
IEEE Communications Magazine • February 2023118 0163-6804/23/$25.00 © 2023 IEEE

Abstract
Dynamic radio resource allocation to network

slices in mobile networks is challenging due to the
diverse requirements of RAN slices and the dynam-
ic environment of wireless networks. Reinforce-
ment learning (RL) has been successfully applied
to solve different network resource allocation
problems where an agent learns how to choose
the best action from the interactions with the envi-
ronment. This survey studies the state-of-the-art
RL approaches that address radio resource man-
agement in radio access network slicing. To this
end, we first categorize different problem defini-
tions based on the network environment. Then we
explain how each environment can be modeled as
a Markov decision process and what RL algorithms
can be used to solve them. In addition, we discuss
the challenges present in existing works and sug-
gest strategies to address them.

Introduction
Next-generation mobile networks are envisioned
to support a broad range of services with diverse
requirements such as high data rate, ultra-reliabil-
ity, sub-millisecond latency, and a large number
of connections [1, 2]. Meeting all these stringent
and heterogeneous requirements is challenging as
they cannot be met using a shared one-size-fits-all
network setting. Network slicing enabled by soft-
ware-defined networking and network function
virtualization has become a promising solution
that provides these services by allowing multiple
logical networks (i.e., network slices) to operate
on top of the same physical infrastructure [1, 2].

Network slicing involves both the core net-
work and radio access network (RAN). Network
slicing in the core network (i.e., core slicing) is
well studied and can be achieved by scaling up
computing resources; however, network slic-
ing in the RAN (i.e., RAN slicing) still remains a
challenging problem due to the scarcity of radio
resources, dynamic conditions of wireless chan-
nels, and interference. Efficient management of
radio resources improves service delivery and uti-
lization of network resources, resulting in high-
er revenues and lower costs for mobile network
operators (MNOs).

Slicing-aware radio resource management
(RRM) can be seen as a two-level hierarchi-
cal problem: inter-slice and intra-slice resource
allocations. The former problem determines the
share of radio resources that should be allocat-

ed to network slices, and the latter schedules the
radio resources among different users of the same
slice [1, 2]. An overview of the slicing-aware RRM
problem is depicted in Fig. 1 where a RAN slicing
module is responsible for satisfying the demands
by dynamically and efficiently allocating radio
resources to requests.

Reinforcement learning (RL) techniques have
received considerable attention for solving the
RAN slicing problem since traditional methods
fail to deal with the problem’s complexities. First,
traditional methods require a closed-form for-
mulation that explains the relationship between
resource allocation and service level agreement
(SLA) satisfaction. However, there is no such accu-
rate model due to the heterogeneity of slice SLAs,
the stochasticity of wireless communications, and
the complexity of the underlying queuing-based
resource-sharing methods. Consequently, approxi-
mated formulations are commonly utilized despite
accuracy concerns. In contrast, model-free RL
methods do not need such a model; instead,
they proactively interact with the environment to
develop a model within their available computa-
tion capacity [3, 4].

Second, future slice demands are unknown
and need to be estimated at RAN slicing deci-
sion time. Nonetheless, traditional methods fall
short in demand estimation for all possible scenar-
ios. Contrarily, relying on deep neural networks,
RL algorithms can adapt themselves to different
environments and implicitly account for future
demands [5].

Nonetheless, RL methods should be careful-
ly leveraged to address RRM problems. Not all
RL-based propositions follow the same problem
formulations and exploit the same algorithms to
attack the problem. These different approaches
come with their advantages and disadvantages,
which will be discussed later. Moreover, we iden-
tify particular challenges in effectively defining the
corresponding Markov decision process (MDP)
and leveraging RL techniques to solve the RAN
slicing problem later. In the same section, we sug-
gest methods for coping with these challenges
based on the existing proposals in the literature.

Related Work
Traditional methods including queuing theory,
Lagrange methods for optimization, Thompson
sampling, genetic methods, and heuristic meth-
ods, have been used to solve RAN slicing prob-

Mohammad Zangooei, Niloy Saha, Morteza Golkarifard, and Raouf Boutaba

The authors are with the University of Waterloo, Canada.
Digital Object Identifier:
10.1109/MCOM.004.2200532

Reinforcement Learning for Radio Resource
Management in RAN Slicing: A Survey

MACHINE LEARNING-ENABLED ZERO TOUCH NETWORKS

The authors’ survey studies the
state-of-the-art RL approaches
that address radio resource
management in radio access
network slicing. To this end, they
first categorize different problem
definitions based on the network
environment.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:27:56 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • February 2023 119

lems [4, 6]. However, these methods are not well
suited to the specifi c characteristics of next-gen-
eration mobile networks and their heterogeneous
service requirements.

