
IEEE Communications Magazine • February 202382 0163-6804/23/$25.00 © 2023 IEEE

AbstrAct
Network slicing in 5G and beyond networks 

allows the network to be customized for each 
application or service by chaining together differ-
ent virtualized network functions (VNFs) according 
to service requirements. The increased flexibility 
offered by network slicing comes at the cost of 
complexity in management and orchestration, 
which cannot be solved by traditional reactive 
human-in-the-loop solutions. This necessitates min-
imizing human intervention through the use of 
artificial intelligence techniques (zero touch net-
work management). In particular, the scaling and 
placement of the chain of VNFs that constitute a 
network slice is a complex combinatorial optimi-
zation problem that is difficult to solve effectively 
with traditional approaches. Driven by the benefits 
of deep reinforcement learning (DRL) in solving 
various combinatorial optimization problems, in this 
article, we survey various DRL-based approaches 
to slice scaling and placement, including different 
ways to model the problem and benefits of various 
DRL techniques in addressing specific aspects of 
the problem. Further, we highlight key challenges 
and open issues in the effective use of DRL for net-
work slice scaling and placement.

IntroductIon
5G and beyond mobile networks are expected to 
support a variety of emerging use cases, such as 
holographic telepresence and immersive extended 
reality, which impose strict requirements on the 
mobile network along several dimensions, such 
as throughput, latency, and reliability. To address 
these requirements, network slicing in 5G allows 
the network to be customized for each application 
or service by chaining together different virtualized 
network functions (VNFs). The creation of network 
slices involves the instantiation and deployment 
of a chain (or network) of VNFs at the right loca-
tion (placement) and with the appropriate capacity 
(scaling) to meet stringent requirements imposed 
by 5G services. The resources allocated to net-
work slices must conform to the dynamics of net-
work demands, which are unpredictable and vary 
with time and user mobility. Thus, the complexity 
in the management and orchestration of network 
slices makes it necessary to reduce human inter-
vention and rely on automated zero -touch net-
work management approaches.

network slIce scAlIng And PlAcement

A network slice comprises a chain VNFs with asso-
ciated service requirements (e.g., end-to-end delay 
or throughput). The network slice scaling and 
placement (NSSP) problem involves instantiation 
or reconfiguration of a network slice by deciding 
the resource allocation and placement of each VNF 
in the slice. The scaling step requires deciding how 
many instances of a particular VNF to create and 
how much resources to allocate to each instance, 
while the placement step requires deciding on which 
physical node to place each instance of a VNF.

Figure 1 shows a generic network slice dia-
gram, consisting of two slices. Consider Slice 1, 
comprising three network functions (NFs), NF1 
 NF2   NF3. These NFs depend on require-
ments of the slice: NFs can be security-related 
(e.g., firewall), virtualized RAN functions, or 5G 
core functions. Each slice also includes associated 
service requirements; for example, ultra-reliable 
low-latency communications (URLLC) services in 
5G impose stringent latency (<1 ms) and reliabil-
ity (> 99.999 percent) requirements. The NSSP 
problem involves taking as input this chain of NFs 
and deciding the embedding at the infrastructure 
layer, while respecting the slice constraints in 
terms of service level agreements (SLAs).

trAdItIonAl APProAches for nssP
Most existing approaches formulate NSSP as an 
optimization problem [1], which has several lim-
itations. First, these approaches are often intracta-
ble or too computationally intensive to be applied 
in practical settings. Second, they rely on accurate 
mathematical models that assume complete knowl-
edge of the state of the environment, which is very 
difficult to obtain in practice. Finally, these methods 
also assume that traffic demands are predictable 
or known a priori, which is unrealistic. To address 
these challenges, several heuristic approaches also 
exist in the literature; however, they disregard the 
long-term dynamics of resource requests and can 
lead to frequent reconfigurations [2]. 

deeP reInforcement leArnIng for nssP
Closed-loop automation is crucial in realizing zero 
touch orchestration and management of network 
slices. Deep reinforcement learning (DRL) is an intu-
itive fit for closed-loop automation; it is an iterative 
process that uses feedback from the environment to 

Niloy Saha, Mohammad Zangooei, Morteza Golkarifard, and Raouf Boutaba

The authors are with The University of Waterloo, Canada.
Digital Object Identifier:
10.1109/MCOM.006.2200534

Deep Reinforcement Learning 
Approaches to Network Slice Scaling 

and Placement: A Survey

MACHINE LEARNING-ENABLED ZERO TOUCH NETWORKS

The authors survey various DRL-
based approaches to slice scaling 
and placement, including different 
ways to model the problem and 
benefits of various DRL techniques 
in addressing specific aspects of 
the problem. 

