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A B S T R A C T

Deep learning models have shown to achieve high performance in encrypted traffic classification. However,
when it comes to production use, multiple factors challenge the performance of these models. The emergence
of new protocols, especially at the application layer, as well as updates to previous protocols affect the
patterns in input data, making the model’s previously learned patterns obsolete. Furthermore, proposed model
architectures for encrypted traffic classification are usually tested on datasets collected in controlled settings,
which makes the reported performances unreliable for production use. In this paper, we study how the
performances of two high-performing state-of-the-art encrypted traffic classifiers change on multiple real-world
datasets collected over the course of two years from a major ISP’s network. We investigate the changes in traffic
data patterns highlighting the extent to which these changes, also known as data drift, impact the performance
of the two models in service-level as well as application-level classification. We propose best practices for
architecture adaptations to improve the accuracy of the model in the face of data drift. We show that our best
practices are generalizable to other encryption protocols and different levels of labeling granularity.
1. Introduction

Deep learning (DL) models have shown superior performance in
encrypted traffic classification [1–4]. However, when it comes to de-
ploying a DL model in production, there is more to consider than model
performance, which is dependent on the target dataset. In practice,
the model performance on a given dataset is tightly coupled with
the intrinsic properties of the dataset. The effect of the target dataset
on model accuracy has been previously highlighted by comparing
the performances of different traffic classification models on varying
datasets [2,5].

Data drift is a phenomenon in which the distribution of input data
over classes changes with time. For example, a service may switch to
another transport protocol leading to a different flow time series (i.e.,
traffic shape). A flow time-series-based classifier is then likely to decay
in identifying the new traffic. Hence, data drift refers to a change in
the distribution of real-world data caused by its dynamic nature, which
leads to model decay, significantly impacting model performance.

In this paper, we study the effect of data drift on the performance
of two state-of-the-art encrypted network traffic classifiers [1,2]. Using
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several real-world datasets collected from a major ISP’s mobile network
and consisting of traffic over both Transport Layer Security (TLS) [6]
and Quick UDP Internet Connections (QUIC) [7] encryption protocols,
we show that model performance degradation does indeed occur in a
production setting, i.e., when a model trained on old data attempts
at classifying new data. We offer an explanation for the degradation
based on traffic input that the models struggle on. We also analyze the
architecture of the models, offering guidelines for designing architec-
tures that we empirically show are more robust to data drift. Guided by
the observations that in practice, several factors in the data collection
process affect the number of possible labeled samples and the datasets
on which the models train can be of various sizes, we also study the
effect of dataset size on model performance. Our main contributions
can be summarized as:

• We study the data drift phenomenon using five real-world TLS
datasets collected over a course of more than two years from a
major ISP’s mobile network. To the best of our knowledge, we
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are the first to address the problem of data drift in real-world
encrypted traffic classification.

• We provide insights into the type of data drift that happens in
network traffic at different levels of labeling granularity, i.e.,
service-level and application-level classes. These insights are use-
ful to practitioners working with traffic classification models in
production.

• We perform an ablation study to analyze the impact of data drift
on two state-of-the-art features for encrypted traffic classification:
(i) TLS header bytes, and (ii) flow time-series information. We
reason data drift on these features, and quantify the drift per
service class and corresponding applications.

• We offer guidelines for designing models that are robust to a
change of dataset, labeling granularity, and encryption protocol.
Our guidelines have the distinction of being empirically tested on
real-world data with different encryption protocols and for both
service- and application-level classification.

This work is an extension of [8]. The primary additions include the
investigation of data drift on application-level classification, its impact
on model performance and comparison to service-level classification.
The efficacy of the proposed guidelines for robust model architectures
are also showcased for application-level classification. The rest of paper
is organized as follows. Section 2 presents the closely related works,
while Section 3 presents the datasets and models used in the paper.
In Section 4, we explain our experiments with the models trained on
one dataset and tested on one or more other datasets. We further
investigate and explain the obtained results. In Section 5, we present
our insights and guidelines on designing a robust model architecture,
along with the supporting results. Section 6 concludes the paper and
outlines directions for future work.

2. Related work

In light of the obfuscation of previously reliable features by en-
cryption, such as application-layer payload, the traffic classification
literature turned to features (e.g., packet size, timestamp, direction and
their statistics) that were difficult to tweak without affecting quality of
service. Before the advent of DL, the performance of several traditional
supervised ML models, such as Naïve Bayes, AdaBoost, Support Vector
Machine (SVM), Decision Tree, and Random Forest, was evaluated
using these features for encrypted traffic classification (e.g., [9–11]).
Furthermore, semi-supervised approaches based on Gaussian Mixture
Models, k-Means, k-Nearest Neighbor clustering, and Multi-Objective
Genetic Algorithms were studied for real-time encrypted traffic clas-
sification (e.g., [12–14]). A survey of traditional ML approaches is
available in [15,16].

The capacity to automatically extract feature vectors from raw data
in DL provided new opportunities for encrypted traffic classification.
These opportunities were explored using various DL models including
Multi-Layer Perceptrons, Stacked Autoencoders, Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM) (e.g., [1,3,17,
18]). The models were primarily evaluated using public mixed-protocol
datasets such as ISCXVPN2016 [11] and ISCXIDS2012 [19]. The work
in [5] uses a proprietary dataset to evaluate numerous application-level
classification methods that use DL models. A survey of DL models used
for network traffic analysis is available in [20].

Several works in Website fingerprinting (WF) attacks against The
Onion Router (Tor) observe the need for training ML models on fresh
traffic traces to ensure attack effectiveness. Herrmann et al. [21] show
that their Naïve Bayes approach is robust to data drift when the training
and test data were collected within two days of one another. Their
approach works on packet size and direction sequences of flows similar
to the flow time-series feature used in this paper. Rimmer et al. [22]
evaluate the resilience of several state-of-the-art DL models to data
drift on traffic periodically collected over two months. The authors
2

show that different DL models age differently, with their accuracies
dropping from around 95% to between 55% and 75% in the course
of two months.

A critical study of WF attacks [23] evaluates the effect of data
staleness on WF by measuring an SVM-based classifier’s accuracy on
the data over the course of 90 days. The data is gathered by crawling
Alexa Top 100 websites at different instants in time. The authors show
that the classifier’s accuracy drops from around 80% to around zero
in less than 90 days when the number of websites (i.e., the number of
classes) is 100, with the accuracy dropping below 50% in less than 10
days. To provide a solution to the data staleness problem, the authors
in [24,25] propose models that use less data to train, so that crawling
the websites and collecting the necessary traces to re-train the model
is feasible in the small window of time in which the model decays.

Andresini et al. [26] address robustness to data drift for intrusion
detection in network traffic, a context in which data drift is especially
important because of the continuously evolving nature of attacks. Their
proposed approach consists of three phases: (i) initial training on
historical data, (ii) incremental learning on unlabeled data facilitated
by a learned oracle, and (iii) an explanation phase for how the model
adapts to new attack categories. The authors use variable length time
windows that span several minutes rather than time splits to evaluate
the model. Their approach is evaluated on a recently published version
of the CICIDS2017 dataset [27], a dataset of benign and malware traffic
traces spanning over 5 days. The time window they consider is much
shorter than the time windows considered in this paper. Furthermore,
their domain is also different to ours, i.e., intrusion detection versus
service or application detection.

