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Abstract—Network slicing enables the provision of customized
services in next-generation mobile networks. Accordingly, the
network is divided into logically isolated networks that share
underlying resources but are tailored to meet the distinct service
requirements of their users. However, allocating the minimum
necessary resources to satisfy slices’ requirements is challenging,
particularly when the number of slices is variable or too large
which is envisioned in Open RAN. State-of-the-art proposals
leverage reinforcement learning (RL) algorithms; however, they
suffer from over-provisioning and/or frequent violations of service-
level agreement (SLA) due to the large and changing state and
action spaces. This paper introduces a novel cooperative multi-
agent RL algorithm for RAN slicing in Open RAN, designed
to adapt to variable slice numbers and effectively scale as they
grow. To train this model, we exploit a novel constrained RL
algorithm that explicitly considers SLA constraints to maintain a
decreasing SLA violation ratio during training. Our approach is
compatible with the Open RAN architecture, allowing for feasible
deployment in future mobile networks. CMARS surpasses RL
methods in SLA satisfaction by 50% in large-scale slicing, using
only 9% more resources. It has 8% fewer SLA violations and
19% lower resource consumption for a flexible number of slices.

Index Terms—5G and beyond mobile networks, Open RAN,
Radio resource management, Network slicing, Reinforcement
learning.

I. INTRODUCTION

5G and beyond mobile networks are expected to offer a
variety of service types including enhanced mobile broadband
(eMBB), ultra-reliable low-latency communications (uRLLC),
and massive machine-type communications (mMTC) [1]. To
facilitate this, network slicing is used to partition the network
into multiple slices that can be individually managed, optimized,
and secured to meet specific service-level agreements (SLAs)
in terms of latency, throughput, reliability, etc. [2]–[4]. In
this service model, third-party entities or tenants can request
separate slices from a mobile network operator (MNO) with
particular SLAs to serve their users based on the type of
service they require [5]. MNOs need to minimize radio resource
consumption while satisfying slices’ SLAs in radio access
networks (RAN) which is known as the RAN slicing problem.

Significant research on RAN slicing has been done in the
past few years, however with limited to no deployment in
practice. This can be attributed to the proprietary, vendor-
specific, monolithic, and closed architectures of existing RAN
solutions. To address these limitations, the O-RAN Alliance
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has recently proposed the Open RAN architecture featuring
disaggregation, softwarization, interoperability, and standard-
ization of different RAN elements and interfaces [6]. These
specifications extend 3GPP standards for promoting openness
in RAN architectures. Among others, the O-RAN architecture
introduces radio intelligent controllers (RICs) that host various
applications to monitor and control different elements of the
RAN. For example, an application sitting on top of the RIC
can be easily deployed for making RAN slicing decisions
based on slice requests’ arrival, service requirements, and
network workload. Clearly, the Open RAN movement provides
a unique opportunity for achieving higher levels of RAN
programmability including flexible RAN slicing and dynamic
radio resource management, and for accelerating research and
practical deployment of RAN slicing in 5G and beyond mobile
networks.

RAN slicing presents challenges due to the variability
of radio channels, diverse SLA requirements, and limited
radio resources. As a result, reinforcement learning (RL)-
based approaches have emerged as the state-of-the-art solution,
surpassing traditional heuristic methods [2], [3], [5], [7]–
[14]. However, particular characteristics of RAN slicing in
an Open RAN environment are not considered in the design
of the existing RL-based RAN slicing algorithms in the
literature. For example, O-RAN specifications enable slices to
seamlessly join or leave the network during their life cycle
[15]. Nonetheless, the existing RL-based RAN slicing methods
fail to efficiently provide this flexibility and monitor, control,
and prioritize service on a per-tenant basis [2], [3], [7]–[12].
Also, the integration of O-RAN into future generations of
mobile networks is widely anticipated [16]. With the growing
proliferation of diverse application scenarios, it is crucial to
circumvent any constraints imposed on the number of slices. A
higher slice count can negatively impact the performance of the
existing RL-based methods since the state and action spaces are
proportional to the number of slices (curse of dimensionality)
[5], [9]. In this paper, we address the mentioned shortcomings
with the following main contributions:

• We introduce CMARS, a novel Constrained Multi-Agent
RL algorithm specifically designed for RAN Slicing in
Open RAN. CMARS effectively addresses resource allo-
cation challenges outlined in O-RAN specifications, sur-
passing the limitations of existing RL-based approaches.

• We formulate RAN slicing problem as a stochastic
optimization task, allowing multiple instances of each slice
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type to join or leave the network. CMARS enables dy-
namic service provisioning by assigning dedicated agents
to make resource allocation decisions for each tenant and
employing a sequential decision-making procedure among
them. We eliminate the need for model retraining when
new slices join the network by allowing agents to reuse
trained policies and enhance optimality by enabling agents
to communicate their state.

• CMARS has been deliberately designed to inherently
support a substantial number of slices. It achieves this by
distributing resource allocation decisions for individual
slices among multiple agents, thereby alleviating the
curse of dimensionality and facilitating the exchange of
experiences among the decision-making entities.

• CMARS follows a constrained RL scheme based on multi-
agent proximal policy optimization Lagrangian [17] which
explicitly considers slice performance constraints while
minimizing resource consumption. Through cooperative
and constrained RL methods as well as global criticism
and reward scaling techniques, CMARS achieves notable
improvements in efficiency and performance, outperform-
ing baseline benchmarks.

• Finally, we extend the RAN slicing simulator from [5]
and conduct extensive experiments to evaluate CMARS.
The results demonstrate its superiority over state-of-the-art
methods in various scenarios, including when the number
of slices is fixed or dynamic, resources are scarce or
abundant, and the number of slices is low or high.

The paper is organized as follows: section II presents related
work, section III formulates the RAN slicing problem and our
solution approach. section IV details our proposed CMARS
method, section V discusses the integration of CMARS into O-
RAN specifications, and section VI provides simulation results.
Finally, section VII summarizes and concludes the paper.

II. RELATED WORK

Network slicing has received considerable attention in recent
years [1], [18]. According to 3GPP [19], a network slice
comprises a collection of network functions across the core,
transport, and radio access networks. These functions are
customized to fulfill diverse SLA requirements, such as latency,
and throughput. Resource management in network slicing
encompasses various resources, including communication,
computation, radio, or a combination of them [20]–[23].

The management of radio resources is challenging due to the
scarcity of radio resources, dynamicity of wireless channels,
and interferences [13]. Various frameworks, such as queuing
theory [24], game theory [25], [26], classic optimization [27],
[28], and reinforcement learning [8], [12]–[14], [29], [30] have
been utilized to address this problem. Despite outperforming
other methods, existing RL-based solutions [8], [12], [14] suffer
from sub-optimal performance in dealing with large or varying
numbers of slices. Therefore, it is imperative for us to devise
a novel RL framework that supports scalability and flexibility
in accommodating network slices.

Specifically, most proposals in the literature only consider
one big instance per slice type and pool together different

TABLE I: Comparison of existing RL-based RAN slicing literature with our
proposal

Property [2] [3] [5] [7] [8] [9] [10] [11] [14]Ours

Per-tenant observability ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Constraint-awareness ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓

Scalability in slice count ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Flexibility in slice count ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Experience reuse ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓

Real-world O-RAN Testbed ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

tenants (a group of users under the same administrative entity)
that request the same slice type [2], [3], [7]–[10], [12]. However,
this approach suffers from a lack of per-tenant observability
and fine-grain control. If the demand of a tenant increases
unprecedentedly, it will negatively affect other tenants of
the same slice, leading to SLA violations. To address this
shortcoming, authors in [5], [11] proposed to individually
consider different tenants instead of pooling them together.
Although this approach solves the limitations of tenant pooling,
it raises optimality concerns as the decision of each tenant
is made without considering the resource demand and usage
of other tenants. In contrast, we use cooperative multi-agent
reinforcement learning where each agent decides the share
of resources to be allocated to a specific slice based on the
aggregated slices’ statistics and receives correlated rewards.

