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Abstract
Dynamic radio resource allocation to network 

slices in mobile networks is challenging due to the 
diverse requirements of RAN slices and the dynam-
ic environment of wireless networks. Reinforce-
ment learning (RL) has been successfully applied 
to solve different network resource allocation 
problems where an agent learns how to choose 
the best action from the interactions with the envi-
ronment. This survey studies the state-of-the-art 
RL approaches that address radio resource man-
agement in radio access network slicing. To this 
end, we first categorize different problem defini-
tions based on the network environment. Then we 
explain how each environment can be modeled as 
a Markov decision process and what RL algorithms 
can be used to solve them. In addition, we discuss 
the challenges present in existing works and sug-
gest strategies to address them.

Introduction
Next-generation mobile networks are envisioned 
to support a broad range of services with diverse 
requirements such as high data rate, ultra-reliabil-
ity, sub-millisecond latency, and a large number 
of connections [1, 2]. Meeting all these stringent 
and heterogeneous requirements is challenging as 
they cannot be met using a shared one-size-fits-all 
network setting. Network slicing enabled by soft-
ware-defined networking and network function 
virtualization has become a promising solution 
that provides these services by allowing multiple 
logical networks (i.e., network slices) to operate 
on top of the same physical infrastructure [1, 2].

Network slicing involves both the core net-
work and radio access network (RAN). Network 
slicing in the core network (i.e., core slicing) is 
well studied and can be achieved by scaling up 
computing resources; however, network slic-
ing in the RAN (i.e., RAN slicing) still remains a 
challenging problem due to the scarcity of radio 
resources, dynamic conditions of wireless chan-
nels, and interference. Efficient management of 
radio resources improves service delivery and uti-
lization of network resources, resulting in high-
er revenues and lower costs for mobile network 
operators (MNOs).

Slicing-aware radio resource management 
(RRM) can be seen as a two-level hierarchi-
cal problem: inter-slice and intra-slice resource 
allocations. The former problem determines the 
share of radio resources that should be allocat-

ed to network slices, and the latter schedules the 
radio resources among different users of the same 
slice [1, 2]. An overview of the slicing-aware RRM 
problem is depicted in Fig. 1 where a RAN slicing 
module is responsible for satisfying the demands 
by dynamically and efficiently allocating radio 
resources to requests.

Reinforcement learning (RL) techniques have 
received considerable attention for solving the 
RAN slicing problem since traditional methods 
fail to deal with the problem’s complexities. First, 
traditional methods require a closed-form for-
mulation that explains the relationship between 
resource allocation and service level agreement 
(SLA) satisfaction. However, there is no such accu-
rate model due to the heterogeneity of slice SLAs, 
the stochasticity of wireless communications, and 
the complexity of the underlying queuing-based 
resource-sharing methods. Consequently, approxi-
mated formulations are commonly utilized despite 
accuracy concerns. In contrast, model-free RL 
methods do not need such a model; instead, 
they proactively interact with the environment to 
develop a model within their available computa-
tion capacity [3, 4].

Second, future slice demands are unknown 
and need to be estimated at RAN slicing deci-
sion time. Nonetheless, traditional methods fall 
short in demand estimation for all possible scenar-
ios. Contrarily, relying on deep neural networks, 
RL algorithms can adapt themselves to different 
environments and implicitly account for future 
demands [5].

Nonetheless, RL methods should be careful-
ly leveraged to address RRM problems. Not all 
RL-based propositions follow the same problem 
formulations and exploit the same algorithms to 
attack the problem. These different approaches 
come with their advantages and disadvantages, 
which will be discussed later. Moreover, we iden-
tify particular challenges in effectively defining the 
corresponding Markov decision process (MDP) 
and leveraging RL techniques to solve the RAN 
slicing problem later. In the same section, we sug-
gest methods for coping with these challenges 
based on the existing proposals in the literature. 

Related Work
Traditional methods including queuing theory, 
Lagrange methods for optimization, Thompson 
sampling, genetic methods, and heuristic meth-
ods, have been used to solve RAN slicing prob-
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lems [4, 6]. However, these methods are not well 
suited to the specifi c characteristics of next-gen-
eration mobile networks and their heterogeneous 
service requirements.