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:31:19 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • February 2023 83

learn the correct sequence of actions to maximize 
a long-term reward (e.g., operator revenue, ener-
gy and resource costs). Unlike other artifical intel-
ligence (AI) techniques (e.g., supervised learning) 
which are myopic in nature, DRL can intelligently 
adapt decisions to variations in the requirements 
over time. When applied to NSSP, DRL enables 
closed-loop optimization and control. At each time 
step, the scaling and placement decisions of VNFs 
output by DRL are used by the network orchestrator 
to modify the VNF embedding at the infrastructure 
layer without the need for human intervention. The 
reward obtained from this process is then used in 
the next step for further improving the decisions, 
thus facilitating closed-loop optimization.

From an optimization perspective, NSSP 
involves taking an optimal action from a large finite 
set (often discrete) of actions, and is, in essence, 
a combinatorial optimization problem. In recent 
works, DRL has been shown to be very effective 
in addressing such optimization problems [3] by 
automating the discovery of good heuristics. Craft-
ing good heuristics is time-consuming and often 
requires substantial problem-specific knowledge. 
DRL algorithms automate the discovery of good 
heuristics by tailoring the search strategies to the 
problem instance using a data-driven approach. 
DRL approaches can be either model-based or 
model-free. Model-based approaches require an 
accurate model of the environment for effective 
learning. However, creating an accurate model 
of the end-to-end (E2E) network slicing environ-
ment is not cost-effective since a) the model may 
have a huge number of configurable parameters 
across multiple technological domains, and b) the 
model is dependent on time-varying incoming slice 
demands. On the other hand, model-free reinforce-
ment learning techniques have the capability to 
learn with continuous interactions with the envi-
ronment, without a priori knowledge of the net-
work model or network statistics. Thus, the existing 
approaches in the literature [4–11] adopt mod-
el-free DRL approaches for NSSP.

A few existing surveys in the literature, such 
as [12], provide valuable insights regarding the 
efficacy of DRL in the broader topic of resource 
allocation for 5G network slicing, including radio 
resource slicing and slice admission control. In con-
trast, in this survey, we present a more focused 
look at NSSP by analyzing and comparing the state 
of the art using criteria specific to this problem 
such as VNF chaining and topology awareness.

drl for nssP: Problem formulAtIon
DRL enables data-driven learning by interacting 
directly with the environment and getting feed-
back in the form of rewards. Over time, the DRL 
agent can learn the underlying dynamics of a sys-
tem, and leverage that to discover optimal strat-
egies. To apply DRL to NSSP, it is first modeled 
as a sequential decision making process. More 
specifically, as shown in Fig. 2, the agent (5G 
management and orchestration framework) and 
the environment (5G network) interact at discrete 
time steps. At each step, the agent obtains some 
information about the environment state (e.g., 
traffic demand of each slice, CPU/memory utiliza-
tion of each VNF in a slice), based on which the 
agent takes an action (e.g., add/remove resources 
to a VNF in a slice, or add/remove more instanc-

es of a VNF, or where to place a particular VNF). 
This leads to the agent obtaining some form of 
feedback (e.g., reward such as revenue from slice 
users) from the environment, giving rise to a tra-
jectory or sequence consisting of (state, action, 
reward, next state). By repeating this process of 
interaction, the DRL agent learns a policy, that is, 
a strategy that dictates actions as a function of the 
state, in order to achieve long-term goals.

modelIng APProAches
The sequential decision making process described 
above is conveniently modeled using the Markov 
decision process (MDP) and its variants. 
• Markov decision process. In the context of 

RL, an MDP may be formally defined by the 
tuple consisting of a set of states, a set of 
actions, and a set of rewards, and the goal is 
to find the policy that maximizes the expect-
ed sum of the rewards.

