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A B S T R A C T

Software defined networking (SDN) has emerged as a promising alternative to the traditional networks, offering
many advantages, including flexibility in network management, network programmability and guaranteeing
application Quality-of-Service (QoS) requirements. In SDN, the control plane is separated from the data plane,
and deployed as a logically centralized controller. However, due to the large scale of networks as well as
latency and reliability requirements, it is necessary to deploy multiple controllers to satisfy these requirements.
The distributed deployment of SDN controllers unveiled new challenges in terms of determining the number
of controllers needed, their locations and the assignment of switches to controllers that minimizes flow set
delay. In this context, we propose, in this paper, a new method that dynamically computes the optimal
number of controllers, determines their optimal locations, and at the same time partitions the set of data
plane switches into clusters and assigns them to these controllers. First, we mathematically formulate the
controller placement as an optimization problem, whose objectives are to minimize the controller response
time, that is the delay between the SDN controller and assigned switches, the Control Load (CL), the Intra-
Cluster Delay (ICD) and the Intra-Cluster Throughput (ICT). Second, we propose a simple yet computationally
efficient heuristic, called Deep Q-Network based Dynamic Clustering and Placement (DDCP), that leverages the
potential of reinforcement and deep learning techniques to solve the aforementioned optimization problem.
Experimental results using ONOS controller show that the proposed approach can significantly improve the
network performances in terms of response time and resource utilization.
1. Introduction

SDN is an emerging paradigm that allows dynamicity, automa-
tion, flexibility and centralized management of the underlying network
contrary to traditional networks making it ideal to designing Beyond
5G networks (B5G) that involve essentially higher capacity and lower
latency. SDN separates the control plane that is responsible for making
routing decisions and the Forwarding Plane, that is only required to
perform packet forwarding according to the received routing strategies
from the control plane. This communication is enabled via Appli-
cation Programming Interfaces (APIs) such as the Representational
State Transfer (REST) on the northbound interface and OpenFlow
on the southbound interface. Even the separation of the control and
data planes brings technical benefits, it can cause several drawbacks
such as the number of controllers needed, their optimal corresponding
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placement and which data plane devices to be controlled by which
controller.

With the advent of B5G networks, the network size grows exponen-
tially. Therefore, the deployment of a single controller to control the
whole network brought greater challenges to the SDN controller’s pro-
cessing capabilities in terms of scalability, performance and reliability.
To this end, the use of multiple controllers is primordial, which can be
achieved by two main strategies: distributed controllers and replicated
controllers. In the replicated controllers strategy, several copies of the
SDN controllers have always the same information and keep the full
state of the network. Even the fast recovery time when a controller fails,
keeping the set of replicated controllers aware of every networking
operation, can bring expensive overhead in terms of resource utilization
such as CPU, RAM and storage. On the other hand, the distributed
controllers strategy fragments the network into smaller domains, each
vailable online 25 February 2022
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supervised by a dedicated controller. The set of controllers supervising
these domains communicate to each other by their west/eastbound
interfaces.

The distributed controllers strategy unveils several challenges that
must be considered such as: (i) the optimal number of controllers
needed for a given network topology, in such a way that, each con-
troller must be not overloaded neither underutilized, (ii) the opti-
mization of the controller placement is another concern, as it widely
impacts on several fronts such as flow setup latency, resiliency and load
balancing and (iii) the clustering of the data plane devices in order to
improve the intra-cluster performances.

To this end, we propose, in this paper, a new approach that de-
termines, the optimal number of controllers, their optimal placements
as well as the optimal clustering of data plane switches. To do so,
we first mathematically formulate the controller placement problem
as an optimization one, whose objective is to minimize the controller
response time, which corresponds to the delay between the SDN con-
troller and assigned switches, the controller resource utilization, the
ICD and the ICT. As the formulated optimization problem is an NP-
hard problem [1], we first propose to model the problem as a Markov
Decision Process (MDP) and solve it by a Deep Q-Network (DQN)
approach. Then, we propose a simple yet efficient heuristic, DDCP that
dynamically interacts with the DQN agent to solve the aforementioned
optimization problem.

To the best of our knowledge, we are the first to propose and
validate such solution using DQN approach. The main contributions of
our paper can be summarized as follows:

• First, we mathematically model the controllers clustering and
placement problem as an optimization problem whose objective is
to minimize the controller response time, the controller resource
utilization, the ICD and the ICT.

• Second, we formalize our problem as MDP with appropriate states
and actions, then propose using a DQN approach to solve it.

• Third, we propose simple yet efficient heuristic algorithm called
DDCP, that takes as inputs the set of switches and controllers, the
trained DQN agent and outputs the optimal clustering in both the
control and data planes.

The remainder of this paper is organized as follows. Section 2
resents the state-of-the-art in several related research topics and an
verview of the DQN method. In Section 3, we discuss the architecture
f the proposed framework, describes the problem formulation and
resents our DQN-based heuristic. Section 4 evaluates the proposed
ethod. We finally conclude this paper in Section 5.

. Related work and overview

.1. Related work

In recent years, with the development of distributed controller ar-
hitecture such as DevoFlow [2], Kandoo [3], HyperFlow [4], Onix [5],
he problem of determining the number of controllers and their place-
ents in SDN has received considerable attention and attracted many

esearchers.
Authors in [6] presented a comprehensive survey on the controller

lacement problem (CPP) in SDN. The objective of this survey is to in-
roduce the CPP in SDN and highlight its significance. Then, presenting
he classical CPP formulation along with its supporting system model
s well as discussing a wide range of the CPP modeling choices and
ssociated metrics.

In [7], authors tackled the multi-controller placement issue in SDN
nd proposed a new approach with network partition technique. In this
pproach, the entire network is divided into multiple subnetworks and
or each subnetwork, one or more controllers are deployed correspond-
ngly. Specifically, the clustering algorithm is leveraged to partition
2

p

the network into subnetworks and an optimized K-means algorithm is
proposed to shorten the maximum latency between the centroid and
associated switches in the subnetwork. The authors optimized the K-
means algorithm for clustering to minimize the overall latency of the
network.

Authors in [8] considered node-to-controller latency for their con-
troller placement optimization. They presented POCO, a framework
for Pareto-based Optimal Controller placement that provides operators
with Pareto optimal placements with respect to different performance
metrics. This framework does not segment the network into multiple
domains by treating the network as a whole and the controllers work
collaboratively, which requires frequent exchange of state information
between the controllers to achieve an accurate global state.

Authors in [9], defined a capacitated controller placement problem
(CCPP), taking into consideration the load of controllers, and they
introduced an efficient algorithm to solve the problem. The objective
is to reduce the number of controllers and their loads. However, the
placement is not based on these criteria. Instead of considering the
propagation delay between the switches and the controller and ignoring
the critical factor in the actual network which is the switch weights,
the authors in [10] defined a new metric : 𝑡𝑜𝑡𝑎𝑙− 𝑓𝑙𝑜𝑤− 𝑟𝑒𝑞𝑢𝑒𝑠𝑡− 𝑐𝑜𝑠𝑡.

his metric takes into account the switch weights, switch-to-controller
outing costs, and inter controller routing costs, where the goal of this
etric is to minimize 𝑃𝑎𝑐𝑘𝑒𝑡− 𝑖𝑛 messages cost from the switch to the

ontroller, and information exchange cost between controllers.
In [11], authors first, considered the controller placement problem

rom the perspective of energy consumption. Then, they formulated
he energy-aware controller placement problem based on a Binary
nteger Program (BIP), which has the latency of paths and the load of
ontrollers as constraints for minimizing the energy consumption and
roposed a genetic algorithm to solve the formulated problem.

Authors in [12] investigated different approaches to determine the
ptimal number of controllers for deployment in a given SDN network,
y taking into account the latency objective. This study was followed
y determining the optimal placements of the SDN controllers.

