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Abstract— The prevalence of networked applications creates
enormous earning potential for network service providers, who
regularly conduct network planning and upgrade processes to
keep their businesses profitable. Because the ability of a provider
to retain and grow its customer population has an immediate
impact on profit, the effectiveness of a network upgrade/planning
strategy is intrinsically tied to the resulting changes in customer
behavior. This paper examines the crucial linkage between
network performance, customer satisfaction and profitability of
network service, and presents an analytical modelling approach
from market science perspective. Following this approach, we
derive a generalized analytical forecasting model that projects
service profitability from the underlying network service in-
frastructure and the subscriber population. Its construction is
grounded on a number of influential theories in market science,
economics and psychology, with emphasis on the particularities
of network service operations. Through analysis and simulation
studies, we show how such approach captures key factors and
trends influencing service profitability and how it can significantly
improve the network planning and upgrade processes.

Index Terms— economics, network design and planning, network
applications and services

I. INTRODUCTION

The prevalence of networked applications in business
operations and daily lives creates enormous earning potential
for network service providers (SPs) and at the same
time, fierce competition. Facing a consumer market with
rising demands for quality and impending saturation, SPs
are struggling to keep their customers satisfied and their
businesses profitable. In essence, the SPs must execute
strategies that maximize service profitability. The process of
network planning and upgrades are essential facilitators of
this objective.

In the network service industry, network planning and
upgrades are regularly exercised. The practice is mostly ad
hoc, where investment decisions are made based on past
experiences and “rule of thumb” estimations. The lack of
formal methodology can be attributed to the large process
gap between the network planners and the business analysts.
From the network point of view, the network planners
strive to improve network performance via fine tuning and
optimizing upgrade decisions. Very little concern is given
to the profitability of the resulting investments. From the
business point of view, the business analysts have a very
coarse understanding of how improved network performance
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can lead to future revenue generation. Better network
performance directly translates to more profit is a common
assumption. Considering the intricate relations among network
operations, customer behaviors, and market dynamics that
jointly influence service profitability, such an assumption is
overly naive. A general and comprehensive analytical model
linking these three factors to service profitability is then
extremely beneficial and timely. In surveying literatures, we
find that very little is done in studying the causes of customer
behavior and its effects on network service profitability.
Research in network planning and upgrades often assumes
direct and simple relationship between improved network
performance and revenue. As the customers are the central
source of revenue in the network service industry, they
should be a key focus of analysis when investments in
network infrastructures are made. Research in market science
and economics presents many insightful observations and
empirical studies on service utility, customer behavior,
and profitability, but remains descriptive and incomplete.
This lack of formalization prevents the integration of key
customer and market factors in network planning and
upgrade analysis and produces ineffective network upgrade
decisions that do not reflect customer behaviors and service
dynamics, and do not give good service profitability estimates.

In this paper, we establish an analytical modelling approach
relating the performance delivered by a network service
infrastructure to the satisfaction of its customers and
consequently to the network service provider’s profit. We
show that network upgrade and planning strategies should
be made in accordance to their influences on customer
satisfaction and the resulting changes in customer behavior.
The ability of a service provider to retain and grow its
customer population over time has an immediate impact on
service revenue and is an invaluable indicator for network
upgrade and planning operations. Based on a number of
influential theories in economics and market science, we
show that there is a strong ground for the derivation of well-
behaved mathematical models linking the network service
performance, the customer behavior and the market dynamics
to profit. Based on this approach, we construct a generalized
model, with meaningful parameters to reflect varieties of
network service characteristics, customer attributes, and
market conditions. Through analysis and simulation, we
demonstrate how this model can capture SP service trends
and customer behaviors, and its application to network
upgrade decision processes. We find that the effectiveness of
a network upgrade and planning strategy is highly dependent
on the customers’ access behaviors, QoS sensitivities, service
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expectations, past experiences, service competitiveness and
market growth trends. For the service providers, ensuring that
service quality meets customers’ expectation is of paramount
importance, and service differentiation may improve customer
retention rate resulting in better revenue generation even
without additional customer charges. The benefit of our
approach is not restricted to network planning and upgrades,
but is equally important to network demand forecasting,
network service analysis, and others.

The rest of this paper is organized as follows: Section II
presents a summary of current industry practices and academic
research. Section III presents our modelling approach and
its rationale, while Section IV details the construction of a
forecasting model following our approach. Section V analyzes
the forms of our perception function and the impact of model
parameters, followed by case studies and simulations in
Section VI. Section VII concludes with final remarks and
future prospectives.

II. PROSPECTIVES AND LITERATURE WORKS

In conducting formal analysis of investment decisions, it
is well understood that the soundness of a decision is
dependent on the soundness of the analytical model and
the value of the analyzed data. In the context of network
services, we are presented with a rich reservoir of network
information, ranging from statistical information gathered
from Management Information Base [1] (e.g. via SNMP [2])
to active end-to-end measurements (e.g. pinging). Advanced
tools, such as Cisco NetFlow [3], are even capable of tracking
individual traffic flows. Traditional customer management
processes (e.g. customer relation management) gather vast
amount of customer information in the form of customer
surveys, service usage, trouble-ticket logs, etc.

For a network service provider, its customers, the sole
source of revenue, are the crucial link between network
performance and service profitability. Hence the willingness
of the customers to repurchase services should be the focus
of analysis. In the context of network service operations, the
satisfaction of a customer is strongly influenced by the service
performance he/she receives from the underlying network
infrastructure. It is then apparent that correlating network
performance and customer information in an analytical
process can provide crucial guidance to the effect of network
improvements on customer satisfaction, which ultimately
influences the customer’s intention to repurchase. A number
of market studies on Telecom service operators world-wide
have confirmed the existence of these relationships [4][5][6].

Some works in network research [7][8] have recognized the
importance of analyzing both the customer profile and the
network information in a business decision process. However,
the means of correlating the two aspects are missing [7]
and there is no method for mapping network performance
to service utility [8]. Using real option pricing, d’Halluin

et al. [9] present a method for determining best investment
time for link capacity upgrades. Their work evaluates
profitability as a function of network usage, where customer
dissatisfaction is modelled with a simple discount factor.
Similarly, Jagannathan et al. [10] propose a revenue-based
optimization for network upgrades. The profitability of a
component is assessed based on the amount of customer
traffic it supports, assuming previously unsatisfied customers
are satisfied after upgrades. In these works, little effort is
made in modelling the actual customer behaviors induced by
their perceived service utilities, or on the subsequent shifting
of consumer market dynamics. In our past work [11], we
present a customer-centric framework for network upgrade
optimization. The work projects network QoS performance
onto customer satisfaction and then linearly maps to future
revenue. Some attention is paid to market dynamics in terms
of new market growth. Although the framework is sound, the
relationships are overly simplistic to capture the complexities
of customer behavior and market competitions.

In the area of network charging and pricing, service profit
maximization is often the aim of investigation based on
which various charging schemes are proposed and analyzed.
Mitra et al. [12] consider pricing and routing as a joint
optimization problem in multi-service networks where
revenue maximization could be achieved by not only charging
traffic based on usage but also routing traffic through
low cost routes. Works on usage based charging, such as
[13][14], conduct service charging based on the volume
of customer traffic and access time. The pricing schemes
may be variable such that a customer is charged based on
fluctuating demand. Shakkottai and Srikant study the effect
of multi-ISP competitions on service pricing [15]. Modelling
the competitors as a non-cooperative game, they are able
to draw insightful conclusions about the pricing strategy in
both local and transit ISP markets. Pricing is an important
factor of service profit because it maximizes the monetary
benefit a service provider can draw from its customers. Our
work investigates another important factor of profit: customer
population. By studying the cause and effect of customer
satisfaction, we bring focus and structure to some of the key
factors influencing customer retention and growth.