• Semi Markov decision process. Slice requests 
do not arrive at fixed intervals of time, but 
rather at random points in time, which may 
be taken into account by considering semi 
Markov decision processes (SMDPs). SMDPs 
extend the MDP formalism by incorporating 
the notion of time, which allows the agent to 
handle trade-offs between actions not only 
based on expected rewards but also on the 
amount of time each action takes. This allows 

FIGURE 1. A generic network slice diagram showing two slices. Each slice 
is composed of VNFs some of which may be dedicated to the slice or 
shared among slices. Each VNF may have multiple instances and can be 
placed at different candidate locations in the network including central 
cloud or distributed edge cloud.

NF1 NF5

NF6

NF1

NF4

Slice 1

Slice 2

Edge cloud Central cloud

NF2 NF3 Dedicated NF for slice 1

Dedicated NF for slice 2

Shareable NF

Physical node

NF1 NF5

NF6
NF2

NF4

NF3

NF3

Service layer

Infrastructure layer
NSSP

FIGURE 2. A high-level architecture showing DRL applied to the network slice scaling and placement problem. The 
figure shows the DRL agent’s interaction with the environment (5G network). The state encoder in DRL algorithms 
are generally deep neural networks (DNNs) which act as non-linear function approximators for the network state. 
Actions represent resource scaling and placement decisions for VNFs in the network slice.

State

State encoding

Policy

Agent

Observe state (e.g., VNF 
resource consumption, 

node utilization)

RRU
Distributed 
edge cloud

Central cloud

Environment

Get reward 
(e.g., latency and 

energy costs)

Take 
action(s) 

Vertical 
scaling

Horizontal 
scaling

Placement

Physical node

VNF

VNF placed on 
physical node

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:31:19 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • February 202384

the SMDP framework to be more effective in 
capturing real-time slice scaling events [13].

• Constrained Markov decision process. Net-
work slice scaling and placement requires the 
agent to consider constraints (e.g., E2E laten-
cy) that may restrict the freedom of exploring 
the search space. This notion can be captured 
using constrained Markov decision process-
es (CMDPs) [14]. CMDPs extend traditional 
MDP by allowing the environment to provide 
feedback about the cost of constraints in 
addition to a reward signal. This formulation 
is well suited to NSSP, where reward should 
be maximized while maintaining several slice 
constraints, such that they do not violate SLAs.

drl setuP
To formulate the NSSP problem as an MDP, in 
general, the following elements are defined:
• State representation. The majority of the exist-

ing literature uses a similar state representation, 
consisting of resource-related features such as 
VNF resource consumption and host node uti-
lization [4–6, 8, 10]. A few works also consider 
features impacting slice latency such as packet 
arrival rate and queue length [7, 9, 11].

• Action representation. The action representa-
tion may be discrete, continuous, or hybrid, 
depending on the type of action. Horizontal 
scaling, which involves increasing/decreasing 
the number of active VNF instances, or place-
ment, which involves selecting a host node 
to place VNFs, gives rise to discrete action 
spaces [5, 6]. On the other hand, vertical 
scaling, which involves the addition/removal 
of resources from existing VNFs, gives rise to 
continuous action spaces [7, 10]. Addressing 
both scaling and placement jointly requires 
the use of both continuous and discrete (i.e., 
hybrid action spaces) [4, 9].

• Reward function. The majority of the existing 
literature use scaling and placement cost as the 
reward function. The costs are usually calculat-
ed in terms of resource or energy consumption 

for running VNFs belonging to a network slice 
[5, 8] or blocking rate of slice requests [11]. 
The reward function may also include penalties 
for violating SLA constraints [5, 8, 9]. 
We summarize the various state, action, and 

reward representations used in the existing liter-
ature in Table 1. Once NSSP has been expressed 
as an MDP (or its variants), various DRL tech-
niques may be utilized to find an optimal policy. 
These are discussed next.

drl for nssP: AlgorIthms
The majority of the existing literature on NSSP 
leverages model-free DRL algorithms, which learn 
through continuous interactions with the environ-
ment without a priori knowledge of the network 
model or network statistics. At a high level, we 
classify them into value-based approaches and 
actor-critic approaches. The existing works in the 
literature all formulate the MDP in slightly differ-
ent ways and use a variety of algorithms, which 
are summarized in Table 1.