Online training of RL agents from scratch in production
networks can result in the agents taking random actions that
may lead to poor performance and SLA violations [10]. To
mitigate this issue, pre-trained agents can be leveraged to
reduce SLA violations in the early phases of deployment [8],
[10], [11]. For new slice instances that arrive in the network,
we reuse the policy learned from similar agents’ experiences.
However, we acknowledge the necessity of initially training the
policy for each slice type, which can be accomplished through
offline RL methods such as behavior cloning and imitation
learning [10] or prior online training on pilot testbeds [9].

Polese et al. [9] showed that online training can adapt
models to deployment-specific characteristics but at the cost of
temporarily reduced efficiency. In response, constrained RL has
been shown to respect SLA constraints during online training
[7], [10] as they separate the conflicting objectives of reducing
resource consumption while increasing SLA satisfaction ratio.
In this regard, we also employ constrained RL schemes in the
context of multi-agent policy optimization.

Previous studies in the literature have primarily focused
on simulation-based investigations of RL-based RAN slicing
[8], [10], [11], [14]. However, a recent development by [9]
introduced an RL-based RAN slicing method that has been
deployed on a large-scale testbed conforming to O-RAN
specifications. Our proposed RAN slicing algorithm is currently
assessed in a simulated environment, with plans to integrate it
into an Open RAN testbed in the future.

A summary of the all aforementioned related works is
presented in Table I which also provides a comparison of
the state-of-the-art RL-based RAN slicing for 5G with our
proposed approach. To the best of our knowledge, our work is
the first to consider all of the properties listed in Table I by
using a novel cooperative constrained multi-agent approach.
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Fig. 1: Inter-slice and intra-slice resource allocation. The inter-slice allocation
distributes PRBs among slices at the beginning of each time window. Colors
represent the resources allocated to each slice in this figure. In each of the
T time slots of a time window, the intra-slice allocation is determined by
individual schedulers for each slice. In time slot 1 of time window k, there
are a total of two eMBB users, which increases to three in the next time slot,
while the number of uRLLC and mMTC users remains the same (one user
each). The corresponding slice schedulers allocate resources to these users in
each slot.

III. PROBLEM FORMULATION AND SOLUTION APPROACH

Radio resources are modeled as a grid of blocks over two
dimensions of time and frequency. These valuable resources,
known as physical resource blocks (PRBs), are scheduled to
carry users’ data [2], [9]. RAN slicing aims to satisfy each
tenant’s service requirements by consuming the minimum
amount of PRBs [3], [11], [14]. This is achieved by periodically
adjusting the PRB allocation for each slice in an upcoming
time window, followed by fine-grained distribution to users
within each slice using a dedicated scheduler. These two sub-
problems are respectively known as inter-slice and intra-slice
RAN slicing problems [2]–[4] and are depicted in Fig. 1.

Following other proposals in the literature [2], [3], [5],
[7], [8], [11], [12], [14], we consider a single-cell scenario,
assuming a given amount of PRBs at the base station (BS)
as it can be easily extended to multi-cell scenarios. Besides,
we consider a single direction of data transmission in this
paper for simplicity. With all of these assumptions, we present
the RAN slicing problem in sections III-A and III-B. Then,
we provide the system description in section III-C, and our
RL-based solution approach to solve the problem in III-D.
Summaries of the notations that are used in this section are
presented in Table II and Table III.

A. Intra-slice resource allocation

Consider Sk as the set of slices in time window k, and
Rs

k as the set of PRBs already allocated to slice s in time
window k. Note that the decision on Rs

k has been made in the
inter-slice allocation problem. On the other hand, assume a
given set of users Ut in time slot t during the corresponding
time window such that each user u is already associated with
a specific slice s. In the intra-slice resource allocation problem,
the only decision variable is the allocation of PRB j to user u
at time slot t (also known as scheduling problem [2]–[4]).

The intra-slice allocation problem needs to be solved in
a real-time manner that imposes strict time constraints on a
potential algorithm. Therefore, heuristics such as round robin
and proportional fairness (PF) are leveraged in real-world

implementations [9]. Accordingly, we use a PF scheduler, but
our proposed inter-slice allocation method is independent of
the underlying intra-slice allocation scheme, and it works with
any scheduling algorithm.

B. Inter-slice Resource Allocation

This problem decides the distribution of PRBs across
different slices during the upcoming time window. This involves
forecasting the future demand of each slice, calculating the
minimum resource allocation required to meet the predicted
demand, and implementing suitable policies for resource distri-
bution. Each slice type has its own unique QoS requirements,
including throughput, latency, and reliability. Therefore, it is
necessary to differentiate service provisioning based on slice
type. Additionally, tenants of the same slice type may have
varying tolerances for SLA violations and are willing to pay
different fees accordingly.

The fact that we explicitly consider a dynamic number of
instances per slice type distinguishes our problem formulation
from previous works [2], [3], [5], [7], [8], [11], [12], [14].
Particularly, only one instance of each slice type is modeled
in these works. Nonetheless, this method suffers from a lack
of per-tenant observability and control. On the other hand,
multiple instances of the same slice type with different SLA
thresholds are considered in [11]. However, such a formulation
hinders offering a heterogeneous set of services which is critical
in 5G and beyond networks.

We consider a finite set of slice types and performance levels
within each type while multiple independent instances of them
can be present in the network. We assume these instances
may join or leave between time windows, but their connection
status does not change during a time window. Consequently,
we formulate the RAN slicing problem on time window k in
equations 1a, 1b, and 1c.

In this formulation, vector Rk is the only decision variable
that denotes the inter-slice allocation decision at time window
k. Accordingly, the objective function (1a) is composed of two
parts to minimize long-term resource consumption: summation
of PRB usage in time window k and expectation of discounted
PRB usage in the future time windows. Here, discount factor
ζ models the effect of slicing decision in time window k
on the following time windows which we argue should be
considered here to achieve global optimality. Notably, the value
of ζ depends on the dynamics of the system and needs to be
empirically calculated. Intuitively, if no packets remain buffered
between consecutive time windows, the value of ζ would be
low.

The first set of constraints (1b), on the other hand, captures
each slice’s requirements in terms of SLAs in a way that the
expected constraints violation should remain under a certain
threshold. Specifically, the value of vsk, which is the violation
of slice s in time window k, depends on the resource allocation
as well as the future demand which is not known at decision
time. Finally, constraint (1c) takes care of resource capacity at
time step k.
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minimize
Rk

{ ∑
s∈Sk

Rs
k + E

 ∞∑
j=1

ζj
∑

s∈Sk+j

Rs
k+j

}
(1a)

s.t. E

vsk +

∞∑
j=1

ζjvsk+j

 ≤ ϵs, ∀s ∈ Sk, (1b)

∑
s∈Sk

Rs
k ≤ M. (1c)

It is worth mentioning that the precise relation between SLA
satisfaction with resource allocation and demand is unknown.
Additionally, the demand during the next time window is not
known either. Nevertheless, RL methods are recognized as a
promising approach to dealing with such uncertainties. As such,
we resort to RL algorithms to efficiently solve the problem
above.

C. System Description

In this paper, we conform to the RAN slicing model
leveraged in [5], [31] which is the only work in the literature
considering distinct tenants. Specifically, they consider two
types of slices, namely eMBB and mMTC, while the SLAs
for each instance are defined based on the particular service
requirements and preferences of the corresponding tenant.

