window like the other attacks [7] as described in
details in Section VI. As a result of these attacks, the malicious

TCP connection can flood the network or can cause unfair
sharing of the network bandwidth.

The solutions proposed to tackle attacks from misbehaving
TCP end-hosts require changing the TCP implementation at
the end hosts. For instance, in case of Optimistic ACK, the
authors in [5] proposed a nonce solution where the TCP sender
fills each sent segment with a unique random value. The TCP
receiver and sender maintain the cumulative nonce sum of all
acknowledged segments. Each time a receiver sends an ACK
it echoes the nonce value sent by the sender. In that case, the
sender can verify that the ACKs sent by the receivers have
been really sent.

The authors in [6] proposed another solution to the
Optimistic ACK attack that randomly drops segments at the
sender side. Therefore, when the sender gets an Optimistic
ACK for one of the intentionally dropped segments, it can
identify the receiver as a misbehaving one. Besides requir-
ing TCP implementation change, this solution also penalizes
the legitimate receivers. Note that solely end-host modification
based approaches might not be effective for the ECN attack
use-case [7].

Jero et al., proposed an offline mechanism for misbehav-
ing TCP end-host detection. They propose to collect logs
from end-hosts and compare the resulting TCP performance
from the expected performance obtained from a testing envi-
ronment [9]. This solution is effective for attack forensics,
however, it is ineffective for online detection. Since some of
the misbehaviors are attributed to incorrect implementation,
Jero et al. proposed to use symbolic execution techniques
for verifying the protocol implementations [10]. However, this
approach is limited to a specific operating system, implemen-
tation and language. In contrast to the state-of-the-art works,
we perform real-time detection and mitigation of such attacks
in the network without requiring any change to the protocol
specification or implementation.

X. CONCLUSION

This article introduced an EFSM-based security monitoring
function capable of mitigating TCP protocol abuse in the data
plane without requiring any modifications to TCP end-hosts
or to the protocol. We have demonstrated the effectiveness
of our proposal in mitigating two TCP end-host misbehaviors
abusing the TCP congestion control mechanism. We believe
that our approach has the potential to address other attacks
such as ACK division and DupACK spoofing [5]. We con-
clude that the data plane can be leveraged for such security
monitoring at the cost of some additional processing overhead.
However, we believe this is a small price to pay for the abil-
ity to quickly deploy mitigation solutions to attacks as they
are uncovered. This is significantly more scalable and prac-
tical than changing protocol implementation on all end-hosts
or changing protocol specifications. We have implemented our
proposed solution on a software switch target for functional
validation. Implementation on a commercial hardware target
with further consideration for reducing overhead is one of our
future goals. Another future direction we plan to pursue is
to adopt the EFSM abstraction for attacks targeting stateful
layer-4 and above protocols.

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

LARABA et al.: MITIGATING TCP PROTOCOL MISUSE WITH PROGRAMMABLE DATA PLANES 773

REFERENCES

[1] C. Rossow, “Amplification hell: Revisiting network protocols for DDoS
abuse,” in Proc. Netw. Distrib. Syst. Security Symp. (NDSS), 2014,
doi: 10.14722/NDSS.2014.23233.

[2] H. J. Abdelnur, T. Avanesov, M. Rusinowitch, and R. State, “Abusing
SIP authentication,” in Proc. Int. Conf. Inf. Assur. Security (IAS), 2008,
pp. 237–242.

[3] D. A. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and
V. Stettler, “A formal analysis of 5G authentication,” in Proc. ACM
Conf. Comput. Commun. Security (CCS), Toronto, ON, Canada, 2018,
pp. 1383–1396.

[4] W. Lian, E. Rescorla, H. Shacham, and S. Savage, “Measuring the prac-
tical impact of DNSSEC deployment,” in Proc. USENIX Security Symp.,
2013, pp. 573–588.

[5] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP conges-
tion control with a misbehaving receiver,” ACM SIGCOMM Comput.
Commun. Rev., vol. 29, no. 5, pp. 71–78, 1999.