VAlue-bAsed APProAches
Value-based approaches involve finding the opti-
mal policy by approximating the value of taking an 
action in a given state, and choosing the best action 
based on this approximation. This approach lends 
itself well to discrete action spaces such as horizon-
tal scaling or placement. One of the simplest val-
ue-based methods is Monte Carlo, used in [4], where 
the state-action value is the average of rewards for 
each episode. Here, an episode is the sequence of 
steps involved in increasing/decreasing the resources 
for each VNF. Another simple value-based approach 
is the deep Q network (DQN), which utilizes a neu-
ral network to approximate the state-value function. 
In the context of NSSP, Lee et al. [5] utilized DQN to 
address horizontal scaling. Here, the state-value func-
tion is approximated using a two-layer multi-layer per-
ceptron (MLP), which acts as the state encoder. This 
approach is shown to have much better long-term 
performance than simple threshold-based scaling; 
however, the authors did not consider the placement 

TABLE 1. Summary of RL Techniques for NSSP.

Ref. DRL technique State Action Reward

[4] Monte Carlo Resource consumption of VNF service chain
Increase or decrease VNF re-
sources by discrete step sizes and 
offload VNF

Two-step reward consisting of through-
put-to-latency ratio of a slice followed 
by SLA satisfaction ratio

[5] DQN VNF resource consumption, host node 
utilization

Add, remove, or maintain number 
of instances for VNF chain

Weighted sum of response time and 
resource consumption of VNF chain

[6] DDQN with BDQ Available resources of candidate paths, slice 
traffic demands, slice reconfiguration cost

Select path (sequence of host 
nodes) to place entire VNF chain 

Weighted sum of slice resource con-
sumption and slice reconfiguration cost

[7] A3C and auxiliary 
tasks

Packet arrival rate to each slice, VNF re-
source consumption, queue length at VNF

Allocate resources to VNFs at 
each physical node

Utility function of delay between two 
VNFs in a chain

[8]
A3C with GCN 
augmented with 
heuristics

Number of VNFs placed on host node, host 
node resource utilization

Index of physical node to place 
each VNF of a slice

Utility function of slice acceptance, re-
source consumption, and load balancing

[9] Variant of TD3 VNF resource consumption of each slice, 
arrival rate at each VNF

Select VNF location followed by 
allocation of resources

Weighted sum of latency (VNF resizing, 
deployment, or offloading to cloud) and 
cost of VNF deployment

[10] TD3 Number of users and VNFs in each slice, 
energy and latency of each slice

Scale resources allocated to each 
VNF in a slice

Weighted sum of latency, compute, and 
energy costs

[11] PPO Existing and free compute resources, arrival 
rate of user sessions Scale number of user plane VNFs Weighted sum of request blocking rate 

and number of VNFs

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:31:19 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • February 2023 85

of the VNF instances. The combination of scaling 
and placement decisions in NSSP leads to a combi-
natorially large discrete state/action space, which is 
not well suited for the application of simple DQN.

This issue is tackled by [6]; rather than scal-
ing coarse-grained network slices according to 
traffic demand, they consider very fine-grained 
network slices, with each traffic flow mapped to a 
network slice. The goal is to map the flows to spe-
cific slices according to their demands in order to 
minimize long-term resource consumption. In this 
setting, the action space can be very large as it is 
combinatorial in the number of flows and slices. 
To address this, the authors adopt the branch-
ing dueling Q-network (BDQ) framework. The 
core idea behind BDQ is to avoid a combinatorial 
increase in action space by having independent 
actions for each dimension. The action branching 
framework allows the actions to increase linear-
ly with the number of dimensions of the action 
space, which is useful for NSSP.

Actor-crItIc APProAches
In contrast to value-based approaches, poli-
cy-based approaches, which learn the policy 
directly, can support continuous action spaces. 
However, they suffer from low sample efficiency, 
high variance, and slow convergence. Actor-critic 
approaches combine the benefits of both value 
and policy approaches by simultaneously learning 
the value and policy function. A popular actor-critic 
algorithm is advantage actor-critic (A3C), used in 
[7], which focuses on resource allocation among 
VNF chains. Here, the action space is continuous — 
an action is defined as allocating a certain ratio of 
resources to a given flow. To increase the learning 
speed and robustness of A3C, the authors adopted 
the concept of auxiliary tasks. The intuition behind 
auxiliary tasks is to add additional learning goals 
to the agent that are used to optimize the feature 
extraction pipeline in a way that may be useful for 
the given task and can significantly increase the 
sample efficiency. The authors in [8] also leverage 
the A3C algorithm, but incorporate a few notable 
changes. First, they include a graph convolution-
al network (GCN) to extract topological features 
from the substrate network. Second, to accelerate 
the convergence of A3C, they introduce an effi-
cient placement heuristic.