First of all, the approximate mathematical
models that are used in traditional optimization
methods cannot thoroughly represent complex
dynamics in real networks [7, 8]. Furthermore, the
complexity of wireless networks is growing with
increasing device numbers, evolving communica-
tion models, and heterogeneous quality of service
(QoS) requirements [3–5, 7, 9, 10]. According to
[9], the number of settings required for optimiza-
tion has increased from 1500 settings for 4G to
more than approximately 2000 for 5G.

Moreover, high computational complexities of
searching in large, complex, and dynamic scenar-
ios often lead to suboptimal performance of the
mentioned methods [4, 9, 11]. Lastly, network
conditions often demonstrate long-term and short-
term trends due to the dynamics of service traffi c
and the physical layer of networks, respectively.
But traditional methods do not adapt to such hid-
den network dynamics as they lack the ability to
learn data patterns [7].

With all of these limitations, researchers have
recently resorted to RL-based approaches. Sev-
eral RL-based RAN slicing methods have been
proposed in the literature to consider a delicate
investigation into them. A group of related sur-
vey papers discuss the application of machine
learning (ML) in network slicing, while other sim-
ilar papers [1, 2] specifi cally investigate the appli-
cation of ML in RAN slicing, which are closer to
this article. Such studies provide neither insights
on how RL algorithms should be exploited nor
a comparative investigation of diff erent RL com-
ponents in RAN slicing. Specifically, they offer a
general overview of ML methods in user and slice
admission control, resource scheduling, energy
efficiency, isolation, resource virtualization, and
power management in slicing. Furthermore, they
cover a limited number of RL-based proposals
and only consider single-cell scenarios.

To fi ll this gap, we off er a comprehensive review
of RL-based RAN slicing proposals. Notably, we
identify the single-cell and multi-cell taxonomies,
discuss the defi nition of MDP components and the
underlying advantages and disadvantages, argue
the trade-off between diff erent RL algorithms, and
provide the crucial challenges in the eff ective use
of RL for the RAN slicing problem as well as the
suggested solutions for them in the literature.

probleM ForMulAtIon tAxonoMy
Formulating an RL problem is to define the cor-
responding MDP and the triple of (state, action,
reward), which characterizes how an RL agent
interacts with the environment. The state is the set
of variables the agent observes from the environ-
ment and takes action based on that. The ultimate
goal of the RL agent is to maximize the cumulative
reward it receives from the environment upon tak-
ing action per step in an episode of interactions.

In this article, we focus on the inter-slice
resource allocation problem where propositions
in the literature can be classifi ed into two general
groups: single-cell and multi-cell RAN slicing.

In the fi rst group, the algorithm is locally imple-
mented in the base station (BS) itself, which brings

the following advantages:
• The problem is decomposed into different

entities, so the complexity is reduced.
• No communication is conducted between the

BSs and a designated controller, which mitigates
the latency and overhead of the control loop.

As a result, RAN slicing quickly adapts to changes
in the system’s state.

On the contrary, coordinating neighboring BSs
in the second group of proposals provides the
following benefi ts:
• Resource compensation in case of conges-

tion [12]
• Interference management to avoid service

degradation [13]
These two different problem formulations and
RL-based algorithms are elaborated later.

sIngle-cell rAn slIcIng rl ForMulAtIon
A single-cell RAN slicing problem models how
to distribute the available radio resources in the
form of physical resource blocks (PRBs) between
different slices to satisfy their key performance
indicator (KPI) requirements. In what follows, we
extensively discuss how diff erent elements of the
MDP are defi ned and RL algorithms are exploited
to solve RAN slicing in the single-cell scenario.
An illustration of RL agent interaction with the
single-cell RAN slicing environment is depicted in
Fig. 2, and a summary of the state, action, reward,
and RL algorithm options is presented in Table 1.

State. Variables that have been used as the
MDP state in the literature can be categorized
into four different classes capturing demand,
resource utilization, slice realized performance,
and slice requirements. Specifically, the number
of arrived (buff ered) packets [3–6, 9], transmitted
packets [9], and users [6, 7] in each slice advise
the agent of the current demand per slice, while
PRB usage ratio and the number of allocated
PRBs [6, 9] hint about resource utilization. Fur-
thermore, throughput and delay requirement [9]
highlight requests of each slice, whereas slices’
SLA satisfaction ratio (SSR) [6, 9] indicates the
realized performance of each slice.

There is a consensus in the literature to include
the demand metrics in the MDP state, while the
other three types of metrics are not present in
every RL-based proposal. On one hand, providing a
comprehensive view of the system comprising slic-

FIGURE 1. Radio resource allocation to requests of diff erent slices. Users of
diff erent slices (depicted by distinct colors) arrive at the BS coverage
over time. The RAN slicing module decides how physical resource
blocks (PRBs) should be dynamically allocated to slices.

