
Coordinated Slicing and Admission Control using
Multi-Agent Deep Reinforcement Learning

Muhammad Sulaiman∗, Arash Moayyedi∗, Mahdieh Ahmadi∗, Mohammad A. Salahuddin∗,
Raouf Boutaba∗, and Aladdin Saleh†

∗David R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada
{m4sulaim, arash.moayyedi, mahdieh.ahmadi, mohammad.salahuddin, rboutaba}@uwaterloo.ca

†Rogers Communications Inc., Ontario, Canada
{aladdin.saleh@rci.rogers.com}

Abstract—5G Cloud Radio Access Networks (C-RANs) facil-
itate new forms of flexible resource management as dynamic
RAN function splitting and placement. Virtualized RAN functions
can be placed at different sites in the substrate network based
on resource availability and slice constraints. Due to limited
resources in the substrate network and variability in revenue of
slices, the Infrastructure Provider (InP) must perform network
slicing in a strategic manner, and accept or reject slice-requests
to maximize long-term revenue. In this paper, we propose to
use multi-agent Deep Reinforcement Learning (DRL) to jointly
solve the problems of network slicing and slice Admission
Control (AC). Multi-agent DRL along with reward shaping is a
promising choice, which is well-suited to problems where multiple
distinct tasks have to be performed optimally. The proposed
DRL approach can learn the dynamics of slice-request traffic
and effectively address these joint problems. We compare multi-
agent DRL to approaches that use: (i) simple heuristics to address
the problems, and (ii) DRL to address either slicing or AC. Our
results show that the proposed approach achieves up to 30%
and 5.18% gain in long-term InP revenue when compared to
approaches (i) and (ii), respectively. Additionally, we show that
multi-agent DRL is preferable to a single-agent DRL approach
for the joint problems in terms of convergence time and InP
revenue. Finally, we evaluate the robustness of the trained agents
in scenarios that differ from training, such as different arrival
rates and real dynamic traffic patterns.

Index Terms—5G, C-RAN, Network Slicing, Admission Con-
trol, Multi-agent Reinforcement Learning

I. INTRODUCTION

The Fifth Generation (5G) Radio Access Network (RAN)
comprises chains of network functions (NFs) that belong to
the New Radio (NR) protocol stack [1]. With the adoption of
Cloud RAN (C-RAN) in 5G mobile networks, the substrate
network has been re-imagined as a network of interconnected
sites, each consisting of a number of commodity servers
or nodes. Network Function Virtualization (NFV) allows an
infrastructure provider (InP) to virtualize these resources and
facilitates flexible and strategic placement of the virtualized
network functions (VNFs) at different sites. This can alleviate
network bottlenecks, and increase infrastructure utilization and
InP revenue.

In a metro 5G C-RAN, the interconnected sites are catego-
rized into tiers [2]. A lower-tier site is in closer proximity to
the radio units (RUs), but has less resources, while a higher-

tier site is geographically distant from the RUs with more
resources. The higher-tier sites allow for centralized placement
of resource-hungry VNFs, and lead to higher multiplexing
gains via resource sharing among multiple instances of VNFs
(i.e., time-multiplexing) [3]. However, the degree of centraliza-
tion is constrained by the delay tolerance of individual VNFs.
With a higher degree of centralization, more unprocessed
data has to traverse the inter-site links [4], which leads to
a higher bandwidth demand on these links. Therefore, it is
imperative that an optimal placement is chosen for the VNFs
in 5G C-RAN, such that resource utilization is maximized
without creating bandwidth bottlenecks, while also meeting
their latency and throughput requirements.

The 5G mobile networks are poised to support a wide
range of services, primarily categorized into enhanced Mobile
Broadband (eMBB), Ultra-Reliable Low-Latency Communi-
cations (URLLC), and massive Machine-Type Communica-
tions (mMTC), based on their Quality of Service (QoS)
requirements (e.g., bandwidth, latency and mobility). Network
slicing is a key enabling technology to offer isolated end-
to-end virtual networks in 5G, that are tailored to satisfy
the specific QoS requirements of different services on the
same infrastructure. Network slices can include chains of
RAN and core VNFs. The placement (i.e., Virtual Network
Embedding (VNE)) of RAN VNFs in 5G C-RAN should
consider the service type and its Service-Level Agreements
(SLAs). Accepting a slice-request (SR) contributes to the
InP’s revenue. However, given an InP’s limited resources, it is
impossible to serve all incoming SRs. Additionally, the amount
of revenue that SRs bring may also vary (e.g., based on their
priority). Therefore, an Admission Control (AC) decision must
be made for each incoming SR, such that it maximizes the
InP’s long-term revenue.

Recently, Deep Reinforcement Learning (DRL) [5] has
shown unprecedented performance in solving problems that
were previously too challenging for Artificial Intelligence-
based solutions. A DRL agent interacts with an environ-
ment and, through trials and corresponding rewards, learns
the actions that maximize its cumulative reward without a
priori knowledge of the environment or the need for massive
datasets. Hence, DRL lends itself well to solving AC and
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slicing in 5G C-RAN. Numerous works in the literature (e.g.,
[6]) have proposed either traditional reinforcement learning
(RL) or DRL-based solutions to network slicing and AC prob-
lems. Though, AC and network slicing are both quintessential
to offer differentiated QoS, most works propose DRL-based
solutions to solely one of them. Using DRL to address only
one aspect of the network slicing and AC problems and using
a naı̈ve approach, such as greedy, for the other one can
potentially lead to a loss in the long-term InP revenue. For
instance, the authors in [7] propose a DRL-based AC solution,
however, they assume network slicing does not present a
challenge. In this scenario, if the slicing algorithm creates
a bandwidth bottleneck in a critical network link, the total
number of SRs that can be admitted becomes limited.

Additionally, in practice, the future SRs are not known
in advance. Hence, future SRs must be predicted to make
intelligent slicing and AC decisions. However, the works that
consider networking slicing only (e.g., [8]) are oblivious to
this, limiting the applicability of their solutions. Whereas, a
DRL agent can take the future consequences of its actions into
account while maximizing its cumulative reward. If a slicing
decision causes future high revenue SRs to be rejected due
to a resource bottleneck, the DRL agent anticipates this and
avoids that decision.

Reward shaping is an important technique to ensure that an
RL agent converges within a reasonable time. However, the
restrictions in reward formulation for a single DRL agent does
not allow to effectively address both AC and slicing jointly. For
example, if the DRL agent is given a negative reward for a non-
optimal AC action, the entire policy is impacted. This causes
the concurrent slicing action to also be disincentivized, even
if it is the optimal action. This concern is alleviated in multi-
agent DRL (MADRL), where the agents can have separate
policies for AC and slicing. The reward functions for these
policies can be designed such that the two agents learn to
work in synergy without negatively impacting one another.

This paper is an extension of our previous work on using
MADRL to jointly address slicing and AC in 5G C-RAN, to
improve the long-term InP revenue [9]. For this purpose, we
design the reward functions such that they lead to convergence
and cooperation among the agents. To evaluate the efficacy of
our proposed solution, we develop a C-RAN slicing and AC
simulation framework that also facilitates the evaluation of
other solutions, such as a single-agent DRL-based solution. We
perform extensive experiments under training and evaluation
environments to gauge convergence and robustness of the
proposed method, and to provide an exhaustive investigation
on how different agents contribute to InP revenue. In this
regard, we demonstrate the following:

• We compare the convergence of DRL-based approaches
under training environment and showcase the performance
of the proposed approach under different configurations
of hyper-parameters. We demonstrate the sensitivity to the
choice of hyper-parameters and select the best configuration
for evaluation.

TABLE I: List of frequently used abbreviations and notations.