In the context of mMTC slices, each device is assigned
a predetermined number of packet repetitions based on its
estimated pathloss. Furthermore, there is typically a maximum
limit imposed on the number of active devices that the slice
can support [5], [31]. The expected key performance indicators
(KPIs) in this scenario are defined in terms of maximum
average delay. Consequently, the observed variables in this
model encompass the number of simultaneous active devices,
the average delay per UE, and the number of remaining packet
repetitions per UE.

eMBB slices set specific limits to the average number of
PRBs consumed by each type of traffic (guaranteed bit rate
(GBR) and non-GBR). KPIs in this case are the average data
rate and the maximum queue length [5], [31]. Furthermore, the
observation comprises a set of variables for each type of traffic
(GBR and non-GBR), since each type is associated with a
specific QoS requirement in the SLA. These variables provide
information per traffic type: incoming and delivered traffic rate,
resource consumption, queue length, and signal-to-noise ratio
(SNR).

We extend this model according to [9], introducing uRLLC
slices, a crucial service type in 5G and beyond networks.
We consider an SLA of maximum queue length for uRLLC
users following a non-GBR traffic model as it impacts users’
experienced latency.

Our model includes multiple instances per slice type to
accommodate diverse performance levels. Each slice type has
a fixed set of performance levels in the corresponding SLAs.
These slice-specific SLAs define different thresholds for KPIs.
Tenants can select a supported performance level from their
slice type, based on their service requirements (see Table V
for an example).

TABLE II: Summary of notation used in sections III-A and III-B

Symbol Definition

u user index
j PRB index
k time window index
t time slot index
Ut set of users in time slot t
Sk set of slices in time window k
Rsk set of PRBs allocated to slice s in time window k, decided in

the corresponding inter-slice problem
M number of available PRBs
vsk SLA violation of slice s during time window k
ϵs SLA violation threshold of slice s
ζ discount factor of future time windows

D. Preliminaries of our RL Solution Approach

1) Cooperative Multi-agent Reinforcement Learning: In
single-agent RL methods, the agent interacts with the environ-
ment under a specific Markov decision process (MDP) model;
it observes the environment state based on which it takes
an appropriate action to maximize the cumulative discounted
reward it receives from the environment. In fact, the agent
develops a policy to decide about the appropriate action in
a given state [32]. Similarly, multiple agents interact with a
shared environment in multi-agent RL (MARL) methods [33].

MARL schemes potentially enhance the scalability of the
RAN slicing algorithm by decoupling resource allocation
decisions among agents. In single-agent RL frameworks, slice
statistics are concatenated to form the MDP state, leading to the
curse of dimensionality when the number of slices increases. In
contrast, MARL approaches allow independent state space sizes
for each agent, mitigating the curse of dimensionality. Moreover,
MARL enables experience reuse among agents which improves
performance efficiency (see section IV-A for details).

In our proposed approach, all agents are consolidated within
the same physical entity, eliminating inter-agent signaling
and management overhead found in distributed multi-agent
settings. However, in this consolidated setting, sequential
decision-making by different agents requires multiple neural
network invocations, unlike a centralized single-agent approach.
Each individual neural network invocation takes less than
a millisecond due to the small size and simplicity of the
architectures used. While the cumulative effect of multiple
invocations increases overall execution time in CMARS, it
remains manageable within practical bounds.

In general, MARL methods can be classified into two cate-
gories: cooperative and competitive. In the cooperative category,
all agents collaborate towards a shared objective, while in the
competitive category, agents strive to maximize their individual
rewards at the expense of others [34]. Competitive agents
prioritize their own rewards while minimizing the rewards of
other agents, potentially leading to a decline in overall system
performance [35]. In our framework, we have developed a
cooperative game model, where different agents receive rewards
that are correlated with the overarching system goal.

2) Constrained Cooperative MARL: RL methods are known
to suffer from taking detrimental actions during training due to
random exploration. Constrained RL methods have gained
attention in the literature to deal with this challenge and
perform safe learning [7], [10]. These methods introduce a
cost parameter to the MDP to measure the cost of an action
and guide the agent toward avoiding actions with high costs.
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Furthermore, the literature on RL-based RAN slicing confirms
the effectiveness of these constrained RL approaches as they
separate the conflicting objectives of meeting slice SLAs and
consuming minimum resources [7], [10]. Therefore, we devise
a constrained cooperative MARL method to solve the RAN
slicing problem in this paper.

Constrained RL approaches introduce additional compu-
tations to enforce constraints, potentially increasing compu-
tational overhead and slowing down learning. However, we
consider this overhead manageable since it occurs only during
training. Once the model is trained, it can be invoked with
input variables in various scenarios, regardless of the training
algorithm used.

Consider a constrained multi-agent Markov
decision process (CMMDP) [17] defined by the
tuple

〈
N ,S,A, ρ0,P, r, γ, C, c

〉
. In this definition,

N = {1, 2, · · · , n} is the set of agents, S is the finite
state space, A =

∏n
i=1 Ai is the joint action space, ρ0 is

the initial state distribution, P : S × A × S −→ [0, 1] is the
transition probability function, r : S × A −→ R is the reward
function, γ ∈ [0, 1] is the discount factor, C = {Ci}i∈N
is the set of cost functions, and c = {ci}i∈N is the set of
corresponding cost thresholds.

At step k, each agent i ∈ N is at state sk ∈ S and take action
aik ∈ Ai according to the policy πi(·|sk). After which, the
environment will give the joint reward of rk to agents and move
them to the new state sk+1 with probability P (sk+1|sk, ak)
while each agent i pays the cost of Ci. The joint policy π
together with the transition probability function P and the
initial distribution ρ0 produce a marginal state distribution at
step k, ρkπ. Accordingly, the state value function Vπ and the
state-action value function Qπ are defined as follows:

Vπ(s) ≜ Ea0:∞∼π,s1:∞∼P [

∞∑
k=0

γkrk|s0 = s], (2)

Qπ(s, a) ≜ Ea0:∞∼π,s1:∞∼P [

∞∑
k=0

γkrk|s0 = s, a0 = a]. (3)

Here, Aπ(s, a) ≜ Qπ(s, a)−Vπ(s) is the advantage function.
Moreover, we leverage fully cooperative MARL algorithms
where different agents collaborate to maximize the expected
discounted total reward Jr while trying to satisfy each agent
i’s safety constraint J i

c :

Jr(π) ≜ Es0:∞∼ρ0:∞
π ,a0:∞∼π

[ ∞∑
k=0

γkrk

]
, (4)

J i
c (π) ≜ Es0∼ρ0,a0:∞∼π,s1:∞∼P

[ ∞∑
k=0

γkCi(sk, ak)

]
≤ ci.

(5)
3) Multi-Agent Constrained Policy Optimisation: Policy-

based methods offer the advantage of bounded policy improve-
ment, making them suitable for employing constrained RL
approaches [7]. This is particularly valuable in addressing the
inherent trade-off between minimizing resource utilization and
maximizing SLA satisfaction in RAN slicing as previously men-
tioned. Additionally, empirical studies have demonstrated that

Fig. 2: Sequential decision-making in cooperative MARL with policy reuse
among agents of the same slice type.

policy-based methods outperform value-learning approaches in
cooperative multi-agent settings [36]. In light of these pieces of
evidence, we stick to policy-based RL approaches to propose
a MARL RAN slicing algorithm.