Ma et al. [28] propose a framework to detect and adjust to data
drift in an anomaly detection system. The authors define data drift
as a sudden change in the distribution of the key performance indi-
cator (KPI) stream. Since the number of KPIs in their base anomaly
detector is large, they especially focus on automatic threshold setting
for the data drift detection algorithm to free operators from manually
tuning per-KPI parameters. Their data drift adaptation algorithm is
based on linearly transforming the new concept to the old concept in
each time window. Their work differs from ours, as they deal with
a different domain where input data is in the form of a continuous
stream, so applying standard data drift algorithms to their domain is
rather straightforward.

Saurav et al. [29] consider the problem of an anomaly detection
model losing its relevance when trained on historical data and used in a
dynamically changing and non-stationary environment, where the def-
inition of normal behavior changes. Their proposed model, a recurrent
neural network (RNN) trained incrementally on a data stream, is used
to make predictions while continuously adapting to new data when
prediction errors increase. They show that their model is able to adapt
to different types of data drift, e.g., sudden, gradual and incremental.

Taylor et al. [30] study the effect of training on one dataset and
testing on another, building up on their previous work AppScanner, an
automatic tool for fingerprinting smartphone apps from encrypted data.
They collect five datasets of app generated traffic, four of which were
collected six months after the first one and differ from the first one in
a subset of three factors: (i) time of collection, (ii) app device, and (iii)
app version. The authors test the effect of each factor on the accuracy
of the model when trained on the base dataset and tested on the target
dataset, and conclude that mere time passing has the least effect on
the model’s accuracy, whereas the model’s accuracy drops from around
70% to 19% when tested on the dataset with new app versions and
devices.

Although the work in [30] is based on traditional ML models, it
relates to our work in the recognition of the effect of ambiguous flows
in confounding the classifier, as well as confirming the phenomenon of
model decay in mobile app fingerprinting. As opposed to the synthetic
datasets employed in [30], our work is based on real-world datasets.
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Fig. 1. UW model architecture [2].

Fig. 2. UW-H, i.e., decomposed TLS header part of UW model.

. Methodology

.1. Deep learning models

.1.1. UW tripartite model
The University of Waterloo Tripartite model (UW) is a DL model

roposed in our previous work [2]. The UW model achieves an ac-
uracy of over 90% on purely encrypted TLS network traffic. It is a
hree-part model, as depicted in Fig. 1, where each part is designed
o operate on a different type of input data. Note that the orange
nd yellow boxes in the figure depict convolution and max-pooling
ayer kernels, respectively. Furthermore, each layer’s output vector is
epicted by a white box accompanied by its size.

Firstly, the model consists of a series of CNNs operating on header
ytes from the first three packets of the TLS handshake. CNNs are useful
or extracting shift-invariant information which makes them suitable
or header bytes. Secondly, the model contains a series of LSTM layers
perating on flow time-series data, which includes a three-dimensional
rray of packet sizes, packet directions, and packet inter-arrival times
3

e

Fig. 3. UW-F, i.e., decomp. flow time-series part of UW model.

Fig. 4. UW-A, i.e., decomposed statistical part of UW model.

for each flow. LSTMs are renowned for relating useful information in
a time-series data. The output of the LSTMs passes through a dropout
layer before being concatenated to other parts’ outputs. Lastly, a series
of dense layers in the model is designed to work on statistical flow
data, which includes 77 features. We refer to these statistical features as
auxiliary features. Our experiments suggest that the auxiliary features
have the least effect on the model’s performance. The outputs of the
three parts are then concatenated and passed through two dense layers
and a softmax layer to obtain the final classification.

To the best of our knowledge, the UW model obtains the high-
est accuracy to date on a fully encrypted dataset, for service-level
classification. In this paper, we perform an ablation study on the
different parts of the UW model. The decomposed parts of UW, i.e.,
or TLS header bytes (UW-H), flow time-series information (UW-F), and
uxiliary features (UW-A), are depicted in Figs. 2, 3, and 4, respectively.

.1.2. UCDavis CNN model
The authors in [1] propose a CNN model for early classification of

etwork flows. Their CNN model operates on the first six packets of a
low, for each of which, the first 256 raw bytes from L3 and above are
xtracted and concatenated together to form the input feature vector.
he model consists of convolutional, max-pooling and dense layers as
hown in Fig. 5. We leverage the UCDavis CNN model in this paper, as
t was shown in [2] that after the UW model, the UCDavis CNN obtains
he best accuracy on their fully encrypted dataset among a number of
valuated models.
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Fig. 5. UCDavis CNN architecture [1].

Table 1
Service-level datasets properties.

Protocol Dataset Total flows (K) Labeled flows (K) Labeled flows (%)

TLS

07-2019 762.7 119.8 15.7
09-2020 411.7 89.9 21.8
04-2021 284.8 42.3 14.8
05-2021 124.0 17.5 14.1
06-2021 261.2 51.2 19.6

QUIC QUIC-05-2021 37.8 26.0 68.0

Table 2
Application-level datasets properties.

Protocol Dataset Total flows (K) Labeled flows (K) Labeled flows (%)

TLS

07-2019 762.7 83.1 10.9
09-2020 411.7 59.8 14.52
04-2021 284.8 26.3 9.2
05-2021 124.0 11.1 9.0
06-2021 261.2 34.6 13.2

QUIC QUIC-05-2021 37.8 9.3 24.6

3.2. Datasets description

We use a total of six real-world datasets in this paper which consist
of TLS and QUIC traffic traces collected from a major ISP’s mobile
network. The source and destination IP addresses are obfuscated and
the packets are truncated after 400 bytes, except for the TLS handshake
packets. A flow is assumed to be a quintuple of source IP, destination
IP, source port, destination port and protocol.

Preprocessing and labeling modules are used to turn the packet
captures into labeled datasets of traffic flows. Both modules are imple-
mented as in [2]. The preprocessed data includes raw TLS header bytes
from the flows, as well as flow time-series information consisting of an
array of packet sizes, packet inter-arrival times, and packet directions
for each flow. Moreover, it consists of 77 auxiliary features for each
flow, extracted using CICFlowMeter [11]. The auxiliary features include
statistical information about flows, e.g., mean, median, minimum, and

aximum of packet sizes in each direction.
The labeling module is used to label the flows according to the

erver Name Indication (SNI) field. The flows are labeled at two levels
f granularity: (i) service level, and (ii) application level. Service-
evel labels consist of 8 classes each representing a service category,
ncluding chat, download, games, mail, search, social, streaming, and web.

For each service level, there is a corresponding set of applications.
For example, the mail class consists of mailGmail, mailHotmail, and
mailOutlook applications. There are a total of 19 applications, which
4

Table 3
Service-level and corresponding application-level classes for TLS datasets.

Service-level class Application-level classes

chat Facebook Snapchat Whatsapp –
download Apple GooglePlay – –
mail Gmail Hotmail Outlook –
search Google – – –
social Facebook Instagram Twitter –
streaming Facebook Netflix Snapchat Youtube
web Amazon AppleLocalization Microsoft –
games – – – –

act as a finer level of labeling per service class. Note that not all the
applications in a service class have enough flows to be categorized
as an application class. Therefore, the number of labeled flows in
the application level is smaller than service level. The service-level
classes and corresponding applications are presented in Table 3. The
games service class does not have corresponding application classes, as
it consists of many applications with a very small number of flows.
Nevertheless, these applications’ flows together form the games class
at the service level.