First of all, the approximate mathematical 
models that are used in traditional optimization 
methods cannot thoroughly represent complex 
dynamics in real networks [7, 8]. Furthermore, the 
complexity of wireless networks is growing with 
increasing device numbers, evolving communica-
tion models, and heterogeneous quality of service 
(QoS) requirements [3–5, 7, 9, 10]. According to 
[9], the number of settings required for optimiza-
tion has increased from 1500 settings for 4G to 
more than approximately 2000 for 5G.

Moreover, high computational complexities of 
searching in large, complex, and dynamic scenar-
ios often lead to suboptimal performance of the 
mentioned methods [4, 9, 11]. Lastly, network 
conditions often demonstrate long-term and short-
term trends due to the dynamics of service traffi  c 
and the physical layer of networks, respectively. 
But traditional methods do not adapt to such hid-
den network dynamics as they lack the ability to 
learn data patterns [7].

With all of these limitations, researchers have 
recently resorted to RL-based approaches. Sev-
eral RL-based RAN slicing methods have been 
proposed in the literature to consider a delicate 
investigation into them. A group of related sur-
vey papers discuss the application of machine 
learning (ML) in network slicing, while other sim-
ilar papers [1, 2] specifi cally investigate the appli-
cation of ML in RAN slicing, which are closer to 
this article. Such studies provide neither insights 
on how RL algorithms should be exploited nor 
a comparative investigation of diff erent RL com-
ponents in RAN slicing. Specifically, they offer a 
general overview of ML methods in user and slice 
admission control, resource scheduling, energy 
efficiency, isolation, resource virtualization, and 
power management in slicing. Furthermore, they 
cover a limited number of RL-based proposals 
and only consider single-cell scenarios.

To fi ll this gap, we off er a comprehensive review 
of RL-based RAN slicing proposals. Notably, we 
identify the single-cell and multi-cell taxonomies, 
discuss the defi nition of MDP components and the 
underlying advantages and disadvantages, argue 
the trade-off  between diff erent RL algorithms, and 
provide the crucial challenges in the eff ective use 
of RL for the RAN slicing problem as well as the 
suggested solutions for them in the literature.

probleM ForMulAtIon tAxonoMy
Formulating an RL problem is to define the cor-
responding MDP and the triple of (state, action, 
reward), which characterizes how an RL agent 
interacts with the environment. The state is the set 
of variables the agent observes from the environ-
ment and takes action based on that. The ultimate 
goal of the RL agent is to maximize the cumulative 
reward it receives from the environment upon tak-
ing action per step in an episode of interactions.

In this article, we focus on the inter-slice 
resource allocation problem where propositions 
in the literature can be classifi ed into two general 
groups: single-cell and multi-cell RAN slicing. 

In the fi rst group, the algorithm is locally imple-
mented in the base station (BS) itself, which brings 

the following advantages:
• The problem is decomposed into different 

entities, so the complexity is reduced.
• No communication is conducted between the 

BSs and a designated controller, which mitigates 
the latency and overhead of the control loop.

As a result, RAN slicing quickly adapts to changes 
in the system’s state.

On the contrary, coordinating neighboring BSs 
in the second group of proposals provides the 
following benefi ts:
• Resource compensation in case of conges-

tion [12]
• Interference management to avoid service 

degradation [13]
These two different problem formulations and 
RL-based algorithms are elaborated later.

sIngle-cell rAn slIcIng rl ForMulAtIon
A single-cell RAN slicing problem models how 
to distribute the available radio resources in the 
form of physical resource blocks (PRBs) between 
different slices to satisfy their key performance 
indicator (KPI) requirements. In what follows, we 
extensively discuss how diff erent elements of the 
MDP are defi ned and RL algorithms are exploited 
to solve RAN slicing in the single-cell scenario. 
An illustration of RL agent interaction with the 
single-cell RAN slicing environment is depicted in 
Fig. 2, and a summary of the state, action, reward, 
and RL algorithm options is presented in Table 1.

