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Markov Models for Anomaly Detection in Wireless
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Abstract— The use of Wireless Body Area Networks (WBANs)
in healthcare for pervasive monitoring enhances the lives of
patients and allows them to fulfill their daily life activities while
being monitored. Various non-invasive sensors are placed on the
skin to monitor several physiological attributes, and the measured
data are transmitted wirelessly to a centralized processing unit to
detect changes in the health of the monitored patient. However,
the transferred data are vulnerable to various sources of interfer-
ence, sensor faults, measurement faults, injection and alteration
by malicious attackers, etc. In this article, we propose a change
point detection model based on a Markov chain for centralized
anomaly detection in WBANs. The model is derived from the
Root Mean Square Error (RMSE) between the forecasted and
measured values for whole attributes. The RMSE transforms
the monitored attributes into a univariate times series which is
divided into overlapping sliding window. The joint probability of
the sequence of RMSE values in each sliding window is calculated
to decide whether a change has occurred or not. When an effec-
tive change is detected over k consecutive windows, the number
of deviated attributes is used to distinguish faulty measurements
from a health emergency. We apply our proposed approach
on real physiological data from the Physionet database and
compare it with existing approaches. Our experimental results
prove the effectiveness of our proposed approach, as it achieves
high detection accuracy with a low false alarm rate (5.2%).

Index Terms— Faulty measurements, forecasting, ARIMA,
outlier, Markov chain, healthcare, WBANs.

I. INTRODUCTION

W ITH the increase of average lifetimes, the number of
elderly people is exponentially increasing in Europe

and currently creating an overload in the medical sector,
encumbering hospitals with persons under monitoring and
increasing the waiting times for surgical operations. To prevent
such problems, researchers and doctors are investigating new
solutions for remote and pervasive vital signs monitoring
through the use of biomedical sensors. Several sensors are

Manuscript received November 12, 2019; revised April 12, 2020; accepted
April 16, 2020. Date of publication September 29, 2020; date of current
version January 15, 2021. This work was supported in part by the Deanship of
Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant
KEP-KEP-6-611-39. (Corresponding author: Osman Salem.)

Osman Salem and Ahmed Mehaoua are with LIPADE Laboratory,
University of Paris Descartes, 75270 Paris, France (e-mail: osman.salem@
parisdescartes.fr; ahmed.mehaoua@parisdescartes.fr).

Khalid Alsubhi is with the Faculty of Computing and Information
Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia (e-mail:
kalsubhi@kau.edu.sa).

Raouf Boutaba is with the David R. Cheriton School of Computer
Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
rboutaba@uwaterloo.ca).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2020.3020602

placed on the body of the patient to monitor various physi-
ological attributes, and to transmit the measured values to a
portable central unit which processes the received physiolog-
ical data for the prediction or early detection of diseases.

The Internet of Medical Things (IoMT) is the collection
of wireless medical devices which can capture, store, analyze
and transmit data to healthcare IT systems. Various medical
sensors are available in the market that are able to measure
different physiological attributes [1] such as Heart Rate (HR),
Oxygenation Ratio (SpO2), body temperature (T◦), Pulse,
Blood Pressure (BP), Respiration Rate (RR), Galvanic Skin
Ratio (GSR), Electrocardiogram (ECG), Electroencephalo-
gram (EEG), Electromyogram (EMG), etc. Such wearable
vital-signs monitoring sensors have important impacts on
public health, overloading in hospitals, and healthcare costs.

The values measured by biosensors are transmitted to a
central Local Processing Unit (LPU) using different wireless
technologies for real-time analysis and early diagnosis of
diseases. The LPU is modernizing the involvement of doctors
by providing pre-diagnostic in IoMT for decision-making
support. Sensors have already proven their utility in different
fields of medicine, such as EEG for the detection of epileptic
seizures [2], [3], ECG for the early detection of cardiovascular
disease [4], EMG for Human Machine Interface (HMI) [5],
etc. The pervasive monitoring and local processing of data in
the LPU for epileptic seizure detection allows raising alarms
for family or healthcare professionals upon the detection of
seizure onset when the patient cannot call for help, especially
if they are living an independent life or are isolated and out of
the sight of other persons. The heart attack detection system
allows reperfusion at earlier stages and can prevent serious
heart damage. The HMI helps amputees or disabled persons to
control devices and to accomplish some daily life tasks using
muscle contractions, body movements, or other physiological
attributes.

While WBANs have numerous advantages, their disadvan-
tages range from poor reliability to a high susceptibility to
security attacks [6] after deployment. The wireless transmis-
sion of data between the sensors and the LPU makes them
susceptible to various sources of interference and to attacks
such as forgeries and modifications. Furthermore, sensors
are prone to both hardware and software issues such as
impaired components, sensor calibration, battery exhaustion,
or dislocation. The data acquisition process is also subject to
faulty measurements, faulty sensors, and improperly attached
devices [7]. This leads to unexpected results, false alarms,
wrong diagnoses, and unreliable monitoring systems.
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To enhance the reliability of a monitoring system, automatic
detection of an abnormal change is required. This change may
be generated by intrusions, faults, or changes in physiological
values. To distinguish intrusions or faulty measurements from
physiological changes, a spatio-temporal correlation analysis
is required, where changes in vital signs are reflected in many
attributes and faulty or injected measurements are uncorrelated
with other measurements.

In this article, we present a centralized change point detec-
tion approach for anomaly detection from data collected by
biosensors. The proposed approach is based on a Markov
Model (MM) derived from the root mean square of the
errors between the forecasted and measured values for whole
attributes. It is intended to work with an LPU to detect
any abnormal deviation in the collected data and to reject
identified faulty and injected measurements. The system raises
an alarm for a healthcare professional after the detection of
physiological correlated changes and the suppression of faulty
or injected measurements.