Frequecy

TimeTTI

PRB

RAN Slicing

In this article, we focus
on the inter-slice resource
allocation problem where

propositions in the literature
can be classified into two

general groups: single-cell
and multi-cell RAN slicing.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:27:56 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • February 2023120

es’ demand, resource allocation, and SLA require-
ments and satisfaction guides the agent to fi nd the
relationship between them. On the other hand,
including many variables in the MDP raises dimen-
sionality concerns, leading to convergence issues.

Action. According to the literature [3–7, 9,
10], the number of PRBs per slice is recommend-
ed as the action of the RL agent.

Reward. SSR and service efficiency (SE) are
the major components of the proposed reward
functions in the literature. The reward of the agent
in [4] is a weighted sum of SE and SSR in differ-
ent slices; however, the authors of [5] claim that
if a linear combination of SSR and SE is used, it
could lead to a blind sacrifi ce of SSR in exchange
for an increase in SE, resulting in SLA violations.
In response, they propose a handcrafted reward
function to avoid such entanglement. Following the
same objective, the reward is defi ned as SSR × SE
in [9] to keep both metrics high at the same time.
Additionally, constrained RL approaches provide a
means to separate the SSR from SE in a such way
that one can defi ne SLA-related constraints to keep
SLA violations below the intended threshold while
optimizing for higher SE. Such a method is shown
to be superior to the previous ones in dealing with
these two confl icting objectives [7].

The reward in [3] only encourages higher
resource utilization without considering SLAs,
hindering multiplexing gains in RAN slicing. On
the other hand, in a multi-agent framework, spe-
cialized rewards are defined per slice type to
better capture the corresponding service type:
enhanced mobile broadband’s (eMBB’s) reward
is proportional to the throughput sum [10] and
SLA satisfaction in terms of average buff er length,
data rate, and PRB usage [6], while the reward
is inversely proportional to the queuing delay
for the ultra-reliable low-latency communications
(URLLC) [10] and massive machine-type commu-
nications (mMTC) [6] agents.

RL algorithm. The choice of RL algorithm is
also of paramount importance as it affects the

agent’s convergence in terms of speed and sta-
bility. In this part, we discuss various aspects of
the RL algorithms that have been exploited in the
RAN slicing literature.

Value learning vs. policy gradient. In value
learning methods, observed rewards are exploited
to fit a value function for each pair of state and
action. Classic value learning methods, including
deep Q learning (DQN), suffer from the value
overestimation problem. In this regard, advanced
methods like double and dueling DQN (DDQN)
and distributional RL are proposed to solve that
limitation through decoupling action selection
from evaluation and calculating the complete
distribution of Q-values [4, 11, 12], which come
with higher computational costs. In contrast,
action selection policy is directly developed in
policy gradient methods by making high-reward
actions more likely using gradient ascent (e.g.,
A2C, DDPG, and TD3) [6, 13]. Controlling the
difference between the new and old policies,
trust region policy optimization (TRPO) enables
smooth performance improvement [6] despite
incurring high computation costs. To reduce the
required computations, proximal policy optimiza-
tion (PPO) follows a simpler technique in estimat-
ing the diff erence between policies [6, 14].

On-policy vs. off-policy. In on-policy RL algo-
rithms (e.g., TRPO, PPO, and A2C), the policy that is
under development is also utilized to generate new
samples. However, off -policy algorithms (e.g., DQN,
DDPG, TD3) maintain separate policies for devel-
opment and sample generation. Such algorithms
keep a buff er of the agent’s experiences collected at
any time and update the under-development policy
after a few interactions with the environment [14].
Although off-policy algorithms enjoy higher sam-
ple efficiency (thus faster convergence), on-policy
algorithms together with the actor-critic methods
provide higher stability during training with mono-
tonic policy improvement. Furthermore, off-policy
algorithms require extensive hyperparameter search,
which hurts stability and generalizability [14].

Single-agent vs. multi-agent. Single-agent RL
approaches require too long training in scenarios
with high action and state dimensions. One way
to cope with this problem is to decompose it into
multiple sub-problems and formulate it as a multi-
agent RL [13]. Agents in a multi-agent RL approach
can operate with or without coordination among
them. Coordination among the agents to better
estimate the global state and other agents’ poli-
cies improves the overall performance, although it
incurs communication overhead [13].

Model-free vs. model-based. Model-free RL
approaches (e.g., A2C, PPO, and DQN) are most
useful when the agents are trained before real-
world deployments, as they require a large num-
ber of samples for learning. These long training
periods, which involve inefficient policies, can
lead to frequent SLA violations and/or excessive
resource over-provisioning in RAN slicing [6].
On the contrary, model-based RL approaches [6]
overcome such limitations, allowing for greater
sample effi ciency and accelerated learning. How-
ever, model-based RL approaches suffer from
their limited capacity in learning compared to
model-free RL methods.