The employed datasets can be categorized into two types based on
encryption protocol, i.e., TLS and QUIC.

(i) TLS datasets: We leverage five datasets encrypted with the TLS
protocol, each containing one to two hours of packet traces. The
datasets are captured chronologically and named in the MM-YYYY
format, i.e., 07-2019, 09-2020, 04-2021, 05-2021, and 06-2021, respec-
tively.

(ii) QUIC dataset : The QUIC dataset, i.e., QUIC-05-2021, is extracted
from a packet trace of QUIC traffic captured at the same time as the
TLS 05-2021 dataset. The TLS handshake bytes are tightly coupled to
the TLS protocol and thus irrelevant to QUIC. Therefore, the QUIC
dataset only consists of flow time-series information. Auxiliary data
was not added to this dataset as the effect of flow statistics on model
performance was negligible in our experiments. The QUIC dataset is
used to show that our architecture adaptation best practices, which
are centered around the UW-F model, generalizes to non-TLS encrypted
data (cf., Section 5).

Tables 1 and 2 show the total number of flows, labeled flows, and
the percentage of labeled flows, for service-level and application-level
datasets, respectively. The number of labeled flows depict the size of
each dataset. The percentage of labeled flows in each dataset highlights
the performance of the employed labeling module for the TLS flows. Ev-
idently, the percentage of the labeled flows across the datasets are more
or less inline with each other, asserting the suitability of the labeling
module. Additionally, the labeled distribution of TLS flows for service
and application classes are depicted in Figs. 6 and 7, respectively. There
is insignificant difference (i.e., 0.01 average standard deviation) in class
distribution across the datasets. Hence, accuracy (cf., Section 3.3) is
a suitable performance metric for comparing the models across the
datasets. To deal with class imbalance we adopt a weighting strategy,
i.e., we up-sample classes with smaller number of flows.

There are several interesting takeaways when we compare the distri-
bution of application classes. Notably, downloadApple has the highest
number of flows. Furthermore, streamingNetflix has the lowest number
of flows among all applications. This implies that although Netflix is an
extremely popular application, not many users watch Netflix on their
mobile devices when compared to Snapchat, Facebook, and Youtube.
Recall that the datasets were captured on the ISP’s mobile network.

For labeling the QUIC dataset, we update the classes in the TLS
dataset. Since QUIC is still not widely adopted by services across the
Web, not all classes from the TLS dataset have enough flows in the
QUIC dataset. For instance, QUIC is known for enhanced security and
faster connections, which makes it more suitable for time-sensitive
applications, e.g., streaming services, justifying the absence of flows

labeled as download in the QUIC dataset. Hence, we keep the games,
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Fig. 6. Service-level class distribution of the TLS datasets.

social, streaming, and web classes, while adding some new classes,
i.e., e-commerce and resources. The resources class corresponds to the
flows that are essentially shared among different websites that mostly
deliver tools, such as JavaScript APIs or design content for websites.
The QUIC labeling module can label up to 68% of the flows, a large
improvement over the less than 20% labeling performance on the TLS
datasets. We attribute this to fewer services using QUIC and most of
them corresponding to the resources class. Therefore, the SNIs are not
s varied in this dataset as they are in the TLS datasets.

.3. Software stack and performance metrics

The software stack for data pre-processing, model training, and eval-
ation includes Tensorflow [31] with Keras API [32], CUDA, PySpark
33], SCAPY, and TShark. Training was conducted on 80% of each
ataset, while the remaining 20% was used for validation. A multi-class
lassification problem can be seen as a set of many binary classification
roblems, one for each class. Each binary classification task may result
nto True Positives (TP), False Positives (FP), True Negatives (TN), and
alse Negatives (FN). The performance of each binary classifier can be
easured in terms of:

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

× 100, 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

× 100,

1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

× 100,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

× 100.

In this paper, we measure the performance of the multi-class classi-
iers in terms of accuracy, and weighted average F1-score, recall, and
recision, where weighted average is the average of the corresponding
etric across all classes weighted by the number of data points that we

ould label for each class.
Another metric that we use is top-k accuracy. This metric measures

ow often the model is able to predict the right class in the first
guesses. For instance, top-1 accuracy corresponds to the accuracy
etric defined above. The logarithmic weighted mean of top-k accu-

acies is the weighted average of top-k accuracies, where the weights
ogarithmically decrease as k increases.

. Investigation

In this section, we study the performance of the UW model when
rained on a baseline TLS dataset and tested on a different, target
LS dataset. We investigate model decay in time by leveraging the
ecomposed models and experimenting with different TLS datasets. A
5

ummary of key findings in this section is available in Table 12.
Table 4
Model performance on the 07-2019 TLS dataset in service-level classification.

Dataset Accuracy (%)

UW UW-H UW-F UW-A

07-2019 94.5 94.8 86.3 43.8

Table 5
Model performance on the 07-2019 TLS datasets in application-level classification.

Dataset Accuracy (%)

UW UW-H UW-F UW-A

07-2019 95.7 96.0 84.2 29.1

4.1. Baseline performance

We start by highlighting the performance of the UW model on the
07-2019 dataset, which is our oldest and largest TLS dataset. For insight
into the performance of each part of the UW model separately, we also
conduct experiments on the decomposed models (i.e., UW-H, UW-F and
UW-A). Table 4 shows the performance of these models in service-level
classification.

We notice that when we train the decomposed models on the 07-
2019 dataset, the UW-H model shows the highest accuracy, which is
0.3% higher than the accuracy of the UW model on the same dataset.
We attribute this to more data leakage in TLS headers at the time of
the corresponding dataset collection (cf., Section 4.3). The UW-A model
shows the lowest accuracy of 43.8%. With such a low accuracy, it is
evident that the flow statistics are not helping but rather confusing
the UW model, resulting in an even inferior performance to the UW-H
model.

The results for application-level classification are depicted in
Table 5. These results concur with the previous findings, with similar
trends for UW and decomposed models. Again, the UW-H model
achieves the highest accuracy of 96%, which is better than the UW
model, while the auxiliary input achieves the worst performance, i.e.,
9.1% in accuracy.

.2. Robustness to performance decay

We study the performance of the UW model in service-level classi-
ication on different target (or test) TLS datasets after training it on the
aseline 07-2019 dataset. The target datasets, i.e., 09-2020, 04-2021,
5-2021, 06-2021, were collected at different points in time upto two
ears from the 07-2019 dataset. As our experiments have shown that
he performance of UW-A is inferior with little to no impact on UW
odel performance, we focus our study on the UW-H and UW-F models.

The results of the first set of experiments is shown in Fig. 8.
vidently, the prediction ability of the model decays over time, which
s quantified in Table 6. We see that the performance decay of the UW
odel is at its lowest on the 09-2020 dataset (i.e., 35.7%) and at its
ighest on the 06-2021 dataset (i.e., 41.1%). Note that the 07-2019
ataset and the 06-2021 dataset are two years apart.

Model performance decay over time is an expected phenomenon.
evertheless, we see that it does not have an equal impact on the
W-H and UW-F models. In fact, the performance of UW-H decays 7%
ore on average than the performance of UW-F (i.e., 40.75% compared

o 33%). This suggests that using the traffic shape features, which is
aptured by the UW-F input, makes the classifier comparatively more
obust to decay over time. This also suggests that the TLS headers
ontribute more to the drop in accuracy over time for the UW model.