In [13,14], authors considered several parameters such as the num-
er of controllers, the location of controllers and the set of switches of
he network to achieve a high reliability. In [14], authors introduced
oS-Guaranteed Controller Placement problem, which is to place the
inimum number of controllers in the network such that the response

ime of controllers can meet a given delay bound. Three heuristics was
roposed for the proposed approach: incremental greedy algorithm,
rimal–dual-based algorithm and network partition-based algorithm.
esults show superiority of the proposed incremental greedy method
n the other two methods on all input topologies.

Recently, Machine Learning (ML) techniques have been used widely
o solve complicated decision-making complex problems arising in
irtual Network Function (VNF) placement and traffic engineering

n SDN based networks. Authors in [15] addressed the allocation of
irtual Network Function-Forwarding Graph (VNF-FGs) for realizing
etwork services. First, they modeled the VNF-FG allocation problem
s a MDP. Then, they solved it by a DQN approach. Simulation results
learly showed the effectiveness of the deep learning process, where the
erformance of the proposed approach is improved over time. In [16],
uthors proposed a simple heuristic algorithm to identify the number
f controllers and their locations in SDN networks leveraging a learning
utomaton (LA) approach, while ensuring that propagation latency
rom any node to its closest controller does not exceed a threshold.

.2. DDCP key assumptions and ideas

Different from the approaches proposed in related works, we pro-
ose in this paper the DDCP approach, by exploring the potential of
einforcement learning techniques, such as DQN, for the clustering and

lacement of controllers, while taking into account four performance
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Table 1
Added-value of our contribution.

Ref CL CD ICD ICT Nbr of CTRLs DQN

[7] ✗ ✓ ✓ ✗ ✗ ✗

[8] ✗ ✓ ✗ ✗ ✗ ✗

[9] ✓ ✗ ✗ ✗ ✗ ✗

[10] ✓ ✗ ✓ ✗ ✗ ✗

[11] ✓ ✗ ✓ ✗ ✗ ✗

[12] ✗ ✗ ✓ ✗ ✓ ✗

[13] ✗ ✓ ✓ ✗ ✓ ✗

[14] ✗ ✓ ✓ ✗ ✓ ✗

[16] ✗ ✓ ✗ ✓ ✓ ✗

[17] ✓ ✓ ✗ ✗ ✗ ✗

[18] ✓ ✓ ✗ ✗ ✗ ✗

[19] ✓ ✓ ✗ ✗ ✗ ✗

DDCP ✓ ✓ ✓ ✓ ✓ ✓

metrics: the Control Delay (CD), the Control Load (CL), the Intra-
Cluster Delay (ICD) and the Intra-Cluster Throughput (ICT). The idea
behind using a DQN approach to solve the clustering and controllers’
placement problem, is to use only one step (after training) to get
the optimal controllers placement as well as the corresponding data
plane domains of switches, while considering the four performance
metrics. The advantage of using DQN is the ability to improve network
performances, while maximizing or minimizing a certain reward. This
reward can be modeled as an extensible function, taking into account
several parameters (that will be listed in the next section) and can be
further extended after training. Moreover, to overcome the problem of
scalability and extensibility presented in related works, we implement
our DQN agent in the knowledge plane, which is not part of the
SDN architecture. This makes our DDCP approach independent of the
technology implemented in both the control and data planes.

Table 1 positions our proposal vs. the state-of-the-art approaches.
Specifically, we highlight the added-values that our DDCP scheme
provides based on a set of critical performance metrics, such as the CL,
the CD, the ICD, the ICT, the number of controllers (Nbr of CTRLs) and
using or not a DQN agent to solve the controller placement problem.

2.3. Deep Q-network (DQN)

The 𝑄-learning technique (𝑄𝐿) is basically based on an autonomous
agent that interacts with the environment by sequentially taking ac-
tions, while maximizing cumulative rewards [20,21]. As shown in
Fig. 1, this can be described as a MDP in which the next state 𝑠𝑖+1
depends on the current state 𝑠𝑖 and the selected action by the agent
according to a specific state transition probability distribution 𝑃 (𝑠𝑖, 𝑎𝑖,
𝑠𝑖+1), which represents the probability of switching to state 𝑠𝑖+1 after
action 𝑎𝑖 in state 𝑠𝑖. In 𝑄𝐿, the agent senses the environment by
identifying the current state 𝑠𝑖 and then selects the action 𝑎𝑖 to execute.
The environment subsequently feeds back a reward to the agent, while
updating the current state to the new state. Then, the trajectory of
states, actions and rewards constitute a MDP: 𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1... The
objective is to learn the best policy 𝜋(𝑎𝑖|𝑠𝑖), while maximizing the
cumulative rewards of the current and next states which can be written
as follows:

𝑅 =
𝑛
∑

𝑖=0

𝜑𝑖𝑟𝑖+1 (1)

Where 𝜑 ∈ [0, 1] is a factor to discount future rewards. Given
a policy 𝜋, the expectation of accumulated rewards from action 𝑎𝑖
in a state 𝑠𝑖 can be estimated by the 𝑄-value function 𝑄𝜋 (𝑠𝑖, 𝑎𝑖) =
𝐸[𝑅|𝑠𝑖, 𝑎𝑖, 𝜋]. Thereafter, the best policy corresponds to the highest 𝑄-
value in each state: 𝑄∗(𝑠𝑖, 𝑎𝑖) = 𝑚𝑎𝑥𝜋𝑄𝜋 (𝑠𝑖, 𝑎𝑖). This function can be
defined recursively according to the Bellman equation as follows:

𝑄 (𝑠 , 𝑎 ) = 𝑟 + 𝜑.𝑄∗(𝑠 , 𝑎 ) (2)
3

𝜋 𝑖 𝑖 𝑖 𝑖+1 𝑖+1
Fig. 1. Deep Q-Network (DQN) architecture [20,21].

The policy 𝜋 can be improved by dynamically updating the 𝑄𝜋 (𝑠𝑖, 𝑎𝑖)
as follows:

𝑄𝜋 (𝑠𝑖, 𝑎𝑖) ← 𝑄𝜋 (𝑠𝑖, 𝑎𝑖) + 𝜂.𝛥 (3)

𝛥 = 𝑟𝑖 + 𝜑.𝑚𝑎𝑥𝑎𝑖+1𝑄𝜋 (𝑠𝑖+1, 𝑎𝑖+1) −𝑄𝜋 (𝑠𝑖, 𝑎𝑖) (4)

Where 𝜂 ∈ [0, 1] is the learning rate, and the temporal difference
(𝑇𝐷) error 𝛥 corresponds to the correction for the 𝑄-value estimation.
The 𝑄𝐿 technique stores and updates the 𝑄-values in look-up tables,
which makes it slow to reach the best policy when exploring the
entire table if the number of possible states becomes very large. This
affects significantly the performance of 𝑄-learning. To cope with this
challenge, the DQN makes use of Neural Networks (NN) to approximate
the estimation of the 𝑄-value function. The DQN networks takes as
input the state vector. The output is a vector of action 𝑄-values, and its
corresponding Loss function is constructed based on the mean square
deviation defined as follows :

𝐿(𝜃𝑖) = (𝑇 𝑎𝑟𝑔𝑒𝑡𝑄 −𝑄(𝑠𝑖, 𝑎𝑖, 𝜃𝑖))2 (5)

𝑇 𝑎𝑟𝑔𝑒𝑡𝑄 = 𝑟𝑖 + 𝜑.𝑚𝑎𝑥𝑎𝑖+1𝑄(𝑠𝑖+1, 𝑎𝑖+1, 𝜃𝑖) (6)

Where 𝜃𝑖 is the network parameter at iteration 𝑖. It is worth noting
that the convergence of the Loss function 𝐿(𝜃𝑖) is not stable when
using only one Neural Network. To improve the convergence stability,
DQN adopts the method called 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝑅𝑒𝑝𝑙𝑎𝑦, which corresponds
to creating two Neural networks, that have the same architecture, with
parameters 𝜃 and 𝜃′. The first one is used to retrieve 𝑄-values, while the
second one includes all updates in the training. After 𝐶 steps the target
network parameters 𝜃′ are updated. This mechanism is illustrated in
Fig. 1.