State. Variables that have been used as the 
MDP state in the literature can be categorized 
into four different classes capturing demand, 
resource utilization, slice realized performance, 
and slice requirements. Specifically, the number 
of arrived (buff ered) packets [3–6, 9], transmitted 
packets [9], and users [6, 7] in each slice advise 
the agent of the current demand per slice, while 
PRB usage ratio and the number of allocated 
PRBs [6, 9] hint about resource utilization. Fur-
thermore, throughput and delay requirement [9] 
highlight requests of each slice, whereas slices’ 
SLA satisfaction ratio (SSR) [6, 9] indicates the 
realized performance of each slice.

There is a consensus in the literature to include 
the demand metrics in the MDP state, while the 
other three types of metrics are not present in 
every RL-based proposal. On one hand, providing a 
comprehensive view of the system comprising slic-

FIGURE 1. Radio resource allocation to requests of diff erent slices. Users of 
diff erent slices (depicted by distinct colors) arrive at the BS coverage 
over time. The RAN slicing module decides how physical resource 
blocks (PRBs) should be dynamically allocated to slices.
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es’ demand, resource allocation, and SLA require-
ments and satisfaction guides the agent to fi nd the 
relationship between them. On the other hand, 
including many variables in the MDP raises dimen-
sionality concerns, leading to convergence issues. 

Action. According to the literature [3–7, 9, 
10], the number of PRBs per slice is recommend-
ed as the action of the RL agent.

Reward. SSR and service efficiency (SE) are 
the major components of the proposed reward 
functions in the literature. The reward of the agent 
in [4] is a weighted sum of SE and SSR in differ-
ent slices; however, the authors of [5] claim that 
if a linear combination of SSR and SE is used, it 
could lead to a blind sacrifi ce of SSR in exchange 
for an increase in SE, resulting in SLA violations. 
In response, they propose a handcrafted reward 
function to avoid such entanglement. Following the 
same objective, the reward is defi ned as SSR × SE 
in [9] to keep both metrics high at the same time. 
Additionally, constrained RL approaches provide a 
means to separate the SSR from SE in a such way 
that one can defi ne SLA-related constraints to keep 
SLA violations below the intended threshold while 
optimizing for higher SE. Such a method is shown 
to be superior to the previous ones in dealing with 
these two confl icting objectives [7].

The reward in [3] only encourages higher 
resource utilization without considering SLAs, 
hindering multiplexing gains in RAN slicing. On 
the other hand, in a multi-agent framework, spe-
cialized rewards are defined per slice type to 
better capture the corresponding service type: 
enhanced mobile broadband’s (eMBB’s) reward 
is proportional to the throughput sum [10] and 
SLA satisfaction in terms of average buff er length, 
data rate, and PRB usage [6], while the reward 
is inversely proportional to the queuing delay 
for the ultra-reliable low-latency communications 
(URLLC) [10] and massive machine-type commu-
nications (mMTC) [6] agents.

RL algorithm. The choice of RL algorithm is 
also of paramount importance as it affects the 

agent’s convergence in terms of speed and sta-
bility. In this part, we discuss various aspects of 
the RL algorithms that have been exploited in the 
RAN slicing literature.

Value learning vs. policy gradient. In value 
learning methods, observed rewards are exploited 
to fit a value function for each pair of state and 
action. Classic value learning methods, including 
deep Q learning (DQN), suffer from the value 
overestimation problem. In this regard, advanced 
methods like double and dueling DQN (DDQN) 
and distributional RL are proposed to solve that 
limitation through decoupling action selection 
from evaluation and calculating the complete 
distribution of Q-values [4, 11, 12], which come 
with higher computational costs. In contrast, 
action selection policy is directly developed in 
policy gradient methods by making high-reward 
actions more likely using gradient ascent (e.g., 
A2C, DDPG, and TD3) [6, 13]. Controlling the 
difference between the new and old policies, 
trust region policy optimization (TRPO) enables 
smooth performance improvement [6] despite 
incurring high computation costs. To reduce the 
required computations, proximal policy optimiza-
tion (PPO) follows a simpler technique in estimat-
ing the diff erence between policies [6, 14].