[6] R. Sherwood, B. Bhattacharjee, and R. Braud, “Misbehaving TCP
receivers can cause Internet-wide congestion collapse,” in Proc. ACM
Conf. Comput. Commun. Security (CCS), 2005, pp. 383–392.

[7] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit
congestion notification (ECN) to IP,” IETF, RFC 3168, 2001.

[8] D. Ely, N. Spring, D. Wetherall, S. Savage, and T. Anderson, “Robust
congestion signaling,” in Proc. Int. Conf. Netw. Protocols (ICNP), 2001,
pp. 332–341.

[9] N. Kothari, R. Mahajan, T. D. Millstein, R. Govindan, and
M. Musuvathi, “Finding protocol manipulation attacks,” in Proc. ACM
SIGCOMM Conf., 2011, pp. 26–37.

[10] S. Jero, M. E. Hoque, D. R. Choffnes, A. Mislove, and C. Nita-Rotaru,
“Automated attack discovery in TCP congestion control using a model-
guided approach,” in Proc. Appl. Netw. Res. Workshop, 2018, p. 95.

[11] Fortigate 7000E Series IPs, Fortinet, Sunnyvale, CA, USA. Accessed:
May 29, 2020. [Online]. Available: https://www.fortinet.com/content
/dam/fortinet/assets/data-sheets/FortiGate_7000_Series_Bundle.pdf

[12] Zeek: An Open Source Network Security Monitoring Tool. Accessed:
May 29, 2020. [Online]. Available: https://zeek.org/

[13] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in Proc. ACM
SIGCOMM Conf. , 2013, pp. 99–110.

[14] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

[15] M. Zhang et al., “Poseidon: Mitigating volumetric DDoS attacks with
programmable switches,” in Proc. 27th Annu. Netw. Distrib. Syst.
Security Symp. (NDSS), 2020, doi: 10.14722/ndss.2020.24007.

[16] Barefoot Tofino. Accessed: May 29, 2020. [Online]. Available:
https://barefootnetworks.com/products/brief-tofino/

[17] A. Laraba, J. François, I. Chrisment, S. R. Chowdhury, and R. Boutaba,
“Defeating protocol abuse with p4: Application to explicit congestion
notification,” in Proc. IFIP Netw., 2020, pp. 431–439.

[18] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The
p4->netFPGA workflow for line-rate packet processing,” in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2019, pp. 1–9.

[19] (2018). P4 Language Consortium. P4-16 Language Specification.
[Online]. Available: https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html

[20] (2017). P4 Language Consortium. P4-14 Language Specification.
[Online]. Available: https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf

[21] V. S. Alagar and K. Periyasamy, Specification of Software Systems.
London, U.K.: Springer, 2011.

[22] K.-T. Cheng and A. S. Krishnakumar, “Automatic functional test gen-
eration using the extended finite state machine model,” in Proc. 30th
ACM/IEEE Design Autom. Conf., 1993, pp. 86–91.

[23] K. El-Fakih, N. Yevtushenko, M. Bozga, and S. Bensalem,
“Distinguishing extended finite state machine configurations using pred-
icate abstraction,” J. Softw. Eng. Res. Develop., vol. 4, pp. 1–26,
Mar. 2016.

[24] M. Ghasemi, T. Benson, and J. Rexford, “Dapper: Data plane
performance diagnosis of TCP,” in Proc. ACM Symp. SDN Res. (SOSR),
2017, pp. 61–74.

[25] T. Mallory and A. Kullberg, “Incremental updating of the Internet
checksum,” IETF, RFC 1141, 1990.

[26] (2018). P4 Language Consortium. 2018. Behavioral Model (BMv2).
[Online]. Available: https://github.com/p4lang/behavioral-model

[27] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proc. 8th Int. Conf. Emerg. Netw. Exp. Technolo., 2012, pp. 253–264.