The presented decision dimensions in RAN
slicing suggest the complications of deciding

FIGURE 2. Elements of MDP in radio resource management problems.

Resource
Utilization

Current
Demand

Slice SLA

Realized
Performance

State RL Agent Action

PRB or BW
Allocation to
Each SliceSpectrum

Efficiency

SLA
Satisfaction

Ration

RAN Slicing
Module

Environment

R
ew

ar
d

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:27:56 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • February 2023 121

about the RL algorithm. A summary of the advan-
tages and disadvantages of different RL methods
is presented in Table 2.

Multi-Cell RAN Slicing RL Formulation
As opposed to single-cell RAN slicing, different
problem formulations with distinct objectives
have been pursued in the multi-cell RAN slic-
ing literature. In particular, they consider jointly
deciding users’ serving BS, slice, and bandwidth
on the corresponding BS [11], selecting per slice
bandwidth, scheduling algorithm, and modulation
and coding offset [8, 14], compensating resources
across BSs [12], and accounting for the effect of
inter-cell interference [13].

Due to this heterogeneity in objectives, we
refuse to compare their MDP components and
RL algorithms as we did for the single-cell case.
Instead, we carefully investigate their method,
highlighting the advantages and disadvantages.
Nonetheless, we summarize the different com-
ponents of multi-cell RAN slicing in Table 3 for
survey completeness.

To efficiently manage the access of different
devices to a pair of (BS, slice) while considering
security and privacy concerns, the authors of
[11] resorted to federated RL. Accordingly, they
trained local models on devices with two-layer
aggregations: samples of the same service types
and then different service types. Nonetheless, this
approach comes with the following shortcomings:
•	 Although the security and privacy of users are

guaranteed in this scheme, it reveals the data of
slices’ available bandwidth on each BS, which
raises security concerns for mobile networks.

•	 The association of each device with a pair of
(BS, slice) is decided separately rather than
considering a holistic view of devices, so it is
pruned to suboptimality.
Opening the door of resource compensation

across BSs, the authors of [12] devised a means
of PRB redistribution in the lower level of their
two-level resource allocation scheme between
the consecutive high-level RAN slicing decisions.
To deal with the high dimensionality of the prob-
lem, they resort to distributed multi-agent RL tech-
niques in such a way that each BS is considered
as an agent. They further propose to conduct the
training procedure in an offline manner from a
collected dataset due to the required heavy com-
putations in online learning. Nonetheless, they
do not provide any insights on how this offline
learning generalizes to real-world deployments.
Additionally, different agents are trained inde-
pendently, which raises suboptimality concerns as
they do not share their experiences and consider
each other’s demands.

The authors in [13] highlight the effect of inter-BS
interference on overall network performance and
SLA satisfaction. To take it into account, they exploit
coordinated multi-agent methods in such a way that
each agent is associated with a specific BS. Assum-
ing that load-coupling inter-BS interference is the
main cause of the inter-agent dependencies, they let
each agent communicate its per slice load informa-
tion with its neighboring agents, which will be fed to
the RL agent as part of the state. In comparison to
a centralized approach deciding RAN slicing on all
BSs using a single agent, the evaluations reveal that
the proposed coordinated multi-agent approach
converges faster and gives better performance.

Challenges in Effective Use of RL in RAN Slicing
Although exploiting RL techniques can potential-
ly improve service delivery and resource utiliza-
tion, certain challenges might hinder the expected
performance. In particular, a RAN slicing RL agent
can take random actions during training, leading to
slice SLA violation or resource over-provisioning.
Moreover, MNOs should be able to accommodate

TABLE 1. Summary of states, actions, rewards, and RL algorithms used in the literature for single-cell RAN slicing.

Ref. State Action Reward RL algorithm

[3] Number of arrived packets in each slice Per slice number of PRBs Weighted sum of latency and throughput
of slices

PPO, DQN, Dueling DQN, AC,
and A2C

[4] Number of arrived packets in each slice Per slice number of PRBs Weighted sum of spectrum efficiency
and SSR

GAN-DDQN and Dueling
GAN-DDQN

[5] Number of arrived packets in each slice Per slice number of PRBs A handcrafted function of spectrum
efficiency and SSR

LSTM-A2C

[6] Particular state for eMBB and mMTC slices Per slice number of PRBs SLA satisfaction Model-Based RL with Kernels

[7] Number of users in each slice per slice number of PRBs Total throughput Adaptive IPO and TRPO

[9] PRB allocation and usage, SLAs, SSR, num-
ber of arrived, buffered, and sent packets

Per slice number of PRBs SSR  spectrum efficiency DQN

[10] Particular state for eMBB and uRLLC Per slice number of PRBs Particular reward for eMBB and URLLC Correlated DQN

TABLE 2. Advantages and disadvantages of RL techniques in the literature for single-cell RAN slicing.