Our work is also complementary to works on bandwidth
provisioning and network dimensioning. The goal of
bandwidth provisioning and network dimensioning research
is to find the optimal resource allocation that maximizes
network performance and profit. Our model can aid in this
maximization process by providing the mathematically means
to evaluate the various methods of resource allocation in
terms of their impact on customer satisfaction and hence
the resulting customer population. Our model is generic
and applicable to provisioning problems in other network
infrastructures as well. For example, Duan et. al.[16] consider
the bandwidth provisioning and SLA assurance problem
in Service Overlay Networks (SONs). Their analysis is
conducted on customer flows with respect to specific QoS
bounds. Our computation of QoS sensitive service utility
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takes a similar approach. However, in our utility computation,
we also consider network fluctuations as a cause of customer
dissatisfaction. Their work evaluates revenue generation as a
function of link traffic volume, access time and levels of QoS.
They consider variable traffic demand in daily cycles similar
to what we have constructed in our simulation setup. Rather
than computing revenue directly from network performance
and usage as in their work, our model evaluates the impact of
service performance in terms of customer satisfaction which
influences the customer’s intention to repurchase the service.
This could provide an alternative evaluator for their algorithm
in determining the best bandwidth provisioning plan in SONs.

Customer relations and profitability have been the subject
of significant research in the fields of market science and
economics. The well known expectancy-disconformation
theory [17][18] relates service utility to customer satisfaction,
based on the classic adaptation theory from psychology.
The work views expectation as an adapted reference point
for the customers, upon which satisfaction is the result of
customer value judgement on expectation and perception.
Later finding [19] suggests strong relationships among
satisfaction, perceived quality, and disconformation. Anderson
and Sullivan [20] follow up on these works with a descriptive
model relating service quality to customer repurchase
intention. However, their work remains qualitative and does
not address the issue of expectation adjustment and market
dynamics. Bolton [21] proposes a dynamic model for the
duration of provider-customer relationships in continuous
services. Through an iterative expectation update process,
the work formalizes the influence of customer satisfaction
on customer retention and increased sales volume. The
model is refined and tested over a 22-month period with
cellular customers. The linkage between expectancy and
customer retention is coarsely treated in this work and the
impact of divergent service quality on customer experience
is not considered. To obtain service utility, SERVQUAL
[22][23][24] is the most-used and proven model in market
science. It categorizes service utility into five aspects:
tangibles, empathy, assurance, responsiveness and reliability.
The model is focused primarily on service industries and
relies on consumer survey based data collection. In a recent
study [5], the SERVQUAL model has been shown to capture
customer’s quality perception of China’s Telecommunication
services. Also in this work, network quality is found to be an
additional SERVQUAL aspect for network services.

With the vast amount of existing conceptual and empirical re-
sults from market science and economics, we believe there is a
strong foundation for deriving an analytical forecasting model
for network service operations. We propose a methodology for
formalizing the relationships between network performance,
customer satisfaction, and service profitability. The approach
covers the computation of utility for network services, the
derivation of customer satisfaction based on service utility,
and the projection on service profitability from customer
repurchase intentions and market dynamics. Following this
approach, we construct a network service specific forecasting

model capable of forecasting service profitability induced
by network infrastructure improvements. In the context of
this paper, we make the following assumptions: the network
service market is an open market with multiple competitors;
The customer is rational in his/her purchase decisions and
does not exit the service market; All competitors of the
network service market charge similar price, have identical
technology attractiveness from the customer’s perspective and
employ similar advertisement strategies; the pricing for the
service is flat rate subscription based. The computation of our
network utility functions is theoretical; It relies on end-to-
end QoS measurements of the customers and knowing the
access behavior (traffic flow and access time) and the QoS
requirements of the customer. Our prior work [11] provides
details into how such measurement could be conducted and
computed in practice.

III. A MARKET SCIENCE METHODOLOGY

In this section, we show how network performance, customer
satisfaction and service profitability are related in market
science research, and present our modelling methodology. A
key driver of our approach is the well-established expectancy-
disconformation theory [17][18] which relates expectation,
perceived quality and disconformation to customer satisfac-
tion. The perceived quality refers to the service utility a cus-
tomer obtains from service usage, while expectation represents
the expected utility a customer formulates before using the
service. Disconformation is then the discrepancy between the
expectation and the perceived quality. Anderson and Sullivan
[20] refined this theory in a customer satisfaction framework
(Figure 1).

Fig. 1. Customer Satisfaction Model (Anderson and Sullivan)

They consider disconformation to have a positive and a
negative component that are influenced by expectation
and perceived quality. The customer satisfaction is then a
function of perceived service quality and both components
of disconformation. The perceived quality is affected by
expectation based on the observation: when the difference
between expectation and perceived quality is small, customer
tends to equate perception to expectation. Furthermore,
the level of disconformation is positively related to ease of
evaluating quality. For network services, the ease of evaluating
quality is high as service quality can be readily measured based
on the network performance and the application requirements.
Hence there is very little ambiguity in customer’s perception
of quality, and we simplify away this factor in our customer
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satisfaction relationships. Furthermore, their claim that
expectation influences perception is controversial as a number
of important findings [21][25][26][27] supports the theory
that perceived quality influences expectation via a dynamic
update process. Based on these works, we reverse Anderson
and Sullivan’s expectation and perception relationship and
formulate an expectation update process.

Fig. 2. Modelling Service Profitability

Figure 2 presents our modelling approach. Our view of the
customer satisfaction model (CSAT) is a modified Anderson-
Sullivan model. The expectation model updates a customer’s
future service expectation based on past expectations and
current utility perception through a recurrent process in
our expectation update model. The CSAT model takes as
input the service utility, referred to as the “antecedent”
of customer satisfaction [20]. It is computed through a
utility model that operates on network performance and
service attributes. Specialized from SERVQUAL model, we
consider three aspects of network services: service quality,
service availability and customer care. The “consequence” of
customer satisfaction is customer’s intention to repurchase
[20]. It is captured in our customer behavior model, with
regard to market competition and customer desire, to assess
subscriber population change via a Bayesian decision process.
The output of the customer behavior model is an estimation
of the market segmentation: service provider retention,
competitor retention, churn, and turnover from competitors.
In our market dynamic model, the attractiveness of the
service to new entry customers is projected using the Bass
growth model [28]. The service profitability is then computed
based on the revenue generating potential, derived from the
market segments, and the service cost. Since network services
are continuous where customers make periodic repurchase
decisions (e.g. monthly for xDSL services), the entire process
can be iterated through consecutive decision periods, providing
long term profitability forecasts of network service operations.

We believe a forecasting model developed from this market
science methodology provides significantly better assessment
on the impact of network performance on network service
profitability, compared with the simple linear models used in
network planning research today. In the following section,

we detail the construction of such an analytical forecasting
model following our methodology and show how it can
capture important market trends and customer behavior in
later sections.

IV. FORECASTING SERVICE PROFITABILITY

In this section, we detail the construction of our analytical
model. We first introduce the computation of utility based on
network service performance (Section IV-A) and then con-
struct the customer satisfaction model (Section IV-B), followed
by a formalization of the expectation update process (Section
IV-C). Formulating the outcome as a decision problem, we
estimate the market segmentation in customer behavior model
(Section IV-D) and then deduce the growth of new entry
customers in market dynamics model (Section IV-E). Finally,
service profitability is computed as a function of revenue
and cost (Section IV-F). Table I presents a list of the model
parameters.

TABLE I
LIST OF MODEL PARAMETERS

A. Service Utility and Perceived Utility

As noted by Dabholkar [29], customer satisfaction and utility
are not the same construct. Satisfaction is a customer’s
subjective evaluation of the service performance, while
utility is its objective measurable quantification. There are
two concepts of utility presented in this section: service
utility and perceived utility. Service utility denotes a set
of service related performance metrics that are measurable
or observable. Together, they yield a single quantitative
evaluation of utility: the perceived utility. We first discuss
service utility and its computation.