On-policy vs. off-policy. In on-policy RL algo-
rithms (e.g., TRPO, PPO, and A2C), the policy that is 
under development is also utilized to generate new 
samples. However, off -policy algorithms (e.g., DQN, 
DDPG, TD3) maintain separate policies for devel-
opment and sample generation. Such algorithms 
keep a buff er of the agent’s experiences collected at 
any time and update the under-development policy 
after a few interactions with the environment [14]. 
Although off-policy algorithms enjoy higher sam-
ple efficiency (thus faster convergence), on-policy 
algorithms together with the actor-critic methods 
provide higher stability during training with mono-
tonic policy improvement. Furthermore, off-policy 
algorithms require extensive hyperparameter search, 
which hurts stability and generalizability [14].

Single-agent vs. multi-agent. Single-agent RL 
approaches require too long training in scenarios 
with high action and state dimensions. One way 
to cope with this problem is to decompose it into 
multiple sub-problems and formulate it as a multi-
agent RL [13]. Agents in a multi-agent RL approach 
can operate with or without coordination among 
them. Coordination among the agents to better 
estimate the global state and other agents’ poli-
cies improves the overall performance, although it 
incurs communication overhead [13].

Model-free vs. model-based. Model-free RL 
approaches (e.g., A2C, PPO, and DQN) are most 
useful when the agents are trained before real-
world deployments, as they require a large num-
ber of samples for learning. These long training 
periods, which involve inefficient policies, can 
lead to frequent SLA violations and/or excessive 
resource over-provisioning in RAN slicing [6]. 
On the contrary, model-based RL approaches [6] 
overcome such limitations, allowing for greater 
sample effi  ciency and accelerated learning. How-
ever, model-based RL approaches suffer from 
their limited capacity in learning compared to 
model-free RL methods.

The presented decision dimensions in RAN 
slicing suggest the complications of deciding 

FIGURE 2. Elements of MDP in radio resource management problems.
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about the RL algorithm. A summary of the advan-
tages and disadvantages of different RL methods 
is presented in Table 2.

Multi-Cell RAN Slicing RL Formulation
As opposed to single-cell RAN slicing, different 
problem formulations with distinct objectives 
have been pursued in the multi-cell RAN slic-
ing literature. In particular, they consider jointly 
deciding users’ serving BS, slice, and bandwidth 
on the corresponding BS [11], selecting per slice 
bandwidth, scheduling algorithm, and modulation 
and coding offset [8, 14], compensating resources 
across BSs [12], and accounting for the effect of 
inter-cell interference [13].

Due to this heterogeneity in objectives, we 
refuse to compare their MDP components and 
RL algorithms as we did for the single-cell case. 
Instead, we carefully investigate their method, 
highlighting the advantages and disadvantages. 
Nonetheless, we summarize the different com-
ponents of multi-cell RAN slicing in Table 3 for 
survey completeness.

To efficiently manage the access of different 
devices to a pair of (BS, slice) while considering 
security and privacy concerns, the authors of 
[11] resorted to federated RL. Accordingly, they 
trained local models on devices with two-layer 
aggregations: samples of the same service types 
and then different service types. Nonetheless, this 
approach comes with the following shortcomings:
•	 Although the security and privacy of users are 

guaranteed in this scheme, it reveals the data of 
slices’ available bandwidth on each BS, which 
raises security concerns for mobile networks.

•	 The association of each device with a pair of 
(BS, slice) is decided separately rather than 
considering a holistic view of devices, so it is 
pruned to suboptimality.
Opening the door of resource compensation 

across BSs, the authors of [12] devised a means 
of PRB redistribution in the lower level of their 
two-level resource allocation scheme between 
the consecutive high-level RAN slicing decisions. 
To deal with the high dimensionality of the prob-
lem, they resort to distributed multi-agent RL tech-
niques in such a way that each BS is considered 
as an agent. They further propose to conduct the 
training procedure in an offline manner from a 
collected dataset due to the required heavy com-
putations in online learning. Nonetheless, they 
do not provide any insights on how this offline 
learning generalizes to real-world deployments. 
Additionally, different agents are trained inde-
pendently, which raises suboptimality concerns as 
they do not share their experiences and consider 
each other’s demands.

