
IMPLEMENTATION OF A POLICY BASED
NETWORK FRAMEWORK USING

METAPOLICIES

A FINAL YEAR PROJECT BY

Alvaro Fernandez Casani
DECEMBER 2001

Prof. Raouf Boutaba
Broadband Communications Research

Group
University of Waterloo,

Canada

Prof. Josep Bernabeu
DSIC

Politechnical University of Valencia,
Spain

2

To my parents and sister, for all their love and support.

3

Table of Contents

Table of Contents ... 3

1 INTRODUCTION.. 6
1.1 PURPOSES AND GOALS .. 6

1.2 STATE OF THE ART.. 7

1.3 DEPENDENCIES .. 7

2 NETWORK MANAGEMENT... 8
2.1 INTRODUCTION.. 8

2.2 FCAPS FRAMEWORK... 8

2.3 STANDARDIZATION .. 9

2.4 TRADITIONAL NETWORK MANAGEMENT: SNMP ... 10
2.4.1 SNMP Technology - The Internet Management Model ... 10

2.5 FUTURE OF NETWORK MANAGEMENT.. 12
2.5.1 SNMPv3 ... 13
2.5.2 Active Management.. 13
2.5.3 Directory-Enabled Networking .. 13
2.5.4 Policy-Based Networking... 14

3 POLICY BASED NETWORKING.. 15
3.1 INTRODUCTION.. 15

3.2 COMPONENTS... 17
3.2.1 Logical Components: POLICIES ... 17
3.2.2 Architectural Components .. 17

3.3 OUTSORCING AND PROVISIONING MODELS.. 18

3.4 DIFFERENCES BETWEEN DIRECTORIES AND PBN .. 19

4

3.5 BENEFITS OF POLICY BASED NETWORKING.. 19

3.6 PBN PROTOCOLS.. 20
3.6.1 COPS (Common Open Policy Service) Protocol... 20
3.6.2 COPS-PR (COPS for Policy Provisioning) Protocol... 23

3.7 EXAMPLE OF A FRAMEWORK .. 25

4 METAPOLICIES... 28
4.1 DEFICIENCIES OF THE TRADITIONAL APPROACH.. 28

4.2 SOLUTIONS.. 29

4.3 THE CONCEPT OF THE META-POLICIES ... 30

4.4 FORMAL DEFINITION.. 31

4.5 METAPIB EXAMPLE... 33

5 ANALYSIS AND DESIGN OF THE FRAMEWORK ... 35
5.1 PDP... 35

5.2 PEP ... 36
5.2.1 Cops-Pr Comm Module.. 37
5.2.2 Pib... 37
5.2.3 Meta-Pib ... 37
5.2.4 Controlled Device... 45

6 IMPLEMENTATION.. 47
6.1 PDP... 47

6.1.1 PDP Working mode.. 47
6.1.2 PDP architecture ... 48
6.1.3 PDP Classes.. 49

Class Server... 49

6.2 PEP ... 50
6.2.1 PEP working mode ... 50
6.2.2 PEP architecture ... 51
6.2.3 PEP Classes .. 52

PEP PACKAGE... 52
Class PEP .. 52
Class COPSComm .. 54
Class ClientHandler... 57

COPSPR PACKAGE... 60
Class COPSPRClient... 60

COPSPRCLIENT PACKAGE... 62
Class PIBController... 62

METAPIB PACKAGE .. 66
Class MetaObject .. 66
Class Parameter ... 71
Class PdpParameter ... 75
Class MibPibParameter ... 80
ClassMetaPolicyCondition .. 84
ClassMetaPolicyComplexCondition ... 89
ClassMetaPolicyBooleanCondition... 95

5

ClassMetaPolicyGeneralCondition ... 99
ClassMetaPolicyNumberCondition ... 103
ClassMetaPolicyAction ... 107
Class MetaPolicyActionParametricValue ... 114
ClassMetaPolicy.. 117
ClassMetaPolicyStatus .. 122
ClassMetaPolicyPriority.. 125
ClassMetaPolicyXmlDtd... 129
Class METAPIB.. 133
Class ActionSet ... 149
Class ConditionSet .. 151
Class MetaPolicySet... 153
Class XmlDtdSet ... 157
Class PriDescriptor.. 159

TABLES PACKAGE... 162
Class Table .. 164
Class MetaPolicyActionTable ... 168
Class MetaPolicyConditionTable .. 171
Class MetaPolicyParameterTable.. 176
Class MetaPolicyPriorityTable.. 180
Class MetaPolicyTable.. 183
Class MetaPolicyXmlDtdTable... 186
Class MibTable ... 189

7 CONCLUSIONS AND FUTURE WORK... 191
7.1 CONCLUSIONS.. 191

7.2 FUTURE WORK ... 191

References .. 192

INTRODUCTION 6

1 INTRODUCTION

1.1 PURPOSES AND GOALS

This project is included into a bigger research, whose final objective is the
creation of self-configurable networks, more independent that the ones that we know
nowadays. In order to achieve that objective it is necessary to modify some issues of the
actual networks.

First of all it is necessary to raise the level of abstraction of the management
methods and network administration, so a higher level of integration and, above all,
automation, can be allowed.

Second, intelligence must be pushed towards the managed devices, so that the
control of that network is more distributed and decentralized. For this issue, it is
necessary to modify the behavior of those components of the network.

These two objectives, a higher level of abstraction in combination with more
intelligent decision points (that could be configured by themselves by getting or
generating such configuration data); and so on, a higher level of automation, will give the
necessary methods to adapt the network state and needs at each specific moment.

Policy-based networking (PBN) is a relatively new trend in the area of Network
Management that accomplishes our first objective, because it raises the abstraction of
Network Management by using high-level policies, from which configuration data for the
network devices are automatically generated and distributed to the network devices.
However, PBN doesn’t achieve to address the second requirement. Although PBN is not
a very centralized network-management model because it uses policy servers that can be
distributed over the network; not much functionality is pushed toward the network
devices, so these devices are not as intelligent and independent. Those devices need the
constant attention of the policy servers to accomplish its functions.

The final objective of this project is the implementation of a PBN framework
introducing a new kind of control point inside the network, enhancing the PBN by
developing in the second dimension. More concretely, the implementation of a new kind
of control points on the framework of the policy-based networks, so these control points
(called PEP or Policy Enforcement Points) will be more independent in their decisions.

INTRODUCTION 7

1.2 STATE OF THE ART

The area of the network management has been one of the most actives in the last
years into the work done by the IETF, working in different issues that have led to many
improvements to the original conception. Understanding this part is very important to
understand the realized work, so we will dedicate the first chapters of this report to
explain the current situation of this promising area of the networking.

1.3 DEPENDENCIES

This work has been developed according to the specifications of some documents
published by the IETF. At the time of this work was conducted, some of the proposed
standards like COPS and COPR-PR were RFCs, and SPPI was an Internet-draft (refer to
the chapter of IETF). Hence, it must be understood that as those documents are not
official standards, they can be changed in the future, so maybe some parts defined in this
report could be syntactically out-of-time. Anyway, the major part of the definitions is
considered stable, so the possible changes to apply to this document, to be compliant to
the future standards, should be minimal.

NETWORK MANAGEMENT 8

2 NETWORK MANAGEMENT
In this second chapter we talk about Network Management, introducing the

required concepts to make the reader familiar with all the concepts of this area of the
networking.

2.1 INTRODUCTION

The formal definition of Network Management is:
 The execution of the set of functions required for controlling, planning, allocating,
deploying, coordinating, and monitoring the resources of a telecommunications network,
including performing functions such as initial network planning, frequency allocation,
predetermined traffic routing to support load balancing, cryptographic key distribution
authorization, configuration management, fault management, security management,
performance management, and accounting management.

Network Management starts with the design of the underlying network, and after
this initial phase, continues with the maintenance tasks that collect and analyze data from
the various network elements. This data can reveal abnormal or emergency situations as
soon as – or even before – they occur. Also, these data allows the administrators to
monitor the usage of the network resources, and according to it, fine-tune the network for
improvements, and also plan future upgrades.

2.2 FCAPS FRAMEWORK

As we have said, Network Management groups many different issues, and may be
divided into functional areas. The Organization for International Standardization (ISO)
has defined the next major areas: Fault, Configuration, Accounting, Performance and
Security Management.

This five areas are know as the FCAPS framework [7].
Fault Management: is in charge of detecting, isolating, fixing, and recording errors that
occur inside the network.
Configuration Management: relates with the configuration of the network elements
(software and Hardware), as well as the tuning and controlling parameters that relate to
the normal network operations

NETWORK MANAGEMENT 9

Accounting Management: has to do mainly with the user management, as well as the
accounting and billing for the used services and resources.
Performance Management: tries to maximize the network performance, and of course
is mainly in charge of QoS (Quality of Service) provisioning and other factors like
resource utilization, delay, jitter, and packet loss.
Security Management: is in charge of the security and safety of the network.
This project is related mainly with the area of Configuration Management, but also
covers implicitly all the commented five areas, since all of them relate to the appropriate
configuration of the network devices.

2.3 STANDARDIZATION

The Internet Engineering Task Force (IETF) [15] is “ the protocol engineering and
development arm of the Internet”. Established in 1986, it is “a large open international
community of network designers, operators, vendors, and researchers, concerned with the
evolution of the Internet architecture and the smooth operation of the Internet”.

In IETF each new specification is published as an internet-draft. These draft are
widely available, have no formal status, are subject to removal at any time and evolve
according to the comments and feedback that they receive from the internet community.
If an internet-draft receives enough attention, becomes relatively stable and mature and is
globally approved, it evolves into an RFC (Request For Comments). The RFC is an
official document that describes the specification in a complete well-understood manner,
and is approved by the majority of the Internet community. As with internet-drafts, RFCs
do evolve, however the modifications are usually moderate. When the RFC has reached a
state where no more modifications are considered necessary, it may evolve into an
Internet standard.

IETF host various working groups that cover different areas (e.g. routing, transport,
security, etc.). These groups identify problems in the corresponding areas and address
them by developing standard protocols.

IETF is closely related to other Internet organizations, such as the Internet
Engineering Steering Group, the Internet Architecture Board (IAB), the Internet
Assigned Numbers Authority (IANA) and the Internet Society (ISOC).

Also IETF plays a crucial role in the evolution of the Network Management, since
several of its working groups are related to it. For instance, IETF is the organization that
has standardized the SNMP protocol. IETF attempts now to address the lacking issues of
the SNMP through its next version (SNMP v3). However, there are serious doubts about
whether SNMP will eventually manage to overcome its limitations and become the
dominating protocol for Configuration Management again. This is way IETF also
attempts to develop alternative management techniques that may replace or complement
the existing ones.

NETWORK MANAGEMENT 10

2.4 TRADITIONAL NETWORK MANAGEMENT: SNMP

The network management of the configurable network devices (such routers and
switches) has gone through different stages.

At the beginning the network administrator was in charge of manually configure
each one of those devices, through the command line interfaces. In many cases each of
the devices was configured independently, even when these were configured to operate
similarly.

After, when the networks began to grow in number and complexity, some kind of
automation became necessary. The Simple Network Management protocol gave a
satisfactory solution to the problem.

SNMP is based on special databases, called Management Information Bases
(MIBs), maintained by each network device. MIBs provided a standard interface to
manage objects on the devices, in a less device-dependent way. This raised the level of
abstraction and allowed devices to be handled in a more unified way. SNMP allowed the
administrators to manage the network remotely and to automate various management
tasks.

2.4.1 SNMP Technology - The Internet Management Model

SNMP is part of the Internet network management architecture. This architecture
is based on the interaction of many entities, as we describe in the following paragraph.

As specified in Internet RFCs and other documents, a network management system
comprises:

Network elements -- Sometimes called managed devices, network elements are
hardware devices such as computers, routers, and terminal servers that are connected to
networks.

Agents -- Agents are software modules that reside in network elements. They
collect and store management information such as the number of error packets received
by a network element.

Managed object -- A managed object is a characteristic of something that can be
managed. For example, a list of currently active TCP circuits in a particular host
computer is a managed object. Managed objects differ from variables, which are
particular object instances. Using our example, an object instance is a single active TCP
circuit in a particular host computer. Managed objects can be scalar (defining a single
object instance) or tabular (defining multiple, related instances).

Management information base (MIB) -- A MIB is a collection of managed
objects residing in a virtual information store. Collections of related managed objects are
defined in specific MIB modules.

NETWORK MANAGEMENT 11

Syntax notation -- A syntax notation is a language used to describe a MIB's
managed objects in a machine-independent format. Consistent use of a syntax notation
allows different types of computers to share information. Internet management systems
use a subset of the International Organization for Standardization's (ISO's) Open System
Interconnection (OSI) Abstract Syntax Notation 1 (ASN.1) to define both the packets
exchanged by the management protocol and the objects that are to be managed.