RL approach Advantages and disadvantages

Value-learning [4, 11, 12]
vs. policy-gradient [6, 12]

Policy-gradient methods offer stable behavior improvement as they limit policy modification in each training step, so they are
more suitable for online learning.

On-policy [6, 13, 14] vs.
off-policy [4, 11, 12]

Off-policy approaches provide faster convergence, but they require extensive hyperparameter tuning, which aggravates the
generalizability of such methods.

Single-agent [4, 11, 14] vs.
multi-agent [10, 12, 13]

Single-agent RL algorithms fall short when the size of action-state spaces increases in cases of numerous slices, while decom-
posing the problem using multi-agent RL addresses the high-dimensional problems.

Model-free [5, 7, 8] vs.
model-based [6]

Model-free RL algorithms provide a higher sample efficiency, although they are limited in their learning and generalization
capacities.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:27:56 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • February 2023122

new slices upon request, but most of the proposed
RL-based RAN slicing problem formulations cannot
provide such a capability. In this section, we pres-
ent different challenges to be considered in devis-
ing RL-based RAN slicing and argue how proposals
in the literature failed or succeeded in dealing with
them, as summarized in Table 4.

Constraint Awareness
One main issue in real-world deployments of
RL methods is the possibility of taking random
actions during online training. Especially in the
case of RAN slicing, where the network is sup-
posed to accommodate different slices’ SLAs, RL
agents’ exploration can lead to not respecting
these demands. In particular, the authors of [8]
demonstrated that an RL agent could have more
than 30 percent violations of the slices’ SLA during
the online learning phase. Therefore, appropriate
strategies should be adopted to mitigate this issue.

Two strategies with different effective time spans
are pursued to take SLA requirements into account.
One of them motivates respecting constraints in the
long run by incorporating them into reward, while
the other approach guarantees that each action
does not immediately violate the constraints.

To realize the first strategy, a notion of slices’
SSR is included in reward utilizing a log-barrier

function [7] or Lagrangian primal-dual method [8]
to adaptively encourage the solver to respect the
constraints. Moreover, following a model-based
RL method, a predictor was quickly trained in [6]
to estimate whether each action for a given state
leads to SLA satisfaction.

A safer learning process is provided when
SLA constraints are taken into account using spe-
cialized functions rather than negative values in
reward design. The agent in the latter scenario
is unaware of the trade-offs involved between
resource violations and SLA satisfaction, whereas
we make the agent aware in the former case.
Model-based methods are limited in their learn-
ing capabilities — they only consider a limited
set of scenarios and fail to adapt to the varying
network conditions.

Although the first strategy is effective in the
long run, constraints should not be violated fre-
quently even in a short time span. In this regard,
the action generated by the policy network
was projected to a feasible space in which the
accumulated constraints remain below a certain
threshold in [7]. Following the same objective, the
authors of [8] designed a proactive policy switch-
ing mechanism to switch to a baseline policy for
managing resources if the RL policy is predicted
to violate the slice SLA.

TABLE 4. Summary of RAN slicing challenges addressed in the literature.

Challenge Description Suggested solution approach Ref.

Constraint awareness
Slice SLAs impose QoS requirements that should be
satisfied over both short and long time spans, but they
might be violated during the training stage

Guaranteeing SLAs using constrained-RL approaches
that offer safe learning [6–8]

Generalizability
Training RL algorithms from scratch in production net-
works results in frequent SLA violations, necessitating
training in a generalizable manner before deployment

 Offline learning methods such as imitation learning
and behavior cloning based on the interaction trace of a
baseline policy with the production network

[3, 8, 14]

Flexibility in number
of slices

Tenants request slices over time, which requires algo-
rithms that support a dynamic number of slices

Considering a separate agent for each slice with knowl-
edge reuse across slices of the same slice type [9, 10]

Scalability in number
of slices

When the number of slices grows, the algorithms
should not be negatively affected

Space reduction methods to avoid too large state and
action sizes which deteriorate the agent’s performance [9, 15]

Robustness
RL algorithms rely on measurements from the underly-
ing infrastructure that can be noisy. Thus, they should
tolerate noises in such measurements.

Extracting significant features of the state space [4, 14]

TABLE 3. Summary of states, actions, rewards, and RL algorithms used in the literature for multi-cell RAN slicing.