3. DDCP approach

In this section, we present our approach for the clustering and
placement of controllers in SDN using DQN. Firstly, we explain the
overall framework. Thereafter, the problem formulation and the Deep
Q-Network Agent will be described.

3.1. DDCP architecture

We design our framework according to the Knowledge-Defined
Networking (KDN) paradigm [22], by introducing the knowledge plane
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Fig. 2. DDCP architecture.

to the conventional SDN paradigm, in which we exploit the control
plane to have a global view of the network (cf. Fig. 2).

Fig. 2 presents our system architecture, which consists of four
planes: Data plane, Control Plane, Management Plane and Knowledge
Plane.

The data plane that consists of programmable forwarding devices, in
charge of data packet processing and forwarding. These devices have no
embedded intelligence to take decisions and rely on the control plane
to populate their forwarding tables and update their configurations
based on the OpenFlow protocol. Moreover, the data plane is divided
into multiple domains and each of them is supervised by a dedicated
controller.

The control plane is considered as the brain of the SDN network,
which incorporates the whole intelligence by abstracting the manage-
ment and global view of the network in a set of distributed controllers
in different locations. Each controller may not have full control or
knowledge of the network status and has the responsibility for only a
portion of the network (i.e., domain). It communicates with the other
controllers through the West/Eastbound interfaces.

The management plane ensures the correct operation and perfor-
mance of the network by collecting the network measurement from
the control plane Network Measurement module, in order to provide
network analytic. The collected statistics will be analyzed and sent to
the knowledge plane.

In order to not affect the control plane performances, the process
of deploying distributed controllers needs to be fully automated and
can be ensured by the knowledge plane. This latter exploits the control
plane and the management plane by taking the data from the LP as
input to be fed to ML algorithms, which will convert them to the
form of knowledge. Precisely, it learns the behavior of the network,
by processing the collected statistics, then determines the number of
controllers, their locations and the set of switches embedded in each
controller’s domain, by deploying a DQN agent. The output of the DQN
agent is transmitted to the control plane through the Northbound SDN
controller API.

In what follows, we present our controller placement problem for-
mulation, then we detail the Deep Q-Network Agent.
4

3.2. Problem formulation

We model the SDN network as an undirected graph 𝐺 = (𝑉 ,𝐸),
where 𝑉 = {𝑣𝑗} is the set of switches and |𝑉 | = 𝑘 is the number
of switches and 𝐸 is the set of edges (i.e., links between switches).
The control plane consists of a set of controllers 𝐶 = {𝑐𝑖}, where
|𝐶| = 𝑛 denotes the number of controllers. On the other hand, the
data plane is fragmented into a set of domains 𝑊 = {𝑤𝑙}, each domain
𝑤𝑙 = {𝑣𝑗}, 𝑣𝑗 ∈ 𝑉 supervised by a controller, and |𝑊 | = 𝑝 denotes the
number of domains. The solution of our Controller Placement Problem
(CPP) can be represented as a binary vector 𝐹 = (𝐹1, 𝐹2, ..., 𝐹𝑛) ∈ 𝑅𝑛,
where 𝐹𝑖 is given by:

𝐹𝑖 =

{

1, if controller 𝑐𝑖 is selected
0, otherwise

(7)

Since our objective is to optimize the number of deployed con-
trollers, while guaranteeing the QoS requirements of all traffic requests
in the network, we define here-after four different variables to compute
the number of selected controllers: Control Load (CL), Control Delay
(CD), Intra-Cluster Delay (ICD), and Intra-Cluster Throughput (ICT).

3.2.1. Number of selected controllers
To determine the number of deployed controllers 𝑝 (i.e., the number

of data plane domains), we first, define the variable 𝑅𝑡𝑖𝑗 representing
the total flow request from switch (𝑗) to controller (𝑖) at time (𝑡), which
corresponds to the number of 𝑃𝑎𝑐𝑘𝑒𝑡 − 𝐼𝑛 messages generated by the
switch. It is worth noting that, the 𝑃𝑎𝑐𝑘𝑒𝑡− 𝐼𝑛 messages are generated
and sent from switches to the controller when there is no matching flow
entries in their flow tables. Secondly, we assume that the portion of
resources consumed by one flow request concerns essentially the CPU
and RAM, and can be written as follows:

𝜆𝑖 =
𝐶𝑃𝑈𝑓𝑙𝑜𝑤𝑖
𝐶𝑃𝑈𝑖

+
𝑅𝐴𝑀𝑓𝑙𝑜𝑤𝑖
𝑅𝐴𝑀𝑖

(8)

Where 𝐶𝑃𝑈𝑖 and 𝑅𝐴𝑀𝑖 correspond, respectively, to the maximum
capacity of CPU and RAM of the controller 𝑐𝑖. As CPU and RAM use dif-
ferent units, we divide them over their corresponding maximum values
to get normalized data. Therefore, the number of selected controllers
can be written as follows:

𝑝 =
𝑛
∑

𝑖=1

𝑘
∑

𝑗=1
𝑅𝑡𝑖,𝑗 .𝜆𝑖 (9)

3.2.2. Control load (CL)
We define the CL as the load incurred by all the switches belonging

to the same domain. To this end, we use a decision variable 𝐻 𝑡
𝑖,𝑗 to

determine the relationship between the controller (𝑖) and the switch
(𝑗) as follows:

𝐻 𝑡
𝑖,𝑗 =

{

1, if switch 𝑣𝑗 is controlled by 𝑐𝑖 at time 𝑡
0, otherwise

(10)

The load of the controller 𝑐𝑖 can be thus given by:

𝐶𝐿𝑡𝑖 =
𝑘
∑

𝑗=1
𝐻 𝑡
𝑖,𝑗 .𝑅

𝑡
𝑖,𝑗 .𝜆𝑖 (11)

To avoid the overloading of some controllers and the
under-utilization of others, we balance the traffic load between the set
of selected 𝑝 controllers. To this end, we determine the global CL as
follows:

𝐶𝐿𝑡 = 1
𝑝

𝑝
∑

𝑖=1
|𝐶𝐿𝑡𝑖 − 𝐶𝐿

𝑡
𝑎𝑣𝑔| (12)

Where 𝐶𝐿𝑡𝑎𝑣𝑔 denotes the average of the CL of all selected 𝑝 con-
trollers.
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3.2.3. Control delay (CD)
The CD corresponds to the average response time of the controller

𝑐𝑖, which is defined as follows:

𝐷𝑡
𝑖 = 𝑃𝐷𝑡

𝑖 + 2.𝐶𝑀𝐷𝑡
𝑖 (13)

Where 𝑃𝐷𝑡
𝑖 and 𝐶𝑀𝐷𝑡

𝑖 are, respectively, the processing delay and
he communication delay of the controller 𝑐𝑖 at time 𝑡. We used two
imes of the communication delay since the 𝑃𝑎𝑐𝑘𝑒𝑡−𝐼𝑛 comes from the
witch to the controller and returns back to the switch. In this way, the
lobal CD is determined as the average of the CD of the set of selected
ontrollers, which can be written as follows:

𝐷𝑡 = 1
𝑝

𝑝
∑

𝑖=1
𝐶𝐷𝑡

𝑖 (14)

According to [23], the processing delay is determined as follows:

𝑃𝐷𝑡
𝑖 =

1
𝜑𝑖 − 𝜃𝑖

(15)

Where 𝜑𝑖 and 𝜃𝑖 are, respectively, the capacity and the workload of
the controller 𝑐𝑖. The communication delay is determined as follows:

𝑞𝑡𝑖 =
𝑘
∑

𝑗=1
𝐻 𝑡
𝑖,𝑗 (16)

𝐶𝑀𝐷𝑡
𝑖 =

𝑘
∑

𝑗=1

𝐻 𝑡
𝑖,𝑗 .𝑑

𝑡
𝑖,𝑗

𝑞𝑡𝑖
(17)

Where 𝑞𝑡𝑖 denotes the number of switches supervised by the con-
troller 𝑐𝑖 and 𝑑𝑡𝑖,𝑗 denotes the delay between the controller 𝑐𝑖 and
the switch 𝑣𝑗 . The latter is measured based on our previous work
in [24,25].