Structure of Management Information (SMI) -- The SMI defines the rules for
describing management information. The SMI is defined using ASN.1.

Network management stations (NMSs) -- Sometimes called consoles, these
devices execute management applications that monitor and control network elements.
Physically, NMSs are usually engineering workstation-caliber computers with fast CPUs,
megapixel color displays, substantial memory, and abundant disk space. At least one
NMS must be present in each managed environment.

Parties -- Newly defined in SNMPv2, a party is a logical SNMPv2 entity that can
initiate or receive SNMPv2 communication. Each SNMPv2 party comprises a single,
unique party identity, a logical network location, a single authentication protocol, and a
single privacy protocol. SNMPv2 messages are communicated between two parties. An
SNMPv2 entity can define multiple parties, each with different parameters. For example,
different parties can use different authentication and/or privacy protocols.

Management protocol -- A management protocol is used to convey management
information between agents and NMSs. SNMP is the Internet community's de facto
standard management protocol.

The most basic elements of the Internet management model are graphically represented in
Figure 1.

Figure 1:The Internet Management Model

NETWORK MANAGEMENT 12

Interactions between the NMS and managed devices can be any of four different
types of commands:

Reads -- To monitor managed devices, NMSs read variables maintained by the
devices

Writes -- To control managed devices, NMSs write variables stored within the
managed devices

Traversal operations -- NMSs use these operations to determine which variables
a managed device supports and to sequentially gather information from variable tables
(such as IP routing tables) in managed devices

Traps -- Managed devices use traps to asynchronously report certain events to
NMSs

However, SNMP (v1 and v2) was designed mainly for monitoring purposes and,
although it managed to give a satisfactory solution to the problem for a while, now it
seems to suffer from significant scalability and efficiency problems: SNMP is a highly
centralized protocol. In fairly large networks, too many resources may be consumed just
to report normal network operation, while the detection of erroneous events and the
reaction to them may be too slow. Besides, although SNMP managed to raise the level of
abstraction in Network Management, the operations are still device-dependent. The
growth of the modern networks demands a further increase in the level of abstraction, s
well as decentralization of the management centers. These issues are examined by
standardization organizations (such as IETF) which guide the future of Network
Management.

2.5 FUTURE OF NETWORK MANAGEMENT

The network management techniques annotated before became to be insufficient
for the necessities of the modern issues, so future of network management goes through
different techniques to manage the new requirements.

Some of the new techniques that would maybe be established in the future are
SNMPv3, Active Management, Directory enabled networking, and Policy based
networking.

NETWORK MANAGEMENT 13

2.5.1 SNMPv3

SNMPv3 was proposed as a draft in March of 1999 by the IESG to solve the lacks
of SNMPv2. This new proposal tried to unify the different versions of SNMPv2 that were
deployed until that moment. One of the biggest design requirements was the addition of
security and management functionality into the previous standards.

The standardization of SNMPv3 as the only management protocol is insecure,
because of this protocol does not address very well questions like scalability. However,
since one of most achievements of this (and the previous related) protocols, is the
extended use and its simplicity, it is believed that it will come one of the used
management protocols, at least in questions of monitoring.

2.5.2 Active Management

The Active Networks program has the goal of producing a new networking
platform, flexible and extensible at runtime to accommodate the rapid evolution and
deployment of networking technologies and also to provide the increasingly sophisticated
services demanded by modern applications.

The active networks are differentiated from the traditional ones, from the fact that
the nodes (routers, switches...) can be programmed by the end-user and define the right
behavior that wants to be performed by that node. This opens a great bunch of
possibilities because is not necessary to follow standard protocols, that could not issue the
characteristics that the end-user wants. Injecting user programs in the nodes, the way of
handle day may be modified per-application or even per-user basis.
Active networks introduce radical changes, also in network management, being the main
issues the next that we describe:

− Active networks enable the distribute management by agents that travel thru the
network and perform management actions related with the application that introduced
the agent.

− One of the most important characteristics is that the network can be managed during
abnormal functioning, for example during high congestion or network partition

− The network, moving the decision taking closer to the managed devices, can
distribute also monitoring centers.

Although Active networks is not directly related with this project, it has influenced in
part with design decisions and ideas that have arose along the conduction of this project.

2.5.3 Directory-Enabled Networking

Directories are nothing new into networks, since nowadays we can find services
based in directories as DHCP, DNS, user authentication, user directories, etc. But with
directory-enabled networks what it is tried to accomplish is to unify all that services, and
make user management easier and more consistent. Although the resemblance of that
directory servers and common Database Management Systems (DBMS) is very

NETWORK MANAGEMENT 14

remarkable, these such differences are the ones that make different Directory-enabled
networks. Hence directory servers are optimized for high quantity of information
retrieval, since that is the main operation against them. Another issues like updates, or
advanced characteristics of the DBMS like triggers, cascade deleting, etc., have much
less performance.

2.5.4 Policy-Based Networking

One of the most promising techniques developed in the last years in the area of the
network management is the Policy-Based networking. This new technology is designed
from a higher level of abstraction over the traditional management techniques, and its
based in policies, that is, high-level rules that determine the behavior of the nodes, and
the network in consequence.

The key idea is that the network administrator creates high level policies that
determine the desired goals of the networks (rather than procedures). These policies are
processed by special serves, which, bind them with the current Network State, transform
them into dynamic configuration data and send them to the network devices such as
special router, determining his behavior.

With this high-level abstraction model we have the advantage to simplify
management of large-scale networks, and the automation ensures that the consistency
and integrity in the devices behavior across the network. The dynamic binding of
policies at the policy servers allows net types of policies to be introduced more easily, as
well.

We will dedicate next chapter to introduce deeply the policy-networking framework.

POLICY BASED NETWORKING 15

3 POLICY BASED NETWORKING

In this chapter we introduce the policy-based networking, explaining its principal
characteristics and all the issues necessary to understand the concepts that we will use
later in the design of the framework. Also we will briefly introduce new trends that are
being developed in this area.

3.1 INTRODUCTION

Policy-Based Networking is a new trend that has been started developed in the
last years and has arisen as a pledge technology for network operation and management.
It is based in high-level policies that define the desired behavior of the network. This
policies define what the network is supposed to do, rather that how is it going to do that.
The way that the high policies are transformed in understood, we will see it later.
In PBN there are defined two main components that are named as Policy Decision Point
(PDP) and Policy Enforcement Point (PEP). Basically the policies are produced in the
PDPs to be distributed to the PEPs, that enforce them to obtain the desired configuration
from the network.
The policy concept is nothing innovative, nevertheless, what it is new in PBN is that the
policies express goals rather than procedures.
While in traditional network management, the administrators know and set the goals, and
after they create procedural policies that implement that policies; in PBN the policies is
set as the goal itself.
For example, in traditional networking management, if the network administrator wants
to give high priority to the manager subnet, he/she created a policy similar to the
following:

If ((SourceIp matches 11.22.33.0/24) or (DestinationIp matches 11.22.33.0/24))
then { remark with DSCP = 6 }

POLICY BASED NETWORKING 16

This policy has been hardcode the facts that:
1) the manager subnet is 11.22.33.0/24
2) high priority is achieved by setting the packet’s DSCP1 to 6

The new way to define the policies, using the PBN approach, would be the next example:

If ((SourceIp matches ManagerSubnet) or (DestinationIp matches
ManagerSubnet)) then {give high priority}

To manage the abstractions shown in the last example, in PBN the system
administrator has to provide a way to interpret all the variables as ManagerSubnet or how
to give high priority. The difference is that the information is not hardcode in the policies
themselves. Hence if the manager subnet is expanded to contain the subnet 11.22.34.0/24,
the administrator will only need to declare this fact. All policies related to this subnet will
still be valid, since they do not contain information directly related to the network
topology or the devices.

If policy is to be readable, and most importantly, manageable, it must break
through the complexity of traditional networking terminology such as Command Line
Interfaces (CLI) syntax. Policy rules must be relatively painless to define and maintain on
an ongoing basis.

Once defined, network policy is fed into a policy system. Which converts it into
sets of discrete, specific, low-level networking command. This automated translation is
not tied to a specific network topology. Therefore, It has the capability to adapt to even
the most massive re-engineering of the network without requiring major changes to the
underlying policy. Several common high level criteria used in policy expressions are
User-id, User-Group, Application, Application-Type, Time/Date, and Device Type/Role.

Finally, we can say that a policy based networking system consists of tools designed to
accomplish the following tasks:

 Creating rules and policies
 Checking for policy conflicts
 Storing policies
 Converting policies into device –specific command
 Distributing the commands to the network devices
 Verifying policy distribution
 Streamlining policy implementation
 Facilitating troubleshooting
 Enabling group policy deployment

1 DSCP (Differentiated Services Code Point): In differentiated services, the packets receive different
treatment by the switching devices, according to the TOS field of the IP header (also named DS byte in
Differentiated Services terminology). Six of its bits are used as a Differentiated services code point

POLICY BASED NETWORKING 17

3.2 COMPONENTS

In this point we describe the components of a policy based network framework.

3.2.1 Logical Components: POLICIES

A policy is a set of rules that guide and determine how to manage, allocate, and
control network resources. Enforcement of policy ensures that rules are always followed.
A rule is made up of a condition that leads to an action. A condition is a set of
expressions or objects used to determine whether a given action should be performed. A
condition answers the question, “when and where do we enforce a policy?” For example,
a condition might be “all e-mail traffic.” An action is a definition of what must be
executed in order to enact a rule. An action answers the question, “what must be done to
enforce a policy?” An action could be “encrypt e-mail using 3DES.” Together, the
condition and action pair result in the business rule “all e-mail traffic must be encrypted.”
A policy also defines how the network's resources are to be allocated among its clients.
Clients can be individual users, departments, host computers, or applications. Resources
can be allocated based on time of day, client authorization priorities, availability of
resources, and other factors. How resources are allocated can be static or dynamic (based
on variations in traffic). Policies are created by network managers and stored in a
repository. During network operation, the policies are retrieved and used by network
management software to make decisions.

3.2.2 Architectural Components

Defined by the Distributed Management Task Force (DMTF) and the Internet
Engineering Task Force (IETF), the standard tools in a policy-based infrastructure used
to accomplish the system tasks are:

 Policy Console: The administrative client interface to the policy system.
 Policy Repository: A directory service or database used to store policy data.
 Policy Decision Points (PDP’s): Make policy decisions based on policy data.
 Policy Enforcement Points (PEP’s): Enforce policy decisions.

The Policy Console is the interface between the network administrator and the
system. It’s primarily used to enter and edit policies and monitor the status of the
network. It also simplifies the management process by allowing network administrators
to group certain items together, such as users or printers, and uses simple English
commands that are later translated into device configuration commands. The policy
console checks and validates the rules, making sure rules don’t conflict when they are
combined to make a policy. It also translates the rules to match pre-defined storage
schemas in the policy repository.

The Policy Repository is typically a directory service that stores the rules and
policies generated in the policy console. The repository typically also contains other

POLICY BASED NETWORKING 18

network information, such as user profiles and IP infrastructure data, which gives
network administrators the ability to aggregate policies that encompass large groups of
objects (such as devices, applications, or users) or specific groups of objects.

The Policy Decision Point (PDP) is responsible for accessing the policy schemas
stored in the policy repository and making decisions based on policy information. For
instance, the policy is set to use the strongest encryption when sending finance
department documents. Therefore, the PDP would set up appropriate IPsec tunnels with
the strongest encryption. The PDP can also detect policy changes and conflicts and act
accordingly to correct any problems. Finally, the PDP logs events from network devices
and monitors network usage. It can even be set up to create new policies based on this
network state information.

Policy Enforcement Points (PEP’s) are the actual network devices that
implement and enforce the policies. PEP’s include devices such as routers, VPN
gateways, and firewalls. The PEP gathers the policy information from the PDP upon
startup and stores this information in its cache. The PEP may also relay information to the
PDP to keep the PDP informed of changes in the network or device conditions.

3.3 OUTSORCING AND PROVISIONING MODELS

As defined by IETF, PBN is designed for working in two different modes for
policy management: Outsourcing and Provisioning model.

The outsourcing model the PEP receives a signaled event in that must be resolved
based on policy criteria that is known as Policy Admission Control (PAC), so when the
PEP is required to make a decision through this model and cannot treat this event
according to the installed configuration data, it outsource the decision-making to an
external policy decision point (PDP). The PDP will reply to the PEP sending the
appropriate data that will be installed by the PEP and will treat the event. Signaling
events are usually associated with end-to-end signaling protocol (such as RSVP, MPLS-
LDP, Multicast Join ICMP, etc.) However, a signaled event at the PRP is decided,
innocence, based upon external considerations. This mode is also known as the ‘pull’
model since the PEP ‘pulls’ configuration data from the PDP, or the ‘reactive; model,
because the PDP reacts to the PEP requests.
In the provisioning model we have almost the opposite model, where the PDP predicts
future configuration needs and pushes configuration information in the PEP. This occurs
when the PEP connects to the PDP. The policies are stored in the pep and all incoming
events are served according to them. This model is also known as the ‘'push'’ model,
since, as we have said, the PDP pushes the information to the PEP.