The previous experiments also highlight that performance decay
orrelates with the time difference between the training and target
atasets. Therefore, we run experiments to further investigate this
bservation. In particular, we train UW-H using different datasets, i.e.,
7-2019, 09-2019, 04-2021 and 05-2021, and measure how much the
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Fig. 8. Model performance when trained on baseline 07-2019 dataset and tested
(notation →) on target datasets.

Table 6
Drop in model’s predictive accuracy when trained on the baseline 07-2019 dataset and
tested on subsequent datasets.

Model Target datasets Avg. accuracy
drop (%)

09-2020 04-2021 05-2021 06-2021

UW 35.7 40.5 40.8 41.1 39.52
UW-H 38.3 40.3 41.7 42.7 40.75
UW-F 31.4 32.1 34.0 34.6 33.02

performance of the trained model decays by 06-2021. We conduct the
same set of experiments with the UCDavis CNN model and compare the
performance of both models. Given that the size of training set has an
impact on the accuracy of a DL model, we down-sample the training
datasets to the size of the smallest dataset (i.e., 05-2021 dataset) and
verage the results on all samples.

The performance decay in decreasing order of time span is shown
n Fig. 9. It is evident that the closer the datasets are in time of capture,
he lower the performance decay of the UW-H model. For example,
he accuracy of UW-H in service-level classification decays by 43.9%,
6.1%, 10.3%, and 7.2% roughly after 2 years, 1 year, 2 months,
6

nd 1 month, respectively. We attribute this to a discrepancy in data
distribution between the training and target datasets, i.e., data drift,
hich we will investigate in the next subsection.

The same trend can be seen for the UCDavis CNN model up to 04-
021, although the performance decay is even more noticeable than on
W-H. For instance, when the training and target datasets are 2 years
part, the accuracy of the UCDavis CNN model decays by 49.6%, com-
ared to 43.9% for UW-H in service-level classification. Two aspects
f the UW-H model could be contributing to its comparatively higher
obustness to data drift: (i) more regularization layers (i.e., higher

dropout rates and L2 kernel regularization for the dense layers), which
prevents the model from overfitting to the training dataset, and (ii)
feature engineering, in which the TLS handshake header bytes are used
as input as opposed to any header bytes, reducing the noise in the
model’s input. We note that the performance decay of the UCDavis
CNN model in service-level classification is lower in the span of 2
months (i.e., between 04-2021 and 06-2021) compared to the span
of 1 month (i.e., between 05-2021 and 06-2021), hence breaking the
previous trend. We speculate that the model simply overfits the training
dataset rather than naturally decay as data drifts over time. This also
suggests that the UCDavis CNN model might be less generalizable than
the UW-H model.

Fig. 9 also shows that the accuracy of UW-H in application-level
classification decays by 40.5%, 26%, 6.5%, and 3.7% over the span of
2 years, 1 year, 2 months, and 1 month respectively, similar to service-
level classification. The performance decay of the UCDavis CNN model
in application-level classification also follows the same trend as in
service-level classification. Specifically, the drop in accuracy decreases
from 59.9% over the span of 2 years, to 27.8% over the span of 1
year, to 10.2% over the span of 2 months, and increases again to reach
13.2% when the datasets are 1 month apart. Interestingly, the decay is
much worse with the UCDavis CNN model than UW-H in application-
level classification. This suggests that the UCDavis CNN model is even
more susceptible to data drift and overfits to the training datasets in
application-level classification.

In the following, we investigate which service classes are most
affected by data drift. Furthermore, we investigate what a given service
is confused with, as time passes. Finally, we investigate whether this
confusion holds across different architectures or not. We strategically
focus our study on two particular scenarios. The first is when the
training and testing datasets are 2 years apart, i.e., the model is trained
on the 07-2019 dataset and used to classify the 06-2021 dataset. That
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Table 7
Per-service class accuracy of UW-H and UCDavis CNN on (a) the 04-2021 dataset, and (b) the 07-2019 dataset.

(a) (b)

Class Accuracy (%) Class Accuracy (%)

UW-H UCDavis CNN UW-H UCDavis CNN

chat 77 84 chat 96 92
download 86 82 download 95 89
games 95 82 games 97 88
mail 83 89 mail 97 95
search 87 83 search 99 95
social 82 82 social 96 93
streaming 88 82 streaming 93 82
web 86 79 web 92 91
Fig. 9. Performance decay of UW-H and UCDavis CNN in service-level classification (left) and application-level classification (right).
Fig. 10. Confusion matrices of UW-H in service-level classification when training and target datasets are two years (left) and two months (right) apart.
is when the datasets are the furthest apart and the effect of data drift is
most noticeable on the overall performance of UW-H as well as UCDavis
CNN, both in service-level and application-level classification. The
second is when the datasets are only 2 months apart, i.e., the model is
trained on the 04-2021 dataset and used to classify the 06-2021 dataset.
This is when data drift affects the performance of UCDavis CNN the
least. Tables 7(a) and (b) present the baseline per-class accuracies, i.e.,
when the target dataset is the same as the training dataset.

Fig. 10 depicts the confusion matrices of UW-H in service-level
classification, in each of the above scenarios. When the training and test
7

datasets are 2 years apart, streaming and download are the two services
UW-H misclassifies the most, achieving 22% and 16% accuracy on these
classes, respectively, and hence a drop of roughly 70% and 80% in
classification accuracy. In particular, the model misclassifies 53% of
the streaming flows and 50% of the download flows as web flows. We
note that web is the class most of the misclassified flows are confused
with, e.g., 53% of the streaming flows, 50% of the download flows, 25%
of the games flows, and 25% of the mail flows. streaming is the second
most confused with, e.g., 27% of the games flows, 23% of the chat flows,
and 17% of the download flows. We can associate the model’s tendency
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Fig. 11. Confusion matrices of the UCDavis CNN model in service-level classification when training and target datasets are two years (left) and two months (right) apart.
Fig. 12. Top-k accuracy for the UW-H model in service-level classification when training and target datasets are two years (left) and two months (right) apart.
Fig. 13. Logarithmic weighted mean of top-k (k = 1, 2, 3) accuracy for the UW-H
model with service-level classes.

to misclassify flows as web to the higher percentage of web flows in the
training set which creates a bias for this class. Therefore, web is the
default label that the classifier selects for a flow when its confidence in
the true label is low.

When the training and target datasets are 2 months apart, however,
we see a drastic increase in the model’s ability to correctly classify
all flows in general, in particular the streaming and download flows,
i.e., 65% and 75% accuracy respectively. Some but fewer flows remain
misclassified as web flows, e.g., 22% of the games flows, 16% of the
streaming flows, and 10% of the download flows, compared to 25%,
53%, and 50% previously. However, the model seems also to have a
bias for the games class, as it now confuses more flows with games flows,
e.g., 21% from the chat class, 15% from search, and 13% from download.