3.2.4. Intra-cluster delay (ICD)
This metric corresponds to the average value of the propagation

delays between all the switches belonging to the same cluster 𝑖, which
can be written as follows:

𝐼𝐶𝐷𝑡
𝑖 =

∑

𝑣𝑒∈𝑤𝑖 ,𝑣𝑚∈𝑤𝑖

𝐴(𝑣𝑒, 𝑣𝑚).𝜓(𝑣𝑒, 𝑣𝑚)
𝜍𝑖

(18)

Where 𝐴(𝑣𝑒, 𝑣𝑚) denotes the delay between nodes 𝑣𝑒 and 𝑣𝑚 in the
omain 𝑤𝑖, 𝜍𝑖 is the number of links of the cluster 𝑖, and 𝜓(𝑣𝑒, 𝑣𝑚)
s a decision variable representing the relationship between any two
witches, which is defined as follows:

(𝑣𝑒, 𝑣𝑚) =

{

1, if 𝑣𝑒 is connected to 𝑣𝑚
0, otherwise

(19)

Then, the global ICD of the set of 𝑝 clusters is determined as follows:

𝐶𝐷𝑡 = 1
𝑝

𝑝
∑

𝑖=1
𝐼𝐶𝐷𝑡

𝑖 (20)

3.2.5. Intra-cluster throughput (ICT)
This metric corresponds to how much data can be transferred by a

specific data plane cluster (𝑖) within a given timeframe, which referred
to us 𝐼𝐶𝑇 𝑡𝑖 . Then, the global ICT of the set of 𝑝 clusters is determined
as follows:

𝐼𝐶𝑇 𝑡 = 1
𝑝

𝑝
∑

𝑖=1
𝐼𝐶𝑇 𝑡𝑖 (21)

.3. Controller placement and switches migration

We consider the controllers as images installed in different servers
ocated in different locations. In this way, the action of controllers
lacement refers to instantiating a container from the image in the
orresponding server located in a specific location. To this end, we
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onsider 𝑐𝑖, 𝑖 ∈ [1, 𝑛] as the instance of the controller in the server or b
ocation 𝑖. Also, the deselection follows the same logic by just deleting
he instance or container 𝑐𝑖.

It is worth noting that the clustering of control and data planes
as well as the placement of the controllers happen when certain con-
trollers are overloaded, while others are under-utilized. Hence, we
define in Eq. (22) the load balancing factor between clusters, calculated
as follows:

𝐶𝐿𝑚𝑖𝑔 =
𝐶𝐿𝑡

𝑚𝑎𝑥(𝐶𝐿𝑖)
× 100 (22)

Note that, finding new data plane clusters leads to migrating a set
f switches from old clusters controlled by specific controllers to new
lusters controlled by new controllers.

.4. Proposed optimization model

The objective of our optimization model is to minimize the afore-
entioned performance metrics including CL, CD, ICD and ICT. This

an be achieved as follows:

𝑖𝑛(𝛼 × 𝐶𝐷𝑡

𝐶𝐷𝑚𝑎𝑥
+ 𝛽 × 𝐶𝐿𝑡

𝐶𝐿𝑚𝑎𝑥
+ 𝛾 × 𝐼𝐶𝐷𝑡

𝐼𝐶𝐷𝑚𝑎𝑥
− 𝜌 × 𝐼𝐶𝑇 𝑡

𝐼𝐶𝑇 𝑚𝑎𝑥
) (23)

Subject to :

∀ 𝑖 ∈ [1, 𝑝] ∶ 𝐶𝐿𝑡𝑖 < 𝑀.𝐹𝑖 (24)

∀ (𝑤𝑢, 𝑤𝑣) ∈ 𝑊 2 ∶ 𝑤𝑢 ∩𝑤𝑣 = ⊘ (25)

f controllers 𝑐𝑖 and 𝑐𝑗 are selected: 𝑐𝑖 ≠ 𝑐𝑗 (26)

|𝑊 | = 𝑝 (27)

∀ (𝑖, 𝑙) ∈ [1, 𝑝]2,∀ 𝑗 ∈ [1, 𝑘] ∶ (𝑑𝑖,𝑗 < 𝑑𝑙,𝑗 ) ⇒ (𝐻 𝑡
𝑖,𝑗 > 𝐻

𝑡
𝑙,𝑗 ) (28)

𝑗 ∈ [1, 𝑘] ∶ 𝐻 𝑡
𝑖,𝑗 ≤ 𝐹𝑖 (29)

𝑖 ∈ [1, 𝑝] ∶ (
𝑘
∑

𝑗=1
𝐻 𝑡
𝑖,𝑗 = 0) ⇒ (𝐹𝑖 = 0) (30)

𝑖 ∈ [1, 𝑝] ∶ 𝐶𝐷𝑡
𝑖 ≤ 𝜎𝑖 (31)

(𝑣𝑒, 𝑣𝑚) ∈ 𝑉 2 ∶ 𝐴(𝑣𝑒, 𝑣𝑚) ≤ 𝛿 (32)

As the objective function involves different parameters with differ-
nt measurement units, we have divided each metric over its corre-
ponding maximum value to have a normalized objective function. Note
hat these maximum values are determined by the network operator
nd correspond to physical characteristics of involved network devices.
ote also that 𝛼, 𝛽, 𝛾, and 𝜌 are adjustable weighting factors determin-

ng the degree of importance of the CD, the CL, the ICD and the ICT
etrics, respectively, such that 𝛼 + 𝛽 + 𝛾 + 𝜌 = 1.

Constraint (24) forces all controllers to not be overloaded. Con-
traint (25) means that all domains do not overlap and each node
elongs to only one domain. Constraint (26) forces the set of controllers
o be selected only once. Constraint (27) insures that the number of
elected controllers is the same as the number of data plane domains.
onstraint (28) is the mapping constraint ensuring that a switch must
e mapped to the closest controller in terms of delay. Recall that, we re-
er to our work in [24,25] to measure the delay between the switches in
he data plane as well as between the switches and their corresponding
ontrollers, where the delay is measured based on the times of sending
nd receiving a specific packet probe from the controller to the switches
n the data plane. Constraint (29) means that a switch is mapped to

controller if the latter exists and is selected. Constraint (30) means
hat if there is no switch mapped to a controller then the latter will

e powered off. Constraint (31) forces the CD metric to not exceed a
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Fig. 3. Demonstration of the DQN State and Action spaces using a simple topology.
certain threshold 𝜎𝑖, and finally constraint (32) forces the links of each
cluster to not be delayed.

The formulated optimization problem is an NP-hard problem [1],
where the optimal solution is very difficult to obtain in general. To this
end, we propose to solve it by modeling and training a Deep Q-Network
Agent, as will be detailed in the next section.

3.5. Deep Q-network agent

To dynamically determine the optimal number of controllers and
their optimal placements while considering the propagation delay be-
tween the switches and the controller, the controller resource utiliza-
tion, the ICD and the ICT, we propose to model a DQN Agent based
on a MDP. In this way, the DQN agent interacts with the environment
through three signals: 𝑆𝑡𝑎𝑡𝑒, 𝐴𝑐𝑡𝑖𝑜𝑛 and 𝑅𝑒𝑤𝑎𝑟𝑑.