Our proposed system uses forecasting to reduce the energy
consumption from data transmission from sensors to the LPU,
and transmission occurs only if the difference between the
forecasted and measured values falls outside an acceptance
range. Our approach also takes into account the limited
processing power of the sensor, where the forecasting model
for each physiological attribute is derived and updated on
the LPU and transmitted to the associated sensor. It is com-
putationally inexpensive, with low detection delay and high
detection accuracy.

The contributions of this article compared to the state of the
art is as follows:

• A reduced energy consumption where only suspected
measurements (that heavily deviated from forecasted val-
ues) are transmitted to the LPU, instead of sending all
measured values (normal and abnormal).

• A reduced processing where the parameters of the fore-
casting model are derived in the LPU as it has more
resources than sensors.

• A pre-set number of states in MM to reduce computa-
tional complexity.

• A new and lightweight method to derive initial probabil-
ities of MM.

• A lightweight approach to derive the transition probability
matrix.

• A reduced false alarm rate through temporal and spatial
correlation between monitored attributes.

The rest of this article is organized as follows. In section II,
we review recent related work, while Section III presents the
building blocks of our proposed change point detection system.
In Section IV we present the experimental results from the
application of our proposed system on real physiological data
as well as the performance analysis results. Finally, section V
concludes the paper and presents our future work.

II. RELATED WORK

Several remote healthcare systems have been proposed
in the literature, such as MEDiSN [8], CodeBlue [9],
MoteCare [10], AlarmNet [11], careNet [12], Mobicare [13],

Vital-Jacket [14], WSN4QoL [15], etc. These systems monitor
one or several physiological attributes using sensors and aim
to provide more pervasive and better healthcare services.
However, all these systems focus on architecture and ser-
vices, without considering faulty and missing measurements.
Furthermore, the use of IoT in remote healthcare monitoring
requires a robust middleware for effective interactions with the
things [16].

Various schemes for anomaly detection have been proposed
to detect changes in data collected by wireless sensors, and
different Machine Learning (ML) algorithms for data classi-
fication have been applied to detect events by distinguishing
between normal and abnormal records, such as Naïve Bayes
(NB [17], [18]), MultiLayer Perceptron (MLP [18]), Bayesian
Network (BN [19], [20]), Decision Tree (J48 [21]), Support
Vector Machine (SVM [18], [22], [23]), etc. These algorithms
generate a mathematical model from labelled training data
and apply it to classify test instances as either normal or
abnormal. The SVM is the most used due to its simple
numerical comparison for data classification, and as it provides
the optimal solution for specific contexts. Given the required
computational complexity O(n3) to derive the classification
model in the optimal algorithm (SVM), where n is the number
of records in the training data, and the required labelled
training data with balanced classes to derive an accurate
classification model. These data are usually patient-depending
and hard to build or are unavailable in real-life scenarios.
Due to the required computation complexity, we will not use
supervised ML algorithms in our proposed approach. The
computation complexity to derive the decision model in our
proposal is lighter than SVM and our approach does not
require balanced labelled data.

Unsupervised ML algorithms are used to group similar
measurements in a single cluster and to label as abnormal
smaller size clusters [24], [25]. Some of the widely used
unsupervised algorithms are: K-means, hierarchical clustering,
Fuzzy C-means, and Gaussian Mixture Models (GMMs). One
challenge facing the use of these clustering methods is that
they assume that anomalous data are easily distinguished from
normal data, which is unrealistic in physiological data, where
normal values for a patient are abnormal for other.

To resolve the problems of supervised and unsupervised
learning, Optimum Path Forest (OPF) was proposed and
used in several applications, where it provides the probability
instead of hard classification, or took confidence interval with
class of training data. In its unsupervised version, it does
not need to know the number of clusters and considers the
sample’s neighborhood of each to derive its class. An anomaly
detection system based on unsupervised OPF classifier was
introduced by Guimarães et al. in [26] to distinguish normal
data from outliers in WSNs. Only normal samples are provided
to identify clusters of normal data, and outliers are not required
(and not used) in clusters derivation process, where in real
scenario, one may have only normal data without information
about anomalies. The comparison results showed that OFP out-
performs SVM and Multivariate Gaussian Distribution (MGD)
on the used GST and IBRL WSN dataset [26]. However, even
if the number of clusters is not required in unsupervised OPF,

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2021 at 05:11:18 UTC from IEEE Xplore.  Restrictions apply. 



528 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 2, FEBRUARY 2021

several parameters must be configured and adjusted, such as
the size of the neighborhood to define the clusters and the
threshold used to decide if the new sample is abnormal or
not.

The Fuzzy Optimum Path Forest (FOPF [27]) was proposed
as an extension to OPF using fuzzy concepts. It learns the
class of a sample in an unsupervised manner and incorporate
the result in supervised training phase, which resolves the
problem of unbalanced training data. In fact, samples located
close to the cluster center have higher density of neighbors
than those located at the border. Therefore, small membership
values are assigned to border samples that have no importance
for the training phase. However, the computational complexity
of fuzzy OPF is O(n2), which is higher than MM used in our
approach, and therefore consumes more energy.

On the other hand, statistical methods build a normal data
profile in the training phase and flag deviations from a dynam-
ically updated profile as anomalies. Several approaches, based
on KullBack-Leibler distance [28], Mahalanobis Distance
(MD [29]), entropy [30], etc., have been proposed and imple-
mented. These techniques are faster and less complex than
classification and clustering-based methods; however, distance
based methods require access to all measured attributes for
anomaly detection and run in a centralized manner on the LPU,
which makes them costly in terms of energy consumption by
sensors in the transmission of normal data to the LPU.

Several forecasting algorithms have been used [31], [32]
in WSNs to extend system lifetimes by transmitting only
deviated data. These methods build a prediction model for
data measured by the sensors, and transmission only occurs
when a measurement deviates from its predicted value.
Various forecasting methods have implemented and tested,
such as constant prediction, AutoRegression, Least Mean
Square (LMS), Holt-Winters, Kalman Filter, Neural Network
autoregressive predictor [33], and Auto Regressive Integrated
Moving Average (ARIMA [34]).

