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Abstract—Distributed Denial-of-Service (DDoS) attacks are expected to continue plaguing service availability in emerging networks

which rely on distributed edge clouds to offer critical, latency-sensitive applications. However, edge servers increase the network attack

surface, which is exacerbated with the massive number of connected Internet of Things (IoT) devices that can be weaponized to launch

DDoS attacks. Therefore, it is crucial to detect DDoS attacks early, i.e., at the network edge. In this paper, we empower the network

edge with intelligent DDoS detection by learning from similarities between different data and DDoS attacks available across the edge

servers. To this end, we develop a novel Outlier Exposure (OE)-enabled cross-silo Federated Learning framework, namely FedOE.

FedOE enables distributed training of OE-based ML models using a limited number of labeled outliers (i.e., attack flows) experienced at

edge servers. We propose a novel OE-based Autoencoder (oAE) that can better discriminate anomalies in comparison to the widely

adopted traditional Autoencoder, using a tailored, OE-based loss function. We evaluate oAE in FedOE and demonstrate its ability to

generalize to zero-day attacks, with just 50 labeled attack flows per edge server. The results show that oAE achieves a high F1-score

for most DDoS attacks, outclassing its non-OE counterpart.

Index Terms—Edge intelligence, federated learning, outlier exposure, anomaly detection, DDoS detection

✦

1 INTRODUCTION

D ISTRIBUTED Denial-of-Service (DDoS) attacks continue
to plague modern networks with 2.9 million recorded

attacks in just the first quarter of 2021 [1], [2], [3]. They dis-
rupt services and impact Quality of Service (QoS) for legiti-
mate users. Emerging networks (e.g., Vehicular Networks,
Industrial Internet of Things) rely heavily on distributed
edge clouds to offer critical, latency-sensitive services for In-
ternet of Things (IoT) devices [4]. However, the explosion in
the number of IoT devices (e.g., 26.4 billion IoT connections
are expected by 2026 [5]) significantly increases the attack
vector [6]. Adversaries can compromise IoT devices, which
often lack sophisticated security mechanisms [7], [8], and
harness them as bots to launch DDoS attacks against the ge-
ographically distributed edge servers [4], [9], [10]. This has
significant implications on the decentralized, and often pri-
vate network edge data, which plays a quintessential role in
the performance of widely adopted Machine Learning (ML)-
based anomaly detection [11]. Existing centralized anomaly
detection consolidates data from multiple edge servers via
the cloud-centralized learning paradigm, and falls short in
preserving data privacy and entails high communication
overhead [11], [12], [13]. In contrast, anomaly detection us-
ing local edge server data in the edge-silo learning paradigm
(though also centralized in its own respect) is less efficient,
as it does not harness global knowledge from other edge
servers [12].

Cross-silo Federated Learning (FL) is a learning paradigm

that leverages distributed training data across the same
or different network operators’ geo-distributed datacenters.
These data cannot be shared due to legal and privacy
concerns, nor can be centralized due to their large vol-
ume. Therefore, cross-silo FL considers the cooperation of
relatively low number of datacenters (i.e., 2-100) to train
an ML model, while preserving data privacy and reducing
communication overhead [14]. Though FL offers compara-
ble performance to cloud-centralized ML, its performance
is highly dependant on whether the model training is su-
pervised or unsupervised [11], [15]. Models trained using
supervised ML techniques have been widely adopted in
intrusion detection systems [16] due to their high precision
in attack detection [17]. However, these models require a
large amount of labeled data for training (i.e., benign and
anomalous network traffic) and do not generalize to unseen
attacks [18], [19]. To overcome the need for labels, unsuper-
vised ML techniques assume that the behavior of benign
traffic is starkly different from anomalous traffic. Hence,
models trained using unsupervised learning leverage un-
labeled data and detect deviations from benign behavior
as anomalies, which allows them to generalize to zero-day
attacks [18], [19], [20]. Though unsupervised ML alleviates
labeling overhead, it leads to a high number of misclas-
sifications, which can severely impact anomaly detection
performance.

Misclassifications in anomaly detection is primarily at-
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tributed to similarities that may exist between benign and
attack traffic, as adversaries often adapt anomalous behav-
ior to be less distinguishable from benign [2]. Indeed, map-
ping benign data to a region and anomalous data outside
that region, as adopted by most unsupervised anomaly
detection methods, is challenged by the imprecise boundary
between benign and anomalous behavior, which contributes
to misclassifications [18]. In our experiments, we also ob-
serve a high number of misclassifications using unsuper-
vised anomaly detection methods on a public dataset1. This
raises a crucial question—Can we overcome misclassifications
in anomaly detection, while ensuring generalization to zero-
day attacks? To answer this question, we resort to semi-
supervised learning, which employs a large amount of un-
labeled data along with a smaller portion of labeled data to
train an ML model [21], thus striking a balance between su-
pervised and unsupervised learning. Most semi-supervised
anomaly detection methods use labeled benign training
samples, as they are easier to annotate [18], [22]. Other
methods leverage labeled attack samples for model training
[23], [24]. However, these methods assume the availability
of a sizable amount of anomalous samples that cover the
majority of the distribution of anomalous behaviors, which
is non-trivial to obtain and limits their applicability [18].

In light of the above limitations, we perform analysis
on multiple DDoS attacks to better understand the be-
havior of multiple unsupervised ML models in anomaly
detection. In our experiments, we observe that some DDoS
attacks (e.g., SYN and UDPLag) exhibit a detection per-
formance that is rather similar across different ML models
and learning paradigms (i.e., cross-silo FL and centralized
learning). This points to similarities between seemingly very
different attacks. For instance, SYN exploits the TCP three-
way handshake functionality, whereas UDPLag is carried
through a lag switch to monopolize network bandwidth
[16]. The Uniform Manifold Approximation and Projection
(UMAP)2 for benign traffic and attacks (i.e., SYN, UDPLag,
and UDP) in Figure 1 clearly shows: (i) an overlap between
benign traffic and attacks, elucidating the reason behind
misclassifications in unsupervised models, (ii) some overlap
between SYN and UDPLag attacks, especially over a circular
region on the left-side of the benign clusters in Figure 1a
and Figure 1b, and (iii) a clear difference between UDPLag
and UDP in Figure 1b and Figure 1c, although these attacks
exploit the same underlying transport protocol. This raises
another important question—Can similarities in DDoS attacks
enhance the performance of anomaly detection?

To answer this question, we exploit Outlier Exposure (OE)
[26], which is a semi-supervised technique that leverages
limited labeled attack data to better discriminate anomalies.
It has proven to be highly efficient for image classification
[22], [26], [27], [28]. However, to the best of our knowledge,
OE has not yet been used over network traffic for detection
of DDoS attacks. The essence of OE lies in determining clear
boundaries between benign and attack data by mapping

1. We leverage a public dataset [16] in our experiments. The details
on the dataset and its preparation for the experiments are available in
Section 5.2 and Appendix 7.1.