Another popular actor-critic algorithm is deep 
deterministic policy gradient (DDPG), which 
extends ideas of DQN to continuous action spac-
es. Twin delayed DDPG (TD3) is an evolution of 
DDPG and includes improvements to stabilize 
learning and reduce sensitivity to hyperparameter 
variation. TD3 is used in [9, 10]. The authors in 
[10] focus on vertical scaling (i.e., adding/remov-
ing computing resources allocated to each VNF 
according to dynamic traffic fluctuations), while 
the authors in [9] consider both horizontal and 
vertical scaling. The authors in [10] show that TD3 
performs well in terms of respecting latency con-
straints, due to more stable learning.

Proximal policy optimization (PPO) is another 
approach that can be applied to both continu-
ous as well as discrete action spaces, and is used 
in [11] to scale the number of user plane VNFs 
according to the arrival rate of user sessions. PPO 
includes a built-in mechanism to avoid changing 
the training parameters too much in a single step, 

leading to more stable training. The authors in 
[11] show that PPO learns a stable policy more 
consistently than DQN in trading off between the 
number of VNFs and blocking rate of requests.

Synthesis: Several works in the existing litera-
ture show the efficacy of using DRL approaches 
for NSSP. Table 1 provides a qualitative compar-
ison of the state-of-the-art in terms of modeling 
NSSP as a DRL problem, and the DRL algorithms 
used. Recent value-based DRL algorithms [4–6] 
are a good approach to horizontal resource scal-
ing with discrete action spaces. However, the 
NSSP problem includes both continuous and dis-
crete action spaces, and may be better served by 
using action-critic approaches. Most actor-critic 
approaches in the literature [7, 8, 10, 11] focus on 
either scaling or placement, apart from [9], which 
considers both. Among the actor-critic approach-
es in the literature used to address NSSP, TD3 
[10] is more sample-efficient compared to PPO 
[11]. Sample efficiency is crucial in 5G networks, 
as the reward signal — generally obtained by mon-
itoring, is associated with significant overheads. 
The A3C method [8] is very fast by virtue of par-
allelism; however, it suffers from instabilities in 
learning. The introduction of auxiliary tasks [7] 
attempts to address this; however, designing good 
auxiliary tasks is problem-dependent. The majority 
of the existing works also lack a comparison of 
the proposed DRL method with traditional meth-
ods (e.g., optimization approaches), which makes 
it hard to judge the extent of benefit DRL pro-
vides. One reason for this is the network scale; 
optimization-based approaches struggle when the 
scale is large, making a comparison of practical 
large-scale networks difficult.

chAllenges In effectIVe use of drl for nssP
In this section, we discuss the challenges in effec-
tively using DRL for NSSP. Table 2 summarizes 
the effectiveness of DRL approaches in the exist-
ing literature in addressing these challenges.

Vnf chAInIng
The next phase of development for 5G and 
beyond has seen a push toward cloud native tech-
nologies, where NFs are decomposed into simpler 
NF services (referred to as VNF components or 
VNFCs) and are implemented using lightweight 
virtualization mechanisms (e.g., Linux containers 
or Unikernels). A network slice may consist of 
a chain of these containerized VNFCs, each of 
which may have multiple instances and need to 
be placed in a particular order. Most of the liter-
ature considers individual VNFs in a chain to be 
placed and scaled independently [4, 6, 9–11], or 
do not consider the ordering of VNFs in the chain 
[5, 7, 8]. This has a range of implications:
• An overloaded VNFC can cause a cascading 

domino effect on the subsequent VNFCs in 
the chain, thus triggering redundant scaling 
operations

• VNFCs belonging to the same VNF may have 
frequent communication with each other, 
which must be taken into account while per-
forming placement; otherwise, it may lead to 
significant communication overhead.

Thus, the DRL approaches need to be augmented 
with mechanisms to incorporate VNF chaining 
information along with the state representation.