State Action Reward RL algorithm

[8]
Average slices traffic and users’
channel quality, PRB usage, SSR,
and SLA thresholds

Per slice number of PRBs, MCS
offset, scheduling algorithm

Negative total resource usage,
a separate cost value capturing
performance degradation

Multi-agent PPO (each agent
representing a slice) along with
an action modifier across slices

[11] Current serving BS and slice,
allocated PRBs to slices on each BS

Joint selection of per user BS,
slice, and number of PRBs

Bandwidth efficiency minus signal-
ing overhead

DDQN

[12]

Higher-level: previously allocated
PRBs to each BS, sets of BSs and
PRBs; lower-level: channel gain
between each BS and its users,
minimum data rate and maximum
delay, users with a BS and its PRBs

Higher-level: distributing PRBs
to BSs; lower-level: assigning
BS PRBs to its users and request
additional PRBs from other BSs
when needed

Higher-level: sum of achieved
users’ data rate; lower-level: total
sum-rate subject to ultra-low laten-
cy requirements of uRLLC services
and minimum data rate require-
ments of eMBB services

Higher-level: multi-armed
bandit; lower-level: distributed
multi-agent DDQN without
coordination (each agent repre-
senting a BS)

[13]

Average per slice user throughput,
load, number of active users, and
neighboring load

Per slice number of PRBs on
each cell

SSR Distributed multi-agent TD3
with coordination (each agent
representing a BS) following
actor-critic

[14]
Per slice average rate and buffer
size, and assigned PRBs

Per slice number of PRBs,
scheduling algorithm

eMBB slice rate, mMTC slice
transfer block size, and URLLC slice
negative buffer size

PPO

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:27:56 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • February 2023 123

SLAs cannot be effectively met by the pro-
posed methods for two reasons: It was not argued
[7] how a feasible action space should be appro-
priately estimated in the early stages of learning
when the agent does not know the impact of
each action. Additionally, modifying RL agents’
actions can jeopardize the learning process in the
long run as it increases the correlation between
the agent’s interactions with the environment and
limits its space exploration [7, 8].

Generalizability
The rationale behind offline training is that it is
inefficient to allow an RL agent to learn online
from scratch within real networks. This is because
the agent usually requires a large number of train-
ing steps during which it is prone to take random
actions. To mitigate this issue, agents can learn
offline to imitate a baseline policy based on the
dataset collected from the interactions between
that policy and real networks. In particular, behav-
ior cloning can be leveraged to train a policy
to minimize the differences between generated
actions by the under-train policy and the baseline
policy with supervised learning [8].

Nevertheless, we cannot rely on offline training
due to the specific characteristics of a deploy-
ment scenario that is not part of the training data-
set. In online training, the RL agent uses live data
from the RAN and performs exploration steps
on the online RAN infrastructure. Therefore, the
agent will adapt itself to the deployment-specific
features, leading to improved generalizability. In
this regard, the results in [14] confirm that online
training can help pre-trained models evolve and
meet the demands of the specific environment
in which they are deployed, but at the cost of
reduced RAN efficiency during the online training
phase. However, the methods provided earlier
can help reduce such costs during online training.

Transfer learning is another approach to con-
vergence acceleration of RL algorithms by which
the RL agent at an expert BS learns a policy from
scratch until convergence, while the RL agent at
a learner BS reuses the expert BS’s learned poli-
cy by initializing the target model with the archi-
tecture and weights from the trained models [3].
Nonetheless, the proposed method in [3] was
limited to cases where the configurations of the
RL agent do not change from the expert BS to the
learner BS, so it does not generalize in this sense.
Specifically, the effectiveness of the method has
only been tested in simulation, but not yet in real-
world deployments.

Flexibility in Number of Slices
MNOs should not be limited in the number of
slices they can offer, as tenants may demand new
customized services anytime. In addition, the tem-
porary need for a slice suggests supporting the
capability of enabling or disabling slices on the
fly. Therefore, an effective RAN slicing manage-
ment scheme should be flexible in accepting and
removing slices on demand.

Inflexibility in the number of slices comes
from the fact that only a fixed number of slices is
considered in the corresponding MDP, and then
when the model is trained based on that, it will
not be possible to add a new slice to the system
unless the model is retrained. In particular, statis-

tics of a fixed number of slices are gathered as the
state and actions are taken also with respect to
that fixed number of slices [3–5, 7].

To provide flexibility, an agent is responsi-
ble for allocating the minimum required radio
resource blocks to a slice, and the agent was
replicated or removed as the number of slices
fluctuated in [9]. As different slices’ actions might
conflict, a network slice controller is responsible
for coordination between agents. It is worth men-
tioning that because the actors (agents) follow
the policy trained by the learner, they all have
the same policy, enabling the fluctuation of the
number of agents during execution. Following the
same policy would not have been possible in their
proposition unless the state, reward, and action of
different actors share the same structure despite
the difference between their requirements.