Abbreviation/Symbol Meaning
AC Admission Control

C-RAN Cloud Radio Access Network
DRL Deep Reinforcement Learning

eMBB Enhanced Mobile Broadband
HP High-Priority
InP Infrastructure Provider
LP Low-Priority

MADRL Multi-agent Deep Reinforcement Learning
mMTC Massive Machine Type Communication
RAN Radio Access Network
RL Reinforcement Learning
RU Radio Unit

SLA Service Level Agreement
SR Slice-Request

URLLC Ultra Reliable Low-latency Communication
VNE Virtual Network Embedding
VNF Virtual Network Function
st SR arriving at time t

αst admission decision of SR st
ηst embedding-relationship matrix of SR st
Bt bandwidth capacity of substrate links at time t

Ct computation capacity of substrate nodes at time t

• We compare the proposed MADRL-based solution against a
greedy approach and a node-ranking approach (inspired by
[10]), and show that our solution outclasses these heuristic
methods in maximizing the long-term InP revenue.

• We compare the proposed solution against approaches that
use DRL to address either slicing or AC (e.g., [11, 12]).
Using extensive evaluations, we show that MADRL with
the designed reward for jointly addressing both problems
leads to higher long-term InP revenue.

• We compare against a single-agent DRL approach that
jointly addresses the slicing and AC problems in 5G C-
RAN. We show that MADRL-based approach outperforms
the single-agent counterpart in terms of the achieved long-
term InP revenue and convergence time.

• We evaluate the robustness of the trained agents under
practical network conditions, such as variable SRs arrival
rate, priority and throughput distributions. We show that
multi-agent DRL is able to generalize to these scenarios and
achieve the highest long-term InP revenue when compared
to the other approaches.

• We evaluate the trained agents using real traffic patterns to
demonstrate the robustness of the proposed approach and
the impact of dynamic arrival rates on InP revenue.

Table I facilitates reading by listing the frequently used
abbreviations and notations in this paper. The rest of the
paper is organized as follows. In Section II, we present
closely related works, followed by system design for closed-
loop orchestration and management of VNFs in 5G C-RAN
in Section III. Section IV provides an overview of DRL
while Section V delineates the proposed multi-agent DRL-
based slicing and AC solution. After showcasing the results in
Section VI, we conclude in Section VII and instigate future
research directions.
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II. RELATED WORKS

There are numerous works in the literature that address AC
and network slicing [6, 13]. In this section, we review these
works with an emphasis on ML-based approaches.
A. Admission Control

Slice AC pertains to accepting or rejecting a new SR based
on factors, such as the SR revenue, priority, resources, and QoS
requirement, its impact on the existing and future SRs, and
available substrate network resources. The authors in [7, 12]
focus on AC with the objective of maximizing long-term InP
revenue. Dandachi et al. [12] propose a traditional RL-based
approach for 5G slice admission and congestion control. Even
though they consider a slice as a set of VNFs, the substrate
network is only considered in aggregate. That is, instead of
modeling the substrate network as a collection of intercon-
nected sites or nodes, each with its own limited resources, the
network is modeled as a single node with a certain amount of
resources. This simplifies the slice embedding problem to an
unrealistic degree. Van Huynh et al. [7] leverage DRL for slice
AC and resource allocation, but similar to [12], they model
slices and the substrate network in aggregate. In addition, both
of these works do not consider the dynamic nature of request
arrivals.

Pujol Roig et al. [14] propose a DRL-based approach for
dynamic VNF management and orchestration. Requests arrive
for a list of individual NFs and are embedded on a pool
of homogeneous servers in the Central Unit (CU) or in the
remote cloud. Instead of a binary admission decision, when a
new request arrives, a DRL agent decides to either scale the
corresponding VNF vertically by allocating more resources to
it, instantiate a new VNF on a separate server, or offload the
VNF to the cloud. Their objective is to minimize the incurred
resource and latency costs. Bega et al. [15] propose an RL-
based slice admission solution for maximizing InP revenue.
They employ two separate RL agents for estimating revenue in
the case of accepting and rejecting SRs, respectively. The au-
thors extended their work in [16] using DRL. However, these
works only consider radio resources and require knowledge of
the arrival process. Sciancalepore et al. [17] propose an online
network slice brokering solution to maximize multiplexing
gains. The problem is modeled as a budgeted lock-up multi-
armed bandit problem, a variation of the well-known multi-
armed bandit problem. Nevertheless, similar to [14, 15, 16],
the authors model a network slice as only requiring a number
of Physical Resource Blocks (PRBs), whereas a RAN slice
consists of a number of functions each with its own latency,
computing, and communication resource requirements.

Raza et al. [18] is the closest to our work, where the authors
propose a policy-based RL algorithm for slice AC in 5G C-
RAN. However, the arriving SRs in their work, already specify
the required computing resources at the remote and central
sites based on the latency requirement. This sidesteps an
important aspect of slicing, where all of an SR’s functions can
be placed at either the remote (e.g., for URLLC applications)
or the centralized location (e.g., for mMTC applications).

Additionally, the selection of the central location (i.e., remote
data center) is done using a heuristic after the AC decision
has been made. This precludes the AC agent from knowing
the embedding before making AC decision and can lead to per-
formance degradation in resource-constrained environments.

B. Network Slicing

The works discussed in this section assume that SRs will
be accepted until resources are saturated. Therefore, online
proactive AC is not factored into the problem, and the focus
is on optimizing the efficiency (e.g., delay, resource cost,
utilization) of resource allocation. Koo et al. [19] leverage
DRL for network slicing when request are served immediately
or in batch mode. They consider multi-dimensional resource
allocation (e.g., VMs, bandwidth, memory) with delay require-
ment that includes the processing delay of SRs. However,
the authors consider a slice in aggregate. Wang and Zhang
[11] use RL for network slicing in 5G C-RAN. The slice and
substrate networks are modeled completely, with the objective
of maximizing profit (i.e., difference between revenue and
cost). To simplify the problem, the authors divide the prob-
lem into function embedding and radio resource allocation,
and solve them individually (i.e., using different Q-learning
models) rather than jointly. Gao et al. [20] propose a deep
double Q-learning for RAN function placement and routing
from RU to the data center. Their objective is to minimize
delay and resource costs. However, the authors only consider
the fronthaul delay constraint and the evaluation focuses on a
single service (i.e., slice) type.

In contrast, Solozabal et al. [21] use Neural Combinatorial
Optimization paradigm for delay-aware service function chain
placement. The authors incorporate resource capacity and
delay constraints into the objective using Lagrange relaxation.
They employ a DRL model architecture which incorporates
an encoder-decoder design based on stacked Long Short-
term Memory cells. The model can decide the placement
for the whole chain of VNFs, however, to simplify the path
selection, the servers are assumed to be connected through a
star topology. ML models based on Graph Neural Networks
have also been explored in [22] to improve generalization over
different network topologies.

Also related are works that consider the functional split
problem, which divides the RAN functions between RU and
CU while minimizing cost. In [23, 24], authors propose
an Integer Linear Problem (ILP) formulation for an offline
version, where a functional split is decided for each cell in the
network, instead of each user (i.e., SR). The problem is solved
optimally using Benders Decomposition in [23] and DRL in
[25]. On the other hand, the authors in [8, 26] address the
user-centric functional split problem. They model the problem
as an ILP, and propose solutions based on particle swarm
optimization and deep learning, respectively. However, the
authors model the substrate network as only having a single
RU and a single CU.

Different from the works discussed above, we consider AC
and slicing in conjunction by modeling substrate network as
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Fig. 1: High-level view of closed-loop, autonomous manage-
ment and orchestration of VNFs in 5G C-RAN.

a graph with capacity constraints per node and edge, and
slice requests as chains of VNFs with delay and throughput
requirements, and finite operation time.