The next phase of develop-
ment for 5G and beyond has 

seen a push toward cloud 
native technologies, where 
NFs are decomposed into 

simpler NF services (referred 
to as VNF components or 

VNFCs) and are implemented 
using lightweight virtualiza-
tion mechanisms (e.g., Linux 

containers or Unikernels).

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:31:19 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • February 202386

toPology AwAreness
Apart from the VNF chain structure, it is also import-
ant to consider the physical network topology. The 
VNFs in a network slice can be placed at different 
network function virtualization infrastructure (NFVI) 
points of presence, including the central cloud and 
various distributed edge clouds. The placement of 
NFs and the physical network topology may have 
several implications in terms of communication over-
head. For example, VNFs that frequently commu-
nicate with each other can be placed at the same 
node. This reduces frequent information exchange 
over the network, thus reducing communication 
overhead. A DRL agent usually encodes the state 
information in the form of a vector. Most existing 
DRL approaches use some type of deep neural net-
work (DNN) [5] as the encoder, while the topology 
information is in the form of a graph. As such, they 
do not make use of the network topology informa-
tion. In this regard, graph neural networks (GNNs) 
can be leveraged to preserve the topological depen-
dencies by encoding the graph relationships [8]. 
GNNs take the topology graph as an input and gen-
erate embedding vectors to capture the essential 
features of the topology. 

desIgn chAllenges
The majority of the existing literature on slice scal-
ing and placement considers either vertical (contin-
uous action space) or horizontal scaling (discrete 
action space) in isolation and applies the appropri-
ate class of DRL, such as actor-critic or DQN. For 
more flexible and granular resource scaling, we 
need to jointly consider both horizontal and ver-
tical scaling. This gives rise to hybrid (continuous 
and discrete) action space in DRL formulations, 
which cannot be addressed by the majority of 
popular DRL algorithms. Recent attempts to tackle 
hybrid action spaces include parameterized DQN, 
where the agent selects discrete actions, each asso-
ciated with a continuous set of parameters [15].

The state encoders for DRL typically include 
DNNs with fixed input and output dimensions 
based on the states and actions. During training, 

the dimensions of the input and output layers usu-
ally stay unchanged. This implies that when the 
conditions change (e.g., network topology change 
or change in length of VNF chain), the input and 
output layers need to be changed to reflect the 
updated state and action space, and the new 
model needs to be re-trained from scratch. Sev-
eral neural network approaches allow handling 
variable input — recurrent neural networks such as 
long short-term memory (LSTMs) or gated recur-
rent units (GRUs) may be used to work with mixed 
length sequences, while GNNs may be used to 
work with arbitrarily sized graphs. However, further 
investigations are required to determine their effi-
cacy in the context of DRL in terms of data efficien-
cy and generalization performance.

constrAInt AwAreness
DRL approaches usually consider random explo-
ration mechanisms for performing policy improve-
ment over time. However, random exploration 
mechanisms for scaling and placement decisions 
may degrade the performance of a slice enough to 
violate the SLAs. Thus, it is crucial to include con-
straint awareness in DRL, as a violation of SLAs can 
make DRL approaches impractical for real-world 
implementation. One approach to address this is to 
consider constrained RL using mechanisms such as 
reward shaping (i.e., using constraint violations as 
penalties in the reward function) [4, 7, 10]. In this 
context, proper design of the reward function is 
crucial — too little weightage to penalty terms can 
cause SLA violations, while too much weightage 
can significantly slow down exploration and policy 
improvement. Further, depending on the problem 
scenario, it may be important to design the reward 
function to consider the performance of the worst 
case user instead of the average reward.

eVAluAtIon chAllenges
DRL agents learn by directly interacting with the 
environment and need a large number of interac-
tions to collect sufficient information to train DNN 
structures. This involves the collection of a large 

TABLE 2. Analysis of existing DRL literature in addressing challenges for NSSP.