2. We use UMAP [25] to find and visualize a lower-order (i.e., 2-
dimensional) representation of the flow-based features for benign and
attack flow samples.

attacks away from the defined benign region [26]. Applying
OE for DDoS detection at the network edge is plausible,
given that limited labeled attack samples can be made avail-
able at each edge server by security experts. However, as
edge servers can be subject to attacks that are different from
the ones observed during model training, the robustness
of an OE-based anomaly detection model against zero-day
attacks is a concern that we investigate.

Our main contributions can be summarized as follows:

• We propose a novel OE-based ML model for DDoS attack
detection, namely outlier-aware Autoencoder (oAE). oAE
is a semi-supervised anomaly detection model that is
trained to better discriminate benign from anomalous
data. It leverages a limited number of outliers and an OE-
based loss function, and overcomes high misclassification
in unsupervised ML models.

• We develop a novel OE-based cross-silo FL framework
for anomaly detection, named FedOE. The novelty of
FedOE lies within building on similarities between dif-
ferent DDoS attacks experienced across edge servers to
enhance the detection performance of oAE. Furthermore,
we augment FedOE with a novel federated threshold
selection algorithm to maximize the F1-score across the
edge servers.

• We evaluate and compare the performance of oAE against
its non-OE counterpart (i.e., traditional AE). We show that
oAE outperforms AE under different learning paradigms
(i.e., cloud-centralized, edge-silo, and cross-silo FL). Fur-
ther, we show that both models in cross-silo FL, trained
using the FedOE, achieve comparable performance to the
cloud-centralized learning paradigm, while outperform-
ing the edge-silo learning paradigm.

• We evaluate FedOE and oAE in practice, including the
impact of limited number of outlier samples, contam-
inated training data, and unbalanced data across the
edge servers. We show that even a small number of
outliers (i.e., only 50 attack flows per edge server) can
significantly improve the detection performance of an OE-
based model. Furthermore, we show that oAE sustains
better against contaminated training data, while being
practically unaffected by data imbalance across the edge
servers. We also investigate the robustness of oAE to zero-
day attacks by exposing it to different subsets of DDoS
attacks. The results indicate that training an OE-based
model using samples from a DDoS attack (e.g., SYN) can
potentially improve the detection of other unseen attacks
(e.g., UDPLag).

The rest of the paper is organized as follows. In Section 2,
we provide a background on centralized and federated ML
approaches, and discuss the related works. We present the
OE-based anomaly detection models for DDoS detection
in Section 3. In Section 4, we delineate the FedOE frame-
work, along with cross-silo FL and the federated threshold
selection algorithm. Section 5 exposes the dataset and its
preparation in addition to the experimental results and anal-
ysis. We conclude in Section 6 and instigate future research
directions.

2 BACKGROUND AND RELATED WORKS

Attack detection using network traffic has been widely
addressed via supervised ML techniques. These techniques
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(a) Benign vs. SYN (b) Benign vs. UDPLag (c) Benign vs. UDP

Fig. 1: UMAP’s 2-D flow-based features for benign and attacks, i.e., SYN, UDPLag and UDP

build on signatures of the profiled attacks [16], [29], thus
limiting detection performance to the learned signatures
[18], [19]. To overcome this limitation and generalize to
zero-day attacks, unsupervised and semi-supervised ML
techniques have been employed for anomaly detection [30].
Nevertheless, the performance of these techniques is highly
dependant on data availability and the learning paradigm
(i.e., centralized or federated). In this section, we provide a
brief overview of these techniques and present the related
works.

2.1 Centralized Learning

Centralized learning is the process of training an ML
model using data on a training node, collected locally
or aggregated from multiple distributed nodes (e.g., edge
servers). It has been adopted to train supervised, unsuper-
vised, and semi-supervised ML models including OE-based
models. Due to our focus on OE-based ML, we dedicate a
specific subsection to it, while contrasting it with other semi-
supervised approaches.

2.1.1 Supervised ML

Supervised learning-based attack detection initially em-
ployed classical ML techniques. Doshi et al. [31] detected
SYN, UDP flood and HTTP GET flood attacks in an IoT
environment, using different classifiers, such as k-Nearest
Neighbors, Decision Tree (DT), and Random Forest (RF).
Similarly, DT and Support Vector Machine (SVM) with lin-
ear kernel were employed in [29] for detecting DDoS attacks.
Furthermore, Sharafaldin et al. [16] generated the CICD-
DoS2019 dataset and evaluated the performance of classical
ML techniques, including RF, Naïve Bayes, and Logistic Re-
gression, for DDoS detection. Classical ML models achieve
reasonable detection performance using a relatively small
amount of data. However, their performance relies heavily
on feature engineering and they fail to capture complex
relationships in input data. Recently, there has been a shift
towards Deep Learning (DL) for supervised attack detec-
tion. DL is known for its ability to learn complex non-linear
relationships in large datasets. For instance, Jia et al. [32]
proposed FlowGuard for the detection, identification and
mitigation of DDoS attacks in IoT. The authors employed a
Long-Short Term Memory (LSTM) model for DDoS attack
detection using flow-based features. They also developed
a Convolutional Neural Network (CNN) for DDoS attack
classification. Although supervised DL has advantages over
classical ML techniques, it requires a large amount of labeled
data, which is non-trivial to obtain [18].

2.1.2 Unsupervised ML

To overcome the need for labeled data, unsupervised
ML has been employed. Choi et al. [33] evaluated different
architectures of traditional AE for anomaly detection, and
compared it with traditional clustering algorithms. Further-
more, the authors in [19] leveraged AE using sub-flow
features (i.e., segment of a flow obtained according to a
certain threshold, such as a fixed interval, e.g., 10 ms, or the
number of packets) to reduce the response time in detecting
DDoS attacks. Their AE performed better in comparison to
classical ML algorithms. Time-based features are used in
[20], [34] and [35] for anomaly detection using AE and their
ensemble, respectively. Evidently, traditional AE seems to be
the unsupervised model of choice for numerous works on
anomaly detection in network traffic. In fact, AE’s ability to
profile and reconstruct benign data, while failing to recon-
struct unseen anomalous data has proven very efficient for
anomaly detection. Therefore, in this paper, we evaluate AE
for anomaly detection across numerous, independent DDoS
attacks.