Aderohunmu et al. in [35] compared the performance
of 4 forecasting algorithms, i.e., constant prediction, LMS,
Weighted Auto Regressive (WAR), and ARIMA in terms of
prediction error, complexity (energy consumption) and data
transmission reduction, and found that constant prediction
slightly outperformed WAR, ARIMA, and LMS, where the
data transmission rates were 21.5%, 21.7%, 21.7%, and 25.4%
respectively. However, the forecasting accuracy of ARIMA
was shown to be higher than the other algorithms, where the
root mean square errors for the constant, WAR, ARIMA, and
LMS were 0.163, 0.1415, 0.129, and 0.1689 respectively.

Haque et al. in [36] use Sequential Minimal Optimization
(SMO) regression to predict the current value of the
monitored attribute and calculates the Root Mean Square
of Error (RMSE) or simply the deviation between predicted
and measured values of the monitored attributes. When the
number of monitored attributes is larger than a threshold,
an alarm is raised. In their performance analysis, they
compare their work with SVM, J48, MD. In the same spirit,
recently, Smrithy et al. in [37] proposes an anomaly detection
mechanism using dynamic sliding window in WBANs, where
they use Weighted Moving Average (WMA) for prediction.

When the deviation between measured and predicted values
exceeds a threshold, an alarm is triggered. Both studies
in [36] and in [37] use Multiple Intelligent Monitoring in
Intensive Care (MIMIC) DB dataset 221 for performance
analysis and for comparison with previous work, and we will
conduct performance comparisons with these recent related
approaches using the same dataset.

However, data collected by WBANs usually have low
quality and poor reliability [7], [38], as they are affected by
interference, errors, incorrect readings, faulty sensors, envi-
ronmental noise, missing values, inconsistent readings, and
injection and modifications by attackers. Different approaches
for anomaly detection have been proposed and applied in
WSNs to detect abnormal deviations. Existing solutions in the
literature stem from different disciplines, and the reader may
refer to the studies in [38]–[41] for a comprehensive review
of outlier detection techniques used to distinguish events from
errors.

Santos et al. in [1] presented a survey of proposals between
2015 and 2019 for the remote monitoring and diagnosis
of CardioVascular Diseases (CVD) using Internet of Health
Things (IoHT). Their survey was not limited to the detection
of myocardial infarction from ECG signal, but also covers a
variety of CVD, such as: Arrhythmia, Hypertension, Coronary,
Heart Rate Variability (HRV), etc. Their aim is to enumerate
the required steps in a reference model for online heart
monitoring systems. They identify the key challenges (energy,
signals, power, security and privacy) for such monitoring
system and show how security issues have been addressed
in existing projects.

Zhang et al. in [42] proposed a Hidden Markov
Model (HMM) to detect faults in ECG data collected using
WBAN. They used the Baum-Welch algorithm to derive the
parameters of the HMM, which requires computational power
that quickly consumes the battery of the processing device in
WBAN, especially when the HMM model is updated every
time interval T to adapt to normal daily changes. In fact,
the HMM is a classifier that uses the measurements to derive
the underlying two states of the Hidden Markov Model (S0 =
Normal and S1 = Abnormal) depending on the sequence of
ECG measurements. Even if HMM has been often proposed
for anomaly detection in measured ECG values, in a real-life
deployment scenario, only normal ECG data are available from
the user in the training phase, and the derived Markov model
is distorted and incorrect. An HMM is more convenient when
the data associated with all hidden states are available, e.g.,
in human activity recognition, body posture identification, etc.

A few anomaly detection approaches based on Markov
Model (MM) have been proposed in the literature and applied
on sensor data from different applications. Pang et al. in [43]
proposed an approach based on probability prediction and MM
to detect sensor failure, transmission errors and the major
faults in spacecraft telemetry. Khan et al. in [44] proposed
a simplified MM to detect abnormality, intrusion or change
in a set of features extracted from the ECG data. In this
article, we will use the same procedure in [43], [44] to
derive the state space and transition probabilities in MM.
We also implemented the method presented in [44] to conduct
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TABLE I

SUMMARY OF ANOMALY DETECTIN TECHNIQUES

performance comparison with our approach when evaluating
both on the same input ECG data set.

Dehabadi et al. in [45] enhanced the reliability of anomaly
detection system using MM to distinguish hardware failure
from patient health degradation. In spirit, their work is like
ours, where the objective is to distinguish failures and transient
fault from health emergency. They conduct their experiment
on physiological data and derive reduced MM with 4 states
(normal, physiological anomaly, transient fault, false alarm) to
estimate the reliability of the proposed approach. Table I sum-
marizes existing related work highlighting their techniques,
disadvantages and adequacy for online processing.

A common problem in the majority of the existing anomaly
detection approaches in medical WBANs is the ignorance
of both spatial and temporal correlation between the moni-
tored physiological attributes. Given the constrained resources,
multiple univariate time series are used to detect a change
point, and when deviations are detected in a time series,
an alarm is triggered. The existing work focuses on temporal
correlation without considering the spatial relationships among
attributes. Gao et al. in [47] exploited the spatial correlation

to detect anomalies using MM, and implemented their ICAD
approach in TinyOS and conducted experiments on a testbed
with 17 TelosB motes. However, the MM becomes intractable
with the various values of collected measurements, and the
computational complexity of its parameters increases expo-
nentially with the number of states.