III. SYSTEM DESIGN

The system design is based on the MAPE (i.e., monitor,
analyze, plan, execute) control loop [27, 28] to facilitate
closed-loop, autonomous management and orchestration of
VNFs in 5G C-RAN, as depicted in Fig. 1. The monitor
module intelligently collects data from the substrate network
and sends it to the analyze module. From raw data, the
analyze module extracts useful information and computes
various metrics required for visualization and planning (e.g.,
QoS, network infrastructure state). The processed data and
information regarding incoming SRs are received by the plan
module.

The plan module performs intelligent slice orchestration and
performance management using AI/ML techniques [13]. The
proposed intelligent AC and slicing schemes in this paper are
sub-components of the performance management component,
which are responsible for the admission and embedding of
network slices. These sub-components can be employed either
concurrently (i.e., both output their decisions independently)
or sequentially (i.e., each sub-component can use the output
of the other to make its decision). If an SR is admitted,
the slice orchestrator passes the appropriate commands (e.g.,
instantiation of VNFs, links) to the execute module which in
turn directs VNF orchestrator, network controller and Radio
Intelligent Controller (RIC) components to set up the virtual
machines, transport paths, and RAN radio resources in the
substrate network, respectively. The RIC, introduced and stan-
dardized by the O-RAN Alliance [29], provides advanced con-
trol and configuration functionality for efficient management
of RAN infrastructure. In this paper, we simulate a substrate
network, so the monitor, analyze and execute modules do
not present a research challenge, and we only describe the
pertinent system design of the AC and slicing components.
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RLC
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Fig. 2: Functional splits for VNFs in 5G C-RAN [1].

A. Substrate Network

An example of a multi-tier 5G C-RAN supporting dynamic
RAN functional decomposition [2] is shown in Fig. 1. This
constitutes the basis of our substrate network design. The
substrate network is represented as a graph G = (N ,L), where
N represents the set of |N | ∈ N nodes and L ⊆ N × N
represents the set of |L| ∈ N links each with a certain latency.
We use ln,n′ ∈ L to denote the link between the nodes
n, n′ ∈ N . At any time t, a node n ∈ N has a certain
amount of available computing resources, denoted by ctn, and
a link l ∈ L has an available bandwidth, denoted by btl . A
set of RUs are connected to Tier-1 site with low-latency and
high-bandwidth links. VNFs requiring very low latency can
be placed in Tier-1. With more centralized sites (i.e., Tier
2–3), the experienced latency from the RU increases due to
the increased path delay. Additionally, nodes at these sites are
equipped with higher computing resources to support a larger
number of lower-tier sites.

B. Functional Split Requirements

The NR protocol stack consists of a number of essen-
tial functions, namely, RF, Low-PHY, High-PHY, Low-MAC,
High-MAC, Low-RLC, High-RLC, PDCP, and RRC. 3GPP
enumerates the possible splits for these functions [1], as shown
in Fig. 2. These splits describe the functions that are to be
decentralized at the Distributed Unit (DU) and those that are
to be centralized at the CU. With dynamic function splitting,
the split for each SR is not fixed. Instead, it varies for each SR
based on its VNFs’ placement at different sites. With option 8,
all functions except RF signal generation are centralized. This
split leads to the highest multiplexing gain, yet has very strict
latency requirements and bandwidth demands. On the other
hand, with option 2, only PDCP is centralized at the CU. This
leads to high computing resource requirements at the DU but
less stringent bandwidth and latency requirements [1, 30].

Based on the functional split options proposed by 3GPP,
ITU recommends option 7 as the split between the RU and
the DU [31], due to its high bandwidth and strict latency
requirements. Therefore, in this paper, we consider Low-PHY
and RF functions to always be placed at the RU. Additionally,
since the compute resource modeling between Low-RLC and
High-RLC, and Low-MAC and High-MAC is still in progress,
we only consider options 2, 4, 6 and 7 as the possible splits.
Therefore, we consider only High-PHY, MAC, RLC and PDCP
functions, which are denoted by the set F = {f1, · · · , f4}.

In 5G C-RAN, these functions are virtualized (i.e., VNFs)
and placed at different nodes in the substrate network. Each of
these VNFs requires a certain amount of computing resource
measured in Giga Operations Per Second (GOPS). The com-
puting resource requirement depends on the type of operations

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3222589

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:14:16 UTC from IEEE Xplore.  Restrictions apply. 



each VNF needs to perform, and can be calculated as [32]:

G1 = Gref
1 .

B

Bref
.(

A

Aref
)2.

L

Lref
, (1)

G2 = Gref
2 .

B

Bref
.

A

Aref
.

L

Lref
.

M

Mref
, (2)

G3 = Gref
3 .

B

Bref
.

A

Aref
, (3)

G4 = Gref
4 .

B

Bref
.

A

Aref
, (4)

G5 = Gref
5 .

B

Bref
.

A

Aref
, (5)

where G1–G2 refer to the computing resource requirements
for the sub-functions of f1, and G3–G5 refer to the computing
resource requirements for f2–f4, respectively. B, A, L, and
M refer to the bandwidth, number of MIMO antennas, load,
and modulation, respectively. Gref , Bref , Aref , Lref , and
Mref are values for the computing resource requirements,
bandwidth, number of MIMO antennas, load, and modulation
in the reference scenario [32, 33], respectively. The output
bandwidth requirements of each VNF can be calculated as:

Ri(λ) = ki,1λ+ ki,2,∀fi ∈ F , (6)
where λ is the slice throughput in Mbps, and ki,1, ki,2
are constants with specific values for the different functions
(i.e., splits) which can be calculated using [34]. The latency
requirements depend on the VNF and the end-to-end latency
requirement of the SR [35, 36].
C. Slice-requests

Each incoming SR is assumed to belong to one of the
following service types: eMBB, URLLC, or mMTC. SRs
arrive one at a time and if accepted, remain operational for
a specific duration. An SR arriving at time t, denoted by st, is
characterized by a service type, a throughput requirement λst

that it needs to support, an end-to-end latency requirement, an
operation time τst , and offered revenue per unit time rst . The
admission and slicing decisions must be made when the SR
arrives, without any knowledge of future arrivals. If the SR
is embedded, it consumes the substrate network’s computing
and bandwidth resources for a duration of τst , after which it
departs, freeing up the reserved resources. eMBB slices require
the highest bandwidth and can tolerate a moderate amount of
latency. On the other hand, URLLC slices require a moderate
amount of bandwidth but have very strict latency requirements.
Finally, mMTC slices require a moderate amount of bandwidth
and can operate under high latency. It is also assumed that each
slice is of either high-priority (HP) or low-priority (LP), and
the offered revenue is proportional to the priority.
D. Joint Slicing and AC—Problem Formulation

Let αst ∈ {0, 1} denote whether SR st is admitted (i.e.,
αst = 1) or not (i.e., αst = 0). The slicing decision for any SR
st is defined by the following embedding-relationship matrix:

ηst =
[
ηsti,n ∈ {0, 1} : 1 ≤ i ≤ |F|, n ∈ N

]
, (7)

where ηsti,n = 1 if fi is mapped to substrate network node
n ∈ N , and ηsti,n = 0 otherwise. The path selection between
nodes is done based on the shortest-path algorithm. dru,n and
dn,n′ are used to denote the shortest-path delay between the

RU and node n, and between nodes n and n′, respectively,
where n, n′ ∈ N . ϕl,n,n′ = 1 if link l ∈ L is in the shortest
path between nodes n, n′ ∈ N . Whereas, ϕl,ru,n = 1 if link
l ∈ L is in the shortest path between RU and the node n ∈
N . The admission and slicing decisions, for any SR st, must
satisfy the following constraints:

αst =
∑
n∈N

ηsti,n, ∀1 ≤ i ≤ |F|, (C1)

|F|∑
i=1

ηsti,n · c
st
i ≤ ctn, ∀n ∈ N , (C2)