2.1.3 Semi-supervised ML

Semi-supervised learning is preferred over supervised
learning when the acquisition of a large amount of la-
beled data is either too expensive or impractical [36]. Semi-
supervised learning is a hybrid of supervised and unsuper-
vised learning. For instance, Idhammad et al. [37] developed
a sequential semi-supervised ML approach that combines
unsupervised learning for anomaly detection using co-
clustering algorithm, and supervised ensemble ML classi-
fiers with the Extra-Tree algorithm to classify anomalous
traffic. Gao et al. [38] presented a semi-supervised learning
approach that combines a fuzziness-based method with an
ensemble of the Classification And Regression Tree (CART)
to detect network intrusions. However, these works inherit
the shortcoming of supervised learning as they require a
large amount of attack data for anomaly classification. Semi-
supervised learning has also been applied by training an
ML model on a large amount of unlabeled data with a
small portion of labeled data [36]. The authors in [23] used
S4VM, an enhanced version of semi-supervised SVMs, to
detect anomalies in network flows. The authors showed
comparable performance to supervised methods only when
the percentage of labeled training data is increased. Sim-
ilarly, Xu et al. [24] leveraged One-class SVM for semi-
supervised anomaly detection in heterogeneous wireless
networks. These works [23], [24] clearly showed that the su-
perior performance of their semi-supervised ML approach
for anomaly detection is highly sensitive to the availability
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of a sufficiently large amount of labeled data.

2.1.4 Outlier Exposure-based ML

OE was proposed by Hendrycks et al. [26] to improve the
performance of semi-supervised anomaly detection, while
reducing its sensitivity to the amount of labeled data. The
authors argued that leveraging a few Out-Of-Distribution
(OOD) (i.e., anomalous) samples during ML model training
enables better generalization to unseen anomalies. They
showed the benefits of OE in detecting anomalies in natural
language processing and image classification. Ruff et al.
[22] generalized unsupervised Deep SVDD and proposed
Deep SAD for image classification. Deep SAD is a semi-
supervised anomaly detection approach, also referred to as
unsupervised OE, which utilizes a small pool of labeled
anomalous samples during model training. It trains the
model to concentrate normal data near a predetermined cen-
ter, while mapping anomalous samples away from the cen-
ter. The authors in [27] improved Deep SAD and proposed
a HyperSphere Classifier (HSC) as an OE method based
on cross-entropy classification. Pang et al. [39] presented
an anomaly detection framework that leveraged Deviation
Networks and a few labeled anomalies, to enforce a signif-
icant deviation in their anomaly scores when compared to
normal data. These different OE-based approaches have a
similar objective, i.e., ensuring a clear deviation of anomaly
scores for anomalous data, to better discriminate between
benign and anomalous regions.

Nonetheless, to the best of our knowledge, OE-based ML
has not been explored to detect DDoS attacks in network
traffic. As AE is one of the most commonly employed neural
network (NN) for DDoS detection, in this paper, we propose
oAE (i.e., an OE-enabled AE) and evaluate its performance
in anomaly detection with respect to various DDoS attacks.

2.2 Federated Learning

FL has been proposed to overcome the limitations of cen-
tralized learning, primarily to preserve data privacy and al-
leviate communication overhead due to data centralization,
while maintaining a competitive detection performance [11],
[15]. It is also in contrast to distributed learning, which
considers centralized data that is partitioned for distributed
ML model training across different nodes [40]. In FL, each
node (e.g., edge server), also known as FL client, shares the
knowledge (i.e., model updates) gained from its local data
with a central node, referred to as the FL server, rather than
sharing the data itself. The FL server aggregates the model
updates from all the FL clients and shares the updated
global model parameters with them [14]. Multiple works
have adopted FL for anomaly detection in IoT environment.
This flavor of FL is known as cross-device FL, as it considers
a large (i.e., up to 1010) and variable number of IoT devices
as FL clients in each training round [14]. For instance,
Nguyen et al. [41] leveraged FL to identify compromised
IoT devices. In their approach, each IoT gateway trains
an IoT device-type specific Gated Recurrent Units (GRU)
model that is based on local IoT traffic. The model updates
are globally aggregated and pushed to the distributed GRU
models. Rahman et al. [12] evaluated cross-device FL for
IoT intrusion detection, and compared performance against
centralized and self-learning (i.e., learning exclusively on
the IoT device) approaches.

In contrast to the widely used cross-device FL, cross-silo
FL paradigm is adopted when network operators (or orga-
nizations) cannot share their data due to legal constraints,
or when data belonging to the same operator cannot be
centralized between different geographical locations due
to communication overhead. Cross-silo FL accounts for a
limited number (i.e., 2–100) of stateful FL clients, usually
representing different organizations or geo-distributed dat-
acenters that participate in each round of FL training [14].
This makes cross-silo FL suitable for anomaly detection at
the network edge, where the limited number of edge servers
act as FL clients. Abeshu and Chilamkurti [42] used stacked
AE for zero-day attack detection on fog nodes. During each
FL training round, fog nodes train the model on a subset of
data through parallel training across different threads. The
authors showed a higher detection accuracy with a larger
number of fog nodes. Kim et al. [43] proposed a FL-based
anomaly detection system for IoT. They collaboratively
trained a multi-layer perceptron at the edge servers and
showed superior performance when compared to models
trained in the edge-silo learning paradigm.

Note that none of the aforementioned cross-device FL
works accounted for OE-based models. Moreover, works
that considered anomaly detection at the network edge, did
not discuss the data distribution, nor evaluated its impact
on model performance. Unlike these works, we evaluate
the impact of different data distributions in cross-silo FL,
considering both balanced and unbalanced partitioning of
training data across the edge servers, while investigating
the advantages of training OE-based models in a federated
setting. We highlight that cross-silo FL is rather insensitive
to the data distribution in comparison to the highly sus-
ceptible edge-silo learning paradigm. More importantly, we
depart from an aggregate detection evaluation that conceals
performance for individual attack types, and explore the
generalization of OE-based anomaly detection models to
different unseen DDoS attacks.

3 OE-BASED ANOMALY DETECTION MODEL

In this paper, we augment edge servers with intelligent
anomaly detection capability. These edge servers leverage
the different attacks they experience to facilitate OE-based
DDoS detection. In this regard, we leverage NNs, given
their ability to learn complex, non-linear relationships in
data [35], [44].

3.1 Problem

Given a training dataset D = {Du,Da} with Du∩Da = ∅,
where Du is an unlabeled dataset of network traffic (i.e.,
flows) collected during normal network operation (i.e., Du

is benign in majority, but may contain some anomalies),
and Da is a labeled dataset encompassing anomalous (i.e.,
outlier) flows pertaining to DDoS attacks. The objective is
to design an OE-based anomaly detection model, the associ-
ated loss function and anomaly score function ζ(.), such that
ζ(.) tries to satisfy ζ(u) < ζ(a) ∀u ∈ Du, ∀a ∈ Da. u, a ∈ R

d

are of dimension d (i.e., number of flow-based features) and
represent presumably benign and known anomalous flows,
respectively.
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3.2 oAE: Outlier-aware Autoencoder

A traditional AE is a NN, which has been widely used
for anomaly detection. It is composed of an encoder and
a decoder. The encoder encodes the input into a latent
code z, while the decoder decodes z to reconstruct the
input. The difference between the original input and the
reconstructed one is quantified as the reconstruction error,
e.g., Mean Squared Error (MSE). The reconstruction error
corresponds to the anomaly score [19]. Once an AE is trained,
the reconstruction error is used to classify a new input
as benign or anomalous, by comparing it against a pre-
determined threshold. Typically, a small reconstruction error
is associated with benign input, given that an AE, usually
trained on benign data, succeeds in reconstructing a sim-
ilar input. However, anomalous input may exhibit similar
behavior to benign input. Therefore, an AE will not always
succeed in discriminating benign from anomalous inputs.
This leads to a high number of misclassifications.