Specifically, they only considered one type of
service with different threshold levels as different
slices. Nonetheless, slices come with different KPI
requirements and different impacting factors, so
a single slice type cannot accommodate the het-
erogeneous set of services in 5G. Furthermore,
a heuristic algorithm is in charge of enforcing
resource capacity constraints, which raises subop-
timality concerns.

In contrast, a game theoretic approach can be
followed where specialized agents are designed
for each slice that maximizes their rewards, and
the correlated equilibrium method balances the
reward of these agents to increase the overall
reward of the system [10]. Similar to the previ-
ous method, each agent competes for more PRBs
to achieve higher rewards, which in turn causes
resource allocation conflicts in this multi-agent
system. To resolve this issue, a game-theory-based
method such as correlated equilibrium is exploit-
ed to manage resource distribution between these
agents. This method, however, does not explicitly
investigate flexibility in the number of slices, but
it is potentially suitable for enabling flexibility as it
considers separate entities per slice.

Scalability in Number of Slices
As mentioned in the previous section, any limita-
tion on the number of slices is not tolerable for
MNOs. In particular, when the number of slices
increases unprecedentedly, the space size of the
state and action of a single agent can become
overwhelmingly large, degrading the RL-based
algorithm’s decision time and efficiency.

To address the enlargement problem of
state-action size in the case of many slices,
each agent can be associated with a separate
agent [9]. Accordingly, the number of agents
is increased rather than the size of action-state
space in the case of adding more slices. This
strategy encourages knowledge reuse across
agents, which reduces the complexity of training
multiple agents. However, it fails in supporting
multiple policies.

Additionally, action space reduction methods
are proven to be effective in accelerating con-
vergence and accommodating scalability. For
example, the action reducer technique proposed
in [15] is essentially a conventional optimization
framework that reduces the action size and then
converts it back to the original action space within
a polynomial time complexity.

To address the enlargement
problem of state-action size
in the case of many slices,
each agent can be associ-
ated with a separate agent

[9]. Accordingly, the number
of agents is increased rather
than the size of action-state
space in the case of adding

more slices.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:27:56 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • February 2023124

Robustness

RL algorithms depend highly on the measure-
ments gathered from the underlying network,
notably the state and reward variables. Such data
is prone to noise and redundancy because of the
inherent measurement errors. Therefore, appro-
priate techniques should be exploited to make
the RL methods robust to such noises.

In this regard, a combination of distributional
RL and GAN can be leveraged to compute the
distribution of action value instead of its expected
value as in regular DQN. The distributional meth-
od is known to be robust against noises in the
environment [4].

To further robustify the RL methods, vital infor-
mation should be extracted from the measure-
ments using compression and feature selection
techniques. Indeed, a RAN produces a massive
amount of data that does not necessarily provide
meaningful insights into the actual state of the sys-
tem due to redundancy. To deliver a high-quality
representation of the state, auto-encoders can be
utilized before feeding the selected features of
the data to the RL agent [14].

Computing the complete distribution of Q-val-
ues is computationally expensive and cannot
scale with the size of the state and action spaces.
Moreover, the general idea of value distribution
calculation is only applicable to value learning
RL methods but not policy-gradient algorithms
which are interesting in RAN slicing because of
their stable training behavior. Therefore, the sec-
ond approach [13], where the state and action
are compressed to extract the vital information, is
more suitable.

Conclusion and Future Directions
Many attempts have been made to solve the RAN
slicing problem using RL. In this article, we pres-
ent a thorough investigation of how the corre-
sponding MDP is formulated and RL techniques
are leveraged to solve the RAN slicing problem
in the literature. Furthermore, we provide the tax-
onomy on single-cell and multi-cell RAN slicing
scenarios and discuss the underlying trade-off
between them.

Additionally, we identify specific challenges in
proposing an effective RL-based RAN slicing meth-
od and categorize proposed solutions based on
how they fail or succeed in solving those challeng-
es. This study suggests that different papers address
disjoint subsets of challenges, and there is a short-
age of investigating the possible trade-offs in jointly
addressing these challenges and a full-fledged solu-
tion that solves them altogether.

References
[1] X. Shen et al., “AI-Assisted Network-Slicing Based Next-Gen-

eration Wireless Networks,” IEEE Open J. Vehic. Tech., vol. 1,
2020, pp. 45--66.

[2] Y. Azimi et al., “Applications of Machine Learning in
Resource Management for RAN-Slicing in 5G and Beyond
Networks: A Survey,” IEEE Access, vol. 10, 2022, pp.
106,581--612.