∑
n∈N

ηst1,n · dru,n +

i∑
j=2

∑
n∈N

∑
n′∈N

ηstj−1,n · η
st
j,n′ · (C3)

dn,n′ ≤ dsti , ∀1 ≤ i ≤ |F|,∑
n∈N

ηst1,n ·R1(λ
st) · ϕl,ru,n +

|F|−1∑
i=1

∑
n∈N

∑
n′∈N

ηsti,n· (C4)

ηsti+1,n′ ·Ri(λ
st) · ϕl,n,n′ ≤ btl , ∀l ∈ L,

where csti and Ri(λ
st) denote the computing resource require-

ment and output data-rate for VNF fi of SR st, respectively.
These are calculated using equations (1)–(5) and equation (6),
respectively. dsti is used to denote the latency requirement
of the VNF fi of SR st. Constraint (C1) formalizes the
relationship between admission and embedding variables for
each SR st and ensures that all VNFs of an admitted SR are
mapped to one substrate network node, which is an assumption
commonly made in the literature to simplify the problem.
Constraint (C2) makes sure that the substrate nodes have the
computing resources available to host the VNFs. Constraint
(C3) ensures that the path delays meet the latency requirements
of each of the VNFs, while constraint (C4) makes sure that
the link bandwidth limits are not exceeded.

An embedding-relationship matrix ηst , for any SR st, is
valid if it satisfies all of the above constraints assuming the
SR is to be admitted, i.e., αst = 1. An SR st is feasible if for
the admission, i.e., αst = 1, there exists a ηst ∈ {0, 1}|F|×|N|

that is valid, i.e., meets constraints (C1)–(C4) at time t. The
objective of slicing and AC is to maximize the cumulative
InP revenue achieved from the admission of SRs which can
be expressed as:

rtotal =
∑
t∈T

αst · rst · τst , (8)

where T denotes the set of arrival times of SRs dedicated to
different service types. Finally, the problem of joint slicing
and AC for maximizing InP revenue can be formulated as:

max
α,η

rtotal (9)

s.t. (C1)− (C4).

In a slicing-only problem, when enough resources are avail-
able, all SRs are admitted until resources become saturated. A
problem formulation in this case will only include embedding
variables. On the other hand, in the joint AC and slicing
problem, AC is part of the problem formulation. In this case,
admission decisions can be used to reject SRs in order to
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prevent resource bottlenecks, or to preserve resources for
future SRs with potentially higher revenue.

IV. DEEP REINFORCEMENT LEARNING—PRIMER

In reinforcement learning, an agent interacts with an envi-
ronment to learn actions that maximize the expected cumula-
tive reward [37]. The interaction between the RL agent and
the environment can be formally described using a markov
decision process (MDP). The agent-environment interaction
in this paper spans an infinite horizon, i.e., the agent acts
continuously. Therefore, we consider infinite horizon MDP
defined by the tuple (O, A, r, P , ρ0, γ), where O is the
state space, A is the action space, r : O ×A×O → R is the
reward function, P : O×A×O → [0, 1] is the state transition
probability distribution, ρ is the initial state distribution, and
γ is the discount factor. The aim of the RL agent is to learn
either a deterministic policy π : O → A or a stochastic policy
π : O × A → [0, 1] that maximizes the expected discounted
return given as Gt =

∑∞
k=t+1 γ

k−t−1rk, where rk is the
reward at time step k.

For policy π, the state value function Vπ , state-action value
function Qπ , and the advantage function Aπ are defined as
[37]:

Vπ(o) = Eπ [Gt | ot = o] , ∀o ∈ O, (10)
Qπ(o, a) = Eπ [Gt | ot = o, at = a] , ∀o ∈ O, ∀a ∈ A, (11)
Aπ(o, a) = Qπ(o, a)− Vπ(o), ∀o ∈ O, ∀a ∈ A, (12)

i.e., the expected return of starting from state o in the case
of Vπ(o), and starting from state o and taking the action a
in the case of Qπ(o, a). Aπ(o, a) measures the relative state-
action value of taking action a in state o as compared to the
state value of state o. The state-value and state-action value
functions are collectively referred to as value functions. When
the number of possible states and actions is small, a tabular
method can be used to store the value functions and derive
an effective policy. However, this method becomes inefficient
as the size of the state and action space increases. DRL
approximates these tables using deep neural networks, which
have the ability to generalize to previously unseen states, while
involving a relatively smaller number of learnable parameters.
DRL policy optimization algorithms in the literature are based
on either learning the policy directly, learning value functions,
or learning both. In the latter case, they are called Actor-
Critic methods and have been shown to lead to faster empirical
convergence [37]. In the following, we briefly discuss the
employed policy optimization method.

A. Proximal Policy Optimization

Let πθ denote the stochastic policy in DRL, i.e., a neural
network parameterized by the weights θ. Policy-based methods
learn neural network parameters using optimization methods
such as policy-gradient. In this paper, we leverage Proximal
Policy Optimization (PPO) [38] which is a well-known actor-
critic policy-gradient method with monotonic behaviour [39].

In this method, policy network’s parameters are updated as:

θ ← max
θ

Êt

[
min

(
πθ(at|ot)
πθold(at|ot)

Ât ,

clip
(

πθ(at|ot)
πθold(at|ot)

, 1− ϵ, 1 + ϵ

)
Ât

)]
,

(13)

where θ, θold are the parameters before and after the update
respectively, Êt is the empirical expectation, Ât is the em-
pirical advantage function, and clip limits parameter values
within the range specified by the PPO hyper-parameter ϵ. We
estimate the empirical advantage function using Generalized
Advantage Estimator (GAE) [40].

B. Reward Shaping

As equations (10)-(13) suggest, when taking an action, the
RL agent not only takes the immediate reward into account but
also the discounted rewards it expects to receive in the future.
Consequently, an RL agent is able to learn meaningful state-
action values even when it receives no (i.e., zero) immediate
reward. However, the sparsity of the reward greatly affects the
convergence of an RL agent’s policy and has made learning
from sparse rewards a major challenge in RL [41]. Reward
shaping is the process of giving the RL agent additional
carefully designed rewards, such that they steer the agent
towards the desired behavior faster. Shaped rewards should
reflect the contribution each action will have on the long-
term reward. Additionally, they should not lead to unintended
behavior for the RL agent [42]. We will discuss the reward
design for joint slicing and AC problem in Section V-A2.

C. Multi-agent Deep Reinforcement Learning

In multi-agent RL, multiple RL agents act in a shared
environment to maximize the long-term return. Agents can be
designed to operate cooperatively, competitively, or in a mixed
setting. Multi-agent settings often violate the fundamental
assumptions underlying the theoretical foundation of single-
agent RL that are necessary to guarantee convergence [43]. For
example, when multiple RL agents are concurrently learning
and acting in a common environment, the environment be-
comes non-stationary from the perspective of any individual
agent. This can prevent the agents’ policies from converging
towards the optimal even when the goals of different agents
are aligned. MADRL refers to a multi-agent RL environment
studied through deep learning.

V. PROPOSED SOLUTION

In this section, we first define the RL environment compo-
nents for the joint slicing and AC problem and then expose
the proposed DRL-based solutions.

A. RL Environment

1) Markov Decision Process

For the joint problem of slicing and AC, the three main
components of MDP are as follows:

State (O): The state space includes the information of
incoming SR and real-time representation of the substrate
network. Specifically, it includes incoming SR’s (st) service
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type (i.e., URLLC, eMBB, mMTC), operation time (τst ),
and offered revenue (rst ), and the state of substrate network,
(Ct,Bt). Note that the type of service determines the specific
throughput and end-to-end latency requirements of each SR.