Researchers have shown that the joint advantage function
of multiple agents can be decomposed into the sum of their
local advantages [17], [37]. This property guarantees the
improvement of joint policy with a sequential policy-update
scheme among different cooperating agents. Inspired by [17],
we parameterize each agent’s policy πi

θi by a neural network
θi and formulate the optimization problem that agent i should
solve to update its policy in step k as follows:

θik+1 = argmaxθiEs∼ρπθk
,a1:i−1∼π1:i−1

θ
1:i−1
k+1

,ai∼πi
θi[

Ai
πθk

(
s, a1:i−1, ai

)]
, (6a)

s.t. J i
c (πθk) + Es∼ρπθk

,ai∼πi

θi
k

[
Ai

πθk

(
s, ai

)]
≤ ci, (6b)

Es∼ρπθk

[
DKL(π

i
θk
(·|s), πi(·|s))

]
≤ δ. (6c)

To solve this optimization problem, we use a method
called multi-agent proximal policy optimization Lagrangian
(MAPPOL) [17] which is, to the best of our knowledge, the
only cooperative constrained multi-agent RL algorithm at the
time of writing this paper. This method employs Lagrangian
multipliers to embed cost constraints (6b) in the objective
function and proximal policy optimization (PPO)-clip to replace
the Kullback–Leibler (KL)-divergence constraint (6c) with the
clip operator. More details of this method are not elaborated
upon in this paper as it is beyond the scope of the current
discussion.

IV. CMARS ALGORITHM

In this section, we present our CMARS algorithm for inter-
slice resource allocation in RAN slicing using constrained
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TABLE III: Summary of notation used in section III-D

Symbol Definition

N set of agents
n number of agents
S finite state space
A joint action space
P transition probability function
r reward function
γ discount factor
C cost function set
c cost thresholds
ρ0 initial state distribution
δ KL-divergence threshold
πi(a|s) policy of agent i
θi parameters of agent i’s policy
Vπ(s) state value function
Qπ(s, a) state-action value function
Aπ(s, a) advantage function
Jr(π) expected discounted total reward
J i
c (π) expected discounted total cost of agent i

MARL. We provide a general abstraction of the method in
section IV-A applicable to any RAN slicing setting, and its
application to our system model (section III-C) is discussed
in section IV-B. The RL model training algorithm is detailed
in section IV-C. While we focus on two slice types (eMBB
and mMTC) for simplicity, adding other slice types is straight-
forward without affecting CMARS performance, as shown in
the evaluation section VI.

A. General Reinforcement Learning Model

Agents resource sharing. The decisions of the agents are
mutually dependent as they consume a shared set of resources in
RAN slicing. We propose a sequential decision-making scheme
in every MDP step where each agent takes the available PRBs
as input, allocates a portion of them to the corresponding
slice instance, and passes the remaining PRBs to the next
agent. This procedure is repeated for all agents and eventually
forms the slices’ share of PRBs as the action of the MDP. To
avoid selfish behavior and order dependency, we employ a
cooperative model with interrelated rewards. This allows us to
penalize selfish actions that harm overall system performance
and encourage collaboration among agents to achieve system
objectives. Additionally, shuffling the agents’ order in each
step further mitigates order dependency.

State communication. An agent’s decision should account
for other slices’ demands to avoid resource under- or over-
provisioning. To facilitate this, when a slice policy is invoked, it
is provided with aggregated statistics of upcoming slices. This
aggregated information along with the slice local observations,
forms the agent’s local state. Notably, aggregation (rather than
concatenation) is independent of slice counts which brings
flexibility in slice accommodation.

Policy reuse among agents. To enable flexibility in slice
accommodation, we utilize cooperative MARL schemes with
each agent responsible for a specific slice. When a slice joins the
network, a new agent is introduced to the sequential decision-
making process. This agent can reuse a pre-trained policy to
avoid retaining a new model from scratch. The agent is finally
withdrawn once the corresponding slice departs the network.
Remarkably, distinct policies are used for various slice types
due to their differing SLA-related goals and behaviors. However,
instances of the same slice type can share a policy to expedite
learning by reducing the overall problem’s parameters and

improve sample efficiency by reusing environment interaction
samples.

Instances of the same slice type might expect different SLA
levels (refer to section III-C). In this regard, we introduce a
new parameter into the set of slice local observations. This
parameter communicates information about the required SLA
level to the policy. Consequently, the policy becomes capable
of distinguishing between various expected SLA levels and
their resource requirements. As such, even though a common
policy is applied to slices of the same type, the associated state
variable will assume distinct values corresponding to the SLA
level.

Non-stationarity problem. In MARL scenarios, agents’
policies evolve over training which makes the environment
non-stationary to each agent. This phenomenon may lead to
an infinite cycle of adapting to other agents’ policies. One
common method to deal with this issue is leveraging a global
critic in an actor-critic setting. This critic is aware of all agents’
observations while the actor only has access to the observation
of one agent. Importantly, no overhead is associated with global
critic employment during the inference phase since the agent’s
actions are determined by the actor while the critic is only
used in training [38].

A concatenation of agents’ local observations can be fed
to the global critic, but this is not suitable for our case.
Precisely, we assume fluctuation in the number of slices which
in turn leads to the variation in the critic input size, adding
to the difficulty of training. Instead, we compute aggregated
statistics of agents’ local observations as the global state. Such
aggregation solves the problem of variation in the critic’s input
size as it remains independent of the number of agents.

An overview of the proposed cooperative MARL framework
is depicted in Fig. 2 which involves four slice instances: two
eMBB and two mMTC. Agents are created for each slice type,
processing the instances sequentially. Agents receive available
PRBs, slice statistics, and aggregated statistics of other slices
as input. They allocate PRBs to the corresponding slice and
pass the remaining PRBs to the next agent. We also shuffle the
sequence of agents in every step to avoid order dependency in
decision-making.

B. Constrained Multi-agent Markov Decision Process

In this section, we apply our general model to the RAN
slicing problem (see section III-C) and define the correspond-
ing CMMDP. The decision-making process is described in
Algorithm 1.

Local state. As mentioned in section IV-A, we compute
count-independent aggregated metrics to inform an agent about
the demand of subsequent slices. These metrics include the
number of mMTC and eMBB slices, the average number of
users in mMTC slices, average GBR traffic in eMBB slices,
average non-GBR traffic in eMBB slices, and the number of
remaining PRBs. These metrics are concatenated with the local
observation of each slice and the slice’s expected SLA level
to derive the agent’s local state (see Alg. 1 Line 8).

Global state. Statistical features of different slices are
aggregated to provide the global critic with a global state
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Algorithm 1: Per Step Decision Making (PSDM)
Input: slice observation oks , ∀s ∈ Sk, number of PRBs M,

policies { πmmtc, πembb }
Output: slice allocated PRBs Rsk, slice local state

lss, ∀s ∈ Sk, slice global state gs
Initialization:

1 Smmtc ← {s ∈ Sk : s is of mMTC type}
2 Sembb ← {s ∈ Sk : s is of eMBB type}
3 Aggregated observations of mMTC:

oaggmmtc ← {|Smmtc|, min
s∈Smmtc

oks , max
s∈Smmtc

oks , mean
s∈Smmtc

oks}
4 Aggregated observations of eMBB:

oaggembb ← {|Sembb|, min
s∈Sembb

oks , max
s∈Sembb

oks , mean
s∈Sembb

oks}
5 global state: gs← oaggmmtc ∪ o

agg
embb

6 local augmentation: o+ ← { slices count and users count
mean of oaggmmtc, slices count, GBR traffic mean, and
non-GBR traffic mean of oaggembb, and M}

Decision making:
7 for s ∈ Shuffle(Sk) do
8 local state: lss ← oks ∪ o+∪ {expected SLA level of slice

s}
9 if s ∈ Smmtc then Rsk ← πmmtc(lss)

10 else if s ∈ Sembb then Rsk ← πembb(lss)
11 Update o+ by excluding observation oks and resource

allocation Rsk

that supports flexibility in the number of slices. These statistics
include the number of instances per slice type along with the
minimum, maximum, and average of their local states (Alg. 1,
Line 5).