High misclassifications can be alleviated by forcing the
AE to associate starkly higher anomaly score to known out-
liers (i.e., anomalies) during training. This allows to better
discriminate benign input from: (i) unknown anomalies,
and (ii) stealthy anomalies with inherent behavioral overlap
with known outliers. In this vein, we propose a novel OE-
based AE, named oAE, i.e., a traditional AE augmented with
OE capability. oAE is inspired by [22], [27], which proposed
OE-based anomaly detection in image classification. oAE
has a similar NN structure to traditional AE, along with a
modified OE-based loss function. oAE accounts for auxiliary
labeled outliers during training, and ensures a high recon-
struction error for known outliers and a low reconstruction
error for presumably benign inputs, to better discriminate
anomalies. Though, in this paper we design and leverage
oAE for detecting network traffic anomalies (i.e., DDoS
attacks) via network flows, it can be generalized to other
inputs.

More formally, we consider a training dataset
D = {Du,Da} as defined in Section 3.1, where Da is a
dataset of outliers. Let D = {(x1, y1), ..., (xq, yq)}, where
xj is a vector of normalized flow-based features for a flow
in D, and yj ∈ {0, 1} is the label for the flow. Although the
flows in Du ∈ D are unlabeled, we assign corresponding
yj = 0, as we assume that these flows are benign in
majority. In contrast, all flows in Da are anomalous with
label yj = 1. Furthermore, the output of the NN is denoted
by ϕ(W, xj), where W represents the NN weights that
are tuned during the training phase. In this model, the
anomaly score assigned to each input xj is defined as the
reconstruction error (1), i.e., :

ζ
(

xj

)

=
∥

∥

∥ϕ
(

W, xj

)

− xj

∥

∥

∥

2

2
, (1)

where ‖v‖
2

is the norm two of a vector v. Considering a
traditional AE, the loss function (i.e., MSE) is defined as in
(2) where |Du| is the number of flows in Du.

loss(W,Du) =
1

|Du|

∑

xj∈Du

ζ
(

xj

)

(2)

The traditional AE loss function in (2) is geared to
minimize the reconstruction error of the benign flows. In
contrast, the OE-based loss function of oAE is composed

of: (i) an expression that minimizes the reconstruction error
of the benign flows (i.e., ζ(xj) ∀xj : yj = 0), and (ii)
an expression that maximizes the reconstruction error of
the outlier flows (i.e., ζ(xj) ∀xj : yj = 1). Additionally,
inspired by the results in [27], instead of maximization or
minimization of ζ(xj) directly, we define oAE’s OE-based
loss function (3) for an input (xj , yj) ∈ D as:

loss(W,D) =
1

|D|

∑

xj ,yj∈D

Γ
(

xj , yj
)

, (3)

where

Γ
(

xj , yj
)

= −

(

(1−yj) log ρ
(

ζ(xj)
)

+ yj log (1− ρ
(

ζ(xj)
)

)

(4)

and ρ(x) = exp (−(
√

(x+ 1)− 1)) is a non-increasing
function with a value between zero and one. The defined
ρ(x) is a Pseudo-Huber function that is also used in robust
regression. As discussed in [27], such a selection of ρ(x)
yields better results in anomaly detection. oAE is semi-
supervised in nature, as it leverages a large number of
unlabeled flows along with a limited number of labeled
anomalous flows. It benefits from OE, and better generalizes
to anomalies that are not seen during training.

4 FEDOE: OE-BASED CROSS-SILO FL FRAME-

WORK FOR ANOMALY DETECTION

We combine the benefits of OE in cross-silo FL for
DDoS detection at the network edge. To facilitate this, we
develop an OE-based cross-silo FL framework for anomaly
detection, named FedOE. In this section, we briefly present
the FedOE framework and cross-silo FL for training an
OE-based anomaly detection model M. We also propose a
federated threshold selection algorithm, which determines
a threshold to discriminate between benign and anomalous
network flows.

4.1 FedOE—The Framework

The FedOE framework facilitates the training of an
anomaly detection model M using flow-based features (e.g.,
flow duration, flag count, sum of packets per flow, etc. (cf.,
Appendix 7.1.1)) in a federated setting. It is composed of
distributed entities, mainly, edge servers belonging to a set
C of FL clients, and a FL server J depicted as the central
server in Figure 2. Each edge server ci ∈ C monitors and
collects corresponding raw traffic using the network traffic
monitoring module. The latter transfers the collected traffic
to the network traffic preparation module, which prepares the
datasets (cf., Section 5.2) used by M. This module also
labels a small number of attack flows, i.e., facilitated by
security experts, to enable OE-based anomaly detection. In
the absence of security experts or attacks experienced at the
edge, this module can be injected with simulated attacks. In
addition, as FedOE builds on knowledge sharing between
the edge servers, the availability of attack flows at each
edge server is not a necessity. The prepared datasets are
pre-processed by the feature engineering module that per-
forms feature extraction, reduction and normalization. The
datasets are then provided to the anomaly detection module
for OE-based cross-silo FL (cf., Section 4.2).

The central server J is responsible for cross-silo FL
orchestration through the intelligence orchestration module.
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Fig. 2: The FedOE framework

This module shares the structure of M and model hyper-
parameters with each ci ∈ C . Furthermore, J includes a FL
aggregation engine that aggregates the model updates (i.e.,
NN weights) and selects a threshold (cf., Section 4.3) for
anomaly detection. It is worth noting that FedOE is neither
bound to a particular anomaly detection model (e.g., oAE
that we employ), nor to the flow-based features. FedOE
can adapt to other OE-based anomaly detection models and
feature sets (e.g., packet or time-based features).

4.2 Cross-silo Federated Learning

The interaction between FedOE entities, i.e., each edge
server ci ∈ C and central server J , and respective modules
is governed by the cross-silo FL process. Cross-silo FL
consists of training the OE-based anomaly detection model
M by leveraging data across each edge server ci ∈ C (i.e.,
FL clients), under the orchestration of the FL server J . The
training data at each ci ∈ C is denoted by Di = {Du

i ,D
a
i }.

Du
i and Da

i refer to unlabeled (i.e., presumably benign)
and labeled anomalous flows, respectively (cf., Section 3.1).
The cross-silo FL process includes L training rounds. Typ-
ically, in a time-constrained scenario, L is constrained by
M’s training time. Otherwise, L should be large enough
to ensure that M adequately captures the network traffic
behavior.