Ref. Placement Scaling VNF chaining Topology 
awareness Constraint awareness Evaluation

[4] Partial, placement between 
different edge sites Yes No No Reward shaping using slice 

throughput and latency
Emulated VNF testbed based 
on Docker

[5] No Yes Partial, no ordering No Slice latency used as penalty OpenStack NFV testbed

[6] Yes No No No VNF capacity and link bandwidth 
constraints Simulation

[7] Fixed Yes Partial, no ordering No Reward shaping using delay and 
throughput Trace-driven simulation

[8] Yes No
Partial, each VNF 
in a chain placed 
independently

Yes Slice placement failure used as 
penalty Python-based simulation

[9] Yes Yes No No QoS violation per VNF used as 
penalty Simulation

[10] No Yes No No
Reward shaping using weighted 
sum of computation, latency, and 
energy cost

Custom slicing environment 
using OpenAIGym

[11] No Yes No No No Python-based simulation of 
container environment

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:31:19 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • February 2023 87

number of network measurements from various 
segments of the network such as radio access, 
edge, and core. Depending on the number of 
parameters and measurement frequency, it may 
be impractical to send all measurements to the 
DRL agent while maintaining reasonable network 
overhead. The majority of the literature on NSSP 
leverage simulations that do not account for this 
network overhead [6–9]. Additionally, in practice, 
it may not be possible to collect certain state vari-
ables related to VNFs due to privacy or security 
reasons. Thus, it may be necessary to operate on 
only a subset of these measurements and leverage 
modeling approaches such as the partially observ-
able MDP (POMDP), in which the underlying state 
cannot be directly measured.

Further, the scope of evaluation in most 
existing work is restricted to simulations; exten-
sive evaluations are needed using a real-world 
testbed to judge the effectiveness of these DRL 
approaches in practice. In this regard, there are 
several open source projects (e.g., srsRAN) that 
can be used to implement a real 5G testbed; 
however, to make the application of DRL on top 
of these viable, challenges related to monitoring 
(collecting state information from the environ-
ment) and orchestration (translating DRL actions 
to actual scaling and placement decisions) need 
to be addressed. Another challenge is related to 
the high sample complexity of DRL. DRL agents 
learn by interacting with the environment, and in 
practice, the orchestration interval (time taken for 
VNF migration and network device reconfigura-
tion) can be quite high. Thus, each iteration of the 
DRL algorithm can be time-consuming, leading 
to a long convergence time. One approach to 
address this is to leverage simulations for gener-
ating enough training samples and fine-tuning the 
trained model on a real-world testbed.

conclusIon
Network slice scaling and placement is a fundamen-
tally challenging combinatorial optimization prob-
lem. Previous approaches in the literature have 
included integer programming or custom-designed 
heuristics; however, recent work has shown that DRL 
can prove to be a promising alternative approach. 
DRL can use neural networks to learn the underlying 
structure and leverage the learned problem structure 
to search for an optimal policy. This is in line with 
exploiting the problem structure to design custom 
heuristics. However, DRL automates the process of 
finding an optimal policy by adopting a data-driven 
approach and avoids the need to manually design 
and tune such heuristics. However, DRL is not a pan-
acea — in this article, we have discussed several chal-
lenges that need to be addressed for the effective 
use of DRL for network slice scaling and placement.

references
[1] D. Harutyunyan, R. Behravesh, and N. Slamnik-Kriještorac, 

“Costefficient Placement and Scaling of 5G Core Network 
and MEC-Enabled Application VNFs,” Proc. IFIP/IEEE Int’l. Symp. 
Integrated Network Management, May 2021, pp. 241–49.

[2] J. J. Alves Esteves et al., “Heuristic for Edge-Enabled Network 
Slicing Optimization Using the ‘Power of Two Choices’,” 
2020 16th Int’l. Conf. Network and Service Management, 
Nov. 2020, pp. 1–9.

[3] N. Mazyavkina et al., “Reinforcement Learning for Combi-
natorial Optimization: A Survey,” Computers & Operations 
Research, vol. 134, 2021, p. 105,400; https://www.science-
direct.com/science/article/pii/S0305054821001660.

[4] M. Nakanoya, Y. Sato, and H. Shimonishi, “Environ-
ment-Adaptive Sizing and Placement of NFV Service Chains 
with Accelerated Reinforcement Learning,” Proc. IFIP/IEEE 
Symp.n Integrated Network and Service Management, 2019, 
pp. 36–44.

[5] D. Lee, J.-H. Yoo, and J. W.-K. Hong, “Deep Q-Networks Based 
Auto-Scaling for Service Function Chaining,” Proc. Int’l. Conf. 
Network and Service Management, 2020, pp. 1–9.