Action. An agent determines the allocation of PRBs to its
slice (Alg. 1, Line 9 and Line 10). The agent’s available actions
are determined by the number of PRBs remaining after previous
agents’ decisions in the sequential process (Alg. 1, Line 11).
The collective decisions of all agents form the action for the
MDP step. To prevent order dependency, the order of agents
is randomly shuffled in each step (Alg. 1, Line 7).

Reward and Cost. In cooperative MARL, agents cooperate
with each other towards a common goal that is formalized in
terms of cost and reward functions. We define the cost and
reward functions of agent s∗ in step k as follows:

costs
∗

k = 0.4× vs
∗

k + 0.6× Σs∈Sk\s∗v
s
k, (7)

rewards
∗

k = 0.8× (us
∗

k ) + 1.2× mean
s∈Sk\s∗

(usk)− 1 (8)

Here, vsk indicates if SLAs of slice s are violated in step k
(as defined in section III-C), and usk is PRB utilization ratio,
i.e., the number of used PRBs over the number of allocated
PRBs, of slice s in step k. The reward and cost functions
reflect the performance of all slices, with a higher coefficient
assigned to the corresponding slice’s performance metric, so
that the agent can better understand the impact of its own
actions (the exact value of the coefficients is determined by
experimentation). Besides, we subtract 1 from the summation
in the reward function to normalize the range of values from
−1 to 1 for reward-scaling purposes [39].

C. CMARS Algorithm

Now that all the involved components have been introduced,
we explain the training procedure summarized in Alg. 2.
Lines 1–11 show an iteration of the training algorithm. In

Algorithm 2: Training
Input: number of available PRBs M, episode length L,
Output: policies πmmtc and πembb

Initialization: replay buffer B, resource allocation R0,
policies π0

mmtc and π0
embb (consists of actor networks θ0mmtc

and θ0embb, global critic networks ψ0, and cost networks
ϕ0
mmtc and ϕ0

embb )
Training:

1 while πmmtc and πembb not converged do
2 for k ← 0 to L− 1 do
3 Get observations ok ← {oks : ∀s ∈ Sk}, reward rk,

and cost ck from environment
4 Rk+1, lsk, gsk ← PSDM(ok,M, πkmmtc, π

k
embb)

5 Add slice s experience to Bs

6 Sample a random minibatch Bs from B, ∀s ∈ Sk
7 Compute advantage function Â(ls, gs,R) based on

global critic network
8 Compute cost advantage functions Âs(ls, gs,Rs) based

on slice type cost network
9 for s ∈ Shuffle(Sk) do

10 if s ∈ Smmtc then
PU(πmmtc, B

s, Â(ls, gs,R), Âs(ls, gs,Rs))
11 else if s ∈ Sembb then

PU(πembb, B
s, Â(ls, gs,R), Âs(ls, gs,Rs))

Algorithm 3: Policy Update (PU)
Input: old policy πold (consist of actor-network θold, global

critic network ψold, and cost network ϕold),
mini-batch B, advantage function Â(ls, gs,R), slice
cost advantage function Âs(ls, gs,Rs), PPO update
count eppo, PPO policy change threshold κ, step sizes
αθ, αλ, discount factor γ, cost constraint threshold c

Output: policy πnew including θnew, ψnew, ϕnew

Initialization: Lagrangian multiplier λ, Lagrangian
modification step of objective construction Ms

Updating:
1 for e← 1 to eppo do
2 Differentiate the Lagrangian PPO-clip objective

∆θ ← ∇θ 1
B

∑B
b=1

∑L
t=1 min( πθ(at|lst)

πθold
(at|lst)Ms,

clip
(

πθ(at|lst)
πθold

(at|lst)Ms, 1± κ
)
)

3 Update actor parameters θ ← θ + αθ∆θ

4 Approximate constraint violation
d← 1

B.L

∑B
b=1

∑L
t=1 ψ(gst)− c

5 Differentiate constraint ∆λ←
− 1
B

∑B
b=1

(
d(1− γ) +

∑L
t=0

πθ(at|lst)
πθold

(at|lst) Âs(ls, gs,Rs)
)

6 Update Lagrangian multiplier λ← ReLU(λ− αλ∆λ)
7 Update actor network, global critic network, and cost network:
8 θnew ← θ

9 ψnew ← argminψ
1
B.L

∑B
b=1

∑L
t=1 (Vψ(gs)− rt)

2

10 ϕnew ← argminϕ
1
B.L

∑B
b=1

∑L
t=1 (Vϕ(gs)− ct)

2

each iteration, an episode of interactions with the environment
takes place as shown in Lines 2–5, and agents’ policies are
then updated according to the MAPPOL scheme in Lines 6–11.

The policy consists of a global V -value, two actors, and
two V -cost functions based on a critic network ψ, two actor
networks {πmmtc, πembb}, and another two cost networks
{ϕ0mmtc, ϕ

0
embb}, respectively. According to the type of slice the

agent is associated with, the corresponding set of parameters
will get updated when it is the agent’s turn. The detailed
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procedure of CMARS policy updating is presented in Alg. 3,
inspired by [17].

Specifically, Lagrangian multipliers and actor-network pa-
rameters are updated multiple times in Lines 1–6. The PPO-clip
in Line 2 takes care of the KL-divergence of the new policy
from the previous policy while the probability of constraint
violation is considered in updating the multipliers as shown in
Line 5. Subsequently, critic and cost networks are updated in
Lines 8–10 based on the received reward and cost values.

V. INTEGRATION OF CMARS IN OPEN RAN
ARCHITECTURE

In this section, we discuss how CMARS is used for RAN
slicing in Open RAN architecture. Open RAN refers to
the architectural concept in the industry that promotes the
openness of RAN [40]. We specifically consider the Open RAN
specifications proposed by the O-RAN alliance. This alliance,
consisting of operators and vendors, actively contributes to
defining RAN specifications that complement the existing 3GPP
standards to realize Open RAN [41].

Near-real-time RAN Slicing. We envision deploying
CMARS using RAN intelligent controllers (RICs) [9]. CMARS
functions as a centralized RAN slicing xApp running on
top of the near-real-time (Near-RT) RIC [42]. The xApp
communicates with the RAN data plane through service models
like KPM [43] over the E2 interfaces to receive metrics.
Resource allocation decisions are made by the xApp and
transmitted to the data plane using appropriate service models
[44]. In accordance with O-RAN specifications [45], trained
CMARS models are stored in a catalog within the non-real-
time (Non-RT) RIC [46]. These models are retrieved from the
Non-RT RIC via the A1 interface for use in the corresponding
xApp within the Near-RT RIC.

CMARS Training. RL agents can undergo training either
offline or online prior to their deployment. Offline training
involves supervised learning using a trace of state-action
pairs, but its effectiveness depends on the trace generation
algorithms [9]. Conversely, online training enables real-time
learning through interactions with the environment, rendering
it more versatile and adaptable to diverse scenarios. Such
online training before deployment can be achieved through
various tools, including a pilot testbed [9], digital twins [47],
or a simulation environment [48]. We envision such an online
training process for CMARS before its actual deployment.

Dynamic Slice Creation and Termination. We implemented
policy-sharing for slices of the same type in our framework.
A single policy per slice type is stored in Non-RT RIC which
is carried over to the Near-RT RIC upon request and shared
among different instances of that type. When a new slice is
created, it is assigned the policy associated with its slice type,
benefiting from the accumulated knowledge and experience of
other instances. Our policy-sharing mechanism also facilitates
the effective utilization of knowledge from terminated slices.
Experiences gained by each instance contribute to the training
of the corresponding policy, avoiding the need to start training
from scratch. For online learning, experiences from distinct
instances are utilized to continuously update the policy, leading
to continuous improvement.