The cross-silo FL process begins with J sending a
training request to each ci ∈ C . The request includes the
structure of global M, randomly initialized weights Wℓ

(ℓ ∈ L; ℓ = 0), and hyper-parameters (e.g., batch-size b and
number of epochs m per training round). On receipt, each
ci ∈ C partitions Di into mini-batches of size b and employs
Stochastic Gradient Descent (SGD) to update local models’
weights for m epochs, such that the respective loss function
(5) is minimized. Note that loss(W,Di) at each ci ∈ C is
adapted from (3), where D is replaced by the respective ci’s
dataset Di. This results in new weights W

i
ℓ at the end of a

training round, which are sent to J .

W
i
ℓ = argmin

W

loss(W,Di) (5)

After receiving the updated weights W
i
ℓ from each ci ∈

C , J leverages FedAvg (6) [15] to aggregate the weights and
update the global model M:

Wℓ+1 =

|C|
∑

i=1

ni

n
W

i
ℓ, (6)

where ni and n are the number of flows in Di and the total
flows across all ci ∈ C (i.e., n =

∑|C|
i=1 ni), respectively. J

then shares the new aggregated weights with all ci ∈ C

at the beginning of a subsequent training round ℓ + 1. The
goal of cross-silo FL is not to minimize the loss function
for individual ci ∈ C , but rather to find the global M
weights that minimize the average reconstruction loss across
all ci ∈ C , i.e., W that minimizes (7), where ni and n are as
previously defined.

loss(W) =

|C|
∑

i=1

ni

n
loss(W,Di) (7)

4.3 Federated Threshold Selection

Cross-silo FL trains M for DDoS detection at each edge
server ci ∈ C . As discussed in Section 3, M assigns an
anomaly score to each network flow, where xj is the flow-
based feature vector of the jth flow. To determine if xj at
ci ∈ C is anomalous, its anomaly score ζ(xj) is compared
against a threshold η. If ζ(xj) > η, xj is classified as
anomalous, and benign otherwise. Therefore, the threshold
η greatly influences anomaly detection performance.

To determine η, an optimization dataset is often used,
which encompasses labeled benign and anomalous flows.
With distributed ci ∈ C , a corresponding optimization
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dataset Ωi may be available, which can be leveraged to de-
termine an individual threshold for each ci ∈ C . However,
each individual Ωi may contain a lesser variety of network
flows, which can lead to sub-optimal thresholds for each
ci ∈ C . Though centralizing Ωi can alleviate this issue, it
raises concerns pertaining to privacy and communication
overhead.

To improve the performance of M with the selected
threshold, we propose a federated approach for threshold
selection that leverages all available Ωis. Once M is trained,
J shares the final weights with each ci ∈ C . Using M, each
ci ∈ C determines the anomaly score ζ(xj) for each xj in
Ωi. One possible way to deduce the threshold η is to have
each ci share all corresponding ζ(xj) with J , which will
allow J to choose the optimal η. However, sharing of ζ(xj)
is undesirable for privacy concerns.

As an alternate, we allow each ci ∈ C to only report
limited statistics, mainly, max ζ(xj) and min ζ(xj) for all
anomalous flows in Ωi. Using these statistics, J decides on
a list of threshold candidates ð = {η1, η2, · · · , ηZ}, where η1
is set to the minimum of the min ζ(xj) for anomalous flows
from all ci ∈ C , and ηZ is set to the maximum of max ζ(xj)
from all ci ∈ C . J then shares ð with all ci ∈ C and requests
the confusion matrices associated with each threshold ηz ∈
ð. Finally, J aggregates (i.e., sums) the confusion matrices
from all ci ∈ C and computes the F1-scores (8) associated
with each of them. It then selects ηz that maximizes the F1-
score across all ci ∈ C . The selected ηz is shared with all
ci ∈ C and used for flagging new anomalous flows.

F1− score = 2×
precision× recall

precision+ recall
(8)

Note that a threshold can be selected with other objec-
tives, such as maximizing the recall, i.e., focusing on not
missing any anomalies, or maximizing the precision, i.e.,
focusing on reducing false alarms. However, similar to [20],
we choose to maximize the F1-score as it balances between
precision and recall. The federated threshold selection is
presented in Algorithm 1.

5 EXPERIMENTS

5.1 Environment Setup

We consider three FL clients (i.e., edge servers, used
interchangeably) and a FL server, to depict a cross-silo FL
setting. Each server runs on a separate Virtual Machine
(VM) in a cloud environment that is managed via Open-
Stack3. All FL client VMs are powered by 4x Intel Core i7
CPU and 16GB of RAM, while the FL server runs on a VM
with 8x Intel Core i7 CPU and 64GB of RAM. As the FL
server does not perform computationally intensive tasks, a
less powerful VM will also suffice.

We leverage the client/server FL implementation in [45],
and modify it for cross-silo FL of non-OE and OE-based
anomaly detection models (i.e., M). Initially, the FL server
VM awaits the FL client VMs to join. Knowing the IP
address/port of the FL server, the FL client VMs send a join
message to the FL server. On receipt, the FL server assigns a
unique ID to each FL client VM, and shares the structure of
M along with the training hyper-parameters. Other steps of

3. https://www.openstack.org/

Algorithm 1 Federated Threshold Selection

Data: Optimization dataset Ωi (if available) at FL client
ci ∀i = {0, 1, · · · , |C| − 1}
Results: A threshold η for anomalous flow detection

1: for i = 0 to |C| − 1 do {FL clients}
2: ci computes ζ(xj) for each flow-based feature vector

xj in Ωi

3: ci sends max ζ(xj) and min ζ(xj) of all optimization
anomalous flows to FL server J

4: end for
5: J sends a list of candidate thresholds ð =

{η1, η2, · · · , ηZ} to all ci ∈ C

6: for i = 0 to |C| − 1 do {FL clients}
7: for z = 1 to Z do {threshold candidates}
8: ci uses ηz to compute the no. of correct and incorrect

decisions for all the flows in Ωi

9: end for
10: ci reports the list of confusion matrices for all thresh-

old candidates in ð to J
11: end for
12: J sums confusion matrices from all ci ∈ C for each ηz;

computes corresponding F1-scores
13: J selects the ηz with the highest F1-score
14: J sends the selected ηz to all ci ∈ C

the FL training process follow, such as the update requests
and the exchange of updated weights between the FL server
and FL clients (cf., Section 4.2). Note that the VMs use
common compression techniques on Linux OS to reduce
communication overhead of sharing the model weights.

5.2 Dataset Preparation

A distributed dataset across the different edge servers is
important to evaluate FedOE. To the best of our knowledge,
datasets that account for benign and anomalous network
traffic collected at different edge servers are not publicly
available. Therefore, we leverage the CICDDoS2019 dataset
[16], which includes various reflection- and exploitation-
based DDoS attacks. The wide variety of DDoS attacks
(e.g., SYN, UDP, SNMP, SSDP, UDPLag, etc.) available in
the dataset, allows us to provide a more holistic evaluation
on the efficacy of FedOE across various DDoS attacks.
The dataset provides labeled flow-based features (i.e., in-
terchangeably referred to as flows) in CSV format, which
are extracted using CICFlowMeter [46].