[28] p4app. Accessed: Jan. 9, 2020. [Online]. Available: https://github.com
/p4lang/p4app

[29] V. Ramesh. (2016). Misbehaving-Receiver. [Online]. Available:
https://github.com/rameshvarun/misbehaving-receiver

[30] M. Alizadeh et al., “Data center TCP (dctcp),” in Proc. ACM
SIGCOMM Conf. Appl. Technol. Archit. Protocols Comput. Commun.,
2010, pp. 63–74.

[31] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown,
“I know what your packet did last hop: Using packet histories to trou-
bleshoot networks,” in Proc. 11th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2014, pp. 71–85.

[32] In-Band Network Telemetry (INT) Data Plane Specification, TPAW
Group, Jun. 2020. [Online]. Available: https://github.com/p4lang/p4-
applications/blob/master/docs/INT_v2_1.pdf

[33] A. Dhamdhere and C. Dovrolis, “Open issues in router buffer sizing,”
SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 87–92, 2006.

[34] S. Floyd and V. Jacobson, “Random early detection gateways for con-
gestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413,
Aug. 1993.

[35] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, “Tuning ECN
for data center networks,” in Proc. ACM Int. Conf. Emerg. Netw. Exp.
Technol. (CoNEXT), 2012, pp. 25–36.

[36] (2019). Traffic Control. [Online]. Available: https://github.com/PIFO-
TM/ns3-bmv2/tree/master/traffic-control

[37] W. Bai, K. Chen, L. Chen, C. Kim, and H. Wu, “Enabling
ECN over generic packet scheduling,” in Proc. 12th Int. Conf.
Emerg. Netw. EXp. Technol., 2016, pp. 191–204. [Online]. Available:
https://doi.org/10.1145/2999572.2999575

[38] B. Braden et al., “Recommendations on queue management and con-
gestion avoidance in the Internet,” IETF, RFC 2309, 1998.

[39] C.-H. He, B. Y. Chang, S. Chakraborty, C. Chen, and L.-C. Wang, “A
zero flow entry expiration timeout p4 switch,” in Proc. Symp. SDN Res.
(SOSR), 2018, pp. 1–2.

[40] R. Kundel, F. Siegmund, J. Blendin, A. Rizk, and B. Koldehofe, “P4STA:
High performance packet timestamping with programmable packet pro-
cessors,” in Proc. IEEE Netw. Oper. Manag. Symp. (NOMS), 2020,
pp. 1–9.

[41] R. Bush and R. Elz, “Serial number arithmetic,” IETF, RFC 1982, 1996.
[42] D. Borman, B. Braden, V. Jacobson, and R. Scheffenegger, “TCP

extensions for high performance,” IETF, RFC 7323, 2014.
[43] H. Wang et al., “P4FPGA: A rapid prototyping framework for P4,” in

Proc. Symp. SDN Res., 2017, pp. 122–135.
[44] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making stateful

layer-4 load balancing fast and cheap using switching asics,” in Proc.
Conf. ACM Spec. Interest Group Data Commun., 2017, pp. 15–28.

[45] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[46] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for
traffic engineering in SDN-openflow networks,” Comput. Netw., vol. 71,
pp. 1–30, Oct. 2014.

[47] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A
low cost network monitoring framework for software defined networks,”
in Proc. IEEE Netw. Oper. Manag. Symp. (NOMS), 2014, pp. 1–9.

[48] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “CeMon: A cost-effective
flow monitoring system in software defined networks,” Comput. Netw.,
vol. 92, pp. 101–115, Dec. 2015.

[49] L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic
aggregates on commodity switches,” in Proc. 11th USENIX Conf. Hot
Topics Manag. Internet Cloud Enterprise Netw. Serv. (Hot-ICE), 2011,
p. 13.

[50] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “DREAM: Dynamic
resource allocation for software-defined measurement,” in Proc. ACM
SIGCOMM Conf., 2014, pp. 419–430.

[51] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState:
Programming platform-independent stateful openflow applications inside
the switch,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 2,
pp. 44–51, 2014.

[52] C. Sun et al., “SDPA: Toward a stateful data plane in software-defined
networking,” IEEE/ACM Trans. Netw., vol. 25, no. 6, pp. 3294–3308,
Dec. 2017.