[6] F. Wei et al., “Network Slice Reconfiguration by Exploiting 
Deep Reinforcement Learning with Large Action Space,” 
IEEE Trans. Network and Service Management, vol. 17, no. 4, 
2020, pp. 2197–2211.

[7] N. Yuan et al., “Delay-Aware NFV Resource Allocation with 
Deep Reinforcement Learning,” Proc. IEEE/IFIP Network 
Operations and Management Symp., 2020, pp. 1–7.

[8] J. J. A. Esteves et al., “A Heuristically Assisted Deep Rein-
forcement Learning Approach for Network Slice Place-
ment,” IEEE Trans. Network and Service Management, 2021.

[9] J. S. Pujol Roig, D. M. Gutierrez-Estevez, and D. Gündüz, 
“Management and Orchestration of Virtual Network Func-
tions via Deep Reinforcement Learning,” IEEE JSAC, vol. 38, 
no. 2, 2020, pp. 304–17.

[10] F. Rezazadeh et al., “Continuous Multi-Objective Zero-
Touch Network Slicing via Twin Delayed DDPG and Ope-
nAI Gym,” Proc. IEEE GLOBECOM, 2020, pp. 1–6.

[11] H. T. Nguyen, T. Van Do, and C. Rotter, “Scaling UPF 
Instances in 5G/6G Core with Deep Reinforcement Learn-
ing,” IEEE Access, vol. 9, 2021, pp. 165,892–906.

[12] C. Ssengonzi, O. P. Kogeda, and T. O. Olwal, “A Survey 
of Deep Reinforcement Learning Application in 5G and 
Beyond Network Slicing and Virtualization,” Array, vol. 14, 
2022, p. 100,142; https://www.sciencedirect.com/science/
article/pii/S2590005622000133.

[13] N. Van Huynh et al., “Optimal and Fast Real-Time Resource 
Slicing with Deep Dueling Neural Networks,” IEEE JSAC, vol. 
37, no. 6, 2019, pp. 1455–70.

[14] Y. Liu, J. Ding, and X. Liu, “A Constrained Reinforcement 
Learning Based Approach for Network Slicing,” 2020 IEEE 
28th Int’l. Conf. Network Protocols, 2020, pp. 1–6.

[15] J. Xiong et al., “Parametrized Deep Q-Networks Learning: 
Reinforcement Learning with Discrete-Continuous Hybrid 
Action Space,” arXiv:1810.06394 [cs, stat], 2018.

bIogrAPhIes
Niloy Saha (n6saha@uwaterloo.ca) is a Ph.D. student at the Uni-
versity of Waterloo. He received his Master’s degree in comput-
er science from the Indian Institute of Technology, Kharagpur. 
His research interests are focused on building next-generation 
mobile networks and intelligent algorithms for their orchestra-
tion and management.

MohaMMad ZaNgooei (mzangooei@uwaterloo.ca) is a Ph.D. 
student at the Computer Science Department of the University 
of Waterloo. He received his Bachelor’s degree in electrical 
engineering (major) and computer science (minor) from Sharif 
University of Technology, Tehran, Iran. His research interests 
revolve around next-generation mobile networks, artificial intelli-
gence, and programmable data planes.

MorteZa golkarifard (mgolkari@uwaterloo.ca) received his 
B.Sc., M.Sc., and Ph.D. degrees in computer engineering from 
Sharif University of Technology. He is currently a postdoctoral 
fellow at the David R. Cheriton School of Computer Science 
at the University of Waterloo. His research interests include 5G 
networks, NFV, and SDN.

raouf BoutaBa (rboutaba@uwaterloo.ca) received his M.Sc. 
and Ph.D. degrees in computer science from Sorbonne Univer-
sity in 1990 and 1994, respectively. He is currently a Univer-
sity Chair Professor and the director of the David R. Cheriton 
School of Computer Science at the University of Waterloo. 
He also holds an INRIA International Chair in France. He is the 
founding Editor-in-Chief of IEEE Transactions on Network and 
Service Management (2007–2010) and the current Editor-in-
Chief of IEEE JSAC. He is a Fellow of the Engineering Institute of 
Canada, the Canadian Academy of Engineering, and the Royal 
Society of Canada.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:31:19 UTC from IEEE Xplore.  Restrictions apply. 