To resolve the problem of computational complexity of
deriving the initial probability vector and the transition matrix
in MM, a pre-set number of states is required in a Markov
Model to keep the computational complexity low, and to make
the model dynamic, an automatic updates of its parameters
are required to adapt to normal daily changes in the values
of the monitored physiological attributes. Furthermore, the
spatio-temporal dependencies must be exploited to distinguish
between errors from medical emergencies, where measure-
ments tend to be correlated in time and space, and the
errors are usually not correlated with other attributes. Our
proposed technique does not use any distance or classification
technique and does not require labelled training data, and uses
instead the Tukey Box outliers detection technique to derive
5 states MM ables to identify abnormal sequence, and exploits
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Fig. 1. Deployment scenario.

spatiotemporal correlation to reduce false alarms and achieves
high detection accuracy.

III. PROPOSED APPROACH

We assume a real deployment scenario where many wireless
sensors with restricted resources are placed on the patient’s
body (as shown in Figure 1) and are used to collect vital signs
and transmit the collected data to the LPU. The LPU processes
the received data for anomaly detection and may send the
data with the associated label (normal or abnormal) to remote
medical servers. Then, healthcare professionals or clinicians
decide whether to react as for an emergency situation or to
assess it as a faulty alarm.

However, data transmission by sensors is more costly with
regard to energy consumption than local processing, and the
use of a lightweight forecasting procedure limits the sensor
transmission to measurements that deviate from forecasted
values. In fact, during the training phase, the sensor transmits
the collected data to the LPU (as shown in Figure 2), which
will use these data to derive the forecasting models, as it has
more resources than the sensors. Afterwards, the LPU trans-
mits the derived model to the associated sensor. The sensor
and LPU are both able to forecast the current measurement,
and only when this measurement deviates from its forecasted
value, the sensor will transmit the deviated measurement to
the LPU, as illustrated in Figure 2. The LPU may also update
the parameters of the forecasting model each specific time
interval to further reduce data transmissions from the sensors
by integrating the received deviated measurements that do not
trigger a medical alarm, as they are not correlated with other
measurements.

For clarification, when the difference between the measured
and forecasted values is greater than the predefined percent-
age p of a forecasted value (e.g., p = 10% of the forecasted
value), the measurement is transmitted to the LPU:

|xtj − x̂tj | ≥ p × x̂tj (1)

where xtj represents the measured value for the
jth physiognomical attribute at time instant t, and x̂tj

Fig. 2. Reduction of transmitted data.

Fig. 3. Flow diagram of the proposed system.

is the forecasted value. It is important to note that even if
10% is an acceptable deviation range for some physiological
attributes (HR, PULSE, BP, etc.), this range is considered large
for respiration rates, temperature, etc. The value of p depends
on the accepted variation range of the monitored attribute.

A flow diagram of our proposed architecture is presented
in Figure 3, and each block will be detailed in the following
subsections.

The collected signal by a wireless sensor is subject to
various sources of noises. Therefore, a preprocessing step is
required to discard erroneous and replace missing measure-
ment values. The missing measurements have been derived
from the median of past W measurements. However, the most
important preprocessing step is to remove erroneous measure-
ments in the collected data, which are unavoidable. We dis-
carded measurements above the 95% percentile and replaced
them with the median. Afterwards, normalization is performed
by subtracting the mean and dividing by the standard deviation
of past W measurements. These scaled data are used as input
for the forecasting model in the sensor.

A. Forecasting Model

To predict the current value of the physiological attribute,
we used the Autoregressive Integrated Moving Average
(ARIMA), which is a popular forecasting procedure in WSNs
and is chosen due to its simplicity when developing and
implementing the algorithm. As well, ARIMA is well-known
for providing good forecasting accuracy of time series data
with low computational cost. ARIMA(p,d,q) uses a residual
time series of order d, with p and q the order of the AutoRe-
gressive (AR) and Moving Average (MA) given in Equation 2:

Δdxt,k = c + ϕ1Δdxt−1,k + . . . + ϕpΔdxt−p,k

+ et + θ1et−1 + . . . + θqet−q (2)
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Fig. 4. Training phase for Markov Model.

where ϕ and θ are the parameters of AR and MA respectively.
These parameters will be updated every time period for each
physiological parameter in the LPU and then transmitted to
the associated sensor.

B. Root Mean Square of Errors

To detect deviations between forecasted and measured
values, we used the Root Mean Square of the forecasting
Error (RMSE), which is defined as the square root of the mean
square error:

Xt = RMSE(ξt) =

�����
K�

j=1

|xt,j − x̂t,j |2

K
(3)

Let Xt represent the time series associated with the root mean
square of errors at time instant t (RMS(ξt) between the
measured xt,j and forecasted values x̂t,j . Xt must be near zero
for normal measurements, and becomes large when an attribute
deviates from the predicted value. The use of Xt reduces
the number of analyzed time series from k to a univariate
time series, which is more convenient for resource-constrained
devices in WBANs.

Xt is calculated on the LPU as it requires the measured
values for whole monitored attributes. However, the forecast-
ing model allows the transmission of deviated measurements
only and the LPU does not have access to the current val-
ues of whole monitored attributes, where normal data are
not transmitted by the associated sensor. The LPU has the
forecasted values for the whole attributes and will only receive
deviated measurements. As the un-transmitted data are within
±p% × x̂t,j of the forecasted value, the LPU replaces each
measured value by its upper band x̂t,j +0.1× x̂t,j in order to
detect deviations assuming the worst case scenario.

We note that Xt is calculated after the training phase and
the derivation of the ARIMA forecasting model. Therefore,
splitting the calculated values of Xt into 2 phases (training
and testing) to derive the Markov model parameters consists
of splitting the Xt times series after the derivation of the
forecasting model as shown in Figure 4.

C. Markov Model

The RMSE Xt has a Markov property if it satisfies the
memoryless condition:

P (Xt = st|Xt−1 = st−1, . . . , X0 = s0)
= P (Xt = st|Xt−1 = st−1) (4)

Fig. 5. States of Markov Model.

where the future is independent from the past and depends only
on the present. The set of countable states s = {s0, s1, . . . , sn}
with the transitions between them is called a Markov chain,
which is a model built from random variables Xt that evolve
over time in such a manner that the future depend only on the
current state, and is independent from past states.