The SERVQUAL model [23] identified tangibles, empathy,
assurance, responsiveness and reliability as the five major
aspects of service quality. In the context of network services,
tangibles, empathy, assurance and responsiveness can be
grouped together under customer care, including helpdesk
support, installation, troubleshooting, billing service, on-call
technical support, etc. Reliability is readily mapped to network
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service availability, often regarded as an essential factor in
network service contract. Empirical studies done in Telecom
services from Germany, US, and China [5][6] confirm the
applicability of SERVQUAL to network services and suggest
network quality as an additional aspect of SERVQUAL.
In accordance, we consider service utility U as consisting
of three basic aspects: service quality, service availability,
and customer care. Service quality captures the network
quality aspect by considering customer observed network
QoS performance. Service availability represents the network
availability experienced by the customer. The three service
aspects are further documented by the TeleManagement
Forum (TMF) in its SLA handbook suite [30].

To compute service quality Q, we consider factors related to
network QoS of the customer’s traffic flows, the application
requirements, and the customer’s own preferences. Let a
service path denote an end-to-end network path carrying a
customer’s service traffic running a particular application.
For a service path j of customer i, the service quality
Qij is computed by considering a networked application
to belong to one of two categories: QoS-sensitive services
and QoS-insensitive services. QoS-sensitive services are
applications whose satisfactory performance is contingent
on fulfilling certain QoS requirements. For example, a
multimedia stream has stringent minimum throughput and
maximum round-trip delay bounds, while a web browsing
session requirement is more tolerant. On the other hand,
QoS-insensitive services are applications that do not have
specific QoS requirements. FTP and P2P applications are
good examples of this. Their performance is best computed
based on an overall measurement of throughput quality.

For QoS-sensitive services, we model Qij based on the
concept of defective service instances (DSI). We define a
defective service instance experienced by a customer i on a
service path j, denoted by Dij , as a series of consecutive
network QoS measurements whose values are below the
QoS requirements of the supported application. We further
observe that during the course of a network trouble, the QoS
measurements may fluctuate wildly above and below the QoS
requirements. Hence a network flux parameter is introduced to
account for this fluctuation. We say that the first observed QoS
measurement below the QoS requirements signals the onset of
a Dij instance, and ends when up to network flux number of
consecutive QoS measurements are recorded as satisfying the
QoS requirements. Let Aij be the total access time of customer
i on service path j, and l(Dij) be the time length of Dij , then
Qij takes on the following form:

Qij =
Aij −

∑
l(Dij)

Aij

(1)

for QoS-sensitive services

For QoS-insensitive services, we model Qij based on the
average throughput (P a

uij for upload and P a
dij for download)

and the maximum bandwidth (P o
uij and P o

dij respectively). The
maximum bandwidth is the capability limit of the customer’s
service offering (e.g. 2Mb/s customer download ceiling for

xDSL service). Let γ1 and γ2 represent the download and
upload performance preferences of the customer, then Qij is
computed as:

Qij = γ1
P a

dij

P o
dij

+ γ2
P a

uij

P o
uij

(2)

γ1 + γ2 = 1, for QoS-insensitive services

Given the above formulation of service utility. We can now
define the computation of perceived utility. Let Wij denote
the percentage of time a service path j of customer i is
deemed available, Ci be a scalar rating (between 0 and 1) of
customer care service for customer i, SPi be a set of service
paths customer i uses, and α1, α2, and α3 be customer i’s
weight preferences for service quality, service availability, and
customer care respectively, the perceived utility for customer
i is expressed as:

Ui =
α1

∑
j (Qij×Aij)∑

j Aij

+
α2

∑
j (Wij×Aij)∑

j Aij
+ α3Ci

(3)

where j ∈ SPi and α1 + α2 + α3 = 1

Taking as input the network and service performance of
customer i’s service paths, Equations 1, 2 and 3 yield the
perceived utility of customer i, normalized between 0 and 1.
This is a unified quantification of the service utility according
to customer’s service preference and serve as the input to
the perception and the discomformation functions, described
in Section IV-B. We note that the presented utility model is
theoretical. Work in [11] gives a pragmatic framework on
how the above computations can be performed in practice.
Furthermore, Section VI also provides some demonstration
on how such computation could be carried out in regional
networks.

B. Customer Satisfaction (CSAT)

Customer satisfaction can be modelled through the interaction
between perceived utility and expectation [17][18], expressed
as a linear combination of a perception function and a dis-
conformation function. Let f1 be the perception function, f2

be the disconformation function, Upi and Uei be the perceived
utility and expected utility (i.e. expectation) of customer i, then
the general form of customer satisfaction Γi for a customer i
is given in [20] as:

Γi = f1(Upi) + f2(Upi − Uei) (4)

The perception function gives the baseline customer
satisfaction obtained from service utility, while the
disconformation function modifies this satisfaction value
based on the discrepancy between perceived utility and
expectation (i.e. disconformation). The initial value of Uei

for new entry customers of a service can be computed
using expected network service performance derived from
service contract terms. This perception-disconformation
theory for customer satisfaction has been confirmed in many
empirical market research over the years, including very
recent studies done in the Telecom sectors [4][5][6]. In the
subsections below, we derive general mathematical forms for
the perception and the discoformation functions.
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1) The perception function: The perception function f1 is
a mapping between perceived utility and baseline customer
satisfaction. It is described in [20] as an increasing concave
function starting at the origin (i.e. f1(0) = 0). Its general
shape is conceived based on the observation that as the utility
increases, the customer becomes less sensitive to changes in
utility. We express the rate of change of the perception function
as:

f
′′
1 (x) = µ2x− µ1 (5)

where x = Upi, and µ1,µ2 ≥ 0

The parameters µ1 and µ2 control the concavity of the
perception function. In Section V, we will discuss our choice
of this particular form f ′′1 . Integrating Equation 5 yields:

f
′
1(x) =

∫
f
′′
1 (x)dx =

µ2

2
x
2 − µ1x + Ψ (6)

where x = Upi, and µ1,µ2 ≥ 0

The constant Ψ is a weight that ensures f ′1(x) remains positive
(i.e. f1 is an increasing function) for all possible values of x.
The perception function then takes on the following form:

f1(x) =

∫
f
′
1(x)dx =

µ2

6
x
3 − µ1

2
x
2

+ Ψx + C (7)

where x = Upi, and µ1,µ2 ≥ 0

The constraint f1(0) = 0 yields C = 0.

We observe that the domain of f1 is bounded between 0 and 1.
Moreover, we would like f ′′1 (x) to be non-positive and f ′1(x)
to be non-negative for all possible values of x, and control the
maximum value of f1 via parameter ωp (i.e. f1(1) = ωp). We
thus have the following set of constraints on parameters of f1:





µ1 ≥ µ2 from f ′′1 (x) ≤ 0
Ψ ≥ µ1 − µ2

2 from f ′1(x) ≥ 0
Ψ =

µ1
2 − µ2

6 + ωp from f1(1) = ωp

µ1, µ2 ≥ 0, ωp > 0

(8)

Satisfying the constraint set of 8 entails solving the following
inequality:

µ1

2
− µ2

6
+ ωp ≥ µ1 −

µ2

2
(9)

where µ1 ≥ µ2 and µ1,µ2 ≥ 0, ωp > 0

By solving Inequality 9, we can express the constraint on µ1

as:

0 ≤ µ1 ≤ 2ωp +
2

3
µ2 (10)