Action (A): A decision should be made at each step about
whether to admit the incoming SR and how the set of its VNFs
(F) should be embedded in the substrate network. The admis-
sion action has two possible values, i.e., αst ∈ AAC where
AAC = {0, 1}. However, the slicing action space includes
a set of |F|-dimensional vectors, one entry for each VNF
in the chain, representing the mapping to substrate network
nodes, i.e., AVNE = {[af1 , · · · , af|F| ] : afi ∈ N}. Note that
we denote this action by embedding-relationship matrix ηst ,
defined in (7), which is the binary representation of the slicing
action vector [af1 , · · · , af|F| ], i.e., ηsti,n = 1[afi

=n]. Finally,
the joint action space is discrete, equalling A = AAC×AVNE,
having a size of |A| = 2|N ||F| which is polynomial in the
size of substrate nodes. We will discuss how we deal with
this large action space in Section V-D.

Reward (r): The reward function may either be a per-step
reward or a per-episode reward. In the former case, it is the
revenue offered by an admitted and successfully embedded SR
st. In the latter case, the reward includes the sum of revenues
for all the accepted and successfully embedded SRs, and is
given at the end of episode. Both of these rewards will lead the
agent towards the same optimal policy. However, they differ
in the convergence time as explained in Section IV-B.

Finally, the initial state distribution ρ0 includes the initial
network state (C0,B0), and the specifications of the initial SR
sampled from an SR arrival distribution. The state-transition
probabilities P depend on the SR arrival and operation time
distributions. Finally, the discount factor γ → 1 to reflect the
equal importance of future and current revenues. The terminal
state is reached after the arrival of all SRs.

2) Reward Design

The long-term revenue maximization objective is realized
by rewarding the RL agent with either per-step or per-episode
reward from the underlying MDP. Using reward from the
underlying MDP, however, comes with a number of problems
in our case. First, since the state and action space for the
joint problem is quite large and most of the slicing actions are
invalid, in practice, the agent has to perform a huge amount
of exploration to learn the optimal actions in each state. This
problem is exacerbated in per-episode reward from the under-
lying MDP, since the agent has to learn the optimal action by
propagating the reward effect (i.e., advantage function) from
the terminal state to the initial states (cf., (13)). Aside from
intractably slow learning, another problem that may arise even
in the case of per-step reward is that the agent may learn
undesired behavior, i.e., instead of using the AC action to reject
SRs, it might learn to reject them by producing invalid slicing
actions.

In this paper, we use per-step shaped reward which can be
used to address these issues, drive the agent to learn faster and
produce the desired behavior. For example, since an invalid

slicing action violates either one or multiple constraints, the
RL agent can be guided to make fewer invalid slicing actions
if it receives a negative reward proportional to the number of
constraints it violated at each step. However, in this case, the
agent may get biased towards the shaped reward instead of
the reward produced by the underlying MDP, i.e., the revenue
[37]. For example, an agent that receives a negative shaped
reward for producing optimal AC action and invalid slicing
action might get biased towards producing non-optimal AC
actions. We address this problem using a MADRL approach,
where distinct agents produce the slicing and AC actions and
are rewarded separately. In this case, it is easier to prevent
bias as a negative reward for an invalid slicing action will not
penalize the corresponding AC action. The proposed MADRL
framework is explained in the next subsection.

B. Multi-agent DRL Approach (M-AC-VNE)

To jointly address the slicing and AC problems, we propose
a MADRL-based approach, referred to as M-AC-VNE. In
this approach, two separate agents—a slicing agent and an
AC agent—coordinate with each other in order to maximize
the long-term revenue. The slicing agent takes the slicing
action ηst and the AC agent takes admission action αst for
each given SR st. The slicing agent is only invoked if the
given SR st is feasible (i.e., a valid ηst exists), and the
AC agent is invoked afterward if the slicing agent produces
a ηst that is valid. The feasibility check is done before
invoking the slicing agent so that actions produced by the
agents always have the potential to be effective. This also
helps to discriminate whether an invalid slicing action is due
to fundamental resource limitation or the inability of the agent
to find a valid solution. The observation space of each agent
is the same as the state space described in Section V-A1.
To accelerate learning, the AC agent also receives the slicing
action ηst , decided by the slicing agent, as the state. Note that
the coordination and information exchange between agents is
confined to data passing within the same machine as shown
in Fig. 1 and has no communication constraint.

The reward function of the slicing agent described in
Algorithm 1 depends on the number of constraints (C2)–
(C4) violated by ηst , the number of subsequent SRs (Ssub)
that remain infeasible and AC agent’s admission decision αst .
The algorithm is designed to make the slicing agent produce
embedding-relationship matrices that are valid, cause the least
amount of bottlenecks, and are likely to be accepted by the
AC agent. For the AC agent, the reward depends on the
gained revenue. As described in Algorithm 2, if the AC agent
admits st (i.e., αst = 1), it gets the total offered revenue
of that st during its lifetime, i.e., rst ∗ τst , as the reward.
But if subsequent SRs are infeasible, then the AC agent gets
a negative reward equal to the potential revenue loss. This
reinforces the AC agent’s policy of rejecting SRs that offer
less revenue (i.e., LP SRs) and are likely to cause bottlenecks
(i.e., resource intensive SRs). The constants (i.e., +/- 1, 1.5)
used in Algorithm 1 to balance between negative and positive
rewards are based on trial-and-error and lead to faster learning.
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Algorithm 1 Slicing agent’s reward in M-AC-VNE.
Function REWARDVNE (st, αst , ηst , Ct,Bt, subsequent
SRs Ssub)
Output: slicing agent’s reward
reward← 0
foreach constraint (C2)–(C4) violated by ηst do

reward← reward− 1

if (ηst is valid) ∧ (αst = 1) then
reward← reward+ 1.5

for ssub ∈ Ssub do
if ssub not feasible then

reward← reward− 1.5
else

return reward

Algorithm 2 AC agent’s reward in M-AC-VNE.
Function REWARDAC (st, αst , ηst , Ct, Bt, subsequent SRs
Ssub)
Output: AC agent’s reward
reward← 0
if αst = 1 then

reward← reward+ (rst ∗ τst)
for ssub ∈ Ssub do

if ssub not feasible then
reward← reward− (rssub ∗ τssub)

else
return reward

1) Training Algorithm

We optimize the parameters of both AC and slicing agents’
policy networks separately by utilizing the PPO algorithm
[38], which is an on-policy, model-free, actor-critic algo-
rithm that outperformed other DRL algorithms during our
trials. At each training iteration, first current policies of AC
(πAC) and slicing (πVNE) agents are run in the simulated
environment to gather a set of trajectories for each agent.
A trajectory is defined as a sequence of experiences, i.e.,
{o0, a0, r0, o1, · · · , oT−1, aT−1, rT−1, oT }, gathered from any
interaction between the agent and the environment. Algo-
rithm 3 demonstrates how we generate these trajectories for a
single episode. For the slicing agent, an experience is added
for each feasible SR in the episode, whereas for the AC agent,
an experience is added whenever the slicing agent finds a valid
embedding. The size of the trajectory gathered in an episode
may therefore differ for AC and slicing agents. Finally, the
parameters of the actor and critic networks of both agents
are updated simultaneously by adopting the rules explained
in Section IV-A. It should be noted that even though there
is a non-zero reward at each step of the trajectory (i.e., per-
step reward), the actual policy is not updated until a batch of
trajectories has been collected.