The authors in [13] highlight the effect of inter-BS 
interference on overall network performance and 
SLA satisfaction. To take it into account, they exploit 
coordinated multi-agent methods in such a way that 
each agent is associated with a specific BS. Assum-
ing that load-coupling inter-BS interference is the 
main cause of the inter-agent dependencies, they let 
each agent communicate its per slice load informa-
tion with its neighboring agents, which will be fed to 
the RL agent as part of the state. In comparison to 
a centralized approach deciding RAN slicing on all 
BSs using a single agent, the evaluations reveal that 
the proposed coordinated multi-agent approach 
converges faster and gives better performance. 

Challenges in Effective Use of RL in RAN Slicing
Although exploiting RL techniques can potential-
ly improve service delivery and resource utiliza-
tion, certain challenges might hinder the expected 
performance. In particular, a RAN slicing RL agent 
can take random actions during training, leading to 
slice SLA violation or resource over-provisioning. 
Moreover, MNOs should be able to accommodate 

TABLE 1. Summary of states, actions, rewards, and RL algorithms used in the literature for single-cell RAN slicing.

Ref. State Action Reward RL algorithm

[3] Number of arrived packets in each slice Per slice number of PRBs Weighted sum of latency and throughput 
of slices

PPO, DQN, Dueling DQN, AC, 
and A2C

[4] Number of arrived packets in each slice Per slice number of PRBs Weighted sum of spectrum efficiency 
and SSR

GAN-DDQN and Dueling 
GAN-DDQN

[5] Number of arrived packets in each slice Per slice number of PRBs A handcrafted function of spectrum 
efficiency and SSR

LSTM-A2C

[6] Particular state for eMBB and mMTC slices Per slice number of PRBs SLA satisfaction Model-Based RL with Kernels

[7] Number of users in each slice per slice number of PRBs Total throughput Adaptive IPO and TRPO

[9] PRB allocation and usage, SLAs, SSR, num-
ber of arrived, buffered, and sent packets

Per slice number of PRBs SSR  spectrum efficiency DQN

[10] Particular state for eMBB and uRLLC Per slice number of PRBs Particular reward for eMBB and URLLC Correlated DQN

TABLE 2. Advantages and disadvantages of RL techniques in the literature for single-cell RAN slicing.

RL approach Advantages and disadvantages

Value-learning [4, 11, 12] 
vs. policy-gradient [6, 12]

Policy-gradient methods offer stable behavior improvement as they limit policy modification in each training step, so they are 
more suitable for online learning.

On-policy [6, 13, 14] vs. 
off-policy [4, 11, 12]

Off-policy approaches provide faster convergence, but they require extensive hyperparameter tuning, which aggravates the 
generalizability of such methods.

Single-agent [4, 11, 14] vs. 
multi-agent [10, 12, 13]

Single-agent RL algorithms fall short when the size of action-state spaces increases in cases of numerous slices, while decom-
posing the problem using multi-agent RL addresses the high-dimensional problems.

Model-free [5, 7, 8] vs. 
model-based [6]

Model-free RL algorithms provide a higher sample efficiency, although they are limited in their learning and generalization 
capacities.
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new slices upon request, but most of the proposed 
RL-based RAN slicing problem formulations cannot 
provide such a capability. In this section, we pres-
ent different challenges to be considered in devis-
ing RL-based RAN slicing and argue how proposals 
in the literature failed or succeeded in dealing with 
them, as summarized in Table 4.

Constraint Awareness
One main issue in real-world deployments of 
RL methods is the possibility of taking random 
actions during online training. Especially in the 
case of RAN slicing, where the network is sup-
posed to accommodate different slices’ SLAs, RL 
agents’ exploration can lead to not respecting 
these demands. In particular, the authors of [8] 
demonstrated that an RL agent could have more 
than 30 percent violations of the slices’ SLA during 
the online learning phase. Therefore, appropriate 
strategies should be adopted to mitigate this issue.