TABLE IV: Simulator settings [5], [49]

eMBB GBR traffic model
UE arrival Poisson process (2 user/min)
UE connection time Exponential (mean = 30 sec)
Bit rate 0.5 Mb/s

eMBB non-GBR traffic model
UE arrival Poisson process (5 user/min)
UE connection time Exponential (mean = 30 sec)
Burst arrivals Poisson process (1 burst/min)
Burst length Exponential (mean = 500 packets)
Burst bit rate 1 Mbps

mMTC traffic model
mMTC devices 1000
Transmission periods {10, 50, 100, 150, 250, 500, 1000} sec
Packet repetitions {2, 4, 8, 16, 32, 64, 128}
Packet size 1000 bits

uRLLC non-GBR traffic model
UE arrival Poisson process (20 user/min)
UE connection time Exponential (mean = 5 sec)
Burst arrivals Poisson process (2 burst/min)
Burst length Exponential (mean = 100 packets)
Burst bit rate 500 Kbps

Radio channel parameters
Transmission power 30 dBm
BS antenna gain 15 dBi
BS antenna pattern Section 4.2.1, TS 36.942 [50]
Cell range 2 Km
Noise figure 9 dB
Interference + noise -110 dBm
Carrier frequency 2GHz
Propagation model Macro cell urban [50]
Fading model Pedestrian A, Typical Urban, Vehicular A [51]

TABLE V: Different SLA performance levels per slice type [5], [49] and
CMARS parameters

eMBB slice SLA L1 L2 L3
GBR authorized capacity (RBs/subframe) 16 22 30
non-GBR QoS compliant capacity (RBs/subframe) 20 27 35
Max. average queue per GBR user (Kb/UE) 380 220 60
Max. average queue per non-GBR user (Kb/UE) 1300 700 100
Min. average throughput per GBR user (Mbps) 0.4 1 6
Min. average throughput per non-GBR user (Mbps) 0.8 5 12

uRLLC slice SLA L1 L2 L3
Max. average queue per non-GBR user (Kb/UE) 100 50 10

mMTC slice SLA L1 L2 L3
Max. per user delay (ms) 400 300 200

CMARS Parameters

Actor learning rate 8× 10−5

Critic learning rate 1× 10−3

Lagrangian coefficient 10
Lagrangian learning rate 1× 10−7

Safety bound 1× 10−4

Gamma 0.4

VI. PERFORMANCE EVALUATION

A. Simulation Environment Setting

We conducted experiments to compare the proposed method
with state-of-the-art RL baselines using an extended Python-
based RAN slicing simulation environment [49]. Particularly,
the simulator was enhanced to incorporate the uRLLC slice
type and dynamic creation and termination of slices. The
experiments considered mMTC, eMBB, and uRLLC slice types,
with their respective traffic characteristics detailed in Table IV.
GBR and non-GBR users were modeled in eMBB slices using
constant and variable bit rate flows, following a Poisson process
(Table IV). Similarly, users in uRLLC slices follow a non-GBR
traffic model but with different parameters compared to the
non-GBR users in eMBB slices. mMTC slices consisted of
1000 users with transmission periods and packet repetitions
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TABLE VI: Classes and scenarios used in experiments with a fixed number
of slices.

Class 1 Class 2 Large-scale
Scenario 1 2 3 4 5 6 7 8 9 10 11 12
PRBs 15 30 40 80 30 60 80 200 90 140 200 270
eMBB-L1 0 0 1 1 0 0 1 1 2 2 2 2
eMBB-L2 1 1 1 1 1 1 1 1 1 1 2 2
eMBB-L3 0 0 0 0 0 0 0 0 2 2 1 1
mMTC-L1 0 0 1 1 0 0 1 1 3 3 2 2
mMTC-L2 1 1 1 1 1 1 1 1 2 2 2 2
mMTC-L3 0 0 1 1 0 0 1 1 2 2 2 2
uRLLC-L1 - - - - 0 0 1 1 - - 3 3
uRLLC-L2 - - - - 1 1 1 1 - - 2 2
uRLLC-L3 - - - - 0 0 1 1 - - 2 2

randomly chosen from predefined sets listed in Table IV.
The simulator incorporates NS-3-generated datasets with

specific configurations to represent realistic channel conditions
and user mobility patterns accurately. It utilizes the macro cell
propagation model configuration for urban areas specified in
TR 36.942 [50] to determine the nominal received power at
the UE. Frequency-selective fading is introduced by drawing
samples from datasets containing fading traces of moving
UEs, following the fading/mobility models defined in TS
36.104 [51] (e.g., pedestrian A, typical urban, and vehicular
A). The communication model parameters are included in
Table IV. When a new UE is introduced, the simulator randomly
selects a dataset and generates a random integer as the index
to draw SNR samples. This approach ensures variability in
channel conditions and captures the dynamic nature of wireless
environments, thereby enhancing the validity of the simulation.

The simulation procedure models UE buffer management,
MAC scheduling, modulation and coding scheme, and prob-
abilistic bit transmission over the air. A proportional fair
scheduler is employed within each slice to allocate PRBs among
the UEs based on their buffer state reports and SNR estimations.
Once the resources are allocated, the transmitter selects an
appropriate modulation and coding scheme (MCS) aiming for
a target block error rate (BLER) below 0.1, which determines
the transport block size i.e., the number of bits transmitted from
the UE queue. Finally, actual bit transmission is stochastically
determined based on the reception probability of the MCS
scheme. Successful transmission deducts the corresponding
number of transmitted bits from the UE’s queue length. It is
worth noting that while the NS-3 data remains static for a given
run, the simulation enforces variability in channel conditions
and UE buffer states.

The RAN slicing decision is periodically made on a time
window of T time slots, where we assume T = 50 ms based
on [5]. Table V presents SLAs for each slice type, categorized
into performance levels L1, L2, and L3, with corresponding
parameters used in CMARS.

B. Baseline Algorithms

Algorithms. We consider four RL methods as baseline
algorithms: a model-based RL scheme named KBRL [5],
two model-free single-agent RL methods, proximal policy
optimization (PPO) [5], [7], [8], twin delayed DDPG (TD3) [5],
[52], and a multi-agent RL approach that we call MARS (Multi-
agent RAN Slicing). MARS shares fundamental characteristics
with CMARS, albeit without employing a constrained RL
approach.

KBRL is the state-of-the-art RAN slicing RL-based algo-
rithm that utilizes classifiers predicting whether the SLA of
a given slice is violated for any specific state-action pair.
TD3 is an off-policy RL method that offers a high sample
efficiency by maintaining separate policies for development
and sample generation. PPO is an on-policy RL algorithm that
updates the agent’s policy in a controlled manner to achieve
a stable performance improvement. We also investigated the
advantage actor-critic RL algorithm, the predecessor of TD3,
and constrained policy optimization, however, the results were
not significant for inclusion. Furthermore, we specifically de-
signed MARS as a policy-based cooperative trust region policy
optimization (TRPO) multi-agent RL algorithm, inspired by the
work of [37]. MARS incorporates sequential decision-making
and policy sharing similar to CMARS. The name “MARS”
emphasizes its similarity to CMARS while distinguishing its
lack of constrained RL approach.