However, as the number of values taken by the random
variables Xt is infinite, the number of states will be infinite.
To resolve this problem and reduce the computational
complexity, we use the robust outlier detection technique
Tukey box to fix the number of states in advance, as shown
in Figure 5.

The Tukey box (also known as a boxplot or box and whisker
diagram) is a way to display the distribution of data based on
a five-number summary, i.e., minimum (Q1 − 3× IQR), first
quartile (Q1), median(Q2), third quartile (Q3) and maximum
(Q3+3×IQR). The InterQuartile Range (IQR) is the distance
between the first and third quartiles (IQR = Q3 − Q1), and
is used to determine the minimum and maximum. The Tukey
box defines two types of range, i.e., 1.5× IQR for suspected
outliers, and 3 × IQR for Outlier, and we used a range of
3 × IQR to reduce false alarms by including more data.

Four states are defined in the Tukey box (shown in Figure 5)
depending on the value of the root mean square of errors Xt:

Xt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s0 if Xt ∈ [Min, Q1]
s1 if Xt ∈ [Q1, Q2]
s2 if Xt ∈ [Q2, Q3]
s3 if Xt ∈ [Q3, Max]

(5)

The use of Tukey box reduces the number of states in MM to 4
and significantly reduces the number of required parameters to
4 initial probabilities and 16 transition probabilities between
states. Various types of MMs have been used for learning and
for identifying anomalies in data based on Markov properties,
where the probability of an event is determined by the previous
event only. To consider more than one prior event, a n-order
Markov model (n=4 in our approach) takes the previous
n events into account making it more suitable for anomaly
detection in the collected data. One requirement to derive the
parameters of the MM is the availability of training data free
from anomalies (without outliers) to prevent the masking prob-
lem, where abnormal data is considered normal by the MM.

Therefore, a 4-state Markov model is derived independently
from the values of the random variables Xt. To derive the
transition probability between two states, we consider two
consecutive values of Xt, X0 and X1, with value of X0 in the
range of state s0 and value of X1 in the range of state s1. The
Bayes theorem can then be used to derive the joint probability
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of such variables:

P (X0 =s0, X1 =s1)=P (X0 =s0).P (X1 =s1/X0 =s0) (6)

With the sum of initial probability equal to 1:

3

i=0

P (X0 = si) = 1 (7)

Similarly, for a sequence of n + 1 random variables
X0, X1, X2, . . . , Xn, the joint probability using the Bayes
theorem becomes:

P (X0 = s0, . . . , Xn = si)
= P (X0 = s0).P (X1 = s1, . . . , Xn = si/X0 = s0)
= P (X0 = s0).P (X1 = s1/X0 = s0) .P (X2 = s2,

. . . , Xn = si/X1 = s1)
= P (X0 = s0).P (X1 =s1/X0 =s0).P (X2 =s2/X1=s1).

. . . P (Xn = si/Xn−1 = sk) (8)

We denote by Q the vector of the initial probability distribution
vector, i.e., Q = [q0, q1, q2, q3]:

qi = P (X0 = si) (9)

And denote by Pi,j the transition probability from state si to
state sj , as given in Equation 10:

Pi,j = P (Xn = sj/Xn−1 = si) (10)

The joint probability distribution in Equation 8 can be simpli-
fied using Equations 9 and 10:

P (X0 = s0, . . . , Xn = si)
= q0.P (s1/s0).P (s2/s1) . . . P (si/sk)

= q0.P0,1.P2,1 . . . Pk,i = q0.
n�

t=1

Pt−1,t (11)

The transition probability matrix (P ) contains the transition
probability Pi,j from state si at time t to state sj at time t+1.
Given that our model contains 4 states, P is 4 × 4 matrix:

P =

⎛
⎜⎜⎝

P0,0 P0,1 P0,2 P0,3

P1,0 P1,1 P1,2 P1,3

P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3

⎞
⎟⎟⎠ (12)

The sum of probability of whole outgoing transitions from
any state is equal to 1, i.e., the sum of each row in matrix P
(Equation 12) is equal to 1:

3

j=0

Pi,j = 1 (13)

The associated transition diagram with P in Equation 12
is shown in Figure 6. To derive the initial probability
distribution Q and the transition matrix P , the data in the
training phase of the Markov Model are used to derive these
parameters. It is important to note that data set used to derive
the Markov model was different from the training data set
used to derive the forecasting model. In the training phase
of the Markov Model, the system may ask the user to move
during the first few minutes in order to cover a larger range

Fig. 6. Transition diagram of MM.

of data variations. The simplified Markov model can also be
updated every specified time interval to cover changes in the
monitored attributes.

Let N denote the number of record received in the training
phase. We start by replacing each Xt (RMSE value) by the
associated state with respect to the location of its value in the
predefined intervals of the Tukey box. Let Ni be the number of
samples in state si, e.g., the number of occurrences of state si

in the training set. The vector of initial probability Q is derived
as follows:

qi =
Ni

N
(14)

We use Ni,j to denote the number of state si followed by state
sj and Ti is the number of outgoing transitions from state i.

Pi,j =
Ni,j

Ti
(15)

where Ti = Ni except for the last state in the training data,
which has one transition less than other (Ti = Ni − 1)
states. The derived Markov model with parameters Q and P ,
calculated in Equations 14 and 15, is used to represent the
temporal profiles of the normal physiological parameters with
tolerance to some change given the burden of upper and lower
limit of the whisker in the Tukey box.

To detect a change point associated with an intrusion, faulty
measurements, or an emergency situation, the sequence of Xt

in the testing phase is divided into a sequence of sliding win-
dows (denoted by SWi) of size N observations (e.g., N = 5 in
our experiments). The values of Xt in each SWi are replaced
by the associated state, and the joint probability of states is
calculated as given in Equation 11. A sequence of states (SWi)
with a high probability indicates similarity with the training
data, and a sequence of states with a very low probability is
abnormal. A threshold h must be used to distinguish normal
from abnormal probabilities. If the joint probability is lower
than the predefined threshold, a change point is detected
and further investigation through spatio-temporal correlation is
required to distinguish faulty/forged data from an emergency
situation.