[3] A. M. Nagib, H. Abou-Zeid, and H S. Hassanein, “Transfer
Learning-Based Accelerated Deep Reinforcement Learning
for 5G RAN Slicing,” IEEE 46th Conf. Local Computer Net-
works, 2021, pp. 249--56.

[4] Y. Hua et al., “GAN-Powered Deep Distributional Reinforce-
ment Learning for Resource Management in Network Slic-
ing,” IEEE JSAC, vol. 38, no. 2, 2019, pp. 334--49.

[5] R. Li et al., “The LSTM-Based Advantage Actor-Critic Learning
for Resource Management in Network Slicing with User
Mobility,” IEEE Commun. Letters, vol. 24, no. 9, 2020, pp.
2005--09.

[6] J. J. Alcaraz et al., “Model-Based Reinforcement Learning
with Kernels for Resource Allocation in RAN Slices,” IEEE
Trans. Wireless Commun., 2022.

[7] Y. Liu, J. Ding, and X. Liu, “A Constrained Reinforcement
Learning Based Approach for Network Slicing,” IEEE 28th
Int’l. Conf. Network Protocols, 2020.

[8] Q. Liu, N. Choi, and T. Han, “OnSlicing: Online End-to-End
Network Slicing with Reinforcement Learning,” Proc. 17th
Int’l. Conf. Emerging Networking Experiments and Technolo-
gies, 2021, pp. 141--53.

[9] Y. Abiko et al., “Flexible Resource Block Allocation to Mul-
tiple Slices for Radio Access Network Slicing Using Deep
Reinforcement Learning,” IEEE Access, vol. 8, 2020, pp.
68,183--98.

[10] H. Zhou, M. Elsayed, and M. Erol-Kantarci, “RAN Resource
Slicing in 5G Using Multi-Agent Correlated Q-Learning,”
IEEE 32nd Annual Int’l. Symp. Personal, Indoor and Mobile
Radio Communications, 2021, pp. 1179--84.

[11] Y.-J. Liu et al., “Access Control for RAN Slicing Based on
Federated Deep Reinforcement learning,” IEEE ICC, 2021.

[12] A. Filali et al., “Dynamic SDN-Based Radio Access Network
Slicing with Deep Reinforcement Learning for URLLC and
EMBB Services,” IEEE Trans. Network Science and Engineer-
ing, vol. 9, no. 4, 2022, pp. 2174--87.

[13] T. Hu et al., “Inter-Cell Slicing Resource Partitioning via
Coordinated Multi-Agent Deep Reinforcement Learning,”
arXiv preprint arXiv:2202.12833, 2022.

[14] M. Polese et al., “ColO-RAN: Developing Machine Learn-
ing-Based xApps for Open RAN Closed-Loop Control on
Programmable Experimental Platforms,” IEEE Trans. Mobile
Computing, 2022, pp. 1--14.

[15] A. T. Z. Kasgari et al., “Experienced Deep Reinforcement
Learning with Generative Adversarial Networks (GANs) for
Model-Free Ultra Reliable Low Latency Communication,”
IEEE Trans. Commun., vol. 69, no. 2, 2020, pp. 884--99.

Biographies
Mohammad Zangooei (mzangooei@uwaterloo.ca) is a Ph.D.
student at the David R. Cheriton School of Computer Science
at the University of Waterloo. He received his Bachelor’s degree
in electrical engineering from Sharif University of Technology,
Tehran, Iran. His research interests revolve around next-gener-
ation mobile networks, artificial intelligence, and programmable
data planes.

Niloy Saha (n6saha@uwaterloo.ca) is a Ph.D. student at the
David R. Cheriton School of Computer Science at the Univer-
sity of Waterloo. He received his Master’s degree in computer
science from the Indian Institute of Technology, Kharagpur.
His research interests are focused on building next-generation
mobile networks and intelligent algorithms for their orchestra-
tion and management.

Morteza Golkarifard (mgolkari@uwaterloo.ca) received his
B.Sc., M.Sc., and Ph.D. degrees in computer engineering from
Sharif University of Technology. He is currently a postdoctoral
fellow at the David R. Cheriton School of Computer Science
at the University of Waterloo. His research interests include 5G
networks, NFV, and SDN.

Raouf Boutaba (rboutaba@uwaterloo.ca) received his M.Sc.
and Ph.D. degrees in computer science from Sorbonne Univer-
sity in 1990 and 1994, respectively. He is currently a University
Chair Professor and the director of the School of Computer Sci-
ence at the University of Waterloo. He is the founding Editor-in-
Chief of IEEE Transactions on Network and Service Management
and a Fellow of the Engineering Institute of Canada, the Canadi-
an Academy of Engineering, and the Royal Society of Canada.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 05,2023 at 16:27:56 UTC from IEEE Xplore. Restrictions apply.