3.5.1. State
The State 𝑆𝑡,𝑝 corresponds to the partitioning of the data plane into

𝑝 domains. To do so, we define it as a vector of 𝑤𝑡,𝑖 (𝑖 ∈ [1, 𝑝]), and can
be written as follows:

𝑆𝑡,𝑝 = [𝑤𝑡,1, 𝑤𝑡,2,… , 𝑤𝑡,𝑝]

Where 𝑤𝑡,𝑖 = [𝑣𝑒,… , 𝑣𝑚],∀(𝑣𝑒, 𝑣𝑚) ∈ 𝑤2
𝑡,𝑖 is a vector representing a

cluster of switches, such that ∑𝑝
𝑖=1 |𝑤𝑡,𝑖| = 𝑘. Recall that, 𝑘 corresponds

to the total number of switches in the data plane.
Let 𝑆𝑝 denote the set of all states corresponding to a specific value

of 𝑝, written as follows:

𝑆𝑝 = [𝑆1,𝑝, 𝑆2,𝑝,… , 𝑆𝑇𝑝 ,𝑝]

Where 𝑇𝑝 corresponds to the number of states corresponding to 𝑝
clusters. It is worth noting that, the set of states are constructed by
respecting the set of constraints indicated in Section 3.4.

3.5.2. Action
The action taken by the agent 𝐴𝑟,𝑝 is characterized by a vector rep-

resenting a selected set of 𝑝 controllers from the available 𝑛 controllers,
which is defined as follows:

𝐴 = [𝑐 ,… , 𝑐 ],∀𝑐 ∈ 𝐶
6

𝑟,𝑝 𝑟,1 𝑟,𝑝 𝑟,𝑖
Where 𝑟 represents the action number. We denote the set of all
actions corresponding to a specific value of 𝑝 as follows:

𝐴𝑝 = [𝐴1,𝑝, 𝐴2,𝑝,… , 𝐴𝑅𝑝 ,𝑝]

Where 𝑅𝑝 corresponds to the number of actions corresponding to 𝑝
clusters. It is worth noting that, the set of actions are constructed by
respecting the set of constraints (26) and (27) indicated in Section 3.4.
Recall that, constraint (26) avoids selecting one controller for more that
one cluster and constraint (27) ensures that the number of controllers
is the same as the number of data plane domains.

3.5.3. Reward
The ‘‘Reward’’ function 𝑅 of the agent consists in minimizing the

normalized objective function defined in (23), and can be thus written
as follows:

𝑅 = 𝛼 × 𝐶𝐷
𝐶𝐷𝑚𝑎𝑥

+ 𝛽 × 𝐶𝐿
𝐶𝐿𝑚𝑎𝑥

+ 𝛾 × 𝐼𝐶𝐷
𝐼𝐶𝐷𝑚𝑎𝑥

− 𝜌 × 𝐼𝐶𝑇
𝐼𝐶𝑇 𝑚𝑎𝑥

(33)

It is worth noting that the proposed DQN agent consists in determin-
ing the best mapping between the set of states and the set of actions,
while maximizing 1∕𝑅 (i.e., minimizing 𝑅).

In order to give more detail on the DQN design, we propose to
illustrate it graphically in a small topology with 9 switches in the data
plane and 5 controllers in the control plane, as shown in Fig. 3. We can
see that, when 𝑝 = 3 the data plane is fragmented into three domains
as well as only three controllers are used to supervise each domain
and the rest of controllers are not instantiated. In this case, the state
corresponds to the selected three domains and the action corresponds
to the selected three controllers. When 𝑝 = 4, we can see that the shapes
of the state and action vectors are changed, where four controllers from
five are selected for each action and the data plane is fragmented into
four domains.

Recall that, the number of controllers to be selected, corresponds
to the number of data plane domains or clusters, and can take values
from 1 to 𝑛, where 𝑛 corresponds to the total number of controllers in
the control plane.
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Algorithm 1: DDCP algorithm
1: procedure Clust(𝑆 = {𝑆1, ..., 𝑆𝑛}, 𝐴 = {𝐴1, ..., 𝐴𝑛})
2: 𝑀𝑎𝑥_𝑅𝑒𝑤𝑎𝑟𝑑 ← 0
3: 𝑝 ← 1
4: while 𝑝 ≤ 𝑛 do
5: for 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑡𝑒 ∈ 𝑆𝑝 do
6: 𝑅𝑒𝑤𝑎𝑟𝑑, 𝐴𝑐𝑡𝑖𝑜𝑛← 𝐷𝑄𝑁(𝑠𝑡𝑎𝑡𝑒, 𝑆𝑝, 𝐴𝑝)
7: if 𝑅𝑒𝑤𝑎𝑟𝑑 > 𝑀𝑎𝑥_𝑅𝑒𝑤𝑎𝑟𝑑 then
8: 𝑀𝑎𝑥_𝑅𝑒𝑤𝑎𝑟𝑑 ← 𝑅𝑒𝑤𝑎𝑟𝑑
9: 𝑆𝑒𝑙𝑒𝑐𝑡_𝑆𝑡← 𝑆𝑡𝑎𝑡𝑒

10: 𝑆𝑒𝑙𝑒𝑐𝑡_𝐴𝑐𝑡← 𝐴𝑐𝑡𝑖𝑜𝑛
11: 𝑆𝑒𝑙𝑒𝑐𝑡_𝑝← 𝑝
12: end if
13: end for
14: 𝑝← 𝑝 + 1
15: end while
16: return 𝑆𝑒𝑙𝑒𝑐𝑡_𝑆𝑡, 𝑆𝑒𝑙𝑒𝑐𝑡_𝐴𝑐𝑡, 𝑆𝑒𝑙𝑒𝑐𝑡_𝑝
17: end procedure
18: procedure Migration(𝑆𝑒𝑙𝑒𝑐𝑡_𝑆𝑡, 𝑆𝑒𝑙𝑒𝑐𝑡_𝐴𝑐𝑡)
9: if 𝐶𝐿𝑚𝑖𝑔 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
0: for 𝑒𝑎𝑐ℎ 𝐶𝑇𝑅𝐿 ∈ 𝑆𝑒𝑙𝑒𝑐𝑡_𝐴𝑐𝑡 do
1: for 𝑒𝑎𝑐ℎ 𝐷𝑜𝑚𝑎𝑖𝑛 ∈ 𝑆𝑒𝑙𝑒𝑐𝑡_𝑆𝑡 do
2: if 𝑀𝑎𝑝(𝐶𝑇𝑅𝐿,𝐷𝑜𝑚𝑎𝑖𝑛) then
3: for 𝑒𝑎𝑐ℎ 𝑆𝑤𝑖𝑡𝑐ℎ ∶ 𝑠 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛 do
4: if 𝐶𝑇𝑅𝐿_𝑜𝑙𝑑(𝑠) ≠ 𝐶𝑇𝑅𝐿 then
5: 𝑅𝑒𝑚𝑜𝑣𝑒(𝑠, 𝐶𝑇𝑅𝐿_𝑜𝑙𝑑)
6: 𝐴𝑠𝑠𝑖𝑔𝑛(𝑠, 𝐶𝑇𝑅𝐿)

27: end if
28: end for
29: end if
30: end for
31: end for
32: end if
33: end procedure

3.6. DDCP heuristic

As the state 𝑆𝑡,𝑝 and action 𝐴𝑟,𝑝 take different forms or shapes for
each value of 𝑝, we propose to split the state space (i.e., training data)
based on 𝑝 values. Then, we train the DQN agent separately for each
value of 𝑝 (i.e., DQN(𝑆𝑡,𝑝, 𝐴𝑟,𝑝)). In this way, to determine the optimal
number of controllers 𝑝 and the best mapping between the set of states
(clusters of switches) and the set of 𝑝 controllers, we propose the DDCP
heuristic (i.e., Algo. 1):