Algorithm 3 Trajectory generation for one episode in M-AC-
VNE.
Input : AC agent policy πAC, Slicing agent policy πVNE,

list of generated SRs in one episode S
Output: AC and slicing agents’ trajectories, DAC, DVNE

initialize DAC ← {}, DVNE ← {}
for st ∈ S do

update netw. state (Ct,Bt) based on in-service SRs at t
if st not feasible then

continue
else

update the state of slicing agent oVNE
t ← (Ct,Bt, st)

sample slicing agent’s action ηst ∼ πVNE(a|oVNE
t )

if ηst is valid then
update the state of AC agent oAC

t ← (oVNE
t , ηst)

sample AC agent’s action αst ∼ πAC(a|oAC
t )

rAC
t ← REWARDAC(st, αst , ηst , Ct, Bt, Ssub)
DAC.append(oAC

t , αst , rAC
t )

rVNE
t ← REWARDVNE(st, αst , ηst , Ct, Bt, Ssub)
DVNE.append(oVNE

t ,ηst , rVNE
t )

if αst = 1 then
embed st based on ηst

return DAC, DVNE

C. Single-agent DRL Approach (S-AC-VNE)

For comparison, we also design the single-agent DRL
approach, referred to as S-AC-VNE. In this approach, both
slicing and admission actions are concurrently produced by
a single DRL agent. The observation and action spaces are
similar to those of the MDP described in Section V-A1. The
reward function of this approach is defined in Algorithm 4.

Algorithm 4 RL agent’s reward in S-AC-VNE.
Input : st, αst , ηst , (Ct,Bt), subsequent SRs (Ssub), max

offered revenue by any SR (rmax)
Output: RL agent’s reward
reward← 0
foreach Constraint (C2)–(C4) violated by ηst do

reward← reward− (rmax ∗ τst)
if (ηst is valid) ∧ (αst = 1) then

reward← reward+ (rst ∗ τst)
for ssub ∈ Ssub do

if ssub not feasible then
reward← reward− (rssub ∗ τssub)

else
return reward

If st is successfully embedded, the reward is proportional to
rst . Otherwise, a negative reward proportional to the number
of violated constraints by ηst and the maximum offered rev-
enue is given to the agent. This will enforce the agent to utilize
its AC action and reject SRs, instead of producing an infeasible
embedding-relationship matrix for the SRs. In the single-agent
case, the slicing and admission actions are awarded together
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based on the same reward function. Therefore, the learning of
one aspect can interfere with that of the other. For example,
if the agent is given a negative reward for a non-optimal
AC action, the entire policy is impacted. This causes the
concurrent slicing action to also be disincentivized, even if it is
optimal, and eventually leads to a slower and potentially non-
optimal learning for S-AC-VNE, as shown in Section VI. The
training process and trajectory generation are similar to the
process of M-AC-VNE except that both actions are taken from
the same policy network and there will be only one trajectory
with both actions combined.

D. Implementation Remarks

The large action space of the joint AC and slicing problem
stems from the action space of the |F|-dimensional slicing
action, as discussed in Section V-A1. Conventionally the RL-
agent’s policy network is designed such that the size of the
output layer equals that of the action space, and the logits of
this policy network are interpreted by a Softmax distribution to
produce the action probabilities. This can lead to prohibitively
slow learning when dealing with large substrate networks in
our case. In this paper, we use the action branching neural
network architecture [44] for our policy networks in both the
single-agent and multi-agent approaches. In this architecture,
after some initial common layers, the network is divided into
separate branches, one for each action dimension (i.e., VNF).
The Softmax layer at each separate branch is then used to
produce independent action probabilities for each VNF. The
final action probabilities can then be calculated by taking their
product. In the case of the slicing agent, this reduces the size
of the output layer of the policy network from

∏|F|
i=1 |N | to∑|F|

i=1 |N | and leads to significantly faster learning.

We use a brute-force approach to check the feasibility of
the incoming, or future SRs in Algorithms 1-4 based on the
state of the network. Assuming |N | >> |F|, O(|N ||F|)
operations may be required, for checking the feasibility of
an SR at a given network state. Although the number of
substrate network nodes in real-life networks is not too large,
we make reasonable efforts to optimize the process. These
optimizations include limiting the search space for each VNF
to those substrate nodes for which the shortest delay between
the RUs and nodes is less than the delay requirement of
the VNF. Additional optimizations can also be made based
on the topology of the substrate network. For the scenario
described in Section VI-B, each single experience gathered
by simulating the environment requires 2.15 ± 0.04ms with
95% confidence interval and feasibility checking constitutes
the majority of this time, requiring 1.2±0.04ms. However, this
step does not present a significant problem during training (i.e.,
trajectory generation) since multiple instances of simulation
can be run in parallel. Additionally, during evaluation, due to
similar implementations, both the heuristics-based approaches
detailed in Section VI-C1 have 5.54± 0.033ms running time,
while the proposed approach requires a relatively constant
mean inference time of 1.3ms.

TABLE II: One-way latency requirement of VNFs for each
service type (ms).

Service f1 f2 f3 f4 End-to-End

URLLC 0.25 2 6 30 1.5
eMBB 0.25 2 6 30 4
mMTC 0.25 2 6 30 10

VI. SIMULATION AND RESULTS

We first describe the simulation environment and com-
parative approaches. Then, we discuss different experiments
to evaluate the performance of proposed approaches in the
training and evaluation environments.

A. Environment Setup

The simulation is implemented as a custom OpenAI Gym
[45] environment, coupled with RLLib [46] on a cluster of
3 servers. Each server has 16GB of RAM, 8x Intel Xeon
3.30GHz cores and runs Ubuntu 16.04. Cluster management
is done through Ray [47], and DRL algorithms are imple-
mented in RLLib, using Python 3.8.9 and leveraging PyTorch
[48]. This setup enables distributed learning to accelerate the
training and hyper-parameter optimization process.

B. Simulation Parameters

In the training phase, the SRs arrive as a Poisson process
with an average rate of 5 SRs per hour. The operating hours
of each SR come from the normal distribution N (6, 0.5). Any
incoming SR with a probability of 0.5 will be mapped to
eMBB, and the rest will be mapped to URLLC and eMBB
equally. URLLC, mMTC, and eMBB SRs require 75Mbps,
75Mbps, and 150Mbps of throughput, respectively. For each
service type, the maximum one-way latency required for each
RAN VNF [34] and the end-to-end latency SLA are given
in Table II. These values are used to derive effective latency
requirements (i.e., dsti ) for f1–f4. Also, an SR is either HP
or LP, with a probability of 0.5. A HP SR offers twice the
revenue per hour than a LP SR on average.

For training and evaluating the proposed solution, we utilize
a 3-tiered topology, having 9 nodes, 3 in each tier, as shown
in Fig. 1. The computing resources available per node are
1500, 2000, and 4000 GOPS at Tier-1, Tier-2, and Tier-3 sites,
respectively. The link latencies between RU and Tier-1 site,
Tier-1 and Tier-2 sites, and Tier-2 and Tier-3 sites are 0.25ms,
1.2ms, and 4.2ms [2], respectively. The available bandwidth
for Tier-1 to Tier-2 site link is 1000Mbps and that of Tier-2 to
Tier-3 link is 1500Mbps. Due to the close proximity of nodes,
the intra-site links are assumed to have ample bandwidth and
negligible latencies. The RUs operate at 20MHz, 2x2 MIMO,
and 64QAM. A training episode in DRL consists of 10 days
of operation after which the simulation is restarted and a new
episode is initiated.

C. Comparative Approaches

We utilize two heuristic-based and three DRL-based ap-
proaches for comparison, aiming to encompass state-of-the-art
baselines and approaches in 5G C-RAN slicing and AC.
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1) Heuristics-based

(i) Greedy: All SRs are accepted for embedding and each
VNF is placed at the closest node to the RU with sufficient
resources to host the VNF. In case of a tie, the node with
the highest available resources is selected. Since VNFs are
first placed at closer nodes, the delay requirement will be met
when the SR is feasible and minimum link bandwidth is used.
However, this approach is naı̈ve, as all VNFs will be first
placed at Tier-1 and once the compute resources at this site
are exhausted, low latency VNFs cannot be placed anymore.
Consequently, all additional SRs are rejected until resources
at Tier-1 site become available again.
(ii) Node-ranking: Inspired by [10], we design the node-
ranking approach for slicing. Starting from the last VNF in the
chain, all the nodes in the substrate network within the VNF’s
tolerable delay are ranked. This ranking is done based on the
tier of the node (i.e., farthest to closest), followed by their
available computing resources (i.e., highest to lowest). Finally,
the highest-ranked node that does not violate link bandwidth
constraints is selected. The ranking method is the same for
all service types and it puts the least strain on Tier-1 site’s
computing resources until the bandwidth to higher-tier sites
becomes saturated.