We distribute the CICDDoS2019 dataset to reflect the
decentralized nature of edge servers. We consider the flow
destination IP address to distribute the dataset, as flows
are typically destined to an edge server that has a group
of dedicated IP addresses. However, other distributions
based on source IP address, source/destination port, and
their combinations, may also be considered. To preserve the
validity of analysis, we ensure that all prepared datasets are
disjoint. In the following, we briefly describe these datasets.
Details of the datasets are available in Appendix 7.1.

• Training Datasets: Benign network flows are extracted
from the CICDDoS2019 dataset and used to train both
non-OE and OE-based ML models. Both balanced dis-
tribution (i.e., load balancing is assumed between edge
servers) and unbalanced distribution (i.e., edge servers
experiencing different loads) of the benign flows across

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3224896

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:26:07 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. Y, MONTH 2022 8

edge servers are considered for a comprehensive evalu-
ation of FedOE and its non-OE counterparts. Details on
the extraction and distribution of the training datasets are
available in Appendix 7.1.2.

• Outlier Datasets: Outlier datasets complement the train-
ing datasets to train the OE-based ML models. As edge
servers can be subject to different attacks, we create
one outlier dataset per attack type. Each outlier dataset
contains network flows from one of the corresponding
attack types, i.e., LDAP, MSSQL, SNMP, SSDP, UDPLag,
SYN and UDP. The distribution of outlier datasets across
edge servers and the number of outliers from each attack
type vary based on the experiment (cf., Section 5.5—
Section 5.7). Details on the outlier datasets are available
in Appendix 7.1.3.

• Contamination Dataset: The contamination dataset con-
sists of attack flows, which are used to pollute the purely
benign training datasets. It is used to evaluate the robust-
ness of OE-based ML models in the face of contaminated
training data, as discussed in Section 5.8.2. Details on the
contamination dataset are available in Appendix 7.1.4.

• Optimization Datasets: Optimization datasets encompass
both benign and attack flows, and facilitate the selection of
a threshold to discriminate benign and anomalous flows.
Similar to the training datasets, we consider a balanced
and an unbalanced distribution of flows across the edge
servers. Details on the optimization datasets are available
in Appendix 7.1.5.

• Test Dataset: The remainder of benign and attack flows
in the CICDDoS2019 dataset form the test dataset, which
is used to evaluate the anomaly detection performance
of non-OE and OE-based ML models. Details on the test
dataset are available in Appendix 7.1.6.

The aforementioned datasets facilitate the different experi-
ments performed herein. Their usage is further exposed in
the following sections. To ensure transparency and repro-
ducibility of results, we have released the datasets used in
this paper to the public.4

5.3 Anomaly Detection Model

We evaluate the performance of FedOE using the pro-
posed oAE model with a NN structure of [79, 65, 45, 25, 10, 5,
10, 25, 45, 65, 79]. The first and last numbers in the structure
represent the size, i.e., number of neurons in the input and
output layers. The remaining numbers correspond to the
size of hidden layers. A similar structure is employed for the
non-OE counterpart, i.e., traditional AE, which differs in the
loss function from oAE. The remaining hyper-parameters
and their values for non-OE and OE-based ML models
are shown in Table 1. Furthermore, though we evaluated
other structures for the NNs as well, we did not notice
a significant change in model performance as long as a
structure was neither too deep nor too shallow. Therefore,
we only report results pertaining to the aforementioned NN
structure.

5.4 Evaluation Metrics

To evaluate non-OE and OE-based based ML mod-
els independent of a specific threshold, we resort to the

4. The datasets are available for download at: URL will be made
available on paper acceptance.

TABLE 1: Hyper-parameter settings

Hyper-parameter Value Hyper-parameter Value

Training rounds 3000 Weight regularizer 0.1
Learning rate 0.01 Optimizer Adam
Batch size 2048 Hidden activation ReLU
Dropout rate 0.1 Output activation Linear

Receiver Operating Characteristic (ROC) curves. An ROC
curve represents the tuple <True Positive Rate (TPR), False
Positive Rate (FPR)> of a ML model for all thresholds.
The Area Under the ROC Curve (AUC) is also a common
metric used to compare multiple ML models. It provides an
aggregated measure of performance across all thresholds.
When different test cases are considered to compare multi-
ple ML models, the mean AUC is generally used. An AUC
= 1 depicts a perfect model, i.e., with an ideal threshold
selection, a ML model can reach a TPR = 1 and a FPR = 0.
Furthermore, we also evaluate non-OE and OE-based ML
models using a specific threshold. In this regard, we report
the F1-scores for various DDoS attacks using the proposed
federated threshold selection algorithm (cf., Algorithm 1).
Note that the F1-score is highly dependent on the selected
threshold. For instance, an ML model with good separative
property can result in a low F1-score due to an improper
threshold selection.

5.5 FedOE vs. non-OE

5.5.1 Analysis via ROC curves

We start by evaluating the performance of non-OE un-
supervised anomaly detection model, i.e., traditional AE,
denoted FL-AE, which is trained using cross-silo FL with
balanced training datasets across the edge servers. Figure 3a
highlights the performance of FL-AE via ROC curves for
various DDoS attacks. Though respectable with an AUC of
over 0.95 for most DDoS attacks and a mean AUC of 0.96,
FL-AE under performs for SYN and UDPLag attacks with
an AUC of 0.833 and 0.906, respectively.

To alleviate the under performance of unsupervised FL-
AE model, we introduce our novel OE-based ML model,
oAE (cf., Section 3.2). We evaluate oAE (i.e., in FedOE
framework) for DDoS detection at the network edge, and
loosely refer it as FedOE. FedOE leverages a small number
of outliers (i.e., attack flows) from a few attack types during
training, to better discriminate anomalies. It is trained using
the balanced training datasets. In this case, the training
datasets on the edge servers (i.e., FL clients c0, c1 and c2) are
each complemented with 50 flows of LDAP, SSDP, and SYN
attacks, respectively, from the outlier datasets. This leads to
150 outliers in total across the three edge servers. As shown
in Figure 3b, FedOE achieves a mean AUC of 0.998, which is
a significant improvement over its non-OE counterpart (i.e.,
FL-AE). There is also a considerable improvement in SYN
and UDPLag detection with an AUC of 0.995 and 0.998,
respectively.