The DDCP algorithm consists of two main procedures: 𝐶𝑙𝑢𝑠𝑡 and
𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛. The 𝐶𝑙𝑢𝑠𝑡 procedure is called to determine the set of con-
trollers and their corresponding placements as well as the set of data
plane clusters. It works as follows: it takes as input the set of splitted
states and the set of splitted actions based on 𝑝: 𝑆 = {𝑆1, 𝑆2,… , 𝑆𝑛}, 𝐴 =
𝐴1, 𝐴2,… , 𝐴𝑛}. Recall that, 𝑆𝑝 corresponds to the space of states
here the number of controllers as well as the number of data plane
omains is 𝑝. Then, by using the trained DQN Agent, it finds the
ptimal 𝑆𝑡𝑎𝑡𝑒, 𝐴𝑐𝑡𝑖𝑜𝑛 corresponding to the maximum reward (lines 4–
5) iteratively for each sub-states 𝑆𝑝 ∈ 𝑆, 𝑝 ∈ [1, 𝑛]. The output of the
𝑙𝑢𝑠𝑡 procedure is the optimal number of controllers to be deployed
𝑆𝑒𝑙𝑒𝑐𝑡_𝑝), their corresponding ID (𝑆𝑒𝑙𝑒𝑐𝑡_𝐴𝑐𝑡 ∈ 𝐴𝑆𝑒𝑙𝑒𝑐𝑡_𝑝), and the

corresponding set of switch clusters (𝑆𝑒𝑙𝑒𝑐𝑡_𝑆𝑡 ∈ 𝑆𝑆𝑒𝑙𝑒𝑐𝑡_𝑝) (line 16).
On the other hand, the 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 procedure is called when the

ontrol plane load is not well-balanced (lines 19). In this case, it takes
s input the output of the 𝐶𝑙𝑢𝑠𝑡 procedure (i.e., 𝑆𝑒𝑙𝑒𝑐𝑡_𝑝, 𝑆𝑒𝑙𝑒𝑐𝑡_𝐴𝑐𝑡,
𝑆𝑒𝑙𝑒𝑐𝑡_𝑆𝑡). Then, it migrates the set of switches to the new cluster if
the new controller is different from the old one (lines 20–31).
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Table 2
DQN parameters.

Name Value

Dense layers 2
Control plane capacity 10
Data plane capacity 32
Minimum number of switches per cluster 1
Maximum number of switches per cluster 13
Q-target network update frequency 200
Learning rate 0.01
Discounted factor 0.6
Mini-batch size 32
Final exploration rate 0.2
Memory size 2000 units
Number of episodes 1000

Note that, the 𝑀𝑎𝑝 function indicates if a switch in 𝑆𝑒𝑙𝑒𝑐𝑡_𝑆𝑡 is
mapped to a controller in 𝑆𝑒𝑙𝑒𝑐𝑡_𝐴𝑐𝑡. The 𝐶𝑇𝑅𝐿_𝑜𝑙𝑑 represents the
controller of a specific switch before migration.

4. Performance evaluation

In this section, we evaluate the efficiency of our proposed approach.
We start by presenting our experimental setup. Then, we present the
experimental results.

4.1. Experimental setup

First, the control plane is deployed as a cluster of a set of dockerized
OpenFlow ONOS [22] controllers. Then, the DQN agent is implemented
based on Python [15] and dockerized on Docker Containers [16]. The
latter interacts with the control plane based on the ONOS Northbound
API. The control plane consists of 12 controllers. We used the network
emulation tool OpenvSwitch [23] to implement the experimental topol-
ogy, which consists of 32 nodes. To generate traffic among hosts, we
used Iperf [24]. The control plane Network Measurement modules col-
lect statistics (latency, throughput, and per-flow size) from the devices
and report those time-series statistics to the InfluxDb database [20].
Note that, to show the importance of using DQN on a large space of
states and actions, we augmented the collected statistics by using data
generated with Python.

Recall that, the DQN model consists of two neural networks, de-
signed to improve the convergence of the Cost Function in (5). One
neural network is called 𝑄 − 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 to estimate the 𝑄-Values and
the second one is called the 𝑄 − 𝑡𝑎𝑟𝑔𝑒𝑡 to estimate the target network,
according to the mechanism shown in Fig. 1.

We built and trained the DQN model by using the Tensorflow
library [21], by deploying separately the two neural networks (i.e., 𝑄−
𝑁𝑒𝑡𝑤𝑜𝑟𝑘, 𝑄 − 𝑡𝑎𝑟𝑔𝑒𝑡), which have the same architecture. The DQN pa-
rameters are illustrated in Table 2. In particular, both the 𝑄−𝑁𝑒𝑡𝑤𝑜𝑟𝑘
and the 𝑄 − 𝑡𝑎𝑟𝑔𝑒𝑡 consist of 2 dense layers. The number of data plane
switches is 32 and the number of controllers in the control plane is 10.

Considering the implemented topology, and in order to not have
a huge state space size, the training data are built as follows: (i) the
minimum and maximum number of switches in each cluster are fixed
to 1 and 13, respectively, (ii) the clusters where no link between the
generated switches of a specific cluster are ignored. On the other hand,
the training data (i.e., the set of States) can be classified based on 𝑝, as
the State corresponds to a vector of 𝑝 sub-vectors. In this way, both the
set of States and the set of Actions are splitted based on 𝑝, as illustrated
in Fig. 4. Then, we trained separately a set of DQN agents according to
𝑝. Recall that, we denoted the number of states corresponding to 𝑝 by 𝑇𝑝
and the number of actions corresponding to 𝑝 by 𝑅𝑝 in Sections 3.5.1
and 3.5.2, respectively. This mechanism of splitting the training data
helps our proposed DDCP approach to determine the best clustering of
control and data planes, as we need to go through the set of all trained

DQN agents.
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Fig. 4. Number of States and Actions under different number of clusters 𝑝.

It is worth noting that, the global number of States and Actions is
selected based on a set of parameters: (i) the global number of switches
in the data plane (i.e., 32 switches in our case) and the number of
controllers in the control plane (i.e., 10 controllers in our case), (ii)
the maximum and minimum capacity of each cluster, and (iii) the
convergence of the Cost function, while training the set of DQN agents
based on 𝑝.

During the training phase, we adopt 𝜖-greedy method as action
selection method. The final exploration rate is fixed at 0.2, while the
𝑄 − 𝑡𝑎𝑟𝑔𝑒𝑡 parameters are copied from the 𝑄 − 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 every 200
steps. The learning rate and discounted factor are fixed to 0.01 and 0.6,
respectively, which correspond to 𝜂 and 𝜑 parameters in Eqs. (3) and
(4). In addition, each training process corresponds to 1000 episodes.
Finally, we fixed the 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, indicated in Algorithm 1, to 30% to
avoid overloading the control plane, as will be justified in the next
section.

4.2. Experimental results

In order to evaluate the performance of our proposed DDCP ap-
proach, we first determine the best DQN model based on the reward
function weighting factors. Then, we determine the number of con-
trollers (i.e., clusters) 𝑝 to be deployed. To do so, we compare our
approach with the well-known K-means clustering method. Then, we
show the benefit of our approach in term of data plane partitioning
i.e., which switch assigned to which cluster. Thereafter, we evaluate
its performances in terms of CD, CL, ICD and ICT metrics. Finally, we
perform a comparative analysis between our proposed DDCP approach
and three main schemes proposed in the literature: (1) Optimal and
Dynamic Controller Placement (ODCP) [17], (2) Dynamic SDN Con-
troller Placement in Elastic Optical Datacenter Networks (DSCP) [19],
and (3) A Hierarchical K-means Algorithm for Controller Placement in
SDN-based WAN Architecture (HKCP) [18].

As mentioned in Eq. (33), the reward function is composed of four
performance metrics (i.e., CD (𝐶𝐷𝑡

𝑖), CL (𝐶𝐿𝑡𝑖), ICD (𝐼𝐶𝐷𝑡
𝑖) and ICT

(𝐼𝐶𝑇 𝑡𝑖)) weighted by four parameters 𝛼, 𝛽, 𝛾 and 𝜌, respectively. These
weighting factors play an important role to determine, in one side,
the importance of each performance metric, and on the other side
the convergence of the Loss function, shown in Eq. (5). To this end,
we depict, in Fig. 5, the average value of each performance metric
(i.e., CD, CL, ICD, ICT) after training the DQN agent under different
number of training episodes (1000 episodes in total), while changing
the weighting factors according to the following strategies:

• 𝑆1: this strategy considers only the control plane performance
metrics (i.e., CD and CL): 𝛼 = 1

2 , 𝛽 = 1
2 , 𝛾 = 0, 𝜌 = 0.