The constraint of 10 suggests that the upper bound of µ1 is
positively related to the upper bound of µ2. As we would
like the concavity parameter µ1 to have the largest possible
value range, and given the constraint µ1 ≥ µ2, then we obtain
the maximum value range of µ1 when µ1 = µ2. This leads
to a desirable simplification of f1. Figure 3 demonstrates the
general characteristics of the perception function. In summary,
f1 is a function of perceived utility, with the following form:

f1(x) =
µ1

6
x
3 − µ1

2
x
2

+

(
µ1

3
+ ωp

)
x (11)

where µ1 ≤ 6ωp, µ1 ≥ 0, and ωp > 0

Fig. 3. The Perception Function

2) The disconformation function: The disconformation func-
tion f2 accounts for the subjectivity of customer evaluation
given a reference point (i.e. expectation). Tversky and Kah-
neman [31] found that “losses relative to a reference value
looms larger than gains”. Grounded on this psychological
theory, Anderson and Sullivan [20] suggest that customer
satisfaction is mildly increasing when perceived utility exceeds
expectation and is significantly reduced when perceived utility
falls below expectation. We formalize this interaction as a two-
piece increasing function:

f2(x) =

{
ωdpx x ≥ 0
ωdn(x + 1)µ3 − ωdn x ≤ 0

(12)

where x = Upi − UTILei, µ3 ≥ 0, and ωdp,ωdn > 0

We observe that the domain of f2 is bounded between
-1 and 1. The function is continuous (i.e. the two piece-
wise functions converge at x = 0). The parameter ωdp

controls the maximum value of f2 (i.e. maximum positive
disconformation) while ωdn controls the minimum value of
f2 (i.e. maximum negative disconformation). µ3 regulates the
impact of negative disconformation on customer satisfaction.
The general characteristics of the disconformation function is
illustrated in Figure 4.

Fig. 4. The Disconformation Function
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3) Customer satisfaction: From Equation 4, 11 and 12, we
observe that Γi is bounded between −ωdn and ωp + ωdp.
In general, the choice of ω parameters should follow:
ωp ≥ ωdn > ωdp. ω should be fixed for all customers of a
service and ωdp should be small compared to ωp.

Fig. 5. The Customer Satisfaction Function

As we observe in Figure 5, the rate of change in customer
satisfaction differs significantly when perceived utility falls
below and exceeds expectation. The rate and severity of
dissatisfaction (controlled by ωdn and µ3 respectively) reflect
different customer’s tolerance to negative disconformation.
Our formalization of the customer satisfaction fits a rational
customer’s subjective evaluation of the service utility, and
conforms to empirical findings [17][18][20][31]. In addition,
we offer a set of well-defined control parameters to fit different
service characteristics, and individual customer’s preferences
and sensitivities.

C. Expectation Update

Empirical studies [27][32] suggest that a customer adjusts
his/her future expectation of service utility based on
current expectation and perception. The studies also find
favorable disconformation increases future expectation while
unfavorable disconformation has the opposite effect.

Through an expectation update process, we deduce a
customer’s future expectation as a function of the customer’s
current expectation and disconformation, subject to two
psychological factors: assimilation and experience. When the
relative level of disconformation is small, a customer tends
to equate the perceived utility to the expected utility, due to
assimilation effect [21]. Furthermore, as a customer perceives
consistent service utility over time, he/she gains experience
with the service, and consequently is less sensitive to short
term utility fluctuations [27]. In other words, the customer
gradually establishes long term reputation of the service.

Let κa be the assimilation factor, a customer i’s future
expectation U∗

ei has the following form:

U
∗
ei =





Uei

∣∣∣∣
Upi−Uei

Uei

∣∣∣∣ ≤ κa

h(Uei)[Upi − Uei]
+Uei

otherwise

(13)

U
∗
ei is constrained to 0 ≤ U

∗
ei ≤ 1

The parameter κa is constrained (0 ≤ κa ≤ 1) and should be
a very small value (e.g. 0.01). The function h(Uei) adjusts the
expectation as a factor of the disconformation. Our general
form of Equation 13 is established based on assimilation the-
ory of economics [26], where new information are assimilated
as an aggregate quantity over time. According to literatures,
Equation 13 should exhibit three characteristics. First, given
the same expectation, a negative disconformation is weighed
much more heavily than a positive disconformation [31]. This
effect is similarly reflected in the construct of disconformation
function. Second, a positive disconformation has a greater
impact on U∗

ei as Uei decreases, and conversely a negative
disconformation has a greater impact on U∗

ei as Uei increases
[21]. Third, the longer a customer experiences consistent
utility, the less impact on expectation should a short term
utility fluctuation have [27]. Based on these characteristics,
we construct h(Uei) as such:

h(Uei) =





βGβm
M (1 − Uei)

Upi−Uei
Uei

> κa

βLβm
M Uei

Upi−Uei
Uei

< −κa

(14)

where 0 ≤ m ≤ Υ, 0 ≤ βM ≤ 1, and 1 ≤ βG < βL

βG and βL are the positive and negative disconformation
factors respectively. βM is the memory factor and m the
memory length. The term βm

M controls the significance of
the new information (i.e. current disconformation) on the
aggregate (i.e. expectation). As m increases, βm

M decreases.
We use integer values for m, representing the number of
repurchase evaluations the customer underwent while using
the service. The constant Υ represents the maximum memory
length a customer keeps track of. The value of m is updated
(m∗) based on the following equation:

m
∗

=





m + 1
∣∣∣ Upi−Uei

Uei

∣∣∣ ≤ κa

m− 1 otherwise
(15)

m
∗ is constrained to 0 ≤ m

∗ ≤ Υ

The initial value of m is set to 0. We infer from Equation
15 that as customer regularly experiences consistent service
performance, he/she is more insulated from short term
performance fluctuations. Conversely, when performance
significantly fluctuates over time, the customer is unable to
make an experienced evaluation of the service, and hence
his/her reliance on new information does not diminish with
time (i.e. the divergence effect).

In this section, we formally constructed the process of expecta-
tion update, with consideration for assimilation and experience
effects. The value of expectation is bounded between 0 and
1, and is adjusted based on perceived utilities in an iterative
fashion.
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D. Customer Behavior: Repurchase Decision and Market Seg-
mentation

Repurchase intention is the direct consequence of customer
satisfaction [20]. Researches in inter-temporal planning (e.g.
[25]) state that customers re-estimate purchase decisions pe-
riodically based on previous estimates and new informa-
tion. Furthermore, there exists a strong linkage among cus-
tomer satisfaction, future expectation, and repurchase intention
[20][21]. We formulate the customer’s repurchase intention as
a decision problem, subject to the following assumptions: we
assume the customer is rational in his/her purchase choice
and does not exit the service market (i.e. the customer seeks
maximization of future satisfaction); we further assume all
competitors in the same service market charge similar price,
have identical technology attractiveness from the customer
perspective, and employ similar advertisement strategies. Al-
though the above factors could be included in our analysis,
we discount them for sake of simplicity. In practice, with
the fierce competitions exist among SPs, these assumptions
often hold. The customer’s decision to use a service from
a particular service provider is primarily influenced by the
customer’s current level of satisfaction and expected future
utility. The finding of [32] suggests that when a customer
chose a service brand that meets his/her desire, he/she is
likely to choose the same service brand again regardless if
the brand has the highest expected performance in the market
or not. Therefore, we consider a customer i will stay with a
service provider if his/her customer satisfaction at the end of
the current service period is above such a desire threshold ΓD

i .
If below ΓD

i , the action of choosing a new service provider is a
decision problem in which the customer attempts to maximize
his/her future satisfaction based on his/her future expectations
of similar services. Let Ueiv be the future expectation of
service v estimated by a customer i, let k be the service
customer i has just used, let Φ be the set of all similar services,
and let κr be the resistance factor of customer i, then we can
express the decision problem as:

max {f1(Ueik) + κr, f1(Ueiv)} (16)

∀(v ∈ Φ, v 6= k)

The parameter κr is a small satisfaction modifier representing
the extra effort (e.g. service switching time, etc.) customer i
has to spend in order to switch service provider. Equation 16
relies on precise knowledge of a customer’s future expecta-
tions. In practice, a customer’s expectation of services he/she
has not used can at best be estimated from service reputation
with some uncertainty. Hence, we reformulate Equation 16 as
a Bayesian decision problem [33]. Let Fev(µev, σev) be the
probability distribution of expectation of service v, with mean
µev and standard deviation σev , our decision problem can be
expressed as:

max

{
f1(Ueik) + κr,

∫
f1(µev)dFev(µev, σev)

}
(17)

∀(v ∈ Φ, v 6= k)

In Equation 17, f1(µev) is the loss function and Fev(µev, σev)
is the prior distribution. Given overall customer turnover rate
in the market, Equation 17 could also be used in a random

sampling process to forecast service switching decisions of
customers from other competitors. Ultimately, applying this
decision process to all consumers in the market classifies the
consumer population into three disjoint partitions: the set of
customers with intention to repurchase the same service k
(ΩR), the set of customers choosing not to use service k (ΩN ),
and the set of customers switching to service k from another
service provider (ΩP ).