5.5.2 Analysis via F1-scores

Although ROC curves highlight the dominance of an ML
model versus another, in practice, the anomaly detection
performance is highly dependant on the selected threshold.
Therefore, we leverage the federated threshold selection
algorithm to select a threshold for flagging anomalous flows
across the edge servers. Figure 4 shows the anomaly de-
tection F1-score for various DDoS attacks using FL-AE and
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(a) FL-AE (b) FedOE

Fig. 3: ROC curves and AUCs for non-OE and OE-based ML models in cross-silo FL
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Fig. 4: F1-scores using federated threshold selection (i.e.,
Algorithm 1) for non-OE and OE-based models

FedOE. For all DDoS attacks, FedOE achieves higher F1-
scores in comparison to FL-AE, with an improvement of
approximately 6% to 12% across the DDoS attacks. Indeed,
an ML model in cross-silo FL is better trained using outliers
by learning to enforce a significant deviation of anomaly
scores for attack flows. This property, by itself, helps in
differentiating between benign and anomalous flows. In
addition, it facilitates the selection of a superior threshold,
which in turn improves the F1-score for DDoS detection at
the network edge.

5.5.3 Discussion

The very high AUCs and F1-scores of FedOE model (i.e.,
oAE) showcase the advantage of OE-based semi-supervised
approach in improving DDoS detection performance. This
advantage is partly attributed to cross-silo FL. For instance,
a better detection performance is achieved for attacks ob-
served on the edge servers (i.e., used as outliers during
model training). Furthermore, as evident in Figure 3 and
Figure 4, FedOE generalizes to other attacks (e.g., UDPLag)
that are not observed as outliers during model training, i.e.,
zero-day attacks. This addresses the first question we raised
in Section 1, i.e., OE-based ML models overcome misclas-
sifications in unsupervised learning, while generalizing to
zero-day attacks. We seek to address the second question in
Section 5.6 and Section 5.7.

5.6 FedOE vs. Cloud-centralized vs. Edge-silo

We also compare the performance of traditional AE
and oAE under different learning paradigms, as shown in
Figure 5. Both ML models leverage the balanced training

datasets across the edge servers, while 50 outlier flows
from LDAP, SSDP and SYN attacks are introduced on edge
servers c0, c1 and c2, respectively. The first and second
rows in Figure 5 correspond to traditional AE and oAE,
respectively. In each row, we report the AUC for the edge-
silo learning paradigm, i.e., each edge server uses local
training and outlier (i.e., in the case of oAE) datasets to
train its respective ML model. The last row in Figure 5
pertains to the cloud-centralized learning paradigm, where
all the training datasets and outliers (i.e., in the case of oAE)
are available on a central cloud to train a singleton ML
model, which is leveraged by the edge servers for anomaly
detection.

In the following, we discuss a few noteworthy observa-
tions from Figure 5. Figure 5g and Figure 5h show the per-
formance of AE and oAE in the cloud-centralized paradigm,
with a mean AUC of 0.970 and 0.998, respectively. The
advantage of OE is attributed to the centralized availability
of outliers. Futhermore, comparing Figure 5h to Figure 3b
clearly shows that FedOE achieves similar performance to
cloud-centralized, while preserving data privacy. Similarly,
the benefit of sharing the knowledge of benign flows across
edge servers is evident from comparing Figure 3a and
Figures 5a to 5c. For instance, Figure 5b shows a very poor
performance in detecting SYN attack with an AUC of 0.418,
which is significantly improved to 0.833 by using FL in
Figure 3a.

The benefit of sharing outliers can be observed by com-
paring Figure 3b and Figures 5d to 5f. For instance, the c1-
silo model in Figure 5e has an AUC of 0.473 for SYN, which
considerably improves to 0.995 in FedOE (cf., Figure 3b).
In fact, FedOE uses the knowledge gained from outliers of
c2 to build a more comprehensive model, which is shared
between all edge servers. The effect of different outliers is
evident by comparing the edge-silo scenarios. For instance,
c0 observes local benign flows and a few outliers from
LDAP. Therefore, an improvement in LDAP detection is
noticeable from an AUC of 0.994 to 1 in Figure 5a and
Figure 5d, respectively. As another example, a significant
improvement in AUC of UDPLag can be seen in Figure 5f,
where c2 observes only SYN attacks during oAE training.

Comparing the performance of edge-silo ML models in
Figures 5d to 5f with their non-OE counterparts, we see
that exposing a few outliers from attack type Ai has the
following effects:

• The model’s ability to detect attack type Ai improves, e.g.,
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(a) c0-silo-AE (b) c1-silo-AE (c) c2-silo-AE

(d) c0-silo-oAE (e) c1-silo-oAE (f) c2-silo-oAE

(g) Cloud-centralized-AE (h) Cloud-centralized-oAE

Fig. 5: ROC curves and AUCs for non-OE and OE-based models in edge-silo and cloud-centralized learning

improvement in detecting LDAP, SSDP and SYN attacks
in Figures 5d, 5e, and 5f, respectively. This is expected,
as the model observes a few outliers (i.e., flows) from
these attacks during training. However, the gain from OE
is more prominent when the non-OE model struggles in
attack detection. For example, the AUC of detecting SYN
attack improves from 0.736 (cf., Figure 5c) to 0.995 (cf.,
Figure 5f) in c2.

• Exposing outliers from attack type Ai may improve the
detection of another attack Aj , j 6= i. For instance, the
AUC of UDPLag improves from 0.823 to 0.994 when c2 is
exposed to SYN attacks (cf., Figure 5c and Figure 5f). This
highlights that OE-based models can generalize to attacks
that have not been observed during model training. We
will reason this further in Section 5.7.

• OE-based edge-silo models may slightly reduce detection
performance of some attacks other than Ai. For instance,
from Figure 5a and Figure 5d, it can be seen that exposing
c0 to LDAP results in a slight reduction in AUC for SYN
and UDPLag attacks. Although OE improves the detec-
tion performance on average, we speculate that the model
is negatively impacted for attacks that exhibit different
statistical behaviour than the observed attack. However,
this bias is alleviated with FedOE (cf., Figure 3b), which

accumulates the knowledge from the outliers of different
edge servers, possibly representing varying attacks.

5.7 FedOE with Samples From Different Attacks

Previously, we have shown that edge-silo models have
varying performance when they observe different outliers.
In this section, we investigate the effect of the outliers avail-
able at different edge servers on the detection performance
of FedOE. To this end, we still leverage the balanced training
datasets across the edge servers, but introduce outliers
from LDAP, SSDP, SYN, and UDPLag attacks in varying
combinations to c0, c1 and c2. The results of four different
combinations are reported in Figure 6. The caption for each
subfigure denotes the attacks from which the outliers are
introduced. For example, (LDAP, LDAP, SYN) implies that
the outliers at c0 and c1 are from LDAP, while c2 is exposed
to SYN attack.