Fig. 11 presents the confusion matrices of the UCDavis CNN model.
Evidently, when the training and target datasets are two years apart,
the UCDavis CNN model has a much higher tendency to misclassify
8

flows than UW-H. While streaming and games are the two classes with
highest misclassification rates, i.e., the accuracy of the classifier does
not exceed 1.7% and 6.2% respectively on these classes and thus
experiences a drop of over 90% in per-class accuracy, the UCDavis
CNN also misclassifies over 75% of the chat, download, and mail flows,
confusing these with web traffic most of the time. Similar to UW-H
but at a larger extent, web is the class UCDavis CNN most confuses
other classes with. UCDavis CNN also seems to be confused about more
classes than UW-H. For instance, in addition to the web, UCDavis CNN
equally misclassifies flows as search or social, e.g., 17% of chat flows
are misclassified as search and 14% as social, 12% of download flows
are misclassified as search and 16% as social, 21% of streaming flows
are misclassified as search and 18% as social, and 12% of web flows
are misclassified as search and 12% as social. We attribute this higher
misclassification and confusion rate of the UCDavis CNN model to the
noisy features (i.e., encrypted data) as input to the model, as discussed
earlier. We note that, the misclassification and confusion rates drop
significantly when the datasets are 2 months apart, and UCDavis CNN
exhibits similar behavior to UW-H.

In the following, we attempt to study the extent to which classes
are affected by drift in traffic data, leveraging the top-k accuracy
measure. Some traffic classes may be impacted by data drift more than
others such that it would take the classifier several more guesses to,
eventually, correctly classify them.

Fig. 12, presents the top-k accuracy of UW-H when the target and
training datasets are 2 years and 2 months apart, for k = 1, 2 and 3.
Evidently, considering the model’s top-2 or top-3 guesses significantly
increases the model’s accuracy on particular classes, thus increasing the
model’s overall accuracy. For example, when the target and training
datasets are 2 years apart, the accuracy of the model on the download
class increases from 16.5% to 54.2% and 77.3% with k = 2 and 3,
respectively. On the contrary, the accuracy of the model on mail does
not increase much when k is increased to 2 or 3, i.e., after the second
guess UW-H still misclassifies 47% of mail flows and 42% after 3
guesses. This suggests that mail traffic data has shifted so much since
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Fig. 14. Per-application class top-k accuracy of the UW-H model when training and target datasets are two years apart.
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07-2019 (recall that the baseline accuracy of UW-H in classifying 07-
2018 mail traffic is 97%) that it would take more than 3 guesses for
the model to correctly classify 06-2021 mail flows. Indeed, we can
see that the download and mail traffic drifted relatively less in the
pan of 2 months, as the model achieves relatively higher classification
ccuracy on these two classes, which also increases with k = 2 or 3.
hese findings are also inline with conclusions we drew earlier from
he confusion matrices.

In Fig. 13, we summarize the top-k accuracy plots by averaging the
op-k accuracies (for k = 1, 2, and 3) using a logarithmic weighted mean
unction. Logarithmically decreasing weights are applied to the top-k
ccuracies with increasing k, giving higher weights to top-1 accuracies.
he goal is to study and compare, in a simplified way, the extent of drift

n traffic data across service classes after 2 years versus 2 months.
We notice that download and streaming are the classes with the

owest average top-k accuracy when the training and target datasets
re 2 years apart. Not only are they the most impacted by data drift
ut also this is where we notice the most obvious correlation between
ata drift and time span between the training and target datasets.
he games class is also highly affected by the data drift due to the 2-
ear-time span between the training dataset and the 06-2021 dataset.
owever, interestingly, it is equally highly impacted by the 2-month-

ime span, experiencing roughly 50% drop in classification accuracy
n both scenarios. On the contrary, search, social, and web are equally
uch less affected by data drift regardless of the time span between

he training and target datasets, the average top-k accuracies being
qually relatively high in both scenarios. Interestingly, the games class
s the most diverse among all application classes. Several different SNIs
re matched to the games class, and the class does not seem to be
ominated by some major games. Thus, for the drop in accuracy to
e this noticeable, it seems like online games and underlying protocols
re in constant shift.

While we uncovered which traffic classes are most impacted by the
rift in traffic data at the service level, it is worth investigating which
pplications within service classes are most susceptible to data drift.
e conduct the 2-year-time span experiment at the application level,

nd measure the impact of data drift across application classes using
he logarithmic weighted mean top-k metric, as reported in Fig. 14.
9

o

Fig. 14 depicts interesting findings. For instance, in the chat service
lass, the highest drop in accuracy is experienced by the Whatsapp
pplication. In fact, the classifier fails to correctly classify all 06-2021
hatsapp flows. Plus top-2 and top-3 classifications fail to boost the

ccuracy of the classifier on this particular class. In the download
ervice class, we can see that GooglePlay is more affected by data drift
ith a lower logarithmic weighted mean top-k accuracy compared to

he Apple applications. In the mail service class Gmail is drastically
ffected by data drift, much more than the other mailing applications.
ore interestingly, in the social class, the biggest impact is experienced

y the Twitter application which makes Facebook and Instagram traffic
eem more stable. Furthermore, almost all applications in the streaming
ervice class experience roughly the same drop in accuracy and are
ffected almost equally by the data drift. Finally, for the web service
lass, the most stable traffic seem to belong to theMicrosoft applications
nd the most affected traffic by the data drift is the one for the
ppleLocalization application. The applications that are more affected
y data drift (e.g., Whatsapp, Twitter, etc..) seem to be the most popular
nes within their respective service classes. For instance, Whatsapp had
ore daily active users in France compared to Facebook according to

uly 2021 statistics [34].

.3. Traffic data drift

The considerable drop in both model’s performances when they
re trained on 07-2019 and tested on 2021 datasets, as well as the
act that the performance drop correlates with the difference in time
f capture between datasets, indicates that the data distributions the
odels are learning may be changing with time, thus making the

earned patterns obsolete. To investigate this, we take a closer look at
he L5 protocol distribution in the datasets, primarily looking for any
ime-related changes that we could identify. Note that since the data
s encrypted, only some application-layer protocols are identifiable.
urthermore, as we filter on the application-layer protocols, we only
erform the investigation for service-level classification.

Table 8 shows the adoption of HTTP/2 and SPDY protocols [35].
rom 2018 to 2021, the adoption of HTTP/2 increased while the usage

f SPDY, which is the predecessor to HTTP/2, drastically decreased.
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Table 8
Adoption of HTTP/2 and SPDY protocols over time.

Protocol Time

2018–2019 2019–2020 2019–2021

HTTP/2 +40.6% +31.0% +53.5%
SPDY −93.4% −66.6% −83.3%

Fig. 15. UW-H performance in service-level classification on datasets with similar sizes
(dark blue: 04-2021 size, light blue: 05-2021 size).

From 2019 to 2021, we can see that there is a 83.3% decrease in
the usage of SPDY and a 53.5% rise in the adoption of HTTP/2. This
may in part explain the drift in the datasets and, in particular, the
different patterns in the raw header bytes, from 2019 to 2021. Unlike
HTTP/2, SPDY uses a dynamic compression algorithm in the headers
that makes it more vulnerable to chosen plain text attacks. Indeed,
SPDY leads to more information leakage than HTTP/2 and is easier to
classify. Moreover, we expect to see a change in the accuracy of UW-H
model even when it is trained and tested on the newest datasets. We
hypothesize better results on the 07-2019 datasets where there could
be considerably more SPDY flows than the 2021 datasets.