2) DRL-based

A number of works in the literature propose DRL for AC
without proper modeling of network slicing [7, 12], and for
network slicing without modeling AC [11]. To cover most of
these approaches, in addition to the single-agent DRL method
(i.e., S-AC-VNE) described in Section V, we consider two
additional DRL-based benchmark solutions:
(i) DRL-AC: DRL is used for AC, but slicing is done through
the node-ranking approach described earlier.
(ii) DRL-VNE: DRL is used for slicing, but all SRs are
accepted until resources are saturated.
For a fair comparison, the reward function for the DRL-agent
in both approaches is the same as the corresponding DRL-
agent in the M-AC-VNE approach.

D. Training

The performance of DRL-based solutions depends on
hyper-parameter choices. Therefore, before evaluating differ-
ent DRL-based approaches, it is imperative that the best
hyper-parameters are identified. For this, we use the grid-
search algorithm which consists of dividing the domain of
hyper-parameters into a grid of values, training RL agents
for each setting, and then selecting the configuration that
yields the highest average revenue for evaluation. The can-
didate parameters for grid-search include the policy network’s
shapes of [32, 32, 32] and [128, 128, 128], the train batch sizes
of 4096 and 16348, and the number of stochastic gradient
descent (SGD) steps of 8 and 16 per PPO iteration. This
process is applied for M-AC-VNE and S-AC-VNE. The op-
timal hyper-parameters from the M-AC-VNE approach are
employed for DRL-AC and DRL-VNE. Fig. 3 shows the
average revenue achieved during training when using different

TABLE III: PPO training hyper-parameters.

DRL Hyper-parameter M-AC-VNE S-AC-VNE

# Hidden-layer neurons [32, 32, 32] [32, 32, 32]
LR at timestep [0, 107, 108] [3e-3, 5e-4, 1-e4] [3e-3, 5e-4, 1-e4]
Train batch size 16348 16348
Mini-batch size 4096 4096
# SGD iters 16 16
KL coefficient, Lambda 0.4, 0.95 0.4, 0.95

hyper-parameters for the M-AC-VNE approach. The deduced
optimal DRL hyper-parameters are listed in Table III, while
the corresponding revenue and mean reward achieved during
training are shown in Fig. 4 and Fig. 5, respectively.

As discussed in Section IV-C, achieving policy equilibrium
and agent cooperation are two challenges of multi-agent RL
that are relevant to the joint AC and slicing problem. Fig. 4
shows that the proposed solution achieves policy equilibrium
as the revenue converges without oscillations. In addition, the
fact that M-AC-VNE achieves higher revenue than single-
agent RL-based approaches demonstrates cooperation between
the agents. We can see that M-AC-VNE learns to achieve a
high revenue quite early in its training. This is because initially,
when ample resources are available, it can place incoming SRs
without difficulty. But as the resources become scarce, it has
to optimize the balance between the compute resource at lower
tiered sites, and inter-tier bandwidth required to utilize higher
tiered sites. This requires more complex decision making
which causes the learning to slow down.

We can observe that the episode reward for DRL-AC is
the earliest to reach a plateau during its training, followed by
DRL-VNE. This is because of their smaller action space, i.e.,
these approaches require DRL to learn either slicing or AC
actions, but not both. Additionally, we can see that although
the episode reward for DRL-VNE decreases after 25M training
steps, the revenue (cf., Fig. 4) does not follow the same trend.
This is because, in addition to the number of embedded SRs,
the shaped reward for the DRL-agent also depends on the
number of SR constraints’ violations. From Fig. 5, we can
see that, although the training is stopped at 100M training
steps, the episode rewards for M-AC-VNE and S-AC-VNE
still show a rising trend due to their larger action space.
Moreover, M-AC-VNE converges to a higher episode revenue
compared to S-AC-VNE. It is possible for the latter to achieve
the same long-term revenue as the former, since the policy
represented by the two policy networks of the M-AC-VNE can
also be represented by a single policy network of S-AC-VNE.
However, in practice, using the shaped rewards, S-AC-VNE
achieves much lower revenue within 100M training steps.

E. Evaluation

1) InP Revenue

The final InP (i.e., infrastructure provider) revenue achieved
during evaluation is shown in Fig. 6. Since DRL-agents do
not perform exploration during evaluation, the average revenue
achieved is slightly higher as compared to the training phase.
Evidently, the greedy approach achieves the lowest revenue.
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Fig. 9: Average Resource utilization.

We set this approach as the baseline to compare the rest of the
approaches against. The node-ranking approach achieves only
10.3% higher revenue as compared to the greedy approach.
It is followed by S-AC-VNE, DRL-AC, DRL-VNE and M-
AC-VNE approaches, which achieve 19.64%, 23.56%, 23.6%,
and 29.96% gains in revenue over the greedy approach,
respectively.

To further shed light on the revenue achieved by different
approaches, the average number of in-service SRs during an
episode of evaluation, broken down by their priority, is shown
in Fig. 7. Due to a limited amount of resources available in
the substrate network, there can only be a limited number of
in-service SRs at any given time. The number of in-service
SRs represents how much resources are being utilized by
different approaches. The greedy approach has the lowest

number of in-service SRs due to the computing bottleneck
at lower-tier sites described in Section VI-C1. The node-
ranking approach circumvents this bottleneck, which results
in an increase in the average number of in-service SRs over
the duration of an episode, though with this approach, the
link bandwidth becomes a bottleneck. We can see that the
DRL-VNE approach achieves the highest average number of
in-service SRs by optimally balancing the compute and band-
width resource utilization. Fig. 7 also shows that approaches
with an AC mechanism have a higher proportion of HP in-
service SRs because they can preemptively reject LP SRs to
keep the resources available for HP SRs. However, for the
other approaches, the proportion of HP and LP SRs is equal
to the probability of a request being HP or LP, respectively.

Based on Fig. 6 and Fig. 7, we can conclude that the total
InP revenue achieved depends on both the total in-service
SRs and the percentage of HP SRs. Optimizing one, but not
the other, leads to a loss in potential revenue for the InP.
Even though DRL-VNE and S-AC-VNE led to the highest
average number of in-service SRs and the highest proportion
of HP SRs, respectively, they do not achieve the highest
revenue. For S-AC-VNE, the average number of in-service
SRs and the achieved revenue is lower than all DRL-based
approaches, even the ones using DRL for either AC or slicing.
This indicates that although the shaped-reward designed for S-
AC-VNE leads to convergence within a reasonable time, it is
biased toward optimal AC and non-optimal slicing. Finally, M-
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Fig. 10: VNF placement at different sites.
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AC-VNE achieves the highest average revenue by optimally
balancing between these two factors.

2) AC and slicing statistics

Another metric of interest for performance analysis of a
slicing solution in the literature is the acceptance ratio, which
is defined as the proportion of the total SRs that are embedded
in the substrate network. In slicing-only approaches (i.e., when
there is no AC policy), an SR might be rejected only if there
is not enough resources available (i.e., SR not feasible), but in
the joint AC and slicing problem, an SR is rejected either by
the AC action, when there are no resources available, or when
the slicing action violates constraints (i.e., invalid slicing).
Fig. 8 shows, for each approach, the acceptance ratio and
the reason for rejecting the remaining SRs. Comparing the
acceptance ratio with the average number of in-service SRs
(cf., Fig. 7), we can observe that the relative values differ
slightly because DRL-based approaches take SRs’ operation
times into account which can result in a higher or lower accep-
tance ratio. However, the insights from Fig. 7 can generally be
translated to acceptance ratio, e.g., DRL-VNE has the highest
acceptance ratio followed closely by M-AC-VNE. Approaches
equipped with an AC policy have a higher proportion of
requests rejected due to AC action rather than infeasible
SR. In addition, the proportion of SRs rejected due to an
invalid slicing (i.e., constraint violations) is also negligible for
all these approaches. Together these two observations prove
that the shaped reward design of these approaches works as
intended, i.e., it makes the RL agent reject low-paying SRs

using the AC action rather than constraint violations.