POLICY BASED NETWORKING 19

3.4 DIFFERENCES BETWEEN DIRECTORIES AND PBN

Although policy-based networks and directory enabled networks, share many points
in its concepts, but are at the end different. Two of them are based in raising the level of
abstraction of the configuration into the networks, and two of them provide the
appropriate configuration to the network devices; but the main difference is the kind of
this configuration, that while in the directory enabled networks is dynamic, in the PBN is
dynamic.

For example in the PBN typical example, it exists a LDAP server that provides the
static policies to the PDP. One of these static policies could be for example 'Staff has
high priority in working hours'. Directories are very good in performance handling this
kind of static data, as they work as typical SMDBs. Directories are good also for
providing static data to the network devices, as the addressed of the PEP that controls
that device, DNS servers, etc.

But the question is that in PDP the static data is transformed into dynamic
configuration data, because for example has to check what 'Staff' is, or what kind of 'high
priority' is possible with the current state of the network. Also the policy is dynamically
installed when the working hours starts, and dynamically removed when it ends.

As we see the most complex thing is to transform the high-level configuration data,
according to the Network State, into low-level configuration data understood by the
network nodes.

3.5 BENEFITS OF POLICY BASED NETWORKING

PBN simplifies the task of the network administration based on the goals of the
system administrator. Hence the user can express the behavior of the network in terms of
high level goals that is desired to achieve. The system will analyze that goals or policies
and will manage the translation of these terms into commands or configuration
parameters that can be understood by the network nodes.

This way is possible to eliminate at the design phase, some of the details that will
be present in the end configuration parameters, like for example, the exact bindings to
user information such as IP address, application port number, ingress interface, etc. This
binding, applied at packet level, is performed automatically by the system at the required
point in time.

The automated coordination and dynamic binding also permits to map to
configuration information such as packet handling methods, queuing mechanisms, and
link capacity based on service class. This kind of mechanisms can be supported or not by
the network nodes, so the automated generation of configuration information will be
different depending on the supported methods. In addition, different devices can require
different configurations to enforce the same policy, so PBN must match the required
goals with the possible methods to generate the final configuration information.
Summarizing, these are the main benefits of PBN:

POLICY BASED NETWORKING 20

 High degree of abstraction: policies are written in high level, human-friendly terms;
independent of the network topology, protocols, services and applications. Policies
are explained by themselves.

 Automation: all the process of the network management is handled by the network
elements (PDP, PEP) so the automation is complete. The system can detect changes
in the network state, topology, etc. and will try to automatically achieve the goals
described in the policies

 Consistency: as a result that all is part of an automated process, the consistency is
guaranteed.

 Dynamic policies: for example a dynamic binding of a policy is the following:
suppose that the policy "Managers have high priority" have been set. When an
engineer logs on to a workstation, the PDP is informed of this fact and generates such
configuration data for the network devices, that will give high priority to the specific
workstation. That kind of policies is very hard to implement following traditional
network management techniques.

3.6 PBN PROTOCOLS

PBN architecture uses a protocol named Common Open Policy Service (COPS) to
send the appropriate configuration information from the PDP to the network devices
(PEP). Whether COPS and its extensions are being developed by the Resource
Allocation Protocol (RAP) working group.

This protocol allows the devices to efficiently provide feedback to the PBN
system regarding the state of the network. This is an essential component for dealing
with dynamic changes in the network since policy rules may need to be altered or added.

3.6.1 COPS (Common Open Policy Service) Protocol

The COPS protocol was defined by the IETF [15] as a protocol for exchanging
policy information between a policy server (Policy Decision Point or PDP) and its clients
(Policy Enforcement Points or PEPs).
In our project a PDP can be a computer that contains all the policies that are desirable to
transmit to a PEP, and that PEP would be the router that has to enforce that policies.
The typical example of a policy client is an RSVP router that must exercise policy-based
admission control over RSVP usage [23].
The basic mode of interaction between a policy server and its clients is compatible with
the framework document for policy based admission control.

The characteristics of the COPS protocol are mainly:

1) The model employed for the protocol is a typical Client/Server model where the PEP
sends requests, updates and deletes to the remote PDP, and the PDP is in charge of
returning correct decisions to the PEP

POLICY BASED NETWORKING 21

2) The protocol uses TCP as a transport protocol for exchange of messages between
policy clients and server. Therefore, as it is using a reliable protocol, no additional
mechanisms are necessary for guarantee the correct communication between PDP and
PEPs

3) Is a extensible protocol. It is designed to leverage off self-identifying objects and can
support diverse client-specific information without requiring modifications to the
COPS protocol itself, only extensions (as we will see with COPS-PR). The protocol
was created for the general administration, configuration, and enforcement of
policies.

4) COPS provide message level security for authentication, replay protection, and
message integrity, and also can reuse existing protocols for security such as IPSec
[34].The protocol is stateful in two main aspects:
 Request / Decision state is shared between client and server: requests from the

PEP are installed or remembered by the remote PDP until they are explicitly
deleted by the PEP. At the same time, Decisions from the remote PDP can be
generated asynchronously at any time for a currently installed request state

 State from various events (Request / Decision pairs) may be inter-associated: the
server may respond to new queries differently because of previously installed
Request / Decision States that are related

Additionally, the protocol is stateful in that it allows the server to push configuration
information to the client, and then allows the server to remove such state from the client
when it is no longer applicable

COPS does not define the format and semantics of the exchanged configuration data: it
just provides a protocol to exchange that data. Semantics and format of the data will be
defined in a client-type basis (as we know that PEP may support different kinds of
clients) in other documents that extend the COPS protocol.

3.6.1.1 COPS Working mode
In a typical COPS framework the PEP is responsible for initiating the

communication with the PDP in the form of a TCP persistent connection. The PEP uses
this TCP connection to send requests to and receive decisions from the remote PDP.
Communication between the PEP and the remote PEP is mainly in the form of a stateful
request / decision exchange, thought the remote PDP may occasionally send unsolicited
decisions to the PEP to force changes in preciously approved request states. The PEP also
has the capacity to report to the remote PDP that it has successfully completed
performing the PDP’s decisions locally, useful for accounting and monitoring purposes.
The PEP is responsible for notifying the PDP when a request state has changed on the
PEP. Finally, the PEP is responsible for the deletion of any state that is no longer
applicable due to events at the client or decisions issued by the server.

When the PEP sends a configuration request (one of the first actions that it
accomplish), it expects the PDP to continuously send named units of configuration data

POLICY BASED NETWORKING 22

to the PEP via decision messages as applicable for the configuration request. When a unit
of named configuration data is successfully installed on the PEP, the PEP should send a
report message to the PDP confirming the installation. The server may then update or
remove the named configuration information via a new decision message. When the PDP
sends a decision to remove named configuration data from the PEP, the PEP will deleted
the specified configuration and send a report message to the PDP as confirmation.

The policy protocol is designed to communicate self identifying objects which
contain the data necessary for identifying request states, establishing the context for a
request, identifying the type of request referencing previously installed requests, relaying
policy decisions, reporting errors, providing message integrity, and transferring client
specific/ namespace information.

To distinguish between different kinds of clients, the type of client is identified in
each message. Different types of clients may have different client specific data and may
require different kinds of policy decisions. It is expected that each new client-type will
have a corresponding usage draft, specifying the specifics of its interaction with this
policy protocol.

The context of each request corresponds to the type of event that triggered it. The
COPS Context Object identifies the type of request and message (if applicable) that
triggered a policy event via its message type and request type fields. COPS identifies
three types of outsourcing events:

 The arrival of an incoming message
 Allocation of local resources
 Forwarding of an outgoing message

Each of these events may require different decisions to be made. The content of a
COPS request/ decision message depends on the context. A fourth type of request is
useful for types of clients that wish to receive configuration information from the PDP.
This allows a PEP to issue a configuration request for a specific named device or module
that requires configuration information to be installed.

The PEP may also have the capability to make a local policy decision via its Local
Policy Decision Point (LPDP) [WRK] however, the PDP remains the authoritative
decision point at all times. This means that the relevant local decision information must
be relayed to the PDP. That is, the PDP must be granted access to all relevant information
to make a final policy decision. To facilitate this functionality, the PEP must send its
local decision information to the remote PDP via an LPDP decision object. The PEP must
then abide by the PDP's decision, as it is absolute.

Finally, fault tolerance is a required capability for this protocol, particularly due to
the fact it is associated with the security and service management of distributed network
devices. Fault tolerance can be achieved by having both the PEP and remote PDP
constantly verify their connection to each other via keep-alive messages. When a failure
is detected, the PEP must try to reconnect to the remote PDP or attempt to connect to a

POLICY BASED NETWORKING 23

backup/alternative PDP. While disconnected, the PEP should revert to making local
decisions. Once a connection is reestablished, the PEP is expected to notify the PDP of
any deleted state or new events that passed local admission control after the connection
was lost. Additionally, the remote PDP may request that all the PEP's internal state be
resynchronized (all previously installed requests are to be reissued). After failure and
before the new connection is fully functional, disruption of service can be minimized if
the PEP caches previously communicated decisions and continues to use them for some
limited amount of time. We will discuss some mechanisms for achieving reliability in
next sections.

3.6.1.2 Cops Defined Protocol

The Cops protocol consist in a number or objects and messages that comprise that
messages in an ordered way, to achieve a semantic framework that is able to convey the
policy data.

For a more deep review of the protocol you can refer to [25].

3.6.2 COPS-PR (COPS for Policy Provisioning) Protocol

As an extension of the Cops protocol, surged the Cops-Pr protocol, oriented for
policy provisioning. Although, this protocol is independent of the type of policy being
provisioned (QoS, Security, etc.), nevertheless we will use this protocol for conveying the
policy information among the PDP and PEP entities.

Cops-Pr has been designed in a framework for conveying efficiently the policies,
affording good performance in the transport of attributes, large atomic transactions of
data, and efficient and flexible error reporting. It also guarantees only one server updates
a particular policy configuration at any time, since it has only one connection between the
PDP and the PEP, identified by the client.

3.6.2.1 Cops-Pr working mode: Interaction between PDP and PEP

As we know when a PEP boots up, it tries to get a new connection to its primary
PDP, sending information about itself to the PDP in the form of configuration request.
This information includes client specific information.

The PDP will download the provisioned policies that are currently relevant to that
device, and the latter will map them into local mechanisms, installing them.

If the PDP notices of a change that is necessary to inform to the related PEP, it
will issue the right install, updates and deleted to that device.

Also, if the PEP changes its configurations (adding new hardware, changing
software...) in ways not covered by policies already known to the PEP, then the PEP
asynchronously sends this unsolicited new information to the PDP in an updated
configuration request. On receiving this new information, the PDP sends to the PEP any

POLICY BASED NETWORKING 24

additional provisioned policies now needed by the PEP, or removes those policies that are
no longer required.

3.6.2.2 Policy Information Base (PIB)

The PEP has a named data structure called Policy Information Base (PIB) that
maintains the policy information. The protocol assumes a named data structure, known as
a Policy Information Base (PIB), to identify the type and purpose of unsolicited policy
Information that is "pushed" from the PDP to the PEP for provisioning policy or sent to
the PDP from the PEP as a notification. The PIB name space is common to both the PEP
and the PDP and data instances within this space are unique within the scope of a given
Client-Type and Request-State per TCP connection between a PEP and PDP. Since a
given a device might implement multiple COPS Client-Types, a unique instance space is
to be provided for each separate Client-Type. There is no sharing of instance data across
the Client-Types implemented by a PEP, even if the classes being instantiated are of the
same type and share the same instance identifier.

The PIB can be described as a conceptual tree namespace where the branches of
the tree represent structures of data or Provisioning Classes (PRCs), while the leaves
represent various instantiations of Provisioning Instances (PRIs). There may be multiple
data instances (PRIs) for any given data structure (PRC). For example, if one wanted to
install multiple access control filters, the PRC might represent a generic access control
filter type and each PRI might represent an individual access control filter to be applied.

3.6.2.3 Cops-pr defined protocol

Cops-pr is the protocol that we will use for conveying the configuration
information from the PDP to the PEP, so if its needed further information about the
protocol, [30] can be reviewed.

POLICY BASED NETWORKING 25

3.7 EXAMPLE OF A FRAMEWORK

The network of our example is the network of a small company (Figure 3.5), with the
following topology:

• LAN address range: X.Y.0.0/16
• Subnets X.Y.I.0/24 (public), X.Y.2.0/24 (administrators), X.Y.3.0/24 (employees)
• A central router A that routes the LAN and Internet traffic, and serves as the Internet

gateway.