• 𝑆2: this strategy considers only the data plane performance met-
rics (i.e., ICD and ICT): 𝛼 = 0, 𝛽 = 0, 𝛾 = 1

2 , 𝜌 =
1
2 .

• 𝑆3: this strategy considers delay-throughput performance metrics
(i.e., CD, ICD, ICT): 𝛼 = 1 , 𝛽 = 0, 𝛾 = 1 , 𝜌 = 1 .
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Fig. 5. Impact of varying the reward function weighting factors 𝛼, 𝛽, 𝛾, 𝜌 on the CD,
the CL, the ICD and the ICT metrics.

• 𝑆4: this strategy gives importance to all performance metrics:
𝛼 = 1

4 , 𝛽 = 1
4 , 𝛾 =

1
4 , 𝜌 =

1
4 .

From Fig. 5, we can see that considering only the data plane
performance metrics in strategy 𝑆2 causes obviously high values of
CD, CL and ICD, while decreasing the ICT metric. The reason is that
some controllers are overloaded and experiencing congestion, while
others are under-utilized. On the other hand, strategy 𝑆3 shows better
performances compared to strategy 𝑆2, since the CD metric is taken
into account. However, the control load (CL) is still high compared to
the two remaining strategies (𝑆1 and 𝑆4) since this metric is not taken
into account in the reward function of strategy 𝑆3. Considering the CL
metric in strategy 𝑆1 improves the performances compared to the two
strategies 𝑆2 and 𝑆3. This shows the importance of balancing the load
between the set of controllers in the control plane. Finally, strategy
𝑆4, which takes into account all performance metrics (i.e., CD, CL, ICD
and ICT), outperforms all others strategies, showing high throughput,
low intra-cluster delay, low control delay, and low control load. Hence,
according to these results, we adopt strategy 𝑆4 (i.e., 𝛼 = 1

4 , 𝛽 = 1
4 , 𝛾 =

1
4 , 𝜌 =

1
4 ) for our subsequent experiments.

Let us now determine the optimal number/range of controllers
(i.e., clusters) to be deployed 𝑝. To do so, we plot in Fig. 6 the evolution
of the reward and loss functions (as defined in Eqs. (5) and (33)) under
different number of training episodes and using the aforementioned
weighting factors by adopting the strategy 𝑆4. We compare in Fig. 6(a)
the following baselines:

• 𝑅4, 𝑅5, 𝑅6, 𝑅7, 𝑅8, 𝑅9: where 𝑅𝑝 corresponds to the reward under
the number of clusters 𝑝, 𝑝 ∈ [4..9].

Similarly, we compare in Fig. 6(b) the following baselines:

• 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶8, 𝐶9: where 𝐶𝑝 corresponds to the cost under the
number of clusters 𝑝, 𝑝 ∈ [4..9].

From Fig. 6(b), we can see that the Loss function for all studied
baselines converges. On the other hand, we can observe from Fig. 6(a)
that the mean reward increases while increasing the number of clusters
in the first part of the range where 𝑝 ∈ [4..6]. However, it starts to
decrease in the second part of the range where 𝑝 ∈ [7..9]. The increase
in the first part reflects the existence of new clustering configurations
(i.e., based on link latency) and controllers placement that lead to
minimize the CD, the CL and the ICD metrics. The decreasing in the
second part of the range of 𝑝, can be explained by the fact that the



Computer Networks 207 (2022) 108852E.H. Bouzidi et al.
Fig. 6. Impact of varying the number of clusters and the controllers placement while
training the DQN agent.

increase in the number of controllers in the control plane impacts
the performances such as the CL metric. As a result, the number of
controllers or clusters to be deployed, according to our DDCP approach,
corresponds to that of the maximum reward, which is equal to 6 in our
experiments. Next, for the sake of comparison, we take this range [4..6]
for the variable 𝑝.

Let us now see the returned number of controllers 𝑝 to be deployed
when using the well-known K-means clustering method. Recall that K-
means is widely used in network partition problems [26] and includes
four main steps: (1) select 𝑝 random points as cluster centers called
𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠, (2) assign switches to the closest cluster based on the latency
of links and their locations, (3) recalculate the centroid for each cluster
by computing the average of the assigned switches, (4) repeat steps 2
and 3 until none of the cluster assignments change.

To determine the number of controllers to be deployed using the
K-means algorithm, we refer to the Within Cluster Sum of Squares
(WCSS) method [27], which computes the distance (i.e, delay in our
case) between a centroid of a cluster and each observation (i.e., switch
in our case) based on which it assigns the observation to the nearest
cluster. To do so, we plot, in Fig. 7, the WCSS method after training the
K-means algorithm for maximum 300 iterations under different number
of clusters of switches, where WCSS is determined as follows:

𝑊𝐶𝑆𝑆 =
𝑝
∑

𝑖=1

|𝑤𝑖|
∑

𝑗=1
(𝑥𝑗 − 𝑦𝑖)2 (34)

𝑥𝑗 = (𝑣𝑠𝑟𝑐 , 𝑣𝑑𝑠𝑡, 𝐴(𝑣𝑠𝑟𝑐 , 𝑣𝑑𝑠𝑡)), (𝑣𝑠𝑟𝑐 , 𝑣𝑑𝑠𝑡) ∈ 𝑤2
𝑖 (35)

Where 𝑥𝑗 represents a link in the domain 𝑤𝑖, in which 𝑣𝑠𝑟𝑐 , 𝑣𝑑𝑠𝑡
are data plane switches and 𝐴(𝑣𝑠𝑟𝑐 , 𝑣𝑑𝑠𝑡) is the delay between them,
the 𝑦𝑖 denotes the centroid of the domain 𝑤𝑖. In this way, the WCSS
method consists in clustering the set of points 𝑥𝑗 in order to minimize
the latency between switches.

From Fig. 7, we can see that the average controller response time of
WCSS continues to decrease, while increasing the number of clusters,
since the more we increase the number of clusters, the more we have a
small number of switches in each cluster 𝑤𝑖, which leads to minimizing
the latency. However, this can lead to overload the control plane due
to the increase of the number of controllers. To this end, we select
the number of clusters (i.e., controllers) when the WCSS starts to have
low values and be stable. Moreover, for the sake of comparison using
our approach (i.e., DDCP), we select a range of 𝑝 values when the
WCSS converges. This leads us to choose the range [7, 8, 9] for the
number of clusters 𝑝 based on the K-means algorithm. This results in
higher deployed clusters compared to our DDCP approach, where the
identified range of 𝑝 is [4..6].
9

Fig. 7. WCSS of K-means models under different number of clusters.

To further show the benefit of our DDCP approach in term of data
plane partitioning (i.e., which switch is assigned to which cluster), we
first compare it with the following baseline:

• Reduced DDCP, which corresponds to our proposed approach in
which the data plane clustering is determined by the K-means
algorithm instead of the DQN agent, and where the number of
controllers to be deployed is 𝑝 ∈ [4..6] (for the sake of comparison)
and identified statically.