MDP. Regarding the single-agent RL baselines (PPO and
TD3), the underlying MDP is formulated as follows: the state is
constructed by concatenating the local observations of various
slices, as defined in section III-C. These local observations are
the same as those used in CMARS. The action space consists
of different choices for resource allocation per slice based on
the total available resources. The reward function as step k is
defined as follows:

rewardsinglek =

{
−1000×

∑
s∈Sk

vsk if
∑

s∈Sk
vsk > 0,

unallocated PRB count otherwise.
(9)

The local and global state functions of MARS, as well as
the action space, are the same as those of CMARS. However,
the reward function is formulated differently, taking inspiration
from CMARS.

rewardMARS,s
k =

{−1000×
∑

s∈Sk
vsk if

∑
s∈Sk

vsk > 0,
0.5×means∈Sk

(usk) otherwise.
+0.5×mins∈Sk

(usk)
(10)

We acknowledge that the reward functions are not exactly
consistent across baselines and CMARS. However, we un-
derscore the general consistency among them in the sense
that notions of both resource utilization and SLA satisfaction
are incorporated in all baselines, aligned with the literature
[13]. Indeed, our principal objective is to obtain the best
possible performance for each baseline. This impelled us
to systematically experiment with diverse reward function
formulations and decide on the best reward function based
on empirical evaluations. This variance in reward function
definitions stems from the inherent structural distinctions
between different frameworks of single-agent, multi-agent, and
constrained multi-agent reinforcement learning.

Implementation. The KBRL algorithm was implemented
using the original paper’s source code [49], while PPO and
TD3 were implemented using stable baselines framework [53].
We conducted each experiment 4 times with different random
seeds to mitigate randomness. The performance comparison of
algorithms focuses on the number of allocated PRBs and SLA
violations. The average value and standard deviation range are
presented based on multiple runs and 500-step episodes. The
following sections compare the performance of the algorithms
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

(e) Scenario 1 (f) Scenario 2 (g) Scenario 3 (h) Scenario 4

Fig. 3: Performance of algorithms in Class 1 scenarios with a fixed number of slices, showing allocated PRBs and SLA violations. The average of each curve
over the last 10k time steps is included in front of each algorithm on the legend box.

in the training phase with a fixed number of slices and in the
inference phase with a dynamic number of slices.

C. Learning with a Fixed Number of Slices

This section compares the performance of different algo-
rithms during the training phase with a fixed number of slices.
Two reasons motivate this: first, to allow a fair comparison
with previous literature that assumes a fixed number of slices
in both training and inference; second, to prepare our model
for inference in scenarios with a dynamic number of slices. In
other words, our model is capable of inference in scenarios
with a dynamic number of slices by training only with a fixed
number of slices (we delve into more detail in the following
subsection).

Table VI presents the configuration of various scenarios with
a fixed number of slices, providing information on the number
of PRBs and slice instances for each performance level (L1, L2,
and L3) defined in Table V per slice type. In Class 1 scenarios,
we focus on the impact of slice instances and available PRBs
on the performance of the algorithms, considering eMBB and
mMTC slices since the KBRL algorithm does not originally
support uRLLC [5]. In Class 2 scenarios, we extend the analysis
to include uRLLC slices and examine the same influencing
factors. Finally, we evaluate the scalability of the algorithms in
Large-scale scenarios, which involve a larger number of slices.
Moreover, to highlight the impact of resource availability, pairs
of similar scenarios are defined in each class. These pairs are
only different in the number of available resources while the
slice count is the same.

Class 1 experiments. The results of these scenarios are
shown in Fig. 3. In this class, CMARS improves state-of-the-
art by violating 41% fewer SLAs while consuming only 6%
more resources. Across all scenarios, MARS and CMARS con-
sistently yield the least amount of SLA violations. Both of these

algorithms employ cooperative multi-agent RL approaches with
sequential decision-making and policy sharing. It is noteworthy
that the incorporation of constrained RL strategies in CMARS
provides advantages that are significantly pronounced in other
scenarios involving large-scale and dynamic slicing as discussed
later.

KBRL, PPO, and TD3 not only result in higher levels of
violations with significant fluctuations, but they are also highly
sensitive to the availability of resources. The performance
of KBRL is mainly determined by the number of available
PRBs. Particularly, it violates 6 times more SLAs on average
in scenarios 1 and 3 while giving closer performance to
CMARS in scenarios 2 and 4. Moreover, the performance
of KBRL does not improve over time which shows its limited
learning capabilities. We hypothesize that these deficiencies
are rooted in the fact that KBRL only considers immediate
rewards in one time step rather than optimizing for a long-
term summation of rewards. In contrast, MARS and CMARS
account for future rewards which increases their learning
capacity. In particular, they initially exhibit similar performance
to KBRL but gradually improve to satisfy more slice SLAs
while consuming fewer PRBs.

PPO causes 10 times higher SLA violations compared to
CMARS in scenarios 1 and 2 while there are unallocated
resources in the systems that could have been utilized to
decrease SLA violation. PPO not only allocates 8% more
resources than CMARS on average in scenarios 3 and 4, but
it also gives 6 times more SLA violations. TD3 exhibits the
highest resource consumption in this class with significant
fluctuations in SLA satisfaction, indicating unsatisfactory
performance. The poor performance of these single-agent RL
algorithms can be attributed to the increased complexity arising
from the consolidating slice decision-making within a single
agent, in contrast to the distribution of this task among multiple
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agents in KBRL, MARS, and CMARS.
Class 2 experiments. Fig. 4 depicts the results of the four

scenarios in this class, investigating the impact of introducing
a new slice type (uRLLC) on the algorithms’ performance.
CMARS surpasses state-of-the-art in these scenarios, signif-
icantly reducing SLA violations by 80% while experiencing
only 20% increase in resource consumption. KBRL exhibits
strong initial performance in scenarios 6 and 7 but experiences
a notable decline in SLA satisfaction subsequently. This
phenomenon, absent in Class 1, leads us to infer that KBRL
encounters difficulties when novel slice types are introduced
to the network. We speculate that this issue is the result of
a lack of state communication across learners of different
slices. Similarly, MARS gives a non-stable SLA satisfaction
ratio in the final stages of scenario 8. Generally, MARS
consumes slightly fewer resources compared to CMARS by
16.7% but at the cost of 43% higher SLA violations over
all scenarios in this class. These observations highlight the
effectiveness of constrained RL approaches within CMARS
in dealing with variant slice types as CMARS separates the
objectives of decreasing resource consumption and increasing
SLA satisfaction. The effect of the available resources on the
algorithms’ performance follows the same trend as in Class 1
scenarios.

Large-scale experiments. We consider four scenarios with
a large number of slices (refer to Table VI) to evaluate the
scalability of CMARS compared to the baselines. The results
of this set of experiments are depicted in Fig. 5. Generally,
CMARS starts with a number of SLA violations in the early
stages of training but converges to a negligible number while
consuming a modest amount of resources compared to the
baselines. CMARS consistently maintains its performance even
when uRLLC slices are introduced in scenarios 11 and 12.
On average, CMARS enhances state-of-the-art by violating
50% less SLAs while consuming 9% more resources across
all scenarios. The scalability of CMARS is the result of three
design decisions: (i) policy sharing across slice instances of
the same type that reduces the overall number of problem
parameters and increases sample efficiency by reusing agents’
interactions with the environment, (ii) separating the objectives
of resource consumption and SLA violations using reward and
cost functions following a constrained RL approach, (iii) and
the fact that the state-action space size is not proportional to
the number of slices, addressing the curse of dimensionality.