Suppose that the following high-level abstract access rules have been set:

#1. Internal LAN traffic is always allowed
#2. The administrator can always access the Internet, whenever and from wherever he/she
is logged in.
#3. During overall congestion, traffic between the employee domain and the Internet is
denied.
#4. Internet can be accessed only during working hours (Monday to Friday, 9:00-] 7:00)
(Rule #1 has the highest priority, rule #4 the lowest)

Also, suppose that the term "overall congestion" is evaluated according to
whether router A is congested, i.e., based on the load of its interfaces.

Suppose that the (PEP of the) routers of the network support a PIB with a single
PRC, PRIs of this PIB describe source/destination criteria that allow access to IP traffic
within the network. Each PRI in this PIB is a stand-alone policy of the form:

If ((Source matches Srcaddr/Srcmask) and (Destination matches
Destaddr/Destmask)) then allow.

Traffic that matches at least one PRI in the PIB is allowed. Traffic that does not
match any criteria (policies in the PIB) is, by default, denied.
Suppose now that the following events take place:

08:59: No administrator logged on
09:00: start of working day
11:00: congestion detected
11:05: no congestion
15:08: congestion detected
15:11: administrator logs on at X. Y.3.7
15:20: no congestion
17:00: end of working day
17:15: administrator logs out

POLICY BASED NETWORKING 26

Figure 2: COPS-PR Example

POLICY BASED NETWORKING 27

Figure 2 demonstrates snapshots of the PIB of Router A during the day:

• When the router boots, the PDP sends a policy that allows all LAN traffic
(PRUD #1), which implements policy #1,

• When the PDP detects the beginning of the working day (09:00), policy #4
becomes applicable, and a PRI that allows traffic to/from the Internet is added
into the PIB (PRI #1 is now redundant; the PDP may decide to keep it or not;
however this does not affect significantly our analysis).

• When congestion is detected (11:00), the PDP attempts to install policy #3.
This policy is in conflict with the already installed policy #4; however policy
#3 has higher priority, and hence the employee subnet is banned from Internet
traffic.

• After a while (11:05), the network is no longer congested, and the PIB is
restored to its previous state.

• When the network becomes congested again (15:08), the PIB has to be
updated once more, as before.

• When the administrator logs on at the guest subnet, however (15:11), traffic
to/from the Internet to his/her IP is allowed. Note that policy #2 is in conflict
with policy #3, which bans traffic to the employee subnet, however the former
wins since it has a higher priority.

• When the network becomes decongested (15:20), policy #3 is uninstalled, and
policy #4 is installed again. At the end of the working day (17:00), policy #4
is also uninstalled, and finally, when the administrator logs out, policy #2 is
uninstalled as well, denying all Internet access

METAPOLICIES 28

4 METAPOLICIES

This chapter refers to the new idea [38] proposed to enhance the possibilities of
policy based networking, and also to reduce the shortcomings that are evidenced in the
traditional design of the framework.

4.1 DEFICIENCIES OF THE TRADITIONAL APPROACH

In the study cases presented in the typical study of the policy based networking,
the COPS-Pr protocol is used as a method to communicate the configuration information
from the server to the client. Also this protocol is used to update the required information
in the PIB of the PEP, whenever the PDP decides it is necessary.

This way the high level policies are installed in each PIB´s device, with the
current network state. When various events take place, the state changes and the PIB is
modified. Also, when the same event occurs not always means that the same actions are
taken. The occurrence of the same events does not even imply that the PDP will send
exaclty the same commands to the PEP. However, there is a certain correlation between
the network events and the PIB contents, which this model fails to take into
consideration.
There are some special cases when the traditional approach can be improved and this are
the cases that we are going to describe next. In some cases PDP has to send the same (or
similar) commands, when the same event occurs. In the previous example, for instance,
while the network alternates between the states "congested" and "not congested", the PDP
needs to install and remove the PRIs that deny Internet access to the employee domain. In
a more complex example, a big set of PRIs might need to be updated. The PEP needs to
be directed about how to treat an event, even if the same event with the same
consequences has occurred in the past. Hence, with these ´dumb´ devices those need to be
instructed and directly directed for each change of the Network State, consuming some
times many resources of the PDP for generating (the same) configuration updates, and
consuming more bandwidth that necessary.

This shortcoming of COPS-PR has a great impact on its efficiency and
performance, so it is a good way to try to solve this kind of problem.

METAPOLICIES 29

Another limitation of the traditional design is located in the rigid design of the
PIBs, because are too predefined structures and the high level policies cannot directly
map into them, so the PDPs need to convert the high level policies into policies that can
be represented in the PIB. All policies that do not precisely map to a supported policy
type need to be processed at the PDP level. In the previous example, the policy “During
overall congestion, traffic between the employee domain and the Internet is denied “
cannot fit in he PIB and has to be processed by the PDP. The latter, depending on the
overall network state, produces the PRIs that are in conformance with the initial policy,
for the given congestion status. Then the PEP implements the policies that theses PRIs
describe. In this case, the high level policy has to be processed partially by the Ppd. and
partially by the PEP. Obviously, the involvement of the PDP in cases like this is usually
neither efficient nor desired.

In this example the PDP should ask to the PIB of the PDP for a possible
congestion, and then send the appropriate policies back to the router’s PIB. It is clear that
this policy could be completely processed at the PEP level, since congestion could be
evaluated locally by the PEP. Similarly, for the policy “Internet can be accessed only
during working hours”, the PDP is necessary in order to determine the condition
“working hours”, since this condition cannot be stored in the PIB of the router. However,
supposing there is a clock service that broadcasts the date and time over the network, this
policy could also be evaluated entirely at the PEP level.

The rigidity of the PIBs also does not allow any other kind of policies to be
evaluated by the PEP apart from these supported by the PIB, making in this way the
presence of the PDP necessary, even in cases where this could be avoided. This is a
significant drawback, since it makes the model very vulnerable to PDP errors or
malfunctions and to network error situations, such as network congestion or network
failures.

4.2 SOLUTIONS

The shortcomings of the COPS-PR protocol leading the work through possible
feasible solutions that solved those issues. The first remarkable question is that the
general conception of the framework seems to entrust much of the intelligence and
responsibility into the PDP, so if this fails all the system will be affected.

Also the question of the repeatability of the installing and removing some PRIs
when the same events occurs is a point to solve. And the rigidity of the PIB is in some
way an impediment to achieve much more performance.

In general, the PEP depends much more of the necessary on the PDP, even in
cases when this is not absolutely necessary.

The solution is to extend the functionality of the PIB, so the PEP could be more
independent and take more decisions with the available information. The PDP would
download applicable policies and directions on how to react to certain events. This would
push much more functionality on the PEP, so the PDP would have fewer responsibilities
and the fail of the system would be much less probable.

The role of the PDP would be downgraded mainly to communicating such events
to the PEP, rather than modifying the configuration data. Also, the PEP could be
programmed to monitor some of these events by itself and initiate the appropriate actions.

METAPOLICIES 30

Assuming this conception, the PDP is able to control the PEP mainly by
communicating events, rather than policies. Also, the PEP is able to take certain policing
decisions by itself. In this way, intelligence is pushed toward the PEP.

More functionality is pushed towards the PEP, and in order to achieve this we use
meta-policies, a new concept that is defined and discussed in the next point.

4.3 THE CONCEPT OF THE META-POLICIES

With the implementation of this new concept we will solve the shortcomings
defined in the previous point. For the explanation of the concept, we will try to illustrate
with an example.
 In the example of the previous chapter there was the policy:

“During overall congestion, traffic between the employee domain and the Internet
is denied”.

Suppose that this is the only policy of a small network, consisting of two routers,
A and B, where router A is the central router of the network, and B a router of a sub-
domain. Also, suppose that these routers have a small filtering PIB like the one examined
before, and that the condition "overall congestion" is indicated through some MIB
variables of router A.

Whenever congestion is detected, the PDP sends to the PEPs of the routers some
configuration data that install some PRIs and update their behavior. Since we have only
one policy for this network, each router receives the same commands each time that
congestion is detected. Let us call these data DataA and DataB. These PRIs are
uninstalled when congestion ends.
Suppose now that the PDP could send to the two routers the following commands, which
we shall call meta-policies:

Router A: Router B:
• If (Congestion) then (DataA} • If (Congestion) then {DataB}

Finally, suppose that the PDP somehow directs the PEP of router A on how to evaluate
the parameter "Congestion" from the appropriate variables of its MIB and informs the
PEP of router B that the value of "Congestion" will be sent to it, each time that it
changes. In this case, we can observe the following:

• The PDP only needs to send the meta-policies once. Then the PEPs have all the
necessary information to react according to current Network State, as long as they are
informed about it somehow.

• Router A can evaluate the two meta-policies locally and independently of the
PDP. This means that the PDP does not need to process the original policy for router A
any more. Also, the PEP will operate according to the administrative goals even in cases
of high congestion (that would delay the PDP from querying the MIB of router A and
update its PIB), or even while the PDP is down or unreachable.

• Router B still needs to be guided by the PDP. However, the PDP does not need
to send policy commands in the form of configuration data (DataB) anymore; it must
send only the value of the variable "Congestion". In this way, the PDP load is decreased,

METAPOLICIES 31

less bandwidth is consumed, and the PDP Decision message is less likely to get lost or
corrupted (since it is significantly smaller).

Although the case of a network with more than a single policy complicates the
situation, based on the previous discussion, we can observe that in general, each high-
level policy requires some specific PRIs to exist (or not exist) in the PIB of each device,
depending on the network state. Each network event makes applicable some policies that
were not applicable before and vice-versa. This means that we can associate
combinations of events with PRIs that need to exist in the PIB.

Meta-policies attempt to take advantage of exactly this observation. They
associate combinations of network events with PRIs that need to be installed. The event
combination comprises the condition of the meta-policy; the modifications of the PIB
that these events trigger are its actions. Meta-policies are generated by the PDP and they
are sent to the PEP. The PEP processes these meta-policies and updates its PIB. The
decision that the PEP takes is the same that the PDP would take, for the same network
events. Of course, in order to do so, the PEP must be aware, somehow, of all the relevant
network events. The PDP could be used for this purpose and inform the PEPs about
network events that need a global (or at least a relatively "large") network view to be
evaluated. In this case, the PEP still depends on the PDP, but less network and PDP
resources are consumed. However, the PEP can be informed of network events from
other sources, as well: For instance, the PEP may use the MIB of the device where it
resides to evaluate local events. A network service or server (like a clock or a notification
service) can also be used. Even more, mobile agents can be used to collect and provide
notification of such events. The latter implies some degree of programmability and
openness at the architecture of the PEP; however, such features are becoming available
more and more in modem devices.

An important issue that needs to be addressed is conflicts. Valid meta-policies
may be conflicting under certain circumstances. Besides, meta-policies may conflict with
PRIs directly installed into the PIB by the PDP. As in COPS-PR, the PDP must resolve
these conflicts before sending any commands to the PEP. Conflicts between meta-
policies can also be resolved at the PEP level, as long as these policies are associated
with priorities, provided by the PDP.

Finally, note that the mapping between meta-policies and high-level policies is
not necessarily one to one. Some high-level policies may not be applicable for a device;
some may be combined into a single meta-policy; and some others may need to be split
into more that one. Besides, the PDP may still decide not to produce a meta-policy for a
high-level policy, and implement it by directly installing and uninstalling PRIs into the
PIB.

4.4 FORMAL DEFINITION

We define a meta-policy as a rule of the form:

if (condition) then {actions}

Where "condition" is a logical expression, e.g., "(C>60%) and (D==true)", and
"actions" is a set of PIB commands that install PRIs into the PIB.

METAPOLICIES 32

Since the actions encode a specific policy, this rule is a rule on how policies are
enforced, on the contrary at what policies are enforced. This is what we call this new
concept as meta-policies.

Each meta-policy is generated by a PDP for a specific PEP, depending of the
capabilities and limitations of the latter, so the actual information that is sent to the device
is meaningful for this one only.

The way to deal with the meta-policies is to analyze them in each moment to see
if the condition is satisfied, and if this is true to enforce the policies defined in the
actions; installing them in the PIB of the device.

For this reason the conditions are logical expressions that are evaluated by the
same PEP, and the actions just denote the PRIs that will be installed in the device when
the primmer are satisfied.
 Other question is that two meta-policies may conflict under certain situations. For
such meta-policies, the PDP provides a relative priority between them. So if two meta-
policies that are evaluated true by its conditions, two of them will be enforced except for
the reason that they are in conflict among each other. If this is the case only the one with
higher priority will be actually enforced in the PIB of the device.

Whether the condition and the actions may be parametric. This is of course clear
in the case of the condition, since a not parametric one would be evaluated always the
same, and the complete condition would be not necessary at all. In the case of the actions,
they can contain parameters to contain variable values that we could need to install in the
PIB.