E. Market Dynamic

Up to this point, we have considered the partitioning of the
existing consumer market. The entry of new consumers in
the market could be described by the Bass growth model
[28]. This model is applicable to network service industry, as
suggested by the techno-economic studies on European xDSL
market penetration [34]. The Bass model categorizes new
consumers that enter the market into two categories: innovators
and imitators. The innovators enter the market without any
incentives and they are the main consumer faction during
the inception of the market; the imitators are attracted to the
market by the innovators and they are the main consumer
faction as the market matures. The hazard function of the
Bass model, describing the conditional probability of new
consumers entering the market, is formally expressed [28] as:

f(T )

1− F (T )
= p + qF (T ) (18)

where 0 < p < q < 1 and p + q = 1

f(T ) is the probability density function over time T , while
F (T ) is the cumulative function over T . The parameter p is the
coefficient of innovators and q is the coefficient of imitators.
In general, p is much smaller than q. Rewriting and integrating
Equation 18 yield:

∫
dF

p + (q − p)F − qF 2
=

∫
dT (19)

The solution to Equation 19 yields the cumulative function
F (T ) [28]:

F (T ) =
1− e−(p+q)T

1 + q
p e−(p+q)T

(20)

and the density function f(T ) [28]:

f(T ) =

(p+q)2

p e−(p+q)T

(
1 + q

p e−(p+q)T
)2 (21)

Figure 6 illustrates the characteristics of f(T ). The values
of f(T ) when T < 0 has no practical meaning since T = 0
indicates the inception of the market. For ease of comparison,
the p and q parameters in Figure 6 do not conform to the
constraint p + q = 1. We observe that p specifies the initial
consumer population size (i.e. f(0) = p), and q affects the
arrival probabilities of the imitators.

Let S be the market potential (i.e. the maximum number of
consumers), and L(t) be the mapping function that maps real
time t to time domain T of the Bass model, then we can
represent the number of entry customers that choose service
k as:
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Fig. 6. Probability Density Function of Bass

ΩN =
ΩR + ΩP

ΩR + ΩP + ΩN

S[F (L(tc+1))− F (L(tc))] (22)

The time value tc denotes the end of current service period
(i.e. current evaluation time), while tc+1 denotes the time
of next evaluation. The last term in Equation 22 is the
cumulative probability of new consumers entering the market
from current time to next evaluation time. We estimate
that a fraction of them will choose service k based on
the competitiveness of service k at current time. This is
represented by the first term of Equation 22.

In the above discussion, we have considered a single service
market. For SPs that has multiple service offerings, a market
dynamic should be established per service. We will show an
example of this in Section VI.

F. Service Profitability

From our forecast of consumer market segmentations at time
tc, the revenue generating potential Rk of service k in [tc, tc+1]
time interval is:

Rk = (ΩN + ΩP )× ξN

+ΩR × ξR
(23)

The parameters ξ represent the price of service k to new
customers ξN and old customers ξR in time interval [tc, tc+1].
Follow from Equation 23, the profitability of service k is then:

PROFk = Rk − COSTk − PENk (24)

The parameters COSTk and PENk are the cost of running
service k and the estimated monetary penalties (e.g. due to
contract violation, etc.) from time tc to time tc+1.

V. MODEL ANALYSIS

In Section IV-B, we have formalized the customer satisfaction
function based on a number of literatures. In the context of
network services, we now discuss our particular choice of the
perception function and analyze the impact of the parameters
in the model.

A. Choice of the Perception Function

In constructing the perception function, we also considered
two other simple equation forms (Equations 25 and 26). Both
of them are concave increasing functions in the domain of 0
to 1.

f1(x) = ωpx
µ1 (25)

where 0 ≤ µ1 ≤ 1, ωp ≥ 0, and 0 ≤ x ≤ 1

or

f1(x) = 1− e
−µ1x

+ (e
−µ1 − 1 + ωp)x (26)

where µ1,ωp ≥ 0, and 0 ≤ x ≤ 1

Similar to Equation 11, the µ1 parameter controls the
concavity and f1(1) = ωp. Figure 7 illustrates the
characteristics of Equations 11, 25 and 26.

Fig. 7. Forms of Perception Functions

The solid curves are the forms of Equation 25 with varied con-
cavities. These forms are useful in modelling services that have
high customer satisfaction even when utility is low, and the
effect of desensitization is not significant when utility is high.
The dot slash curve is the perception function of Equation 11
with maximum concavity. The dash curves are the forms of
Equation 26 with varied concavities. Unlike Equation 11, the
forms of Equation 26 do not place constraint on µ1. However,
for curves with similar concavity, the forms generated by
Equation 11 delay the severity of desensitization until higher
utility level. In our work, Equation 11 is chosen because it
appears to fit what we can expect from network services best:
the increase in customer satisfaction will be approximately
linear to increase in utility when utility level is low and the
effect of desensitization does not become very significant until
utility level is high (i.e. over 0.7). In addition, the concavity
factor of Equation 11 is more meaningful to analysis (i.e.
f ′′ is in linear form). Higher orders of polynomials are also
considered, but they do not add significant control to concavity.
In practice, the choice of a best form should be network service
specific and be determined based on empirical data gathered
for the analyzed service.
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B. Impact of The Perception and Disconformation parameters

The parameters ωp, ωdp and ωdn define the range of customer
satisfaction values. The maximum disconformation parameter
ωdp should be much smaller than the maximum perception
parameter ωp as utility above expectation does not induce
significant satisfaction improvement from customers. The
combination of ωp and ωdp gives the maximum ceiling value
of customer satisfaction Γ. A value above 1 is not meaningful
as Γ is bounded between 0 and 1. However, a value of below
1 is quite feasible, as Γ may be influenced by non-service
related factors (e.g. a chronical complainer is unlikely to be
fully satisfiable regardless of delivered service utility). The
ωdn controls the maximum impact a negative disconformation
has on perception. When ωdn is large, the degree of negative
disconformation is also large. As Γ is non-negative, ωdn

should be at most as large as ωp.

When the service utility is fixed, the parameter µ1 of the
perception function is linearly related to customer satisfaction.
A higher µ1 value results in a higher customer satisfaction
value. Figure 8 illustrates the interactions among µ1, utility,
and customer satisfaction.

Fig. 8. Effect of µ1 on Perception

Figure 8 suggests that customer satisfaction is particularly
sensitive to the choice of µ1 when the utility value is moderate
(i.e. 0.4 ∼ 0.8). For instance, given a utility value of 0.6,
the customer satisfaction is as low as 0.6 when µ1 = 0,
and as high as 0.95 when µ1 = 6. With high µ1 values
(i.e. µ1 ≥ 3), the customer satisfaction increases much more
rapidly when utility is below 0.5. We can infer from Figure
8 that when µ1 is high (i.e. µ1 ≥ 3), it is more beneficial
for the network service provider to keep service utility at a
moderate range (i.e. U ≈ 0.8). However, this inference holds
only if the effect of disconformation is low (i.e. the customer
expectation is met or the customer has high tolerance to
negative disconformation).