Although PPO and TD3 allocate all the available PRBs
to slices, they fail to satisfy slice SLAs compared to other
algorithms. The challenge posed by high dimensionality is
apparent in these two algorithms, stemming from the concen-
tration of resource allocation decisions for all slices within
a single agent. Additionally, KBRL is not able to properly
utilize the available resources in the network in favor of SLA
satisfaction. In particular, KBRL gives a significantly poor
performance in scenarios with scarce resources (Scenarios 9
and 11). This occurs because KBRL completely decouples
the resource allocation of slices from each other, i.e. each
KBRL learner independently decides the resource allocation
for its corresponding slice, disregarding the state of other
slices. KBRL also fails to account for long-term performance

by focusing only on immediate rewards. Furthermore, although
the SLA satisfaction performance of MARS is close to CMARS
in scenarios with abundant resources (Scenarios 10 and 12),
it gives a really high SLA satisfaction fluctuation in scarce-
resources scenarios. This can be attributed to the superiority
of the constrained RL approach as explained before. Notably,
the advantage of constrained RL methods was less apparent
in the previous, implying that constrained RL holds greater
significance in more intricate situations, such as large-scale
slicing.

Interestingly, during the initial SLA violation period,
CMARS utilizes all the resources to improve SLA satisfaction.
After the SLA violations ratio reaches an acceptable level,
CMARS reduces the PRB allocation while keeping the SLA
violations near zero. This behavior is important in online
training as it improves the existing policy, avoiding costly
explorations that are usual in classic RL methods. It also
suggests that SLA violations in the early stages can be mitigated
by leveraging pre-trained models instead of training from
scratch, as we show later in VI-D.

The training process in this particular class necessitates a
substantial number of iterations. Nonetheless, we posit that
the extended duration of training should not be regarded as a
substantial apprehension for the proposed solution. Remarkably,
the training process is executed prior to the actual deployment
of the RL model. Consequently, the temporal demands of
training do not bear any influence on the performance of the
deployed system. Moreover, the model is meticulously designed
to be able to adapt to variations in the number of slices without
necessitating a retraining process. This confers a noteworthy
advantage over alternative approaches, which typically mandate
retraining whenever adjustments are made to the number of
slices.

D. Inference with a Dynamic Number of Slices

In this section, we assess the performance of the trained
CMARS policies without further training in scenarios involving
a varying number of slices. By training CMARS with a fixed
number of slices, we achieve notable computational efficiency
when applying it to scenarios with a flexible number of slices.
If the model were to undergo training on all different slice
count permutations that are possible in deployment scenarios,
the training duration and resource requirements would grow
exponentially, rendering such an approach impractical.

We also employ previously trained TD3, PPO, and MARS
models as baseline in this section. These models are not further
trained for a fair comparison with CMARS. However, the
KBRL algorithm is particularly allowed for online learning
according to the guidelines of the original paper [5]. We explore
two variants of KBRL in this section: one where the agents start
learning from scratch (KBRL) and another where pre-trained
learners offer a warm start (KBRL-PRET).

Both the CMARS and MARS state variables are independent
of the number of slices. This independence arises from
aggregating the statistics of various slices to be used as the state
(refer to section IV-A). In KBRL, each slice has a dedicated
learner only to which the corresponding slice’s statistics are fed.
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(a) Scenario 5 (b) Scenario 6 (c) Scenario 7 (d) Scenario 8

(e) Scenario 5 (f) Scenario 6 (g) Scenario 7 (h) Scenario 8

Fig. 4: Performance of algorithms in Class 2 scenarios with a fixed number of slices, showing allocated PRBs and SLA violations. The average of each curve
over the last 10k time steps is included in front of each algorithm on the legend box.

(a) Scenario 9 (b) Scenario 10 (c) Scenario 11 (d) Scenario 12

(e) Scenario 9 (f) Scenario 10 (g) Scenario 11 (h) Scenario 12

Fig. 5: Performance of algorithms in Large-scale scenarios with a fixed number of slices, showing allocated PRBs and SLA violations. The average of each
curve over the last 10k time steps is included in front of each algorithm on the legend box.

In these multi-agent RL approaches, when a new slice joins
the network, we introduce the corresponding agent/learner to
the system. Conversely, when a slice departs, its corresponding
agent/learner is removed. For single-agent algorithms, we
consider the network’s maximum potential number of slices and
train a model accordingly. This approach involves concatenating
the statistics of different slices into the agent’s state variable.
When a slice is absent from the system, the relevant positions
in the state variable are populated with zeros.

Fig, 6a, 6b, and 6c show the number of slices present in
the system per slice type and SLA level. Slices of mMTC

and eMBB types arrive in the system following a Poisson
distribution with a rate of 1 slice over 4000, 1500, and
1000 steps in scenarios 13, 14, and 15, respectively. The
corresponding slices’ lifetime duration follows an exponential
distribution with an average of 10K, 15K, and 30K steps.
Moreover, uRLLC slices are considered in scenario 15 where
they join the network with a rate of 1 over 3500 steps and stay
alive with an average of 15K steps.

CMARS demonstrates superior performance compared to the
baselines in terms of both total PRB allocation and ensuring
SLA satisfaction in Fig. 6. PPO and TD3 allocate almost a fixed
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(a) Scenario 13 (b) Scenario 14 (c) Scenario 15

(d) Scenario 13 (e) Scenario 14 (f) Scenario 15

(g) Scenario 13 (h) Scenario 14 (i) Scenario 15

Fig. 6: Slice count per type and SLA level along with the performance of algorithms in scenarios with a dynamic number of slices, showing allocated PRBs
and SLA violations. On the legend box, we included the average of the corresponding curve over the entire 50k time steps in front of each algorithm.

number of PRBs regardless of changes in the number of slices,
consuming almost all available PRBs in the system. However,
we observe that CMARS, MARS, KBRL, and KBRL-PRET
allocate varying numbers of PRBs correlated with the total
number of slices in the system. For example, when the number
of slices increases in step 27, 000 of scenario 13 (6b), CMARS
adapts itself by allocating more PRBs to serve the new slices
(Fig. 6e). As such, we conclude that single-agent RL methods
are not suitable for accommodating flexibility in the number
of slices.

While all multi-agent algorithms demonstrate close perfor-
mance in satisfying a high ratio of SLAs, CMARS outperforms
the others by a narrow margin of 5% (refer to Fig. 6g, 6h,
and 6i). On the other hand, CMARS exhibits superior resource
utilization efficiency, outperforming the baselines by an average

of 27% in scenarios 13 and 14, and by 6% in scenario 15.
KBRL suffers from over-allocation of resources although

it trains online in these dynamic slicing scenarios. While
utilizing pre-trained learners in KBRL-PRET slightly improves
performance, it still fails in competing with CMARS in resource
efficiency. Furthermore, MARS tries to avoid SLA violations
by over-allocating resources since any SLA violation will
cause huge negative rewards (as defined in its reward function).
We posit that MARS’s resource inefficiency is rooted in its
challenge of balancing the intrinsic trade-off between increasing
resource utilization and minimizing SLA violations as it relies
on unconstrained RL.

VII. CONCLUSION

In this paper, we proposed a multi-agent RL-based RAN
slicing approach for the efficient distribution of radio resources
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among slices in scenarios with variable and large numbers of
slices. Our approach involves experience reuse among agents
that sequentially take action based on aggregated statistics
of slices. We also employed a constrained RL algorithm to
explicitly consider slice service requirements. Simulation results
showed that CMARS outperforms state-of-the-art RL methods
in SLA satisfaction by an average of 50% while consuming only
9% more resources in large-scale slicing scenarios. Furthermore,
CMARS demonstrates a negligible level of SLA violations, on
average 8% fewer than state-of-the-art methods, but with an
average resource consumption that is 19% lower in scenarios
with a dynamic number of slices.

Future directions for this work include adding an intelligent
admission control module, as performance guarantees may
not be possible for an unexpectedly large number of slices
given finite resources. Furthermore, the current version of
CMARS uses a simple aggregation function for slice metrics,
but advanced embedding techniques such as variable input
size auto-encoders can be employed to improve aggregation
effectiveness.
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