3) Resource utilization

Figures 9a and 9b show the average compute resource
utilization at different tiers and the average Tier-1 to Tier-
2 link bandwidth utilization for different approaches dur-
ing evaluation, respectively. Node-ranking approach has the
highest bandwidth utilization since all VNFs are placed at
the farthest node, consuming a large amount of bandwidth.
Similar bandwidth utilization can be observed for the DRL-AC
approach as it uses node-ranking for slicing. Both M-AC-VNE
and DRL-VNE approaches have lower average bandwidth
utilization, demonstrating that DRL-based slicing conserves
more bandwidth by placing fewer bandwidth-hungry SRs on
the Tier-1 to Tier-2 link. This is further corroborated by
Fig. 9a, which indicates that these approaches achieve the
highest resource utilization in Tier-3, while still maintaining
high resource utilization at Tier-1 and Tier-2.

4) VNF placement

Fig. 10 shows the average number of VNFs placed at
different sites, by the DRL-based approaches, broken down by
the type of service. We can observe that DRL-VNE achieves
high resource utilization by placing the highest number of
eMBB VNFs on the Tier-1 site, and the highest number of
mMTC and URLLC VNFs on higher tiered sites. In general,
as the number of eMBB VNFs on higher tiered sites increases,
the corresponding cumulative number of VNFs on these sites
decreases due to the bottleneck created by eMBB VNFs on the
Tier-1 to Tier-2 link. Finally, the VNF placement by M-AC-
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Fig. 14: Weekly traffic pattern of Internet events in Milan [49].

VNE is quite close to that of DRL-VNE proving that the AC
and slicing agents are able to cooperate, and the addition of a
DRL-agent for AC does not adversely affect the performance
of the slicing agent.

5) Robustness

To test the robustness of the trained model under diversified
conditions, we vary the arrival rate, priority, and throughput
of SRs. First, we introduce previously unseen load conditions
to the agents, by deviating the SR arrival rate from the one
used during training (i.e., 5 SRs/hour). Fig. 11 displays the
robustness of different approaches against varying loads. In
more saturated network conditions (i.e., rapid arrival of SRs),
not only the proposed approach maintains its performance, but
the revenue gap between it and the heuristic-based approaches
also increases. At the highest point, the total revenue difference
between M-AC-VNE, and the node-ranking and greedy ap-
proaches reaches 27.90% and 45.13%, respectively. Whereas,
under less demanding conditions (i.e., sporadic arrival of SRs),
this difference is smaller. We speculate that in such situations,
there is a lesser need for more intelligent decision-making, as
there are fewer chances of creating bottlenecks.

We also evaluate the generalization of the DRL-based
approaches under real-world traffic pattern when the agents
are only trained on the mean SR arrival rate. For this purpose,
we utilize the Telecom Italia dataset [49] to generate dynamic
SR arrival rates. Fig. 14 shows the standardized weekly traffic
pattern of Internet events in Milan. We use min-max scaling to
scale the traffic to different ranges centered around the mean
arrival rate of 5 SRs/hour used for training. Fig. 12 shows the
performance of different approaches as the range around the
mean varies. The DRL-based approaches are still superior to
heuristic-based approaches in terms of performance, and M-
AC-VNE continues to generate the highest revenues. However,
the revenue decreases as the range increases. This is due to
the fact that revenue decrease is steeper for lower than mean
arrival rates as compared to the revenue increase for higher
than mean arrival rates (cf., Fig. 11).

Additionally, we evaluate the robustness under varying
percentages of HP SRs. Fig. 13 shows the revenue achieved
by different approaches in this scenario. It is evident that the
M-AC-VNE is able to generalize to this scenario as well and
maintain its lead in the achieved long-term InP revenue. When
the proportion of HP SRs increases or decreases from 0.5, AC
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Fig. 15: InP revenue vs. throughput range.

becomes less effective and the performance difference between
M-AC-VNE and DRL-VNE decreases. This shows that al-
though DRL-AC has better training performance, M-AC-VNE
is needed to retain good performance under various conditions.
In cases with no HP SRs, or with only HP SRs, the M-AC-
VNE performs similar to DRL-VNE, but is still able to achieve
higher revenue when compared to other baseline approaches
as it is able to avoid resource bottlenecks. Additionally, DRL-
based AC also makes use of the higher revenues offered by
the HP SRs by admitting a higher percentage of corresponding
SRs. As a result, as the percentage of HP SRs increases, the
M-AC-VNE approach shows a higher rate of increase in InP
revenue. However, as the HP SRs become oversaturated, the
rate of increase decreases.

Finally, we test the different approaches in the scenario
where the throughput requested by the SRs of the same slice
type can vary. For this purpose, we consider the slice types’
throughput values used during training to be the maximum
throughput for SRs of those slice types. Whereas, during
evaluation, the throughput demand by an SR is uniformly
selected from a range below that maximum value. The lower
bound of this uniform distribution is a certain fraction of the
maximum throughput. Fig. 15 shows the InP revenue achieved
as the lower bound of the uniformly distributed throughput
demand increases from half to maximum throughput (i.e.,
constant throughput demand). In general, we can see that
as the lower bound decreases, the InP revenue increases.
This is expected since as throughput decreases, compute and
bandwidth resource demand decreases as well and the InP is
able to accommodate more SRs. Moreover, we can observe
that the proposed approach retains its performance delta across
different ranges of throughput values.

VII. CONCLUSION

In this paper, we addressed the problem of joint slicing
and AC in 5G C-RAN. Considering diverse slice constraints,
future traffic patterns, and limited resource availability in
the substrate network, while maximizing an InP’s long-term
revenue makes the problem complex. This complexity calls for
close collaboration between the slicing and AC modules. We
propose a MADRL-based approach consisting of two agents
with shaped rewards that can effectively address slicing and
AC problems jointly. We show that the designed rewards lead
to convergence and cooperation between agents, and DRL-
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based approaches that address only one aspect of the problem
lead to a loss in potential InP revenue. The proposed approach
achieves as much as 29.96% higher revenue when compared
to approaches based on heuristics and approaches that address
only one problem optimally (i.e., using DRL). Our results also
show that multi-agent DRL achieves 8.62% higher long-term
InP revenue and leads to faster convergence, when compared to
a single-agent DRL approach that jointly addresses the slicing
and AC problems. Additionally, our results indicate that the
proposed approach is able to generalize to different arrival
rates and proportions of HP SRs, as well as dynamic and real
traffic patterns that differ from those used during training.

Our proposed MADRL-based approach can be improved
in terms of generalization in several ways. We have not
thoroughly evaluated the scalability of the proposed approach
over large and complex topologies. Furthermore, the leveraged
models for the slicing and AC agents require re-training with
the slightest topological variations, e.g., addition or removal
of a node or link. In the future, we plan to investigate the
use of Graph Neural Networks to accommodate complex and
dynamic metro 5G RAN topologies. Our model definition
also does not directly support SRs for slice types with a
specification different from the ones used during training. A
viable solution to this problem is to feed the model directly
with the delay and throughput requirements. Finally, we will
investigate dynamically scaling the resources allocated to SRs
based on their predicted demand. This can allow the network
to accommodate more SRs by leveraging over-booking.
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