We know that for DL models the dataset size has a direct impact
on the overall classification accuracy. Therefore, in order to have a
fair comparison, we reduced the number of flows (i.e., both in training
and testing portions) in the 07-2019 dataset to the number of flows in
the 04-2021 and 05-2021 datasets. Since we reduce the dataset using
random sampling, we perform multiple experiments and report the
average accuracy. The results are shown in Fig. 15. As can be seen, the
accuracy of the model on the reduced 07-2019 datasets is still around
8% to 10% higher than on the other datasets. This suggests that the
TLS headers in the 07-2019 dataset are easier to classify than the TLS
headers in the newer datasets.

To confirm our hypothesis about the impact of the application-layer
protocols, we conduct experiments based on the Application-Layer
Protocol Negotiation (ALPN) header field of the TLS protocol. Table 9
shows the distribution of ALPN field values for different datasets. Note
that all the 2021 datasets are merged. There are two main reasons
for doing this: (i) 07-2019 and 09-2020 datasets consist of roughly
119K and 89K flows, respectively. In contrast, the 2021 datasets are
considerably smaller and merging them results in 98.9K flows, which is
comparable in size to the larger datasets; (ii) 2021 datasets are captured
closer in time, which makes their data patterns more similar as evident
in Fig. 9.

From Table 9, it is apparent that between 62%–77% of flows in the
considered datasets do not have an ALPN field value, i.e., Missing ALPN.
Moreover, around 10%–20% of flows consist of HTTP/1 and HTTP/2
application-layer protocols, which are only a small portion of flows
in each dataset. Therefore, we evaluate model performance in three
different scenarios, where the flows in the datasets are either HTTP/1,
HTTP/2, or unknown. It is unknown for a flow with Missing ALPN,
10
Table 9
Distribution of ALPN field values for different datasets.

ALPN filter Dataset

07-2019 09-2020 Merged-2021

HTTP/2 0.12 0.09 0.09
HTTP/1 0.25 0.15 0.14
Missing ALPN 0.62 0.76 0.77

Table 10
UW-H performance in service-level classification based on ALPN.

Dataset Accuracy (%)

HTTP/2 HTTP/1 Missing ALPN

07-2019 93.5 97.5 93.2
09-2020 94.6 94.8 80.7
Merged-2021 91.6 96.9 81.1

i.e., it may use HTTP/1, HTTP/2, or neither HTTP/1 nor HTTP/2.
Table 10 illustrates the performance of UW-H on each dataset based
on the ALPN field value. For HTTP/1 and HTTP/2, model performance
across the datasets is more or less the same. However, the performance
gap between the 07-2019 dataset and other datasets on flows with
Missing ALPN is considerable. Specifically, UW-H achieves around
93.2% accuracy on the flows with Missing ALPN extracted from the
07-2019 dataset, while the performance is around 81% on the other
datasets. This further substantiates that the TLS headers in the 07-2019
dataset are easier to classify, and the majority of this ease comes from
flows with Missing ALPN.

By examining the ALPN of all the datasets, we found a few flows
with application-layer protocols other than Web protocols (e.g., Apple
push-notification). Interestingly, the 07-2019 dataset is the only dataset
that contains flows with the ALPN fields indicating the SPDY protocol.
Recall from Table 8 that in the time frame corresponding to the 07-
2019 dataset SPDY was still highly used, which we speculate as the
reason for superior classification performance on the Missing ALPN
portion of this dataset. Additionally, from Table 8 it can be seen that
from 2019 to 2021 the adoption of HTTP/2 has increased by more than
83.3%, which substantiates previous findings.

For a fair comparison, we then reduce the number of HTTP/1,
HTTP/2, and Missing ALPN flows in each dataset (i.e., both in training
and testing portions) to the smallest across all the datasets (i.e., the
umber of HTTP/2 flows in the 05-2021 dataset). The results are
hown in Fig. 16. It is evident that UW-H yields similar performance
n HTTP/1 and HTTP/2 protocols. The accuracy is over 80% for all
atasets on either HTTP/1 or HTTP/2 flows. However, the model shows
nferior performance, i.e., around 60% average accuracy on the Missing
LPN portion of the datasets, except for the 07-2019 dataset which
as a relatively higher accuracy of around 75%. Additionally, for the
9-2020 dataset, the performance of the model is lower than 07-2019
nd higher than 04-2021 datasets. All of these results are inline with
he increase in the adoption of HTTP/2 and decrease in SPDY usage
ver time in Table 8. This further supports our hypothesis that the
issing ALPN portion in the 07-2019 dataset is easier to classify. As

he majority of the original flows (i.e., no filter on ALPN) are from the
Missing ALPN portion, the performance of the model on the original
flows is similar or slightly better than the Missing ALPN flows alone.
It is better because of the small portion of HTTP/1 or HTTP/2 flows
available in the original dataset compared to Missing ALPN flows.

We then investigate whether the model is biased on the ALPN
field. Indeed, this could lead to better model performance when the
ALPN field value is either HTTP/1 or HTTP/2. To investigate this, we
obfuscate the ALPN field in the raw traffic bytes (e.g., replace with
random bytes) and re-pre-process the data. We re-evaluate the UW-H
model with the obfuscated ALPN field on HTTP/1 and HTTP/2 flows.
Note that we leverage datasets with similar sizes as before and present
average accuracy across multiple experiments. As shown in Fig. 17,
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Fig. 16. UW-H performance in service-level classification with ALPN filter on similar
ize datasets.

Fig. 17. UW-H performance in service-level classification with ALPN obfuscation.

the ALPN field has an impact on classification performance, with lower
performance when it is obfuscated. However, the performance degra-
dation is only around 1%–2% in accuracy. For example, on the 04-2021
dataset, the model achieves 83.2% and 81.3% accuracy on HTTP/1
with clear ALPN and obfuscated ALPN, respectively. For HTTP/2, the
accuracy is 83.25% versus 82.8%. Hence, a clear ALPN field is not the
primary reason behind the model’s performance gap between HTTP/1
and HTTP/2 flows with known ALPN, and other flows with Missing
ALPN.

There are more protocols over TLS than HTTP/1 and HTTP/2 (e.g.,
Apple push-notification), and new and updated Web protocols are
likely to emerge over time. However, HTTP/1 and HTTP/2 are well
established standard Web protocols, and it is plausible that the model’s
performance over HTTP/1 and HTTP/2 protocols will remain rather
consistent across different datasets in comparison to the unknown
protocols. The results in Fig. 16 support this claim with similar model
performance for HTTP/1 and HTTP/2 Web protocols. These results can
be attributed to the existence of more information in flows that contain
Web traffic (e.g., HTTP/1 and HTTP/2) compared to other protocols
(e.g., Apple push-notification). Therefore, Web-related flows are easier
to classify for the UW-H model.

Another hypothesis is that due to the negligible changes of the
established protocols over time, training the model on all historical
HTTP/1 and HTTP/2 improves the model’s accuracy, while training it
on all unknown flows confuses the model despite the large number of
samples in the dataset. To test this hypothesis, we merge all HTTP/1
and HTTP/2 flows of all datasets in one dataset, and all unknown flows
of all datasets in another dataset. Table 11 illustrates the accuracy of
the UW-H model on the HTTP/1 and HTTP/2 flows of all the datasets
versus the merged unknown portion of all datasets. We see that the
model shows an accuracy of 95.2% on the first dataset, compared to
11
Table 11
UW-H performance in service-level classification on datasets merged based on the ALPN
filter.