When perceived quality falls below expectation, the impact of
negative disconformation on customer satisfaction could be
significant. Parameter µ3 controls the rate of this reduction.
When utility is fixed, an increase in µ3 exponentially decreases

customer satisfaction (Figure 9). However when negative
disconformation is very low (i.e. below 0.1), increases in
µ3 approximately result in a linear reduction of customer
satisfaction. We can thus infer that network service providers
should always ensure that the perceived utility of a customer
does not fall below his/her expectation.

Fig. 9. Effect of µ3 on Disconformation

In summary, for network services, where both µ1 and the
customer expectation are high (i.e. µ1 ≥ 3 and Uei ≥ 0.7),
customer satisfaction does not differ significantly when
perceived utility exceeds expectation. However, when
expectation is not met, negative disconformation will have
a significant impact on customer satisfaction, depending on
the value of µ3. Hence, to retain customers, it is sufficient
for a network service provider to deliver service at a
quality level matching the expectations of the customers,
without maximizing their perceived utilities. However, this
observation holds only if the customer does not have a low
expectation of the service. Low service expectation yields
overall customer satisfactions below the desire threshold ΓD

i

and drives customers to evaluate alternatives. We suggest the
parameters of Γ to be acquired through data fitting techniques.
The network performance of customers could be obtained in
conjunction with customer satisfaction surveys overtime. The
computed service utility should be plotted against customer
satisfaction and then use best-fit techniques to determine the
most appropriate function parameters.

C. Impact of other model parameters

Service utility parameters for QoS-insensitive services
influence a customer’s preference proportioning between
upstream throughput performance γ1 and downstream
throughput performance γ2. This proportioning is very
application and user dependent. For P2P applications, we
typically expect γ2 to be much higher than γ1, whereas
for FTP-based applications, the proportioning depends
on customer’s access behavior. For customer preference
parameters α1, α2 and α3, the proportioning fundemantally
influences the degree of impact each aspects of service utility
has on the overall customer satisfaction, and therefore service
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profitability. For example, when customer care preference
α3 is high, enhancing network infrastructure does not
constitute good investment strategy. Hence it is important
for a forecasting model to identify such customers as they
influence the profit margin of network upgrades. All of the
service utility parameters should be acquired via structured
SERVQUAL customer survey. Survey methods used in
Telecom customer satisfaction studies [5][6] could serve as
guides.

In the expectation update process, the assimilation factor
κa controls the likelihood of the assimilation effect. The
perception of difference does not differ significantly between
humans and should be small [26] (e.g. κa = 0.01). The
parameters βG and βL are modifiers of disconformation. If
we consider Uei = 0.5, the impact of disconformation on
expectation is differentiated by βG and βL. The value of
βG and βL should be equal to or greater than 1, with βL

larger than βG. The parameter βM considers the effect of
past experience. A larger βM causes current disconformation
to be evaluated more significantly on expectation with regard
to experience, and the dissipation of this impact is slower
as experience accumulates. More specifically, a customer
without prior experience is not influenced by βM (i.e. β0

M ).
The cumulation of experience (i.e. m ≥ 1) rapidly lessens the
impact of current disconformation on expectation, represented
by βm

M . We further notice that experience is accumulated
with consistent performance, whether good or bad, and can
be destroyed by inconsistency.

The Bass model parameters p, q and S governs the general
market growth pattern in a service market. The parameter
values are determined via techno-economic studies (e.g. [34])
or growth analysis of similar service markets in the past.

VI. CASE STUDIES AND SIMULATION

In this section, we demonstrate the effectiveness and
practicality of our approach through two sets of case studies
and simulations. First, we show how our models could help
in a network upgrade decision process and illustrate how key
economic, customer and market factors that influence network
service planning are captured in our models. Then we analyze
the performance of a typical regional ISP network through
simulation and show that by representative flow tracking, our
model can be applied to WANs. A comparative analysis of
the network infrastructure is conducted from three different
perspectives: network utilization, customer traffic flow, and
customer satisfaction.

As the basis of our first discussion, we simulate a network
infrastructure and customer population that is representative
of a real world network planning scenario, onto which we
offer three equally promising upgrade strategies. We show
that a sound upgrade decision could not be made by only
considering network performance, even with the ability to
track customer’s access behaviors. We then present a step by

step application of our model incorporating the customer and
economic factors and show that service profitability derived
from customer satisfaction could be an effective decision
indicator for network planning and upgrades. We further
demonstrates how our expectation model captures the effect
and durability of customer loyalty over long term and how
different market dynamics play a crucial role in network
service planning. Through this discussion, we also show how
the model formally relate and explain some important market
observations on customer behaviors and growth.

Fig. 10. Simulation Topology

Fig. 11. Daily Aggregate Load of A Regional ISP Network

The network infrastructure as depicted in Figure 10 is
realized in NS2 [35]. The link capacity is set to 24 Mbps.
Two regions of xDSL customers (A1 and A2) and two
regions of VPN customers (A3 and A4) generate a total of
20 service paths (e.g. A1 1, A2 1, etc.). Each service path is
used by 5 customers with similar application characteristics,
QoS requirements, and access time (Table II). However,
each customer varies in performance preferences and service
expectations. The routing in this setup is static, such that all
customer flows will follow the pre-established paths. As the
customers in regions A1 and A2 represents xDSL customers.
We have chosen the traffic mix to be primarily a mix of web
based light traffic (web browsing, email, etc.) and regular
data transfer occurring in prime time after work. We also
disperse sources of semi-permanent and permanent FTP
traffic to represent P2P and other constant data transfer traffic
often present in the SP networks. For the VPN customers,
CBR traffics are used to represent their constant resource
demand. For realism, the simulated network infrastructure
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TABLE II
CUSTOMER SERVICE PATHS

and customer behaviors are designed to facilitate traffic
intermixing among customers of different service classes
and introduce a varied mix of customer access behaviors.
Additional background aggregate traffics modelled as Pareto
flows establish a daily cyclic pattern (Figure 11). These
aggregate traffic are introduced to obtain the desired average
link utilizations (Figure 10), yet still reflect the typical daily
network load observed by a SP. Details on the setup of
aggregate traffics are presented in the latter simulation case.
In our experiments, the 24 hr. daily cycle is mapped to 120
min. simulation time so that each simulation run is within
reasonable time bound. With this setup being the network
conditions and customer population at the deployment time
of the network upgrades, we consider four upgrade options:
no upgrade (base case), upgrade links L1 and L2 to 48 Mbps
(option 1), upgrade links L2 and L3 to 48 Mbps (option 2),
and upgrade links L2 and L4 to 48 Mbps (option 3). All three
upgrade options have the same cost. Option 1 is an aggressive
upgrade strategy aimed at pleasing xDSL customers, while
option 2 and 3 are more balanced strategies. Each of the
upgrade option is simulated multiple times in NS2 through
a 24 hr. day (i.e. 120 min. simulation time) and the QoS
measurements (i.e. delay and throughput) are taken at 1
min. intervals. The average measurements of each interval
across runs are used to compute network performance for the
customers.

When taking into account the customer access behaviors (i.e.
customers’ service path and service time), we could compute
the perceived utility of each upgrade option. For simplicity,
we assume the customers only care about service quality
(i.e. α1=1, α2, α3=0). It then implies that the perceived
utility is analogous to the ratio of average throughput to
optimum bandwidth for FTP traffic, and to the percentage of
non-defective service time for the other traffic. The solid lines
in Figure 12 present the perceived utility of the customers
under each upgrade option. In each region, the customers are

ordered on the graphs by their path IDs. In the base case of
no upgrades, we notice that xDSL customers accessing path
A1 3 and A1 4 have significantly better perceived utilities
compared to other xDSL customers because they do not
access link L1 and are not “prime time” traffic. Option 1
significantly increases the service performance of the xDSL
customers at the expense of some moderate performance
drop from the VPN customers, which seems quite acceptable.
The perceived utility of some customers from region A1
remains low due to L3 link load. Option 2 and 3 are roughly
equivalent as they improve the service performance of region
A1 3 and A1 4 respectively. Although informative from a
network performance point of view, this analysis provides
few insight into which upgrade option is in fact the most
beneficial, as all of the options improve performance for some
customers. Without considering the economic and customer
factors, there is little else that could be done. We now carry
the computation of these options through the rest of our model.