For clarification, we consider the following training window
(or TRW in Equation 16) which contains sequence of states’
occurrence derived from RMSE values (Xt):

TRW = (s0, s3, s2, s1, s3, s3, s2, s0, s1, s2, s2, s0, s2, s1, s3,

s0, s1, s3, s1, s1, s2, s2, s0, s1, s3, s3, s1) (16)
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Fig. 7. Detection of abnormal sequence using threshold.

Q and P can be calculated from this training set, as given in
Equations 14 and 15:

q = [5/27, 8/27, 7/27, 7/27] = [0.185, 0.296, 0.259, 0.259]

P =

⎛
⎜⎜⎝

0 3/5 1/5 1/5
0 1/7 2/7 4/7

3/7 2/7 2/7 0
1/7 2/7 2/7 2/7

⎞
⎟⎟⎠

Let us consider the following testing sequence of states
(denoted by TW or testing window), which we divide into
sliding window (SW) of 5 states (N = 5) to derive the
joint probability and are given in Equation 16 and in Table II
respectively.

TW = (s0, s2, s1, s3, s3, s1, s3, s2, s0, s3, s2, s2,

s0, s2, s3, s0, s4, s3, s1, s1, s2, s2, s0, s1, s3) (17)

The sliding windows SW10, SW11, SW12 and SW13 have
a joint probability equal to 0 and are abnormal whatever the
value of threshold h. Figure 7 shows the probability of states’
sequence in SWi and the used threshold h = 10−4.

The pseudo code of the MM is given in Algorithm 1, where
deviations detected by the MM must be inspected through
spatio-temporal correlation analysis. In fact, the physiological
parameters are heavily correlated in time and space, and faulty
measurements are spatially unrelated with other attributes,
so we use this correlation to distinguish false alarms from
emergency situations. A change in one physiological attribute

Algorithm 1 Implementation of Markov Model
1: Collect Markov Model training data
2: Derive lower and upper bound of Tukey box
3: Replace Xt by si

4: Calculate N , Ni, Ni,j and Ti,j

5: Calculate qi = Ni/N and Pi,j = Ni,j/Ti

6: Set the size of SWi and threshold h
7: Replace new Xt by state si

8: for each SWj ∈ Testing do

9: P (SWj) = qi

w�
t=1

Pt−1,t

10: if P (SWj) ≤ h then
11: Raise an alarm for spatio-temporal analysis
12: end if
13: end for

TABLE II

PROBABILITIES OF STATES’ SEQUENCE

induces variations in several other attributes, like an asphyxia
which induces low rate of oxygen in the blood (low value
of SpO2) and provokes an increase in the respiration rate.
The anomaly detection phase in the LPU does not trigger a
medical alarm before checking the spatial correlation between
attributes. To reduce the number of false alarms, a medical
alarm is triggered only when at least r (r ≥ 2) deviated
attributes are detected as shown in the building blocks of our
complete system in Figure 8. On the other case, the LPU
considers the measurement as faulty and will not raise any
alarm.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2021 at 05:11:18 UTC from IEEE Xplore.  Restrictions apply. 



534 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 2, FEBRUARY 2021

Fig. 8. Flow diagram of the proposed system.

Fig. 9. Block diagrams.

The threshold h is set in our experiment to a small prob-
ability value (e.g. smaller than 10−4 in our experiments) to
exclude the sequence of states containing anomalies (i.e. the
probability of occurrence is smaller than 0.0001). The value
of h must be small (zero or near to zero) to pinpoint abnormal
sequence in measured values. The impact of the threshold on
the performance is analyzed through the Receiver Operating
Characteristic (ROC) curve in the next section.

The block diagram in Figure 9a illustrates the overall idea
underlying our approach, where the processing is realized in
the sensor and only in case of anomaly, the MM processing is
triggered in the LPU. Our approach achieves spatiotemporal
correlation between attributes before raising a medical
alarm, in contrast to the traditional frameworks illustrated
in Figure 9b, where the processing is centralized in the
LPU to derive a classification model from training data. The
latter are complex to update and greedy in terms of energy
consumption for devices with restricted resources in WBAN.

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments on real physiolog-
ical data to analyze the detection accuracy of our proposed
system. We use several annotated real physiological data sets
from the MIMIC database from the Physionet [48] web site.
We will present the variations of the physiological attributes
for two patients (221 and 259), as well as the RMSE and the

deviations detected by the MM. Afterwards, we will compare
the performance of our approach with recent related work:
first, with SMO [36] and WMA [37] approaches; second, with
linear SVM, K-NN (K=3), J48, MD; and third, with dynamic
size MM in [44] through the ROC. The implementation of
supervised classifiers (SVM, K-NN and J48) was conducted
using WEKA [49] API.

We develop the proposed approach from scratch in Python
using PyOD (Python toolkit for Outlier Detection), Numpy
and Pandas. The parameters used by our proposed approach
in the distributed forecasting are automatically derived from
the training data, and when the deviation (RMS) between
forecasted and measured values is greater than p (p = 10% in
our experiments), the measurement is transmitted to the LPU.
A small value of p = 1% provokes the transmission of all
measurements to the LPU and drains the energy of sensors,
whereas a large value reduces the detection accuracy.

Similarly, the initial probability vector and the transition
matrix for MM are also derived from training data in the
LPU. The anomaly detection threshold h is set to a low value
(h = 10−4) in our experiments. Increasing the value of h will
reduce both the false alarms and the detection accuracy and
vice versa.