ALPN HTTP/1 or HTTP/2 Missing

Accuracy (%) 95.2 83.0

an accuracy of 83.04% on the second dataset. We also notice that the
accuracy on the unknown portion is low, despite the large number of
flows. Therefore, it seems that training the model on a merged dataset
of HTTP/1 and HTTP/2 flows helps its performance, whereas training
the model on more unknown flows seems to confuse the model, possibly
because of the more varied patterns and protocols in that portion of the
dataset.

5. Architecture adaptation

In this section, we examine the performance of the UW model on
the 2021 datasets. Observing a drop in model accuracy, we suggest
updating the model architecture that improves accuracy on several
datasets, thus making it more robust to data drift.

5.1. Ensuring model convergence

We start by training and testing the UW model and the decomposed
models on datasets from 2021. Again, we discard the UW-A model due
to its negligible performance, as discussed in Section 4.1. The results of
these experiments for service-level classification are shown in Table 13.

Although suffering a drop from the baseline 2019 dataset, the
accuracy of the UW model is reasonable at 83.4% and 87.1% on 05-
2021 and 06-2021 datasets, respectively. However, the model has a
rather peculiar accuracy of only 40% on the 04-2021 dataset, which
is primarily attributed to UW-F, showing a mere accuracy of 11% (i.e.,

orse than a random classifier). On the other hand, the UW-H performs
easonably on the same dataset.

Before we delve into the reasons for the under performance of UW-
, we note that the lower performance of the model on 2021 datasets
ompared to 07-2019 dataset can be attributed to dataset size. Recall
hat the 07-2019 dataset had 119K labeled flows, whereas 04-2021, 05-
021 and 06-2021 datasets have 42K, 17K and 51K flows, respectively.
herefore, given a much larger amount of training data, we expect
he model to achieve a higher accuracy on 07-2019 dataset regardless
f the architecture. However, the dismal accuracy on 04-2021 dataset
annot be simply explained by dataset size, and has to do with the
odel itself.

The results for the same experiment in application-level classifi-
ation are summarized in Table 14. The overall classification results
re better than for service-level classification, which is inline with the
revious experiments (i.e., on the 2019 dataset). Furthermore, the same
rends as service-level classification more or less hold with application-
evel classification. UW-H model performs relative to the dataset sizes,
.e., it achieves the highest and lowest accuracies on the largest and
mallest datasets, respectively. Moreover, the trends for UW-F are sim-
lar as for service-level classification but with more promising results.

ith application-level classification, there is no performance peculiar-
ty for UW-F on the 04-2021 dataset. Nevertheless, UW-F performs the
orst (i.e., 81.2% accuracy) on the 04-2021 dataset, albiet much better

han the accuracy in service-level classification (i.e., 11%).
To troubleshoot the UW-F model performance on 04-2021 dataset,

e examined the confusion matrix and accuracy of the model in the
raining phase, epoch by epoch. We found that the model does not con-
erge, and the same class is predicted for all samples in each epoch. We
ried two alterations to the model to alleviate this problem: (i) Learning
ate reduction—The learning rate for the optimizer was reduced from

he default value of 0.001 [2] to 0.0001 (i.e., 10x reduction); (ii)
asking Layer addition—A masking layer was added at the beginning
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Table 12
Summary of key findings in the investigations.

Finding Figures & Tables

The UW model performance is more aligned with the UW-H part of the model, while the UW-A does not contribute much to the
performance of UW.

Tables 4, 5

The UW model performance drops when it is trained on the original dataset (i.e., the dataset it was designed for) and evaluated on the
newer datasets. Performance drop is associated more with the UW-H model compared to UW-F model.

Fig. 8, Table 6

The performance drop has a direct relationship to the collection time difference between training and target datasets, highlighting the
impact of data drift.

Fig. 9

Model architecture and feature engineering plays an important role in the amount of performance drop due to data drift. The UW
model is more robustto data drift than UCDavis CNN.

Fig. 9

Different service classes have varying susceptibility to data drift. The model architecture does not change the overall order of
susceptibility of service classes, but rather impacts the measure of confusion between service classes.

Figs. 10, 11, Table 7

Download, streaming, mail, and games service classes are more impacted by data drift over the course of two years. However, the
games class is more susceptible to data drift, as in the course of two months the performance drop is still significant.

Figs. 12, 13

Applications per service class experience different levels of performance drop due to data drift compared to one another, e.g.,
Whatsapp experiences more drop in performance compared to other chat applications.

Fig. 14

The TLS headers are easier to classify on the original dataset compared to the newer datasets. The majority of this ease comes from the
Missing ALPN portion of the original dataset. The Missing ALPN portion makes around 70% of each dataset.

Fig. 15, Tables 9, 10

The ALPN value itself does not affect the information in the TLS headers. Fig. 17

The reasoning behind easier classification of Missing ALPN portion of original dataset is evidently the decline in the usage of SPDY
and increase in the usage of HTTP/2.

Fig. 16, Tables 8, 11
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Table 13
Model performance across the 2021 datasets in service-level classification.

Model Accuracy (%)

04-2021 05-2021 06-2021

UW 40.0 83.4 87.1
UW-F 11.0 81.0 85.9
UW-H 84.3 79.0 85.8

Table 14
Model performance across the 2021 datasets in application-level classification.

Model Accuracy (%)

04-2021 05-2021 06-2021

UW 85.2 79.6 88.9
UW-F 81.2 84.2 86.4
UW-H 85.9 74.1 86.5

Table 15
UW-F adaptation best practices for service-level classification.

Dataset Adaptation Training flows Accuracy (%)

04-2021 Dropout + Learning rate 33,900 89.4
Dropout + Learning rate +
Masking layer

33,900 90.1

05-2021 Dropout 14,024 87.3
BLSTM + Dropout 14,024 88.2

of the UW-F. The masking layer acts as a de-noising layer to filter out
time-steps that do not have any information. Therefore, these time-steps
can be skipped in the LSTM layer.

The above alterations boosted the accuracy of the UW-F model on
the 04-2021 dataset from 11% to 88.3% in service-level classification.
A smaller learning rate makes it more likely for the model to even-
tually converge to global optima, although it increases training time.
A masking layer reduces data noise, while adding to the complexity
of the model. Despite the downsides, evidently, in the case of the 04-
2021 dataset, these alterations are necessary for the model to achieve
reasonable performance in service-level classification.

5.2. Adjusting to dataset size

Given that dataset size can contribute to the model’s drop is accu-
racy on the 2021 datasets, we suggest a number of best practices in
designing a model architecture for smaller datasets, based on a number
12
of experiments carried out on the two smallest datasets, i.e., 04-2021
nd 05-2021.

.2.1. Dropout rate reduction
The stacked LSTM in the UW-F model is followed by a dropout layer.

he dropout layer randomly sets the units of LSTM output to zero based
n the dropout rate, which is often used to avoid model overfitting.
e found that in a smaller dataset, a high dropout rate does not help,

s it sets units of valuable information to zero, thus leaving the final
ayers of the model with little information to work with. By reducing
he dropout rate from 0.5 (i.e., default in [2]) to 0.3, we saw a boost
n model accuracy on both 04-2021 and 05-2021 datasets, the two
mallest datasets, as shown in Table 15 for service-level classification.
ith the same adaptation, a performance boost is also noticeable in

pplication-level classification for the 04-2021 and 05-2021 datasets,
s depicted in Table 16.