For this scenario, let the expectation of the customers be
normal distributions with means of 0.65, 0.7, 0.8 and 0.9
respectively for A1, A2, A3 and A4, and a standard deviation
of 0.05. This distribution is used to reflect the diversity in
customer expectations and the relative differentiation between
the xDSL customers and the VPN customers. Figure 12
illustrates the perceived utilities, expectations, and customer
satisfactions of the customers under each upgrade option.
The choice of customer satisfaction parameters are taken so
that the customer satisfaction function exhibits its general
form as observed in empirical studies. In the base case, the
xDSL customers have significant negative disconformations
and consequently low satisfactions. Option 1 significantly
improves the satisfactions of xDSL customers, although
some of the customers from region A1 are still dissatisfied
due to L3 link load. Interestingly, the additional influx of
A1 traffics on L3 and L4 reduced the perceived utilities of
VPN customers, just enough to make their perceived utilities
to fall below expectations. Therefore, our computations of
Γ indicate option 1 may not be a good upgrade option.
Regarding option 2 and option 3, our model suggests that
negative disconformations are eliminated in region A3 and
A4 respectively in each option. When factoring in the ΓD

level, we further observe that option 2 seems to generate
more dissatisfied customers than option 3 due to the high
expectation rating in region A4. To accentuate our case,
we consider a saturated xDSL and VPN market where our
network service provider does not offer the best service. This
market condition could be represented in our model with zero
market growth and a 0.0 market turnover rate (from other
competitors). According to our market segmentation model,
this implies that more customers will leave the provider in
option 2 compared with option 3. By determining the number
of customers remaining with the service after each upgrade
option, we could compute the retention rate and project the
future profitability from our model as presented in Figure
13. With the cost of upgrades being equal, the outcome of
our analytical model indicates option 3 is the more profitable
option as long as the service charge for VPN is higher than
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the service charge for xDSL. By following our model and
factor in the customer’s expectations, satisfaction conditions
and market dynamics, we are able to arrive at a much more
informed upgrade decision using service profitability as an
indicator.

Fig. 13. Customer Retention of Different Upgrade Options

A commonly observed principle in market science states that
service profitability is maximized with respect to customer’s
satisfiability. Rather than satisfy each customer, a business
should strive to satisfy each satisfiable customer, and only if
it is profitable to do so [36]. This phenomenon is manifested
in our model, as illustrated in Figure 14. The top graph
shows the computation of Γ for upgrade option 2, while the
bottom graph shows the same computation except with raised
ωp value for the VPN customers. It suggests that if the VPN
customers are difficult to satisfy (i.e. ωp = 0.75), then an
upgrade option maybe ineffective despite improved service
utility.

The long term interactions among service performance,
customer experience and future expectation is a well studied
topic in market science and economic psychology. Our model
effectively captures many of their key observations. Consider
a customer who has stayed with the service provider for 20
evaluation periods and has experienced consistent service
performance, we subject the customer to low and inconsistent
service performance for the next 50 evaluation periods and
trace his/her service expectations (Figure 15) obtained from
our expectation update process. The parameters βL and βG

are general values taken based on our discussion in Section
V-C, and κa is set to 0 (i.e. no assimilation) for simplicity. As
shown in Figure 15a, in the short term (first 7 iterations), the
customer’s future expectations are not significantly influenced
by perceived utilities as the customer has experience with
consistent service delivery in the past. However, the customer
gradually loses confidence with the service (iterations 8 to
17) and expectations become heavily dependent on short term
perceived utilities. This trend confirms with the observations
on expectation and customer experience [37][38]. When a
customer is dissatisfied due to poor service performance
in the short term, an experienced customer (whose future
expectation is not significantly reduced) is more likely to

Fig. 14. Effect of Varied ωp

be loyal than an inexperienced customer. The works on
expectation further suggest that when customer perceives
disconformation, the degree of adjustment to expectation is
determined by the uniqueness of the event and the strength
of previous expectation. In the first few iterations of our
illustrated case (Figure 15a), the impact of disconformation
on expectation adjustment is low. As the occurrence of
disconformation increases, its impact is significantly more
severe. The parameter βM controls the weight of current
disconformation on expectation. A higher βM indicates a
lower strength of the past expectation. In Figure 15b where
βM is higher, the impact of disconformation on expectation
is significantly more severe even in the presence of long
past experience. It is apparent that the interaction among
expectation, performance, and customer satisfaction is a
significant factor influencing the service profitability of
SP operations and should be considered in the network
upgrade decision process. The trends captured by our model
integrate such factors in the network upgrade decision process.

Finally, we examine how varying market conditions can affect
service profitability as presented in our model. Regarding
the aforementioned three upgrade options, suppose the
current consumer market size is 100 each for the xDSL and
the VPN service. Furthermore, suppose the VPN market
is fully saturated while the xDSL market is estimated to
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Fig. 12. Customer Satisfaction of Network Upgrades

Fig. 15. Experience and Long Term Service Expectation

grow by 80 customers (in practice, this value is projected
by the Bass model). Figure 16 illustrates the customer
populations and service profitabilities for the three upgrade
options. Compared with Figure 13, our model shows that the
aggressive xDSL strategy (option 1) is able to attract more

xDSL customers by pushing for better service performance,
and hence better future expectation. Thus, depending on the
actual earning difference of VPN service over xDSL service,
our model may evaluate option 1 as the more profitable option.

Fig. 16. Customer Population for Different Upgrade Options

In the second simulation case, we conduct a more detailed
discussion on how network performance influences customer
satisfaction and show an example of how our model could
be used in practice. The simulation setup depicts a typical
regional service provider network. Three comparative
performance analysis of the network infrastructure are
presented, each from a different view: link utilization, QoS
performance of customer flows, and customer satisfaction.
Figure 17 shows the regional service provider network,
simulated in NS2. The typical access, transit and core
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Fig. 17. Simulated topology of a regional service provider network

network topology is recreated. The links in this simulated
network are identical in characteristic to the first simulation
study. Six customer groups and one transit traffic from a peer
provider are studied. Each customer group has a mixture of
service types and customer access times with daily traffic
shapes similar to Figure 11, we will track a representative
customer flow from each population assuming they are a
subscriber of either the xDSL or VPN service (noted between
brackets in Figure 17) and analyze their behaviors under
various conditions. The traffic exchange between the transit
and core network is facilitated with two network links A
and B. The customer flows from each service population are
modelled as an aggregate Pareto flow from customer access
to their respective traffic exchange point at the edge of the
core network. The flows are routed through least joint paths.
As in real world networks, the flows tend to merge around the
various traffic exchange points, forming potential bottleneck
links. In this simulation study, four such bottleneck links
exist: A, B, C and D. Figure 18 illustrates the utilization of
each link over 24 hr. period where link utilization measures
are taken every minute. The average link utilizations of the
entire day are also presented. In practice, link utilization
is often used as an indicator for link upgrades or traffic
re-engineering. However, as we observe from Figure Figure
18, it conveys no information as to the impact of congestive
links on the performance of customer flows.

To analyze the impact of the network utilization on customer
flows, we could conduct representative customer flow
tracking. In this case, we trace a representative customer
flow from each customer population. A representative xDSL
customer is traced in each of the population T1 to T4
and a representative VPN customer is traced in each of
the population population T5 and T6. We consider in this
case study that the xDSL customers are offered 330 Kbps
(maximum throughput) service while the VPN customers are
offered 680 Kbps service. Each traced flow is modelled as
FTP over TCP in the simulation and Figure 19 shows the
application level throughput measured over a 24 hr. period at
five minutes sampling intervals. Delay is not monitored in
this case because round trip delays within regional network
seldom exceed application requirements. From the throughput

trace, it is apparent that the congestion at link A and B during
prime time of the day causes significant impact on customer
flows. Comparing the throughput of T1 to T4, T4 seems the
least impacted because link A is the only bottleneck link
along the flow and trace from T4 has the least shared path
with other flows. Comparing T5 and T6, T6 fares significantly
worse since in addition to the bottleneck at link B, its traffic
also shares link D with transit traffic TX from a peer provider.
Upgrade link A and link B appears to be imminent from this
analysis. Figure 20 presents the throughput trace after link A
and B are upgraded.