Two strategies with different effective time spans 
are pursued to take SLA requirements into account. 
One of them motivates respecting constraints in the 
long run by incorporating them into reward, while 
the other approach guarantees that each action 
does not immediately violate the constraints.

To realize the first strategy, a notion of slices’ 
SSR is included in reward utilizing a log-barrier 

function [7] or Lagrangian primal-dual method [8] 
to adaptively encourage the solver to respect the 
constraints. Moreover, following a model-based 
RL method, a predictor was quickly trained in [6] 
to estimate whether each action for a given state 
leads to SLA satisfaction.

A safer learning process is provided when 
SLA constraints are taken into account using spe-
cialized functions rather than negative values in 
reward design. The agent in the latter scenario 
is unaware of the trade-offs involved between 
resource violations and SLA satisfaction, whereas 
we make the agent aware in the former case. 
Model-based methods are limited in their learn-
ing capabilities — they only consider a limited 
set of scenarios and fail to adapt to the varying 
network conditions.

Although the first strategy is effective in the 
long run, constraints should not be violated fre-
quently even in a short time span. In this regard, 
the action generated by the policy network 
was projected to a feasible space in which the 
accumulated constraints remain below a certain 
threshold in [7]. Following the same objective, the 
authors of [8] designed a proactive policy switch-
ing mechanism to switch to a baseline policy for 
managing resources if the RL policy is predicted 
to violate the slice SLA. 

TABLE 4. Summary of RAN slicing challenges addressed in the literature.

Challenge Description Suggested solution approach Ref.

Constraint awareness
Slice SLAs impose QoS requirements that should be 
satisfied over both short and long time spans, but they 
might be violated during the training stage

Guaranteeing SLAs using constrained-RL approaches 
that offer safe learning [6–8]

Generalizability
Training RL algorithms from scratch in production net-
works results in frequent SLA violations, necessitating 
training in a generalizable manner before deployment

 Offline learning methods such as imitation learning 
and behavior cloning based on the interaction trace of a 
baseline policy with the production network

[3, 8, 14]

Flexibility in number 
of slices

Tenants request slices over time, which requires algo-
rithms that support a dynamic number of slices

Considering a separate agent for each slice with knowl-
edge reuse across slices of the same slice type [9, 10]

Scalability in number 
of slices

When the number of slices grows, the algorithms 
should not be negatively affected

Space reduction methods to avoid too large state and 
action sizes which deteriorate the agent’s performance [9, 15]

Robustness
RL algorithms rely on measurements from the underly-
ing infrastructure that can be noisy. Thus, they should 
tolerate noises in such measurements.

Extracting significant features of the state space [4, 14]

TABLE 3. Summary of states, actions, rewards, and RL algorithms used in the literature for multi-cell RAN slicing.

State Action Reward RL algorithm

[8]
Average slices traffic and users’ 
channel quality, PRB usage, SSR, 
and SLA thresholds

Per slice number of PRBs, MCS 
offset, scheduling algorithm

Negative total resource usage, 
a separate cost value capturing 
performance degradation

Multi-agent PPO (each agent 
representing a slice) along with 
an action modifier across slices

[11] Current serving BS and slice, 
allocated PRBs to slices on each BS

Joint selection of per user BS, 
slice, and number of PRBs

Bandwidth efficiency minus signal-
ing overhead

DDQN

[12]

Higher-level: previously allocated 
PRBs to each BS, sets of BSs and 
PRBs; lower-level: channel gain 
between each BS and its users, 
minimum data rate and maximum 
delay, users with a BS and its PRBs

Higher-level: distributing PRBs 
to BSs; lower-level: assigning 
BS PRBs to its users and request 
additional PRBs from other BSs 
when needed

Higher-level: sum of achieved 
users’ data rate; lower-level: total 
sum-rate subject to ultra-low laten-
cy requirements of uRLLC services 
and minimum data rate require-
ments of  eMBB services

Higher-level: multi-armed 
bandit; lower-level: distributed 
multi-agent DDQN without 
coordination (each agent repre-
senting a BS)