The parameters are used in meta-policy conditions in order to determine when a
meta-policy must be activated. Moreover, they are used by meta-policy actions in order
to dynamically bind the network state within policies. For example, one meta-policy
applicable to the example before could be:

CONDITION ACTION
If (AdminLogged) then Install (7, AdminIP, 24, *.*.*.*, 24)

Install (8, *.*.*.*., 24, AdminIP, 24)

In this meta-policy we see that the condition is simply the parameter
AdminLogged. In the PEP context, when this parameter becomes true, the device will be
responsible to install the actions that are defined in the action field. This specific actions
give acced to the network to the administrator.

When the AdminLogged parameter is false again (because the PDP sends its
correct value when the administrator disconnects from the network), the PEP will remove
the installed PRIs from the PIB.

The parameter must be of different classes, depending of the evaluation method to
get its value. The PDP must inform in some way to the PEP the evaluation method, that
could be obtaining its value from the MIB of the PEP, or getting its value from the local
field that the PDP has filled in.

However the evaluation methods depend on the final capabilities of the device.

METAPOLICIES 33

4.5 METAPIB EXAMPLE

Based in the example that we studied before, we will examine how will be
affected by the addition of meta-policies.

The first policy is:

Internal LAN traffic is always allowed

And always must be enforced, so directly the PDP enforces it installing the PRI
#1 into the PIB when the router boots.

The next meta-policies are:

If (worktime) then Install (2,*.*.*.*, 24, *.*.*.*, 24)

If ((if1Util>80%) or (if2Util>80%)
(if3Util>80%))

Install (3,X.Y.1.0, 24, *.*.*.*, 24)
Install (4, *.*.*.*, 24, X.Y.1.0, 24)
Install (5,X.Y.2.0, 24, *.*.*.*, 24)
Install (6, *.*.*.*, 24, X.Y.2.0, 24)

If (AdminLogged) Install (7,AdminIP, 24, *.*.*.*, 24)
Install (8, *.*.*.*, 24, AdminIP, 24)

Also the PDP must inform to the PEP that the two first meta-policies are
conflicting and the second one has higher priority. For this the PDP will send the
correspondent objects that declare this statement.

The used parameters must also be reported to the PEP with its related evaluation
methods. The parameters values for worktime, AdminLogged and AdminIP are sent by the
PDP, and the parameters if1Util, if2Util and if3Util are evaluated through the appropriate
MIB variables that denote the usage of the router interfaces.

The PEP will monitor the parameters, and when their value change, it reevaluated
the affected conditions.

With this approach we accomplish the objective of pushing more responsibilities
and intelligence towards the PEP. The PDP will download the appropriate meta-policies
to the device, and afterwards it will control the device behaviour sending network events,
instead of complete policies to install.

In addition many of this network events can be monitored by the PEP itself,
without consuming any bandwidth at all, and accomplishing to be more independent.
Moreover, parameter like worktime sent by the PDP could be evaluated directly by the
PEP through a network clock service if it had the way to get it.

METAPOLICIES 34

Figure 3: Example with MetaPolicies

ANALYSIS AND DESIGN OF THE FRAMEWORK 35

5 ANALYSIS AND DESIGN OF THE
FRAMEWORK

The design of the complete framework includes the design of the two basic
entities that will make possible the implementation of a policy based network. Although
the PDP could be a very complicated entity, we only need to design and implement the
basic part to communicate and control the PEP.

The latter will be more complicated in our design, since it has to implement all the
issues that we have previously described, including the meta-policy part

5.1 PDP

The design of this device is pretty easy for our purposes:

Figure 4: PDP Overview

Example UTIL MODULE

PDP

OVERVIEW: PDP DESIGN

COPS-PR
MODULE

Example
hardcoded

ANALYSIS AND DESIGN OF THE FRAMEWORK 36

We need one dedicated module to handle the communication with the COPS-PR
protocol, and to convey all the messages to send to the PEP module.

Another part of the device will be the util methods to make easier the
transformation of the high level policies to the cops-pr objects that are really sent over the
network. This will be done more or less automatically in the future, but now we have also
another part of the PDP that is responsible of hardcode the exact example that will be
sent.

5.2 PEP

The PEP device is the final enforcement point where the policies take effect, so its
role is very important in the framework, and the design of it must be carefully studied to
take in consideration all the necessary issues of the environment.

The first characteristic that we must to take into consideration is the fact of the
communication protocol. This device must be able to deal with the COPS-PR protocol, so
an implementation of this protocol will be necessary to convey the policy (and meta-
policy) information between the PDP and the PEP.

Also the purely policy information is handled in a traditional way. For this
purpose the PEP must main maintain a PIB where install the policies that are directly sent
by the PDP.

The new introduction of the meta-policy concept needs to deal with another class
of objects that must handled separately by the PEP.

The overall design of the PEP is introduced in the next figure:

Figure 5: PEP Overview

COPS-PR
Comm

PEP

OVERVIEW: PEP DESIGN

Controlled
Device

PIBController

PIBMetaPIB

ANALYSIS AND DESIGN OF THE FRAMEWORK 37

In the next points we will discuss the requirements of the different components of
the PEP and their design.

5.2.1 Cops-Pr Comm Module

This module is in charge of all the communications with the PDP so it will
implement all the functionality to deal with the protocol and to convey the messages.

5.2.2 Pib

This is the module where the enforced policies are maintained, either because
they have been directly sent by the PDP or because they are enforced from meta-policies
whose conditions are true in a determined moment.

The concrete design and implementation of the PIB will be dependent of the
designed and implemented PRCs and PRIs, and will vary depending of the necessities of
each concrete PEP and final objective of the PIB. Hence, depending if we want to have a
PIB to control one area (of the FCAPS framework) we will have a different PIB design.

5.2.3 Meta-Pib

This is the most complicated part of the modeled device as it has lots of
requirements. This point analyses the requirements, justifies our choice to use another
PIB to implement the additional functionality and discusses its design issues.

5.2.3.1 Requirements

The explained meta-policies are the main concept that restrict and guide the
design of the Meta-Pib.

Each condition of a meta-policy is a Boolean expression, comprised of a number
of simpler conditions. Ultimately, all conditions are decomposed into primitive logical
expressions, such as arithmetic comparisons (InterfaceUtilization < 80), Boolean
expressions (AdministratorLogged == true), network expressions (IpAddress matches
X.Y.Z.W), etc

The actions install PRIs into the PIB. Each action identifies a single target PRI
and the value that must be installed into it.

Both conditions and actions may be parametric; hence a way to communicate,
store and process parameters is also necessary. Each parameter has a type, which denotes
what kind of information it stores (integer, IP address, octet string, etc). Also, each
parameter has a way to be evaluated. Several evaluation methods may exist. We
distinguish two basic evaluation methods: First, a parameter can get its value from the
MIB or PIB of the device. Second, the value can be sent by the PDP initially, and then be
updated (by the PDP) whenever it changes. However, other evaluation methods may also
exist, depending on the capabilities of the device. For instance, an active/programmable
device may download and execute code that will evaluate this parameter. Although it is
practically impossible to support any possible evaluation method, it is desirable that the

ANALYSIS AND DESIGN OF THE FRAMEWORK 38

basic methods that we define can be extended with other methods (standard or vendor-
specific).

5.2.3.2 Analysis

By choosing to define a PIB and use COPS-PR, all communication and storing is
addressed by the protocol itself: When the PEP connects to the PDP, it reports its meta-
policing capabilities and limitations. According to these capabilities and limitations, the
PDP downloads all the appropriate meta-policies. These meta-policies are stored in the
PIB and remain there, until they are updated by the PDP.

The meta-policy data requirements are described next:

5.2.3.2.1 Meta-Policies

Meta-policies consist of a condition and a set of actions. Since valid meta-policies
may conflict under certain circumstances, the PDP must be able to declare potentially
conflicting meta-policies and denote priorities between them. Also, the status of the meta-
policies (whether they are active, whether they suppress a meta-policy with lower priority
or whether they are suppressed) may need to be reported to the PDP.

5.2.3.2.2 Conditions

Each meta-policy must contain exactly one condition. As mentioned before, the
condition is decomposed into one or more primitive expressions that need to be
evaluated. Each of these primitives must contain at least one parameter (otherwise, a
simpler condition without them exists, since that primitive expression always evaluates
either true or false). We distinguish two categories of primitives: Boolean and generic
expressions.

Boolean expressions are a subset of the generic expressions, but due to their
simplicity and commonality, they are treated separately. Such primitives are evaluated
according to the value of a Boolean parameter. For instance, in the expression ((X>Y)
&& ('.Congestion) && (WorkTime)), Congestion and WorkTime are such primitives.

Generic expressions contain all the other logical expressions that cannot be
decomposed into simpler Boolean primitives. Examples of such primitives are "IP
matches X.Y.Z.W" or "8:00am < time < 5:00pm). Each PEP can only support specific
types of such expressions (e.g., arithmetic), which are reported along with the other PEP
capabilities to the PDP. The PDP can only send to the PEP expressions that are supported
by the latter.

An important issue is that such expressions need to be standardized in order to be
transmitted and stored in the PIB, However, different types of expressions require
different operators (e.g., arithmetic expressions need operators like "+","-",">", while
network; conditions need operators such as "matches" and "subnet"). Besides, the set of
types of such expressions is infinite, since any kind of expressions may be valid; the

ANALYSIS AND DESIGN OF THE FRAMEWORK 39

expression "colorl darker that color2" is a valid expression (although probably totally
useless for network management). The point is that all types of possible expressions,
cannot be predicted in advance, but they need to be standardized. Of course, we could
choose to standardize only a few types of expressions that are most commonly used, but
this would restrict the applicability of our work.

The solution given to this problem was to define an open, generic mechanism to
handle such expressions. The details of this generic mechanism can be defined per
expression type (arithmetic, IP expressions, etc). We have already defined common
expression types, but these types can easily be extended to include other ones, as well.

More specifically, all expressions are encoded using XML. XML uses tags that
give semantics to the data of the XML document. However, the semantics of these tags
are defined in separate documents, called Document Type Definitions (DTDs). These
DTDs specify the details of the generic mechanism, per expression type. Each PEP
reports to the PDP the DTDs that it supports, through an identifier, which uniquely
identifies these DTDs (which is the URL where these are published; this is the standard
method adapted by the XML standard). By reporting an XML DTD, the PEP declares
that it can interpret any XML document (that encodes an expression) written according to
this DTD. For example, if a DTD defines tags for numerical operations (+,-,*, /,div) and
comparisons (>,=,>=,<,<=,=) then the PEP should be able to understand any arithmetic
expression that uses these operators. The PDP, according to the expression that it wants
to encode, chooses the most appropriate DTD, encodes the condition and transmits it.
By using XML DTDs we manage to:

• Standardize the exchange of general expressions
• Accomplish a uniform way of storing them into the PIB
• Leave the PIB open to any type of expressions
• Allow each PEP to implement only the functionality that it needs, or that is

appropriate, according to its resources.

Note that the PDP is always able to find a way to send an expression, even if this
is not optimal: Even if the appropriate DTD is not supported, the expression may be
transformed to a supported one. In the worst case, the entire expression is represented as
a Boolean parameter, and the PDP sends the value for this parameter

5.2.3.2.3 Actions

Each meta-policy can contain 1 or more actions that represent the policies to
enforce when the associated condition is satisfied. It is acceptable that no action is
specified, but normally this is not very common. Each action is a binding of a PRID
pointing to a single PRI, and the value that will be installed in that. We also know that
since actions can contain parameters, this can be dynamically evaluated (just before
being installed).

ANALYSIS AND DESIGN OF THE FRAMEWORK 40

5.2.3.2.4 Parameters

Parameters are present into conditions and actions of the meta-policies. Each
parameter has an evaluation method communicated someway by the PDP. The mandatory
evaluation methods are evaluated through the MIB or the PIB of the device, or through
the PDP. Specific Vendors could specify another evaluation methods.

Parameters that are evaluated through the MIB need to specify the polling
frequency to update the value

5.2.3.2.5 Pib approach

The proposed enhancements require meta-policing information to be exchanged
between the PDP and the PEP, and be stored and processed by the latter. Hence, a crucial
question that must be tackled in the early design phase is what protocols and data
structures will be used. We decided to use COPS-PR to communicate such data and
define a PIB to store them at the PEP (as opposed to defining another protocol and/or
storage structure, or extending the existing ones). This decision was based on a number of
reasons:

• Meta-policies need to be sent to the PEP in a provisioning style, and COPS-PR
is a protocol defined for policy provisioning.

• Our work is in line with the work conducted in IETF. No new protocols need to
be developed, and the proposed PIB can easily be adapted by the Internet community
(researchers and vendors). Even legacy devices can support the proposed PIB (e.g., with
software updates).