[53] J. Sonchack, J. M. Smith, A. J. Aviv, and E. Keller, “Enabling prac-
tical software-defined networking security applications with OFX,” in
Proc. 23rd Annu. Netw. Distrib. Syst. Security Symp. (NDSS), 2016, doi:
10.14722/ndss.2016.23309.

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

10.14722/NDSS.2014.23233
https://dx.doi.org/10.14722/ndss.2020.24007
http://dx.doi.org/10.14722/ndss.2016.23309

774 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

[54] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, “Flow-
level state transition as a new switch primitive for SDN,” in Proc. 3rd
Workshop Hot Topics Softw. Defined Netw., 2014, pp. 61–66.

[55] P. Chaignon, K. Lazri, J. François, T. Delmas, and O. Festor, “Oko:
Extending open vSwitch with stateful filters,” in Proc. Symp. SDN Res.,
2018, pp. 1–13.

[56] A Thorough Introduction to EBPF. Accessed: May 29, 2020. [Online].
Available: https://lwn.net/Articles/740157/

[57] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA:
Scalable load balancing using programmable data planes,” in Proc. ACM
Symp. SDN Res. (SOSR), 2016, p. 10.

[58] V. Bruschi, M. Faltelli, A. Tulumello, S. Pontarelli, F. Quaglia, and
G. Bianchi, “Offloading online mapreduce tasks with stateful pro-
grammable data planes,” in Proc. IEEE Conf. Innovat. Clouds Internet
Netw. Workshops (ICIN), 2020, pp. 17–22.

[59] H. Takruri, I. Kettaneh, A. Alquraan, and S. Al-Kiswany, “Flair:
Accelerating reads with consistency-aware network routing,” in
Proc. 17th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2020,
pp. 723–737.

[60] Â. C. Lapolli, J. A. Marques, and L. P. Gaspary, “Offloading real-
time DDoS attack detection to programmable data planes,” in Proc.
IFIP/IEEE Symp. Integr. Netw. Serv. Manag. (IM), 2019, pp. 19–27.

[61] M. Dimolianis, A. Pavlidis, and V. Maglaris, “A multi-feature DDoS
detection schema on P4 network hardware,” in Proc. IEEE 23rd Conf.
Innovat. Clouds Internet Netw. Workshops (ICIN), Paris, France, 2020,
pp. 1–6.

[62] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better netflow
for data centers,” in Proc. 13th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2016, pp. 311–324.

[63] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Turboflow:
Information rich flow record generation on commodity switches,” in
Proc. 13th EuroSys Conf., 2018, pp. 1–16.

[64] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith, “Scaling
hardware accelerated network monitoring to concurrent and dynamic
queries with *flow,” in Proc. USENIX Annu. Techn. Conf. (ATC), 2018,
pp. 823–835.

[65] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. Conf. ACM Spec. Interest Group Data Commun.,
2018, pp. 561–575.

[66] Q. Huang, P. P. Lee, and Y. Bao, “Sketchlearn: Relieving user burdens in
approximate measurement with automated statistical inference,” in Proc.
Conf. ACM Spec. Interest Group Data Commun., 2018, pp. 576–590.

[67] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in Proc.
Symp. SDN Res., 2017, pp. 164–176.

[68] D. Ding, M. Savi, G. Antichi, and D. Siracusa, “An incrementally-
deployable P4-enabled architecture for network-wide heavy-hitter detec-
tion,” IEEE Trans. Netw. Service Manag., vol. 17, no. 1, pp. 75–88,
Mar. 2020.

[69] J. Kučera, D. A. Popescu, H. Wang, A. Moore, J. Kořenek, and
G. Antichi, “Enabling event-triggered data plane monitoring,” in Proc.
Symp. SDN Res., 2020, pp. 14–26.

[70] R. B. Basat, X. Chen, G. Einziger, and O. Rottenstreich,
“Designing heavy-hitter detection algorithms for programmable
switches,” IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1172–1185,
Jun. 2020.