The link upgrades produce significant improvement over all
the customer traces. However, the traces from T3, T5 and T6
still indicate potential problems especially if T5 and T6 have
strong mix of VPN customers over xDSL customers. Besides
conducting link upgrades which are cost prohibitive, resource
provisioning mechanisms such as service differentiation and
network dimensioning could be conducted. In this case,
we create service differentiation across link C and D into
premium and standard classes (60% and 40% of the link
capacity is dimensioned for each class respectively). Traffic
from T5 and T6 is thus given precedence over traffic from
T3 and TX. Figure 21 shows the result of such dimensioning.
We see that the analysis resulting from tracing customer
flows yields sensible network upgrade and planning strategies
that maximize the performance of the customer flows that
hopefully lead to better revenue generation.

Fig. 21. Throughput Performance After Link C and D Dimensioning

As demonstrated in this paper, improvement in network
performance does not produce proportional improvement in
customer satisfaction. In analyzing the customer satisfaction
of the above trace traffics under varied customer conditions,
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Fig. 18. Link Utilization over 24 hr. Period

Fig. 19. Throughput Performance of Representative Customer Flows
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Fig. 20. Throughput Performance After Link A and B Upgrade

Fig. 22. Effect of Upgrades and Dimensioning on Customer Satisfaction
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we study the effect of these enhancement on customers. Figure
22 presents the customer satisfaction under different customer
access patterns and QoS sensitivity. For QoS-insensitive
traffic (e.g. FTP and P2P) the perceived utility is computed
as the ratio between obtained throughput over maximum
throughput. For QoS-sensitive traffic (e.g. multimedia traffic),
throughput of 266 kpbs (for xDSL) and 544 kpbs (for
VPN) are used as the defective thresholds, corresponding to
roughly 80% of the maximum throughput. These thresholds
are also depicted in Figures 19, 20 and 21. We compute
customer satisfaction with the same modelling parameters
as used in the previous simulation setup with customer
expectation set at 0.8. As illustrated in Figure 22, the raw
computation of customer satisfaction could yield negative
values. In practice, these negative values should be set to 0
to obtain the normalized value of Γ, nevertheless they are left
here for comparison. The first three set of graphs consider
xDSL customers from population T1 to T4. We see that for
customers that are QoS-insensitive and access the network 24
hours a day (representation of the permanent P2P population
often prevalent in xDSL service), performing link upgrades is
of little consequence. This category of customers is satisfied
as long as their achievable daily average throughput remains
reasonable. However, for the other xDSL users that are the
bulk of “prime time” traffic, their satisfaction is severely
impacted by link congestion and hence they benefit the
most from link upgrade. We note that because T4 does not
access the same transit-core link as T1 to T3. It was not
significantly impacted by prime time traffic as the others.
Hence from the analysis of the xDSL customer satisfaction,
it seems that upgrade link A is quite effective given a large
mix of prime time xDSL users in population T1 to T3 (which
should be the case in practice). For the VPN customers,
their access times are generally during business hours. For
QoS-insensitive customers, upgrade link B only improves the
performance of T6 somewhat, while service differentiation
does not yield any visible result. For QoS-sensitive customers,
The link upgrade and service differentiation strategies creates
very different customer responses. It illuminates a prevailing
theory in our model: customer satisfaction is a subjective,
comparative evaluation between perception and expectation.
In the case of T5, performing network upgrade alone does
not raise the customer’s received performance to a level
that meets the customer’s expectation and hence despite the
actual increase in performance, the customer perceives very
little improvement in satisfaction. In the case of T6, the
improvement over performance as the result of link upgrade
already meets the customer’s expectation, conducing service
differentiation in addition does not significantly influence
the customer’s opinion of the service. Our analysis indicates
that network planning and upgrade strategies should be made
with respect to the particularities of the customers to meet
customers’ expectations.

VII. CONCLUSION

In this paper, we have presented a new market science
approach to assess service profitability of network upgrade

and planning decisions. Our approach captures the intricate
interactions among network performance, customer behavior,
and market dynamics and is founded on theoretical and
empirical studies from market science, economics and
psychology. The resulting model produces a series of
mathematical processes that are concrete and well-behaved.
Following this approach, we detailed the creation of such a
generalized analytical model for forecasting network upgrade
and planning decisions, providing a set of meaningful
parameters to model wide varieties of network service
characteristics, customer attributes, and market conditions.
Through in-depth case analysis and simulation studies,
we show that the best network upgrade option cannot be
determined solely based on performance improvements, but
is also service, customer, and market dependent. Many of
these complex interactions are captured and reflected in our
model and are key determinants of service profitability. As
we have shown, central to this process are the customers,
and it is imperative for service providers to establish service
performance on par with a customer’s service expectation,
and to develop customer experience over time. In addition,
we find that service differentiation and network dimensioning
could be effective methods of improving customer satisfaction
and hence revenue generation even without the incentive of
charging additional service fees to the customers.

In the simulation study, we have shown how our model could
be used to analyze practical problems in regional networks
through representative flow tracing and customer satisfaction
analysis. Furthermore, our prior work [11] demonstrates that
through aggregation and pruning, customer performance at
the network level is obtainable without relying on detailed
customer tracking or minute simulation of large scale net-
works. Given the intricacies among the modelling parameters,
it is imperative to conduct validation and tuning over time in
real world SP operations. In market science, when faced with
complex models and hypotheses, much of the validation work
is carried out over large data sets across long periods of time,
where statistical analysis is often helpful in deducing trends
and linkages among metrics. We think a similar approach is
appropriate to the tuning of our model, in conjunction with
simulation studies and numerical analysis. Whereas simulation
studies and numerical analysis could shed some light on
the sensitivity of the modelling parameters especially those
closely related to network performance, much of the work
relies on market data such as customer satisfaction and service
turnover rate, information not particularly obtainable through
mathematics but trackable by SPs in business practices. We
think such a process could be an invaluable exercise to the
SPs. Experimentation with the model in the network planning
and upgrade processes not only provides additional forecasting
capability to the planners but also yields outputs (e.g. customer
turnover rate) that are comparable with future data. Through
an iterative validation and parameter tuning process, the model
and its parameters could be evolved and refined over time
to suite the particular customer base, service condition, and
market environment of the service provider.
The validity of a model and its derivable results are inherently
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dependent on the availability of its input data and parameters,
and the correctness of the theories that underpin the model.
Much care was taken in constructing the model only based
on parameters and input data that are tractable, and in
many cases known to be available to the SPs. Among
the many theories present from market science, we only
included the most fundamental and tried ones in the model.
The applicability of these theories is confirmed in market
studies across many service industries over the past decades.
The mathematical forms that we have derived from these
theories are intentionally designed to be simplistic, with
flexible parameters to ensure that the model is tunable to the
particularities of the service provider and market scenario.

Theoretical studies aside, we will further validate and refine
our approach based on real world SP operations and market
data. We foresee such study could be a long term process
(e.g. 5 years) but would be highly beneficial to the network
service industry. A number of future works extend from
this model, such as the incorporation of performance related
service charging and penalty functions in the profitability
computation, the likelihood of the customers to reinstate
a service provider they have previously turned away, and
the effect of provider competitions (e.g. pricing difference,
technology competition, advertisement effects). We believe
our approach brings a unique perspective to the network
upgrade and planning research and the resulting models
are general enough to benefit many network service related
analysis processes, such as service infrastructure design,
management, network dimensioning, and others.
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