• By using a PIB to store meta-policies, meta-policing data are treated as any PIB
data. Consequently, meta-policies on meta-policies could also be defined

• Finally, by using COPS-PR and PIBs, the design and the implementation is
simplified: the definition of a PIB is much simpler that defining a new protocol. Meta-
policy exchange and storage is already handled by the protocol and does not need to be
addressed by us. The implementation is based on existing, tested tools. The reuse of
knowledge and code makes the design, implementation and testing safer and easier, and
minimizes the chance for errors.

In general, although the choice of using a PIB and COPS-PR introduces some
further requirements, it does not prevent or hinder us from meeting any of our goals.

Our decision to define a PIB and use COPS-PR to implement our proposal
implies that the SPPI specification must be used to define the PIB. SPPI [37] demands all
data to be placed in tabular format (each table is a PRC, and the rows of the tables the
PRIs). SPPI also demands strong typing of the attributes of the PRIs. However, the SPPI
is very flexible in defining new types; this feature is exploited in order to overcome the
previous restriction.

ANALYSIS AND DESIGN OF THE FRAMEWORK 41

5.2.3.3 Design

In this section we will define the Meta-Policy PIB classes. The full review of this
part can be found in [38].

5.2.3.3.1 Meta-Pib

According to the previously presented analysis, we define the classes (tables) or
PRC that comprise the Meta-Pib. These classes are defined using the SPPI.

The PRCs are grouped into five groups:

• The Capabilities group contains the provisioning classes (PRCs) that store
the capabilities and limitations of the PEP. The PRIs of these classes are
reported to the PEP into the REQ message when the PEP connects. This
groups contains the XML DTDs that the PEP supports, for encoding
espressions. Each row of the xmlDTDTable consists of an identifier and the
DTD URL.

Figure []. Capabilities Group

• The Parameter group contains the classes: parameter, mibPibParameter,
and pdpParameter.
The parameter class is the base class for the representation of parameters.
Each PRI contains of an identifier (PRID), and a name of the parameter. Also
each PRI must be associated with a PRI of a class that EXTENDS this one.
MibPibParameter represents a parameter whose value is extracted from the
MIB or the PIB of the devices. The class contains the PRID of the PRI that the
parameter extracts its value from. Since the MIB and the PIB have different
name spaces, the identifier in meaningful by itself alone. This class contains
also a value that represents the frequency of polling to obtain its value
The PdpParameter contains the last value that the PDP has sent so it contains
the actualized value.

Figure 6: Capabilities Group

xmlDtdPrid
xmlDtdUrl

xmlDtdTable

From ConditionTable

ANALYSIS AND DESIGN OF THE FRAMEWORK 42

• The base Meta-Policy group contains three classes direcly related with the
meta-policy handling: the metaPolicy, the metaPolicyStatus and the
metaPolicyPriority classes.
The metaPolicy class is the base PRC of the meta-policies. Each instance of
this class represents one meta-policy, and comprises an identifier (PRID), the
name of the meta-policy, a reference to a condition and an action tag that
references a group of actions.
The metaPolicyStatus is a PRC that AUGMENTS the base class. This means
that one instance of this class is directly related with the class that it augments,
and only exists in the context of this one. Each instance (PRI) of this PRC
reports the status (whether it is active or not) of the installed meta-policy, and
the reason of this status (if it is being suppressed by another active meta-
policy with higher priority, etc. These instances can also serve as parameter to
other meta-policies, so as to construct conditions that are based on wheter
installed meta-policies are active, inactive or suppressed.
The metaPolicyPriority class is the PRC that represents the priorities between
the metapolicies, if any. Each entry of the table contains two fields that refer
to metapolicies, in a way that the first entry represents a meta-policy that has
more priority that the second entry.

Figure 7: Parameter Group

pdpParameterTable
lastValue

parameterPrid
parameterName

parameterTable
targetOID

EvaluationFrequency

From ConditionTable

From ActionTable

ANALYSIS AND DESIGN OF THE FRAMEWORK 43

• The Condition group contains the classes related with the condition of a
meta-policy. This group is formed by a parent class condition that represents
the base condition and comprises an identifier (PRI), and a flag that indicates
that the result of the evaluation of the condition must be negated.
Nevertheless, this base class must always be associated with PRIs of another
class that EXTENDS this one. So this class will never directly have instances,
but its descendants.
The classes that EXTENDS this one are complexCondition,booleanCondition
and generalCondition.
The first one, complexCondition, is used when decomposing a bigger
condition breaking it into smaller components. This object permits construct
binary trees of conditions, so it contains a leftTerm and a rightTerm that
references other conditions that constitute the left and right branches. Also has
an operator that defines a logical operation between these two terms that both
represent logical conditions.
The booleanCondition contains a reference to a parameter, with must be of
type Boolean. The value of the condition will be evaluated according to the
value of the parameter
Finally, the generalCondition class is used to represent conditions that cannot
fit in the ones described above. This class contains a XML formatted string
that represents the condition. The formatting will be according a DTD, so this
class contains a reference to a xmlDTD class, in addition to the condition
string itself.

Figure 8: MetaPolicy Group

metaPolicyPrid
metaPolicyName
metaPolicyCondition
metaPolicyActions

metaPolicyTable

metaPolicyPriorityTable
metaPolicyPriorityPrid

higherPriority

lowerPriority

metaPolicyStatusTable
metaPolicyActive

metaPolicySuppress

1:1

To Condition Table

To Action Table

ANALYSIS AND DESIGN OF THE FRAMEWORK 44

• The Actions group consists of three classes: action, actionValue and the
actionParametricValue classes.
The base class, action, contains the identifier of the instance (PRID) and a tag
that groups actions that will be installed together. Also contains the PRID of
the concrete PRI that will be the container of the installed policy. Of course
the PRID will refer to an entry of the PIB.
This class has no instances by itself, but its descendants that EXTEND this
one, have.
The descendants provide the value that will be installed in the PRI, and
depends on the class that the instance is.
The actionValue class contains directly the value that will be installed in the
PIR.
The actionParametricValue contains a reference to a parameter that will be
dynamically evaluated to obtain the value to install.

Figure 9 : Condition Group

xmlDTDRef

xmlCondition

generalConditionTable

parameterReference

booleanConditionTable
conditionPrid

conditionReverse

conditionTable

complexConditionTable
operator

leftTerm

rightTerm

From MetaPolicyTable

ANALYSIS AND DESIGN OF THE FRAMEWORK 45

Figure 10: Action Group

5.2.4 Controlled Device

This is the interface with the controlled device whose behavior will be controlled
by the policies enforced in the PIB in each moment. As we know these policies can be
directly installed or through meta-policies. This is a very simple interface with the
controlled router, switcher, or general network device. The code to control the device will
be specific of each vendor hardware and will be inserted into the interface that we define.

parameterRef
actionParametricValueTable

actionPrid
actionRefTag
actionTargetPrid

actionTable actionValueTable
actionValueEpd

To ParameterTable

From MetaPolicyTable

ANALYSIS AND DESIGN OF THE FRAMEWORK 46

This is the complete design of the MetaPib:

Figure 11: Complete MetaPib

xmlDTDRef

xmlCondition

generalConditionTable

parameterReference

booleanConditionTable
conditionPrid

conditionReverse

conditionTable

parameterRef
actionParametricValueTable

actionPrid
actionRefTag
actionTargetPrid

actionTable actionValueTable
actionValueEpd

pdpParameterTable
lastValue

parameterPrid
parameterName

parameterTable
mibPibParameterTable

targetOID

EvaluationFrequency

metaPolicyPrid
metaPolicyName
metaPolicyCondition
metaPolicyActions

metaPolicyTable

metaPolicyPriorityTable
metaPolicyPriorityPrid

higherPriority

lowerPriority

metaPolicyStatusTable
metaPolicyActive

metaPolicySuppress

1:1

xmlDtdPrid
xmlDtdUrl

xmlDtdTable

complexConditionTable
operator

leftTerm

rightTerm

IMPLEMENTATION 47

6 IMPLEMENTATION

In this chapter we will introduce all the details of the implementation, including
some classes schemas and also the specification of the main methods for the
comprehension of the framewotk

6.1 PDP

In this point we will present the description of the implementation details of the PDP
device.

6.1.1 PDP Working mode

The function of the PDP is, as we know, coordinate the right functioning of the
policy-based network, sending the configuration data to the PEP and updating this
configuration data when necessary.

The implementation of the PDP is centralized in the class Server. This class has
references to the objects of the classes that it needs to perform the communication with
the PEP.

For example it will have a ServerSocket for the incoming requests. Also it has a
reference to a COPSmessageReceiver object in charge of receiving and decoding the
incoming COPS messages, and a CopsMessage object that will hold the last message
received (the one that the COPSMessageReceiver has decoded).

The PDP can be very complicated because much intelligence can be conducted by
this entity. Nevertheless a complete PDP implementation is out of this scope, so only the
necessary functionality for testing the framework and, in consequence the METAPIB, has
been implemented. The existing implementation, consider issues like COPS and COPS-
PR communication making possible the communication with the PEP. The concrete sent
commands must be hardcode, so this is what we should do for any example that we want
to test. Functionality to convert high level policies to the specific commands was out of
the first approach for its inherent complexity, but can be studied to be added in the future.

The Server class contains the hardcoded rules that permit to test the proposed
example. It also contains a reference to another object that contains another hardcoded

IMPLEMENTATION 48

commands to test another example, but the code can be modified to reference all the
examples that we need.

6.1.2 PDP architecture

Figure 12 : PDP Concrete Architecture

Server Socket

Example

COPSMessageReceiver

PDP

OVERVIEW: PDP ARCHITECTURE DIAGRAM

CopsMessage

Example
hardcoded

IMPLEMENTATION 49

6.1.3 PDP Classes

Class Server
thesis.pdp.Server

Description
This is the main class of the PDP server. It contains all the code necessary to

serve the PEP clients, and also contains some hardcode rules in order to test the
environment.

Fields

Type Name Description
ServerSocket serverSocket this is the server socket that serves the incoming

requests from the PEP
DataOutputStream out stream for sending outgoing messages
DataInputStream in strean for obtaining incoming messages
CopsMessageReceiver rcv to receive and decode incoming messages
CopsMessage msg to hold the last decoded COPS message
BufferedReader stdin only for convenient purposes, this buffer is for

entry by keyboard from the PDP Console.

Methods

main

Invocation public static void main(String[] args)
Description This is the main function when the PDP is executed. It basically

opens a ServerSocket and waits connections.
When it receives an incoming connection from a PEP, it will send the
configuration information that is coded, and will wait for the
messages of confirmation that the PEP will issue.

Parameters args - arguments to the function for a parametric execution
of the server.

Returns none
Throws IOException - where there is an error in the sockets or in the

other methods

Other methods included in the implementation correspond to the hardcoded
example.

Also the example class Example2 contains a reference to an object that is defined
in the copspr package and that helps to hardcode the objects that will be sent.

IMPLEMENTATION 50

6.2 PEP

In the next point we will introduce the details of the implementation of the PEP and the
description of the methods of each implied class.

6.2.1 PEP working mode

As we know for the design of policy context, the PEP is basically in charge of
opening a communication session with the PDP, and waiting the configuration and
update messages from the server to work correctly. It will maintain a PIB when it stores
the policies that are enforced, and will handle the incoming and outgoing packets in
consequence.

Also, with the new concepts introduced in the METAPOLICY framework, the
PEP will have more intelligence to solve situations when the PDP cannot pilot constantly
the behavior of the PEP. For this reason the PEP will maintain also the meta-policy
information base METAPIB, where it stores the metapolicies and all the other objects of
the framework.

In the implementation, the most important class of the PEP is the class named
PEP.class. This class is responsible for coordinating all the other related classes, and is
the departure point for the understanding of the PEP behavior.

Every PEP contains a reference to a COPSComm class, in charge of the basic
communication over the network with the COPS protocol.

Basically the COPSComm class contains a socket (actually contains a reference
to a socket object that implements the functionality of the socket) that serves as entry
point of the incoming requests and communications. Also this class contains all the code
regarding the COPS protocol and serves the other classes with the COPS data.

The PEP class also contains references to each client that it is able to deal with. In
fact it contains a reference to a ClientHandler class for each client.

Thus it handles the corresponding references to the types of the former, in form of
a references vector.

Each ClientHandler is able to handle different client-specific issues. In our case,
we only need that it be able to deal with COPS-PR objects, so it will contain a reference
to an object of the class COPSPRClient.

The COPSPRClient class contains the code related with the COPS-PR protocol,
and therefore is able to handle all the objects, and messages, of that protocol. It will serve
the modules that depend of him with the correct data for the right working of those
modules. In this point, the PEP is able to extract the content of the messages that will be
installed or removed in the framework.

Likewise, the COPSPRClient has a reference to an object of the PIBController
class, which it will call with the data that it unpacks from the received messages. This
class is in charge of discerning the address space of the object to install or update, so it
will call the right method. If the object to install/remove is in the address space of the
PIB, it will call the matching method of the PIB class.
If it is in the address space of the METAPIB, it will do the same with the METAPIB
class.