[71] R. Joshi, T. Qu, M. C. Chan, B. Leong, and B. T. Loo, “BurstRadar:
Practical real-time microburst monitoring for datacenter networks,” in
Proc. 9th Asia–Pac. Workshop Syst., 2018, pp. 1–8.

[72] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, and O. Rottenstreich,
“Catching the microburst culprits with snappy,” in Proc. Afternoon
Workshop Self-Driving Netw., 2018, pp. 22–28.

[73] X. Chen et al., “Fine-grained queue measurement in the data plane,” in
Proc. 15th Int. Conf. Emerg. Netw. Exp. Technol., 2019, pp. 15–29.

[74] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever, “Blink: Fast connectivity recovery entirely in the data
plane,” in Proc. 16th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2019, pp. 161–176.

[75] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?
Toward in-network classification,” in Proc. 18th ACM Workshop Hot
Topics Netw., 2019, pp. 25–33.

[76] G. Bianchi et al., “XTRA: Towards portable transport layer functions,”
IEEE Trans. Netw. Service Manag., vol. 16, no. 4, pp. 1507–1521,
Dec. 2019.

[77] S. Pontarelli et al., “Flowblaze: Stateful packet processing in hardware,”
in Proc. USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2019,
pp. 531–541.

[78] Netronome Agilio CX Smartnic. Accessed: May 29, 2020. [Online].
Available: https://www.netronome.com/m/documents/PB_Agilio-CX-
OCP.pdf

Abir Laraba received the M.Sc. degree in networks
and distributed systems engineering from the
University of Toulouse III Paul Sabatier, France, in
2018. She is currently pursuing the Ph.D. degree
with the RESIST Team, a joint team between Inria
and the University of Lorraine. His current research
interests involve programmable data planes for SDN,
network security, and monitoring.

Jérôme François (Member, IEEE) received the
Ph.D. degree in computer science from the
University of Lorraine, France, in December 2009.
He was then appointed as a Research Associate with
the University of Luxembourg. He is currently a
Research Scientist with RESIST Team, Inria. His
main research areas are focused on the use of
data analytics techniques for security and also its
coupling with network softwarization. In 2019, he
received the IEEE Young Professional Award in
Network and Service Management.

Shihabur Rahman Chowdhury (Student Member,
IEEE) received the B.Sc. degree in computer sci-
ence and engineering from BUET in 2009. He is
currently pursuing the Ph.D. degree with the David
R. Cheriton School of Computer Science, University
of Waterloo. His research interests are in virtualiza-
tion and softwarization of computer networks. He is
a co-recipeint of several best paper awards, including
IEEE/ACM/IFIP CNSM 2019, IEEE NetSoft 2019,
and IEEE/ACM/IFIP CNSM 2017 Conferences.

Isabelle Chrisment received the Ph.D. degree
in computer science from the University of
Nice-Sophia Antipolis, France, in 1996, and the
Habilitation degree from Henri Poincare University,
Nancy, in 2005. She is a Professor of Computer
Science with the TELECOM Nancy Engineering
School, University of Lorraine, France. Since 2014,
she has been the Scientific Team Leader with the
RESIST Team (formerly, MADYNES Team), a joint
team between Inria and the University of Lorraine.
Her main research area is related to network moni-

toring and security, and especially, within dynamics and large-scale networks.

Raouf Boutaba (Fellow, IEEE) received the M.Sc.
and Ph.D. degrees in computer science from
Sorbonne University in 1990 and 1994, respec-
tively. He is currently a University Chair Professor
with the David R. Cheriton School of Computer
Science, University of Waterloo, Canada, and a
holder of an INRIA International Chair in France.
He was the founding Editor-in-Chief of the IEEE
TRANSACTIONS ON NETWORK AND SERVICE

MANAGEMENT from 2007 to 2010. He is the Editor-
in-Chief of the IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS. He is a Fellow of the Engineering Institute
of Canada, the Canadian Academy of Engineering, and the Royal Society of
Canada.

Authorized licensed use limited to: University of Waterloo. Downloaded on June 08,2021 at 05:12:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