The first data sets from subject 259, contains 12 attributes:
systolic Arterial BP (ABPsys), diastolic Arterial BP
(ABPdias), mean Arterial BP (ABPmean), Cardiac Output
(C.O.), mean Pulmonary Artery Pressure (PAPmean), Systolic
PAP (PAPsys), Diastolic PAP (PAPdias), Heart Rate (HR),
PULSE, Respiration (RESP), oxygenation ratio (SpO2) and
T◦. However, some attributes are missing from the data set
(detached sensors) during interesting changes, and we focus
only on 5 attributes: HR, PULSE, RESP, SpO2, and T◦.
The second data set, from subject 221, contains 7 attributes:
ABPsys, ABPdias, ABPmean, HR, PULSE, RESP and
SpO2. As ABPmean is derived from ABPsys and ABPdias,
we focus only on five attributes: BPmean, HR, PULSE,
RESP and SpO2. To simulate real measurements scenarios,
a Raspberry PI 2 (Model B) is used as a transceiver to send
the data to a tablet as a bulk of records containing 5 fields
in each discrete time interval T . The measured values of
each attribute are compared with the predicted values using
ARIMA(7,1,1). This prediction model was chosen because
it gives the best smoothed fit for the used physiological data
sets. The duration of training phase to derive the parameters
of the prediction model was fixed at 250 samples (5 sec at
50Hz). The duration of the training phase of MM in the LPU
was set to 1 minute in our experiments, in a similar manner to
existing applications for activity recognition in smartphones.

We start by showing the variations of part of the
physiological parameters from subject 259. Figures 10 and 11
show the variations of HR and PULSE respectively. Both
parameters are in beats per minute (bpm) and represents
the same physiological attributes measured using different
sensors at different locations. The variations of the respiration
rate (respirations per minute (rpm) are shown in Figure 12.
The SpO2 is the percentage of oxygen in the blood, and
its normal value is within the interval 95% to 100%. A rate
lower than 95% is representative of asphyxia, lack of oxygen,
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Fig. 10. Heart rate.

Fig. 11. PULSE.

Fig. 12. Respiration rate.

Fig. 13. Oxygenation ratio.

and heart disease. The variations in SpO2 are shown
in Figure 13, and the variations in temperature are shown
in Figure 14.

To visually identify the correlated deviations for many
attributes, Figure 15 shows the variations of the 5 attributes,

Fig. 14. Temperature.

Fig. 15. 5 Attributes.

Fig. 16. RMSE.

where we can identify 3 zones of correlated changes around
the time instant: 0.5.104, 104 and 1.5.104. The root mean
square of error between the forecasted and measured values of
whole attributes is derived on the LPU, and the variations are
shown in Figure 16. The anomalies detected by the Markov
Model from the RMSE time series are shown in Figure 17,
where the deviations are flagged as anomalies. To discriminate
faults from abnormal physiological changes, spatial correlation
analysis is done through checking the number of received
deviated data, where an alarm is raised only if the number
of deviated attributes is greater than r. The alarms raised for
healthcare professionals are shown in Figure 18, where the
zones of deviation are accurately identified, and many anom-
alies flagged by the MM are discarded after the correlation
analysis.

The variations of ABPmean, HR, PULSE, RESP, and
SpO2 of subject 221 are shown in Figure 19, where we can
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Fig. 17. Anomalies detected by the MM.

Fig. 18. Data with raised alarms.

Fig. 19. Physiological data.

Fig. 20. Zones of change.

visually identify 5 zones of correlated changes as illustrated
using the dashed rectangles in Figure 20. The ABPmean is
measured in millimeters of mercury (mmHg). The variations
in the RMS between the measured and forecasted values are

Fig. 21. RMSE.

Fig. 22. Detected by MM.

Fig. 23. Raised alarms

shown in Figure 21, which transforms the problem into change
detection in univariate time series.

The abnormal set of states (i.e., low probability) identified
by the MM are shown in Figure 22, where the deviations are
flagged as abnormal. However, as the physiological parame-
ters are correlated, sensor data anomalies are determined by
analyzing the number of deviated attributes (r). A small value
of r will increase the true detection rate and at the same time
will also increase the false alarm rate, and a large value of
r will decrease the detection rate as well as the false alarm
rate. Therefore, as true detection and false alarms are in the
same direction, a tradeoff is required to set the value of r.
In our experiments, we set the value of r to 2, i.e., when only
one measurement is received by the LPU (one deviation), it is
considered as a fault and no medical alarm is raised.

To conduct a performance analysis of our proposed
approach, we use the ROC curve to study the impact of the
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Fig. 24. ROC.

threshold on the True Positive Rate (TPR) and False Alarm
Rate (FAR). The TPR and FAR are given in the following
equations:

TPR =
TP

TP + FN
(18)

FAR =
FP

FP + TN
(19)

where TP is the number of True Positives, FP is the number of
False Positives, FN is the number of False Negatives, and TN
is the number of True Negatives. The ROC curve presented
in Figure 24 shows the relationship between the TPR and FAR
for our proposed approach using MM, which can achieve a
TPR of 100% with 5.2% FAR on used dataset.

False positives are unavoidable in anomaly detection and
have an impact on the detection delay and on the reliability of
the monitoring system. As the FAR increases with detection
accuracy (and vice versa), a tradeoff is needed. A large value
of FAR makes the monitoring system unreliable and a low
value implies a reduced detection accuracy and large detection
delay. Our system has a FAR of 5.2%, which is relatively low
and acceptable in real medical scenarios, where this rate is
for example about 20% in breast cancer diagnosis (Annals of
Family Medicine 2015).

Afterwards, we conduct performance comparison of our
approach with recent related work for anomaly detection
in remote healthcare monitoring systems. As we are using
publicly available data set (MIMIC DB dataset 21) which has
been used for testing proposed algorithms in several previous
works [36], [37], we conduct performance comparison with
these recent proposed approaches that used the same data
set. The comparison is conducted in terms of TPR and FAR
as shown by the ROC presented in Figure 25. The SMO
approach presented in [36] has the lowest performance, where
the detection accuracy reaches 100% with a FAR of 24%
which is relatively high rate of false alarms. On the other
hand, the WMA approach used in conjunction with dynamic
size sliding window in [37] reaches 100% for a FAR of 17%.