Figure 6a shows the result when SYN flows at c2 are
substituted with LDAP flows, i.e., LDAP, SSDP and LDAP
at c0, c1 and c2, respectively. Therefore, Figure 6a is used
to highlight the impact of SYN outliers. In comparison to
Figure 3b, the AUCs for SYN and UDPLag attacks sig-
nificantly decrease to 0.86 and 0.925, respectively. Indeed,
exposure to SYN outliers (cf., Figure 3b) facilitates FedOE in
detecting both SYN and UDPLag attacks with a very high
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(a) Outliers (LDAP, SSDP, LDAP) (b) Outliers (LDAP, LDAP, SYN)

(c) Outliers (LDAP, LDAP, LDAP) (d) Outliers (LDAP, LDAP, UDPLag)

Fig. 6: ROC curves and AUCs with exposure to varying outliers for OE-based model in FedOE

AUC of 0.995 and 0.998, respectively. This is further asserted
in Figure 6b with the re-introduction of SYN outliers at
c2, where the AUCs for SYN and UDPLag considerably
improve, although SSDP outliers are excluded.

Comparing Figure 6a and Figure 6c highlights the con-
tribution of SSDP outliers on FedOE model performance,
where the AUC for detecting SSDP attack slightly decreases
to 0.996 in Figure 6c. Interestingly, the SSDP outliers slightly
increase the AUC of other attacks, as evident in Figure 6a.
Therefore, the DDoS detection performance of a FedOE
model improves with exposure to outliers from different
attacks, such as LDAP and SSDP. Similarly, we previously
observed an improvement in the AUC of UDPLag, when
the model is exposed to SYN attack. As shown in Figure 6d,
this effect is reciprocal when c2 observes UDPLag outliers,
while the other edge servers observe LDAP. This addresses
the second question we raised in Section 1, i.e., OE-based
ML models, when exposed to some outliers, capitalize
on similarities between different DDoS attacks to improve
overall detection performance. These results also show that
a network operator can explore similarities (cf., Figure 1)
between attacks experienced in the past at different edge
servers to boost DDoS detection performance across these
servers.

5.8 FedOE Practical Implications

In this section, we evaluate the robustness of FedOE in
practical scenarios, when there are limited outliers, the data
across the edge servers is contaminated, or unbalanced.
5.8.1 Impact of the number of outliers:

In previous experiments, we assumed that each edge
server has 50 outliers of a specific attack type to contribute
to OE-based ML model training. In this section, we still
consider LDAP, SSDP and SYN attacks are observed at

c0, c1 and c2, respectively. However, instead of a fixed 50
outliers from each attack, we consider a variable number of
outliers across edge servers, denoted κ. Hence, by changing
κ, we investigate the impact of the number of observed
outliers in FedOE on model performance. The mean AUC
across different values of κ is shown in Figure 7. When κ

is zero, the mean AUC is 0.960, which corresponds to FL
without OE in Figure 3a. However, as the number of outliers
increases, the average DDoS detection performance of the
model improves, with the highest gain noticeable with the
first introduction of outliers.

5.8.2 Impact of contaminated training datasets

Ideally, an anomaly detection model should be trained
on exclusively benign data collected during normal network
operation, i.e., when no attacks are happening, which the
ML model leverages to determine the underlying statis-
tics of benign flows. Hence, the purity of collected data
is very crucial to model performance, and existence of
attacks among benign traffic may mislead the anomaly
detection model in estimating the benign flows’ distribution.
However, in practice, the data collected during network
operation may contain attacks. Therefore, in this section, we
evaluate the model performance in the face of contaminated
data, by introducing the training dataset with a varying
number of non-benign (i.e., attack) flows from the contami-
nation dataset. The result is depicted in Figure 7b, where the
x-axis corresponds to the number of attack flows contami-
nating the training dataset at each edge server. As expected,
higher contamination reduces the mean AUC of detecting
DDoS attacks. However, the performance of FL-AE model
deteriorates rapidly with the increase in contamination,
which is undesirable in practice. This highlights another
benefit of FedOE, where exposure to outliers can better
sustain against contamination in the training dataset. For
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Fig. 7: FedOE robustness to: (a) number of outliers (κ), (b) data contamination, and (c) unbalanced datasets

example, contaminating the training data with 600 attacks
at each edge server, reduces the mean AUC of FL-AE from
0.96 to 0.69, while the AUC for FedOE drops from 0.99 to
0.89. Although FedOE significantly outperforms FL-AE, it is
desirable that FedOE experiences an even lower reduction
in mean AUC with an increase in contamination, which is
open for future research.

5.8.3 Impact of unbalanced training datasets

The above experiments leverage the balanced training
datasets across edge servers. Similar to traditional FL, Fe-
dOE is applicable to scenarios where the training data is not
equally distributed between the edge servers. Therefore, we
also evaluate the performance of FedOE with unbalanced
training datasets across edge servers. The result is depicted
in Figure 7c, where FedOE effectively shares knowledge
from the different edge servers, and achieves a compara-
ble performance (i.e., mean AUC of 0.997) to FedOE with
balanced dataset (i.e., mean AUC of 0.998) in Figure 3b. Per
attack AUC comparison also asserts similar DDoS detection
performance between the two models.

6 CONCLUSION

DDoS attacks are expected to continue plaguing service
availability in emerging networks, which rely on distributed
edge servers to provide services with strict QoS guaran-
tees. The edge servers increase the attack surface, making
it important to harden the network edge against security
threats. In this paper, we empower edge servers with intelli-
gent anomaly detection capability. Through experiments, we
unveil the under performance of a popular unsupervised
anomaly detection model (i.e., traditional AE) in DDoS
detection, leading to a high number of misclassifications.
To overcome this shortcoming, we exploit similarities be-
tween different types of DDoS attacks and leverage them
to enhance the performance of existing anomaly detection.
To this end, we adapt an Autoencoder by incorporating OE
and enable it to better discriminate benign from attack data
in a semi-supervised learning approach.

More precisely, we explore the application of OE for
DDoS detection through a novel FedOE framework. FedOE
combines cross-silo FL with OE to enhance anomaly detec-
tion performance with respect to numerous DDoS attacks.
Through extensive experiments, we showcase the superior
performance of FedOE with OE-based model, i.e., the pro-
posed oAE, against its non-OE counterpart, i.e., traditional
AE. Importantly, the performance gain is prominent with
just 50 labeled outlier flows introduced per edge server

during OE-based ML model training. In fact, performance
improvements are noticeable with merely a few outliers, i.e.,
2 labeled attack flows per edge server.

We also explore the impact of the choice of outliers
on FedOE performance, and show that, due to similarities
between DDoS attacks, observation of outliers from one
attack type may help the detection performance of some
other attacks, alluding to zero-day attack detection. We also
showcase the robustness of FedOE in different scenarios,
including contaminated training data and unbalanced data
across the edge servers. Although in this paper FedOE was
leveraged to exclusively train and evaluate oAE, we would
like to emphasize that it can be used to train any OE-based
ML model. This paper sheds light on the importance of
incorporating knowledge of outliers that might be available
at edge servers, while training anomaly detection models.
In the future, we will evaluate the performance of OE-based
ML models with other features and datasets, and explore
ways to further improve detection performance in the face
of contaminated training data. One possibility might be to
account for unlabeled anomalous flows on top of outliers in
the loss function of the OE-based anomaly detection models.
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