[13]

Average per slice user throughput, 
load, number of active users, and 
neighboring load

Per slice number of PRBs on 
each cell

SSR Distributed multi-agent TD3 
with coordination (each agent 
representing a BS) following 
actor-critic

[14]
Per slice average rate and buffer 
size, and assigned PRBs

Per slice number of PRBs, 
scheduling algorithm

eMBB slice rate, mMTC slice 
transfer block size, and URLLC slice 
negative buffer size

PPO
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SLAs cannot be effectively met by the pro-
posed methods for two reasons: It was not argued 
[7] how a feasible action space should be appro-
priately estimated in the early stages of learning 
when the agent does not know the impact of 
each action. Additionally, modifying RL agents’ 
actions can jeopardize the learning process in the 
long run as it increases the correlation between 
the agent’s interactions with the environment and 
limits its space exploration [7, 8]. 

Generalizability
The rationale behind offline training is that it is 
inefficient to allow an RL agent to learn online 
from scratch within real networks. This is because 
the agent usually requires a large number of train-
ing steps during which it is prone to take random 
actions. To mitigate this issue, agents can learn 
offline to imitate a baseline policy based on the 
dataset collected from the interactions between 
that policy and real networks. In particular, behav-
ior cloning can be leveraged to train a policy 
to minimize the differences between generated 
actions by the under-train policy and the baseline 
policy with supervised learning [8].

Nevertheless, we cannot rely on offline training 
due to the specific characteristics of a deploy-
ment scenario that is not part of the training data-
set. In online training, the RL agent uses live data 
from the RAN and performs exploration steps 
on the online RAN infrastructure. Therefore, the 
agent will adapt itself to the deployment-specific 
features, leading to improved generalizability. In 
this regard, the results in [14] confirm that online 
training can help pre-trained models evolve and 
meet the demands of the specific environment 
in which they are deployed, but at the cost of 
reduced RAN efficiency during the online training 
phase. However, the methods provided earlier 
can help reduce such costs during online training.

Transfer learning is another approach to con-
vergence acceleration of RL algorithms by which 
the RL agent at an expert BS learns a policy from 
scratch until convergence, while the RL agent at 
a learner BS reuses the expert BS’s learned poli-
cy by initializing the target model with the archi-
tecture and weights from the trained models [3]. 
Nonetheless, the proposed method in [3] was 
limited to cases where the configurations of the 
RL agent do not change from the expert BS to the 
learner BS, so it does not generalize in this sense. 
Specifically, the effectiveness of the method has 
only been tested in simulation, but not yet in real-
world deployments.

Flexibility in Number of Slices
MNOs should not be limited in the number of 
slices they can offer, as tenants may demand new 
customized services anytime. In addition, the tem-
porary need for a slice suggests supporting the 
capability of enabling or disabling slices on the 
fly. Therefore, an effective RAN slicing manage-
ment scheme should be flexible in accepting and 
removing slices on demand. 

Inflexibility in the number of slices comes 
from the fact that only a fixed number of slices is 
considered in the corresponding MDP, and then 
when the model is trained based on that, it will 
not be possible to add a new slice to the system 
unless the model is retrained. In particular, statis-

tics of a fixed number of slices are gathered as the 
state and actions are taken also with respect to 
that fixed number of slices [3–5, 7].

To provide flexibility, an agent is responsi-
ble for allocating the minimum required radio 
resource blocks to a slice, and the agent was 
replicated or removed as the number of slices 
fluctuated in [9]. As different slices’ actions might 
conflict, a network slice controller is responsible 
for coordination between agents. It is worth men-
tioning that because the actors (agents) follow 
the policy trained by the learner, they all have 
the same policy, enabling the fluctuation of the 
number of agents during execution. Following the 
same policy would not have been possible in their 
proposition unless the state, reward, and action of 
different actors share the same structure despite 
the difference between their requirements. 

Specifically, they only considered one type of 
service with different threshold levels as different 
slices. Nonetheless, slices come with different KPI 
requirements and different impacting factors, so 
a single slice type cannot accommodate the het-
erogeneous set of services in 5G. Furthermore, 
a heuristic algorithm is in charge of enforcing 
resource capacity constraints, which raises subop-
timality concerns.