Figs. 8 and 9 depict the data plane devices allocated to each cluster
by using the Reduced DDCP and DDCP schemes, respectively, under dif-
ferent values of 𝑝. It is noteworthy that, we have used the 𝑝 values in the
range [4, 5, 6]. Also, the reward function parameters of the DQN agent
correspond to the strategy 𝑆4 (i.e., 𝛼 = 1

4 , 𝛽 = 1
4 , 𝛾 =

1
4 , 𝜌 =

1
4 ). We can

see that, when the number of clusters 𝑝 is equal to 4, the allocation of
switches following the two schemes (i.e., Original DDCP and Reduced
DDCP) in Fig. 8(a) and 9(a) is completely different, since the DDCP
scheme is based on DQN that uses the previous clustering experiences,
while the K-means method used in the Reduced DDCP scheme, is based
on recalculating the centroid of each cluster for each step of the model
training. When 𝑝 = 5 (cf. Fig. 8(b) and Fig. 9(b)), we can observe more
similarity, compared to those when 𝑝 = 4, mostly in the last cluster.
When 𝑝 = 6 (cf. Fig. 8(c) and Fig. 9(c)) the two schemes achieve
interestingly a close clustering result with a superiority of the DDCP
approach in terms of average CD, CL, ICD and ICT metrics, as clearly
depicted in Fig. 10. This convergence in clustering can be explained
by the fact that, as the K-means considers only the clustering in the
data plane, referring to the DDCP approach to determine the number
of clusters improves the performances. However, it still causes some
degradation comparing to the DDCP approach since the controllers are
identified statically in the reduced one, which increase the CD, the CL
and the ICD metrics, as clearly depicted in Fig. 10.

Finally, we perform, in the following, a comparative analysis be-
tween our proposed DDCP approach and three main approaches pro-
posed in the literature:

• ODCP [17], which consists in using a quadratic program to solve
the controller placement problem and determines the number
of switches in each switch domain. After solving the controller
placement problem, it dynamically migrates switches in case of
controller overload.

• DSCP [19], which is based on dynamically matching the set of
controllers to the set of data plane switches in order to maximize
the resource utilization. Moreover, it dynamically balances the
traffic load and deploys the controllers.

• HKCP [18], which is a SDN network partitioning method based
on the hierarchical K-means algorithm. It considers the latency
between the switches and their controllers as well as the load
balancing between the set of controllers.
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Fig. 8. Demonstration of the network clustering for the Reduced DDCP scheme.
Fig. 9. Demonstration of the network clustering for the DDCP scheme.
Fig. 10. Comparing dynamic clustering and placement based on DQN and K-means
methods.

We used the same experimental topology, described in Section 4.1,
for all approaches. In addition, to have a fair comparison, we have
compared all approaches before and after switch migration. Recall that
the action that triggers the switch migration is the overloading of the
control plane. To this end, we used the following scenario:
10
Fig. 11. Impact of varying the Threshold (𝑇ℎ) on the number of migrated switches
and control delay in the DDCP approach.

We consider the set of controllers and data plane clusters obtained
by using our DDCP approach from Fig. 9, where the number of clusters
is 5 before switch migration. Then, we force the switches to overload
the set of controllers by sending a high number of 𝑃𝑎𝑐𝑘𝑒𝑡_𝐼𝑛. This will
force the four studied approaches (DDCP, ODCP, DSCP, and HKCP) to
perform the migration of some switches to new clusters and change the
network topology.
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Fig. 12. Average resource utilization before and after switch migration.

First, it is interesting to see the impact of varying the Threshold
defined in our DDCP approach in the switch migration procedure. To
do so, we vary this parameter, denoted by 𝑇ℎ, between 10% and 40%
and depict the number of migrated switches in Fig. 11(a). Recall that
𝐶𝐿𝑚𝑖𝑔 , defined in Eq. (22) and used in the switch migration procedure,
refers to the load balancing factor between clusters. The more this
factor is high, the more some controllers are overloaded compared to
the others. In this way, when 𝐶𝐿𝑚𝑖𝑔 exceeds the Threshold (𝑇ℎ), the
migration process is triggered. From Fig. 11(a), we can observe that
the number of migrated switches increases while decreasing 𝑇ℎ, due
to the difference in the load between the set of controllers. However,
giving small values to 𝑇ℎ may impact network performances since the
migration will happen more frequently in this case, which increases the
control delay, as shown in Fig. 11(b). On the other hand, when 𝑇ℎ is
high, the number of switches to migrate is low. However, clusters will
be unbalanced in this case since some controllers will be overloaded
compared to the others. This results in increasing again but more
significantly the control delay, as shown in Fig. 11(b). A trade-off
between the clusters’ load and the number of switches to migrate is
thus necessary. According to Fig. 11, this trade-off is achieved when
the Threshold is equal to 30%. Hence, in our subsequent experiments,
we fixed 𝑇ℎ to this obtained value.

Fig. 12 shows the average resource utilization in terms of CPU
and RAM before and after switch migration under all schemes. First,
we can observe that, the migration process reduces considerably the
average resource utilization for all schemes. The gain is more signif-
icant when using our DDCP approach, since it considers both control
and data plane performance metrics (i.e., CD, CL, ICD and ICT) in the
reward function when deploying a new cluster, as opposed to the other
schemes. Indeed, the DDCP approach shows a decrease in CPU usage
(respectively, RAM usage) of approximately 24% (respectively, 28%).
Compared to ODCP, DSCP, and HKCP, these gains are reduced to 10%,
5%, and 7%, respectively, for the CPU usage. On the other hand, for the
RAM usage, these gains are reduced to 10%, 7%, and 9%, respectively.
However, we note here that this implies an additional deployment of a
cluster (controller) in our DDCP approach since the number of clusters
after migration is increased to 6 in our experiment. In contrast, the
three other approaches ODCP, DSCP and HKCP keep using the same
number of clusters already defined by the network operator.

Fig. 13 depicts the number of migrated switches for all schemes.
We can see that both ODCP and DDCP reduce the number of migrated
switches. On the other hand, this number is higher in the two remaining
approaches (i.e. DSCP and HKCP), impacting thus the robustness of the
network. In fact, having a high number of switches to migrate increases
the signaling overhead, impacting thus the controllers’ load and the
network stability.

To further show the benefit of our DDCP approach, we plot in
Fig. 14 the delay-throughput performance metrics (i.e., CD, ICD and
ICT) for all schemes. We can see that the DSCP scheme increases the
intra-cluster delay and decreases the throughput, since those metrics
are not considered when clustering the network. On the other hand,
11
Fig. 13. Comparison of number of migrated switches under ODCP, DSCP, HKCP and
DDCP schemes.

Fig. 14. Delay-Throughput metrics evaluation under ODCP, DSCP, HKCP and DDCP
schemes.

both HKCP and ODCP schemes show better performances, as they
take into account additional parameters such as the delay between the
controllers. Finally, we can see that our DDCP approach outperforms
all other schemes, showing higher throughput and lower delay com-
pared to the others, thanks to the use of the DQN agent with a more
complete reward function to solve the controllers’ placement problem.
However, this comes at the expense of an additional deployment of
a cluster/controller in the control plane, as stated previously. It is
worth noting that, as several controllers need to be deployed in several
locations, the network will be more susceptible to different security
challenges and threats.

5. Conclusion

How many controllers to use in the control plane, where to place
them, which switch in the data plane must be controlled by which
controller represent challenging questions in SDN. To address these
important questions, we used optimization techniques to determine
the optimal number of controllers, their optimal placements and the
optimal clustering of data plane switches. Because the formulated
optimization problem is NP-hard, a simple yet computationally efficient
heuristic algorithm, called DDCP, was proposed and implemented. Our
approach solution approach can be used as part of the knowledge plane
to optimize control and data plane operations, by deploying a DQN
agent that dynamically determines the optimal policy mapping the set
of states (clusters of switches) to the set of actions (the set of controllers
in specific locations). Experimental results, showed the effectiveness of
our approach in identifying the appropriate number of controllers to
be deployed and the clustering of data plane switches around these
controllers. Moreover, our experiments showed that, the DQN agent
outperforms the well known K-means clustering method as well as
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three main methods proposed in the literature by decreasing the control
delay, the control load, and the intra-cluster delay and increasing the
intra-cluster throughput. However, this comes at the expense of an
additional deployment of a cluster/controller in the control plane.
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