IMPLEMENTATION 51

These two classes are defined to deal specifically with the restrictions of the
incoming objects, because although the PIB could not have any consistency restrictions,
the METAPIB objects have a lot. For example a MetaPolicy object has to refer a valid
installed Condition object, so if this does not exist, it will issue an error. All this
consistency and integrity checking is performed in the context of the METAPIB class.

The METAPIB class is the most important and complex class of the entire
framework and plays an important role in maintaining the framework consistency, and in
the enforcing of the correct metapolicies as well. Although the concrete description of all
the methods that perform the functionality of the MetaPib will be explained later, we will
present an overview of the PEP architecture, and some of the important related classes.

6.2.2 PEP architecture

Figure 13: PEP Concrete Architecture

Also the pep
contains a avector
of references
called ClientTypes

COPSPRClient

COPSComm

PEP

OVERVIEW: PEP ARCHITECTURE DIAGRAM

ClientHandler

PIBController

PIB MetaPIB

IMPLEMENTATION 52

6.2.3 PEP Classes

PEP PACKAGE

Class PEP
thesis.pep.PEP

Description
This class is the main one of the PEP and is responsible of the correct working

mode of the PEP. It also contains references to another classes to handle with all
messages and data. The working mode of the PRP has been previously discussed.

Fields

Type Name Description
Private COPSComm comm Link to the COPSComm object that serves as

communication point.
Private final int NUMBER_OF_

CLIENTS
Number of clients that the PEP is capable to del
with

Private final String PDPAddr Internet Address of the PDP
Private final int PDPPort Port of the PDP
Private short[] ClientTypes Vector of NUMBER_OF_CLIENTS components,

that contains the types of the corresponding
ClientHandler

Private ClientHandler[] ClientHandler Vector of NUMBER_OF_CLIENTS + 1
components that containts the references to the
correspondingClientHanles

Protected String PEPName Name of the PEP that will be used to identify this
PEP in the communication with the PDP

Methods

(Constructor)

Invocation PEP()
Description Constructor. Initialices the fields of the object
Parameters none

Returns none
Throws none

IMPLEMENTATION 53

run

Invocation public void run (String PepName)
Description begins the PEP:

1) Connects to the PDP
2) Initizalices the ClientHandler and ClientTypes structures
depending of the PEP/PDP capabilities
3) waits for PDP messages

Parameters PepName - name of the PEP
Returns none
Throws none

OPN

Invocation public void OPN (short ClientHandler)
Description Sends a open (OPN) message thru the COPSComm
Parameters ClientHandler - number of the Client that sends the OPN message

Returns none
Throws none

IMPLEMENTATION 54

Class COPSComm
thesis.pep.COPSComm

Description
This class maintains the code to communicate with a PDP. It is the lowest layer of

the protocol.

Fields

Type Name Description
private PEP pep Reference to the linked PEP
private Socket sock Socket
private
DataOutputStream

out Stream for outgoing data

private
DataInputStream

in Stream for ingoing data

Methods

(Constructor)

Invocation public COPSComm(String HOST,
int PORT,
PEP pep)

Description This constructor creates a new Socket with the related parameters to
communicate with the PDP and obtains the DataOutputStream (out)
and DataInputStream (in)

Parameters HOST - Internet Address of the Host (PDP)
PORT - Port of the Host
PEP - Linked PEP

Returns none
Throws COPSException - if there is an error in the COPS protocol

getNextMessage

Invocation public CopsMessage getNextMessage()
Description creates a new CopsMessageReceiver with the input data
Parameters none

Returns the CopsMessage that has received
Throws COPSException - if there is an error in the COPS protocol

IMPLEMENTATION 55

OPN

Invocation public void OPN(short ClientType)
Description creates and sends a new open (OPN) message
Parameters ClientType - type of the client that it is willing to open

Returns none
Throws COPSException - if there is an error in the COPS protocol

CC

Invocation public void CC(short ClientType)
Description creates and sends a new Close (CC) message
Parameters ClientType - type of the client that it is willing to close

Returns none
Throws COPSException - if there is an error in the COPS protocol

REQ

Invocation public void REQ(
short ClientType,
int ClientHandle,
short rtype,
short mtype,
int size,
Vector S,
Vector N)

Description creates and sends a new Request (REQ) message
Parameters ClientType - type of the client that it is sending the request

CientHandle - identifier of the Client (ClientHandle)
rtype - Rtype of the Context (refer to Context Object)
mtype - Mtype of the Context (refer to Context Object)
size - size of the vectors of dataInputStream
S - Ctype vector (ctype of each ClientSI object)
N - ClientSI vector

Returns none
Throws COPSException - if there is an error in the COPS protocol

IMPLEMENTATION 56

RPT

Invocation public void RPT(
boolean solicited,
short ClientType,
int ClientHandle,
short rtype,
int size,
Vector CTypeV,
Vector ClientSIV)

Description creates and sends a new Report(RPT) message
Parameters solicited - indicates if the report has been solitited by the PDP

ClientType - type of the client that it is sending the request
CientHandle - identifier of the Client (ClientHandle)
rtype - Rtype of the Context (refer to Context Object)
size - size of the vectors of dataInputStream
CTypeV - Ctype vector (ctype of each ClientSI object)
ClientSIV - ClientSI vector

Returns none
Throws COPSException - if there is an error in the COPS protocol

finallize

Invocation void finallice()
Description closes the data streams, and the socket
Parameters none

Returns none
Throws IOException - there has been an error closing the data streams and

the socket

IMPLEMENTATION 57

Class ClientHandler
thesis.pep.ClientHandler

Description
This class represents a determined kind of client and it is responsible for handling

correctly the messages that it receives, corresponding with the semantics of that client.
The clientHandle implemented corresponds with a COPS-PR client, since it is

necessary for our goals. Nevertheless this class could implement other kind of client, only
respecting the interface with the rest of the objects.

Fields

Type Name Description
private
COPSComm

comm Link to the associated class COPSComm, necessary to
reply to some messages

int handle handle of the client (unique in a PEP)
short clientType type of the client
COPSPRClient Client Reference to the associated client. In this case, and how

commented before, it is a COPSPRClient (field
clientType: COPSPRClient)

boolean expectingDec flag to know if it is expecting a decission from the PDP

Methods

(Constructor)

Invocation public ClientHandler(int handle, COPSComm comm)
Description This constructor initialices and fills all the necessary flag fields
Parameters handle - handle of the client

comm - reference to the associated COPSComm object
Returns none
Throws none

DEC

Invocation public void DEC(CopsMessage msg)
Description this method is in charge of handle an incoming Decision (DEC)

message. It extracts all the idecision objects and calls the same
method for the associated Client.

Parameters msg - the incoming decision message
Returns none
Throws COPSPRException - error processing the message

IMPLEMENTATION 58

CAT

Invocation public boolean CAT(short ClientType)
Description this method is in charge of handling the Client Accept message. It

calls the 'start' method of the associated client, that also will send a
REQ msg to the PEP

Parameters ClientType - type of the accepted client
Returns true - if the client starts OK

false - it there is any error
Throws none

CC

Invocation public boolean CC(short ClientType)
Description this method is in charge of handling the Client Close message. It calls

the method 'accept' setting false the accepted flag of the associated
client.

Parameters ClientType - type of the client that is being closed
Returns true - if the client closes OK

false - it there is any error
Throws none

REQ

Invocation public void REQ(
short rtype,
short mtype,
int size,
Vector S,
Vector N)

Description this method is in charge of send a Request (REQ) message to the
PDP. It calls the even method of the linked COPSComm object, and
it is used at the beginning of the boot phase.

Parameters rtype - Rtype of the Context (refer to Context Object)
mtype - Mtype of the Context (refer to Context Object)
size - size of the vectors of dataInputStream
CTypeV - Ctype vector (ctype of each ClientSI object)
ClientSIV - ClientSI vector

Returns none
Throws none

IMPLEMENTATION 59

RPT

Invocation public void RPT(
boolean solicited,
short reportType,
int size,
Vector S,
Vector N)

Description this method is in charge of send a Report(RPT) message to the PDP.
It calls the even method of the linked COPSComm object.

Parameters solicited - if this report was solicited by the PDP
size - size of the vectors of dataInputStream
CTypeV - Ctype vector (ctype of each ClientSI object)
ClientSIV - ClientSI vector

Returns none
Throws none

checkClientType

Invocation public void checkClientType(short clientType)
Description this method checks wheter the clientType as parameter is the same of

the actual client , or not.
Parameters ClientType - type of the client that is being checked

Returns none
Throws COPSException - if the client type is not the same of the

implemented client.

IMPLEMENTATION 60

COPSPR PACKAGE

Class COPSPRClient
thesis.copsprclient.COPSPRClient,

Description
This class implement the code related of a client of the PEP. In this case is a client

for policy provisioning with COPS-PR protocol

Fields

Type Name Description
private static
short

ClientType Type of the client (COPSPRClient = 1)

private static final
boolean

EXTND Currently not used

private int Handle handle of the client (unique identifier in a PEP)
private
PIBController

pibc Associated Pib Controller

boolean accepted Flag to indicate wheter the client is already accepted or not
(At the beginning equal to False)

private
ClientHandler

Constroller Link to the Client Handler of this client

Methods

(Constructor)

Invocation public COPSPRClient(int handle, ClientHandler c)
Description this constructor fills an initialices all the class fields.
Parameters handle - handle of the client

c - reference to the associated ClientHandler object
Returns none
Throws none

IMPLEMENTATION 61

accepted

Invocation public void accepted(boolean acc)
Description method called when the client is accepted by the PDP (with acc ==

True) of then the client is closed by the PDP (acc == False)
Parameters acc - tells if it has been accepted or not

Returns none
Throws none

start

Invocation public void start()
Description method called when the client is accepted by the PDP (receives the

CAT message).
1) starts the associated It calls the method with the same name of the
associated PIBController and afterwards,
2) Sends the corresponfing REQ message to the PDP, thru the
associated Controller.
Data regarding configuration, is filled in (1) and sended in (2)

Parameters none
Returns none
Throws none

DEC

Invocation public void DEC(
short rtype,
short mtype,
short code,
byte[] Data)

Description this method is in charge of handle a single decision object
Parameters rtype - Rtype of the Context object that was in the associated

decision message
mtype - Mtype of the Context object that was in the associated
decision message
code - Install / Uninstall decision
Data - bytes of data of the rest of the message

Returns none
Throws COPSPRException - error processing the object

IMPLEMENTATION 62

COPSPRCLIENT PACKAGE

Class PIBController
thesis.copsprclient.PIBController

Description
This class is responsible of controlling the actions taken in the data structures that

maintain the policies (and meta-policies) in the PEP. Actually it deals with COPSPR
Objects and depending on the kind of object it decides its destination in the following
way:

If it is a PIB object it sends the object to the PIB module. If it is a METAPIB
object, it will send it to the METAPIB module.

The PiBController class is a descendant of the Thread class, because it is
responsible of constantly check if there are changes in the parameters (for example the
MibPibParameters) that change the value of any condition. So in that case it will have to
enforce the policies into the PIB.

Fields

Type Name Description
PIB pib PIB module (object) that deals with the pib objects
METAPIB metapib METAPIB module (object) that deals with metapib

objects.

Methods

(Constructor)

Invocation public PIBController()
Description This constructor initialices and fills all the necessary fields.

Also starts a new thread in charge of the checking of the
MibPibParameters.

Parameters none
Returns none
Throws none

run

Invocation public void run()
Description this method overrides the run() method of the Thread (parent) class.

It constanly checks the MibPibParameters.
Parameters none

Returns none
Throws none

IMPLEMENTATION 63

getPibType

Invocation private int getPibType(String pridString)
Description private method to decide the module (at present PIB or METAPIB)

that will correspong to the prid sent as parameter
Parameters pridString - prid (as string)

Returns integer identifier of the type of the prid.
Throws none

install

Invocation public void install(CopsPRObjSet objs)
Description install the set of COPSPR objects in the pertinent place (in the PIB or

the METAPIB)
Parameters objs - set of objects to install

Returns none
Throws COPSPRException - if there is an error in the messages

construcion, or if there is an error installing that object (for example
for integrity constraints)

remove

Invocation public void remove(CopsPRObjSet objs)
Description removes the set of COPSPR objects (of the PIB or the METAPIB)
Parameters objs - set of objects to remove

Returns none
Throws COPSPRException - if there is an error in the messages

construcion, or if there is an error removing that object (for example
for integrity constraints)

selectInstall

Invocation private void selectInstall(OIDObj oid,
EPDObj epd)

Description called from 'install'; selects where to install the object (PIB or
METAPIB)

Parameters oid - oid of the object to install
epd - epd of the object to install

Returns none
Throws COPSPRException - if there is an error in the messages

construcion, or if there is an error installing that object (for example
for integrity constraints)

IMPLEMENTATION 64

selectRemove

Invocation private void selectRemove(OIDObj oid,
EPDObj epd)

Description called from 'install': selects where to remove from the object (PIB or
METAPIB) and calls the corresponding remove function of the PIB or
the METAPIB.