In contrast, a game theoretic approach can be 
followed where specialized agents are designed 
for each slice that maximizes their rewards, and 
the correlated equilibrium method balances the 
reward of these agents to increase the overall 
reward of the system [10]. Similar to the previ-
ous method, each agent competes for more PRBs 
to achieve higher rewards, which in turn causes 
resource allocation conflicts in this multi-agent 
system. To resolve this issue, a game-theory-based 
method such as correlated equilibrium is exploit-
ed to manage resource distribution between these 
agents. This method, however, does not explicitly 
investigate flexibility in the number of slices, but 
it is potentially suitable for enabling flexibility as it 
considers separate entities per slice.

Scalability in Number of Slices
As mentioned in the previous section, any limita-
tion on the number of slices is not tolerable for 
MNOs. In particular, when the number of slices 
increases unprecedentedly, the space size of the 
state and action of a single agent can become 
overwhelmingly large, degrading the RL-based 
algorithm’s decision time and efficiency.

To address the enlargement problem of 
state-action size in the case of many slices, 
each agent can be associated with a separate 
agent [9]. Accordingly, the number of agents 
is increased rather than the size of action-state 
space in the case of adding more slices. This 
strategy encourages knowledge reuse across 
agents, which reduces the complexity of training 
multiple agents. However, it fails in supporting 
multiple policies.

Additionally, action space reduction methods 
are proven to be effective in accelerating con-
vergence and accommodating scalability. For 
example, the action reducer technique proposed 
in [15] is essentially a conventional optimization 
framework that reduces the action size and then 
converts it back to the original action space within 
a polynomial time complexity.

To address the enlargement 
problem of state-action size 
in the case of many slices, 
each agent can be associ-
ated with a separate agent 

[9]. Accordingly, the number 
of agents is increased rather 
than the size of action-state 
space in the case of adding 

more slices.
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Robustness

RL algorithms depend highly on the measure-
ments gathered from the underlying network, 
notably the state and reward variables. Such data 
is prone to noise and redundancy because of the 
inherent measurement errors. Therefore, appro-
priate techniques should be exploited to make 
the RL methods robust to such noises.

In this regard, a combination of distributional 
RL and GAN can be leveraged to compute the 
distribution of action value instead of its expected 
value as in regular DQN. The distributional meth-
od is known to be robust against noises in the 
environment [4].

To further robustify the RL methods, vital infor-
mation should be extracted from the measure-
ments using compression and feature selection 
techniques. Indeed, a RAN produces a massive 
amount of data that does not necessarily provide 
meaningful insights into the actual state of the sys-
tem due to redundancy. To deliver a high-quality 
representation of the state, auto-encoders can be 
utilized before feeding the selected features of 
the data to the RL agent [14].

Computing the complete distribution of Q-val-
ues is computationally expensive and cannot 
scale with the size of the state and action spaces. 
Moreover, the general idea of value distribution 
calculation is only applicable to value learning 
RL methods but not policy-gradient algorithms 
which are interesting in RAN slicing because of 
their stable training behavior. Therefore, the sec-
ond approach [13], where the state and action 
are compressed to extract the vital information, is 
more suitable. 

Conclusion and Future Directions
Many attempts have been made to solve the RAN 
slicing problem using RL. In this article, we pres-
ent a thorough investigation of how the corre-
sponding MDP is formulated and RL techniques 
are leveraged to solve the RAN slicing problem 
in the literature. Furthermore, we provide the tax-
onomy on single-cell and multi-cell RAN slicing 
scenarios and discuss the underlying trade-off 
between them.

Additionally, we identify specific challenges in 
proposing an effective RL-based RAN slicing meth-
od and categorize proposed solutions based on 
how they fail or succeed in solving those challeng-
es. This study suggests that different papers address 
disjoint subsets of challenges, and there is a short-
age of investigating the possible trade-offs in jointly 
addressing these challenges and a full-fledged solu-
tion that solves them altogether.
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