Furthermore, Smrithy et al. in [37] compare the perfor-
mance of their approach with our previous work, such as
linear SVM, MD and J48. We continue the comparison with
supervised machine learning such as the SVM, K-NN (k=3),
decision tree (J48) and the distance-based method MD in terms
of TPR and FAR. The ROC of each method is presented
in Figure 26, where they reach a TPR of 100% with FAR

Fig. 25. Comparison with SMO & WMA.

Fig. 26. Comparison with SVM, K-NN, J48 & MD.

of: 5.2%, 6.8%, 7.8%, 8% and 15% for our approach, SVM,
K-NN, J48 and MD respectively. In Figure 26, we cannot
distinguish the performance of K-NN and J48 as they achieve
similar performances. However, the K-NN was slower than
J48 but provided better performance. K-NN is heavy for
constrained WBANs, since it requires high computational
complexity and large amounts of memory to store the training
data, in contrast to other classification methods which build a
model and discard the training data after the model’s creation.

The processing of our model can be divided into two steps:
the first step is the forecasting, which is distributed to each
sensor and is lightweight in terms of computation; the second
step is the use of MM, which is centralized in the LPU to
have access to all the collected data. At first sight, the use
of MM for decision appear to be greedy in processing and in
energy consumption and may hence seem heavy for WBANs.
However, in our model, we exploit the Tukey box to fix
the number of states in MM to 4 states, which reduces the
parameters to 20: 4 values for the initial probability vector
and a transition matrix of 16 (4 × 4) elements. Therefore,
to derive the decision model, the complexity of our system
is constant O(1) when the complexity of the SVM model
is O(n3) where n is the number of records in the training
data. The update of the SVM model will drain the battery of
any WBAN device in contrast to our 4-state MM. On the other
hand, during the testing phase, the complexity of our model
is O(1) (similar to SVM), which makes it suitable for WBANs
and for devices with constrained resources.

An anomaly detection system for ECG signal was proposed
in [44] without fixing the number of states. The authors
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Fig. 27. Comparison with MM for abnormal ECG.

apply MM on ECG data, which is composed of 5 periodic
waves: P, Q, R, S and T. In fact, the periodicity in ECG
signal will limit the number of states in MM to n in their
application (with n � 4). However, as we are processing
physiological measurements without periodicity in our exper-
iment, the values of measurements are real with continuous
changes and the number of states in their proposed approach
increases significantly (compared to our approach, where we
fixed the number of states to 4). Moreover, deriving the state
transition probabilities and initial probability vector requires
more processing power and memory space.

Figure 27 shows the comparison result of our proposed
approach with that of [44] (denoted by abnormal ECG or
AECG) on the ECG signal from physionet. Their approach
achieves a good detection accuracy with low false alarm rate
(6.4%), but it is more complex and slower as the number
of states is dynamic and larger than the 4 states fixed in
our approach. The complexity resides in deriving the initial
probability vector for n states and the transition probabil-
ity matrix. For the same detection accuracy of 100%, our
approach has a FAR of 5.2% whereas their approach incurs a
slightly higher FAR of 6.4%. It is worth noting that we develop
their model from scratch and as described in the paper without
preprocessing of raw data or additional block.

With the increase of aging population in many countries,
the costs of elderly healthcare will continue growing and will
cripple the healthcare infrastructure with required new beds in
hospitals for patients under long term monitoring. The use
of remote monitoring systems will significantly reduce the
number of occupied bed by person under monitoring and it
will allow patients to be monitored while continuing their daily
life activities using sensors and a smartphone.

A reliable remote monitoring system can also be used in
elderly houses to reduce the number of healthcare profes-
sionals. Our proposed method would be suitable for assisting
professionals and for evaluating the need for intervention with
the required drug or medication. The cost of sensor devices is
minor in context of such health applications. The industry is
working today to manufacture active sensors, that not only cap-
ture and transmit data for remote processing, but also capable
to process data in order to detect abnormal situations, such as
devices for detecting epilepsy in [50], [51]. The fast growing
number of people using such devices motivated by the added
value of automated techniques for assisting doctors in making

decisions will definitely create an opportunity for the industry
to leverage economies of scale. In this context, preprocessing
techniques used during data acquisition to improve the per-
formance of the detection system by controlling (or reducing)
the effects of noise will evidently enhance the reliability and
consequently the widespread deployment of such devices.

V. CONCLUSION

In this article, we proposed an approach based on a Markov
Model for the detection of anomalies in WBANs. The pro-
posed system uses forecasting to reduces the energy consump-
tion due to normal data transmission, and only measurements
deviating from the forecasted values are transmitted to the
LPU. This last derives a univariate time series using the root
mean square of error between the forecasted and received
values. The Markov Model is derived from the RMSE and used
to check if a sequence of states is normal or not. To distinguish
faults from abnormal physiological changes, the number of
deviated attributes is checked before raising an alarm for
healthcare professionals when at least r attributes are received
by the LPU.

We applied our approach on real physiological data from
a publicly available repository, and we conducted several
experiments on data from different subjects for performance
analysis. Our results show that the proposed system is able to
achieve 100% detection accuracy with a low FAR of 5.2%.
We further compared the performance of our approach with
existing MM model for anomaly detection in ECG and with
three supervised machine learning algorithms: SVM, K-NN
and J48 and with MD. We found that our system slightly
outperforms the abnormal ECG system, and achieves better
accuracy than SVM, K-NN, J48 and MD.

In future work, we intend to investigate other forecasting
algorithms by implementing more lightweight predictive mod-
els without significant differences in accuracy.
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