.2.2. UW-F simplification
The stacked LSTM layer proposed in [2] is a complex UW-F model

ith too many parameters for a small dataset. By reducing the number
f LSTM layers by one, thus turning the stacked LSTM to a bidirectional
STM (BLSTM), we were able to obtain better results on datasets with
ess than 20K flows, as shown for 05-2021 dataset in Table 15. We
urther found that on datasets smaller than 10K flows, even reducing
he stacked LSTM layer to a 1D Convolution (CONV1D) layer helps UW-
performance in achieving comparable or better results with a lower

umber of parameters (i.e., a lighter and faster to train model), contrary
o what was shown in [2] for large datasets.

The results for application-level classification with similar adapta-
ions are shown in Table 16. For application-level classification the
eduction of stacked LSTM layers to BLSTM results in a slightly lower
odel accuracy on the 05-2021 dataset (i.e., 85.3%). However, since

his dataset has smaller than 10K flows, we leverage CONV1D layers
ith best practices including masking layer addition and learning rate

eduction. Evidently, with these adaptions, the UW-F model achieves
he best performance in application-level classification, achieving an
ccuracy of 85.9%.

.2.3. Best practices
Table 17 summarizes our recommended best practices based on a

iven dataset’s size. We suggest that when leveraging the UW model,
W-F should be adapted to the training dataset’s size. When there are

ewer than 50K training flows, reducing the dropout layer value (e.g.,
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Table 16
UW-F adaptation best practices for application-level classification.

Dataset Adaptation Training flows Accuracy (%)

04-2021
Dropout + Learning rate 21,040 88.6
Dropout + Learning rate + Masking layer 21,040 90.2
BLSTM + Dropout + Learning rate + Masking layer 21,040 90.1

05-2021
Dropout 8861 85.8
BLSTM + Dropout 8861 85.3
CONV1D + Learning rate + Masking layer 8861 85.9
Fig. 18. Confusion matrices for UW-F (left) vs. its adapted version (right) on the QUIC-05-2021 dataset in service-level classification.
Fig. 19. UW-F performance with and without adaptations on the QUIC-05-2021 dataset
in service-level classification.

0.3) is sufficient. If the number of samples are fewer than 20K, a simpler
architecture such as BLSTM is preferred over stacked LTSM. In the
UW model architecture shown in Fig. 1, changing the stacked LSTM
to a BLSTM would simply remove the last LSTM layer in the stack,
as each LSTM works in reverse direction to the previous one. As an
example, since 04-2021 dataset has 21K training flows in application-
level classification, we also tried the BLSTM architecture instead of
stacked LSTM layers. This resulted in a similar accuracy of 90.1% which
is only 0.1% lower than the accuracy of the more complex stacked
LSTM architecture, as shown in Table 16. Finally, if the dataset has
fewer than 10K flows, using simple 1D Convolutions (i.e., shown in [2]
appendix) is adequate and preferable over the LSTM layer.

5.3. QUIC results

We also evaluate the performance of the UW model on real-world
QUIC data, before and after employing the adaptation guidelines pro-
posed in the previous subsection. We show that these guidelines indeed
improve model accuracy on a dataset consisting of QUIC flows, thus
13
Table 17
UW-F architecture adaptation rules.

Number of flows Adaptation

≤50K Dropout reduction
≤20K BLSTM
≤10K 1D Convolutions [2]

showing that our adaptation best practices generalize to encrypted
protocols other than TLS.

UW-F was shown to achieve over 99% accuracy on a synthetic
QUIC dataset [2]. However, on our real-world QUIC data, i.e., QUIC-
05-2021, the model achieved 86.7% and 83% accuracy in service-level
and application-level classification, respectively. Therefore, we chose
the following architectural adaptations for the model: (i) decreasing the
initial learning rate, (ii) adding a masking layer, and (iii) reducing the
dropout rate to 0.4. The performance of UW-F before and after adap-
tions for service-level and application-level classification are shown in
Figs. 19 and 21, respectively.

The model achieves an accuracy of 86.7% before adaptation,
whereas the adapted model achieves 95.6% for service-level clas-
sification. Furthermore, the application-level classification accuracy
is boosted from 83% to 91%. A similar trend is visible in other
performance metrics, such as weighted average F1-score, precision,
and recall, where the adapted model outperforms the original UW-
F model by 3% to 9% in service-level classification and by 3.8% to
8% in application-level classification. The precision for both models
is quite high, however, the main advantage of the adapted model
is correctly predicting a larger portion of the flows for each class,
which results in a 9% and 8% increase in recall for service-level and
application-level classification, respectively. Figs. 18 and 20 show the
confusion matrices of UW-F and its adapted version for service-level
and application-level classification, respectively. The recall increase is
visible in the confusion matrices, where the adapted model achieves a
higher accuracy per class in service-level classification. Furthermore,
for application-level classification the adapted UW-F model receives
significantly higher accuracy across 75% of the application classes,
especially for classes with the lowest accuracy without adaptation.
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Fig. 20. Confusion matrices of the UW-F (left) vs. its adapted version (right) on the QUIC-05-2021 dataset with application level-classification.
Fig. 21. UW-F performance with and without adaptations on the QUIC-05-2021 dataset
in application-level classification.

Therefore, the adaptations allow the model to achieve a higher clas-
sification accuracy across classes. The most significant increase is for
the resources class with 10% increase in accuracy for service-level
classification. Similarly, the adaptation results in a 19% increase in
accuracy for the resourcePbstck class in application-level classification.

6. Conclusion

In this work, we investigated the effect of data drift on two state-of-
the-art deep encrypted traffic classification models. We examined the
robustness of these models to data drift, providing insights about the
type of drift that occurs in network traffic. We showed that a model
which operates on the traffic shape is more resilient to data drift than
one that operates on TLS headers. Also, we examined the impact of
model architecture and feature engineering on model robustness by
comparing the two models over the same datasets.

We investigated how model architectures are affected by data drift
using confusion matrices for both UW-H and UCDavis CNN models. Fur-
thermore, we presented the top-k accuracy and its logarithmic weighted
mean to measure the amount of confusion due to data drift amid
service classes when training and test datasets are close (i.e., 2 months)
and far (i.e., 2 years) apart. We also analyzed the contribution of
each application towards performance drop over a long period among
different service classes. We examined the impact of the application-
layer protocols on model robustness, demonstrating that the model
performance improves by selecting more stable protocols (e.g., HTTP/1,
HTTP/2) for the model to train on, regardless of dataset collection time.

To warrant the need for architectural adaptations, we showcased
the performance and convergence issues that arise when a state-of-
the-art model is trained on different datasets with no adaptations. We
14
performed an ablation study and examined the performance of decom-
posed models, as well as the effect of changing structural parameters, to
propose best practices for designing an architecture that performs well
on unseen and possibly newer datasets. We showed results for service-
level and application-level classification to highlight generalizability of
proposed adaptions at different levels of labeling granularity. We also
showed the generalizability of our guidelines to different encryption
protocols by evaluating the adapted architecture on a dataset of QUIC
traffic for service-level and application-level classification, which re-
sulted in up to 9% higher classification accuracy than the default model
without adaptations.

The adaptation approaches proposed in this paper are manual. An
automatic choice of parameters that leads to a robust classifier is a
direction for future work. Another direction is to improve the gener-
alizability of the classifier by using transfer learning or incremental
learning methods that leverage previously learned knowledge, both to
reduce training time and increase performance on new datasets.
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