Parameters oid - oid of the object to install
epd - epd of the object to install

Returns none
Throws COPSPRException - if there is an error in the messages

construcion, or if there is an error removing that object (for example
for integrity constraints)

start

Invocation public int start(Vector Ctype,
Vector ClientSI)

Description this function is called when the PIBControlled is initialized, and is in
charge of sending the initial information to the PDP regarding the
status of the PEP, its capabilities, etc ...

Parameters Ctype - vector of the type of objects sended
ClientSI - vector of the specific client information

Returns int - number of objects sended
Throws COPSPRException - if there is an error in the messages construcion

enforcePolicy

Invocation public void enforcePolicy(String oid,
 byte[] data)

Description this function is called when it is necessary to enforce a policy
Parameters oid - oid of the policy to enforce in the PIBControlled

data - data bytes of the policy to being enforced
Returns none
Throws COPSPRException - if there is an error enforcing the policy in the

PIB

unenforcePolicy

Invocation public void unenforcePolicy(String oid)
Description this function is called to unenforce a Policy from the PIB
Parameters oid - oid of the policy to unenforce in the PIBControlled

IMPLEMENTATION 65

Returns none
Throws COPSPRException - if there is an error enforcing the policy in the

PIB

updatePolicy

Invocation public void updatePolicy(String oid, byte[] data)
Description this function is called to update a Policy in the PIB. In fact it calls the

same function to install a new one, so that fuction will be the one in
charge of check if it is installing a new one (no previous exists) or is
updating.

Parameters oid - oid of the policy to unenforce in the PIBControlled
data - data bytes to update with

Returns none
Throws COPSPRException - if there is an error updating the policy in the

PIB

IMPLEMENTATION 66

METAPIB PACKAGE

The objects in this package represent all the Metapib related objects. They all are
necessary to implement the added functionality to the PEP and as we will see, all of them
are part of a class tree that inherits from the base class called MetaObject.

This package also contains the class METAPIB, that is referenced from the
PIBController and is responsible for mantaining the consistency of the related PIB that
contains the metapolicies (the MetaPib itself). It checks all the constraints when installing
and removing new objects into the metapib, and is also in charge of looking which are the
metapolicies that are evaluated true in each moment, and which are the policies that must
be installed (or removed).

Class MetaObject
thesis.metapib.MetaObject

Description
This is the base class for all the other MetaObjects as Parameter, Condition,

Action, MetaPolicy, etc. Contains the fields and methods that are common for all of
them, and we will see that this approximation as a tree of classes is very well designed as

Figure 14 : MetaClasses

MetaPolicyAction

actionRefTag :: int
actionTargetPrid :: String

(constructor)
transform()
getType()
getBytes()
update()
getColumn()
updateColumn()

MetaPolicy

metaPolicyName :: String
metaPolicyConditionPrid :: String
metaPolicyCondition :: M etaPolicyCondition
metaPolicyAction :: int
metaPolicyStatus :: M etaPolicyStatus

(constructor)
transform()
getType()
getBytes()
update()
getColumn()
updateColumn()
hasToBeEnforced()

MetaObject

prid:: String
nextBytes:: byte[]

(constructor)
transform()
getType()
getBytes()
update()
getColumn()
updateColumn()

META-CLASSES DIAGRAM

Parameter

parameterName :: String
lastValue :: byte[]

(constructor)
transform()
getType()
getBytes()
update()
getColumn()
updateColumn()

MetaPolicyCondition

conditionReverse :: boolean

(constructor)
transform()
getType()
getBytes()
update()
getColumn()
updateColumn()
isTrue()
getNumericalValue()

MetaPolicyPriority

higherPriorityPrid :: String
higherPriority :: MetaPolicy
lowerPriorityPrid :: String
lowerPriority :: MetaPolicy

(constructor)
transform()
getType()
getBytes()
update()
updateColumn()

MibPibParameter

targetOID :: String
evaluationFrequency :: int
milisecondsToNextEvaluation:: int
notEvaluatedYet :: boolean

(constructor)
getBytes()
update()
getColumn()
updateColumn()
substractMilisecondsToNextEvaluation()

PdpParameter

(constructor)
getBytes()
update()
getColumn()
updateColumn()

MetaPolicyBooleanCondition

parameterReferencePrid :: String
parameterReference :: Parameter

(constructor)
getBytes()
update()
getColumn()
updateColumn()
isTrue()
getNumericalValue()

MetaPolicyComplexCondition

leftTermPrid :: String
rigthTermPrid :: String
operator :: String
leftTerm :: MetaPolicyCondition
rightTerm:: MetaPolicyCondition

(constructor)
getBytes()
update()
getColumn()
updateColumn()
isTrue()
getNumericalValue()

MetaPolicyGeneralCondition

xmlDtdRefPrid :: String
xmlCondition :: String
xmlDtdRef :: M etaPolicyXmlDtd

(constructor)
getBytes()
update()
getColumn()
updateColumn()
isTrue()
getNumericalValue()

MetaPolicyNumberCondition

value :: byte[]

(constructor)
getBytes()
update()
getColumn()
updateColumn()
isTrue()
getNumericalValue()

MetaPolicyActionParametricValue

parameterRefPrid :: String
parameterRef :: Parameter

(constructor)
getBytes()
update()
getColumn()
updateColumn()

MetaPolicyActionValue

valueEpd :: byte[]

(constructor)
getBytes()
update()
getColumn()
updateColumn()

MetaPolicyStatus

metaPolicyActive :: boolean
metaPolicySuppress :: boolean

(constructor)
transform()
getType()
getBytes()

MetaPolicyXmlDtd

xmlDtdUrl :: String
parseModule :: XmlParseM odule

(constructor)
transform()
getBytes()
update()
updateColumn()
selectParseModule()
isTrue()

IMPLEMENTATION 67

Figure 15 : MetaClasses (Extended)

IMPLEMENTATION 68

the reusing of the code (of each class parent) improves wheter the performance regarding
speed, and the code size as well.

Fields

Type Name Description
Protected
String

prid prid of the object (each object has a pri identifier inside a
the tree of PRC)

Protected byte[]nextBytes is a field used when the object is created from a byte
sequence (For example when received from the PEP in a
stream)
Represents the rest of the bytes that have not been
analized and are part of the descendants of this class.

Methods

(Constructor)

Invocation public MetaObject(String prid)
Description This constructor creates a MetaObject initializing the prid to the one

passed as parameter.
the field nextBytes will be null.

Parameters prid - the prid of the metaObject
Returns none
Throws none

 (Constructor)

Invocation public MetaObject(MetaObject object)
Description This constructor creates a MetaObject from another MetaObject.

It copies all the fields one by one, an will be used when creating a
new MetaObject from one of its descendants.

Parameters prid - the prid of the metaObject
Returns none
Throws none

(Constructor)

Invocation public MetaObject(byte[] dataBytes)
Description This constructor creates a MetaObject from a stream of bytes. It will

obtain in order the prid, and will put subsequent bytes in the
nextBytes field

Parameters dataBytes - byte atream from where the object will be
constructed

IMPLEMENTATION 69

Returns none
Throws none

transform

Invocation public transform()
Description This method will transform this general MetaObject in a more

correct, specific one, one of its descendants, depending of the prid
that it has.

Parameters none
Returns MetaObject - the correct descendant of MetaObject that

corresponds to the prid.
Throws none

getType

Invocation public static int getType(String pridString)
Description returns the type that corresponds to that prid
Parameters pridString - the prid to analize

Returns int - identifier (as definded in the Constant class) that
corresponds to the prid.

Throws none

getBytes

Invocation public byte[] getBytes()
Description This method obtains the object as a byte stream, and it is specific of

each descendant, so it will be overriden by each descendant.
Basically it transforms in an ordered way each field, coding it into
bytes with the BER protocol.
It will be used when conveying the object from the PDP to the PEP.

Parameters none
Returns stream of bytes that represent the object
Throws none

IMPLEMENTATION 70

update

Invocation public void update(MetaObject newMetaObject)
Description method to update a MetaObject with another one, basically copying

all the fields. This method must be overriden for its descendants to
accomplish the semantics.

Parameters newMetaObject - the metaObject to update with
Returns none
Throws MetaPibException - when there is an error updating

getColumn

Invocation public byte[] getColumn(int column)
Description method to get a column of a specific MetaObject.
Parameters column- the index of the column to obtain

Returns BER encoded value (as a byte stream) of the column
Throws MetaPibException - if trying to get a column that does not exist in

this object

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description method to get update a column of a specific MetaObject.
Parameters column- the index of the column to update

newValue - BER encoded new value of the column
Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

IMPLEMENTATION 71

Class Parameter
thesis.metapib.Parameter

Description
This class extends the base class MetaObject and represents the general Parameter

of the metapolicy framework. Basically it inherits the field and methods of its parent (we
will see that overrides some methods to manaint the semantics)

This class will be a superclass of the PdpParameter and the MibPibParameter.

Fields

Type Name Description
protected
String

parameterName mantains a string with the parameter name with identifier
proposals.

protected byte[] lastValue this is a field that contains the lastValue of the parameter,
and it is in this class for optimization purposes (see
subclasses MibPibParameter and PdpParameter.
 It will contain the last value sended by the PDP (in case
of it is a PdpParameter) or the last value obtained by the
PEP (MibPibParameter)

Methods

(Constructor)

Invocation public Parameter(String parameterPrid_,
String parameterName_)

Description This constructor creates a MetaObject calling the super constructor
with the prid sent as first parameter, and also filling the
parameterName field of the class with the second parameter.
the field nextBytes will be null.

Parameters parameterprid - the prid of the parameter
parameterName - name of the parameter

Returns none
Throws none

IMPLEMENTATION 72

(Constructor)

Invocation public Parameter(Parameter son)
Description This constructor creates a Parameter from another Parameter.

It first calls the analog method of the parent (to copy the fields
related to the parent) and after copies all the fields of this class one by
one (in this case parameterName and nextBytes).
It will be used when creating a new Parameter from one of its
descendants, useful in some case as we will see.

Parameters son - the parameter to construct from
Returns none
Throws MetaPibException - when there is an error creating the parameter

(Constructor)

Invocation public Parameter(MetaObject parent)
Description This constructor creates a Parameter from an object of the

superclass MetaObject.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after extracts or creates the specific object
fields from the bytes of the nextBytes field.
It will be used when creating a new Parameter from an object of its
parent class, when it is creating the right object from a stream of
bytes.

Parameters parent - MetaObject to create the Parameter from
Returns none
Throws MetaPibException - when there is an error creating the parameter

or because the bytes not correspond directly to the established fields.

transform

Invocation public transform()
Description This method overrides the homonym method of its parent class and

has the same semantic adapted to a Parameter: will transform this
general Parameter in a more correct, specific one, one of its
descendants, depending of the prid that it has.

Parameters none
Returns MetaObject - the correct descendant of MetaObject (Parameter in

this case) that corresponds to the prid.
Throws none

IMPLEMENTATION 73

getType

Invocation public static int getType(String pridString)
Description Overrides the homonym parent method. returns the type (restricted to

the Parameter types) that corresponds to that prid
Parameters pridString - the prid to analize

Returns int - identifier (as definded in the Constant class) that
corresponds to the prid.

Throws none

getBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the
object (in this case only parameterName, not lastValue because it is
only transmited for PdpParameters)

Parameters none
Returns stream of bytes that represent the object
Throws none

update

Invocation public void update(MetaObject parObject)
Description overrides the parent one.

First, the method checks that the metaObjects sent as parameter is
instance of a Parameter. After checks that the prid of the object to
update, and the prid of the object to update from, are equal, to
maintain the consistency.
After the checking, it can copy the fields from the new object to this
one.

Parameters parObject - the metaObject (that must be instance of Parameter)
to update with.

Returns none
Throws MetaPibException - when there is an error updating or when the

parameter parObject is not from the correct class (Parameter)

IMPLEMENTATION 74

getColumn

Invocation public byte[] getColumn(int column)
Description overrides the parent method but mantaining it:

If the column is not possible to be obtained in this class, it will call
the homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to obtain the column).

Parameters column- the index of the column to obtain
Returns BER encoded value (as a byte stream) of the column
Throws MetaPibException - if trying to get a column that does not exist in

this object

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description overrides the parent method but mantaining it:

If the column is not possible to be updated in this class, it will call the
homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to update the column).

Parameters column- the index of the column to update
newValue - BER encoded new value of the column

Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

IMPLEMENTATION 75

Class PdpParameter
thesis.metapib.PdpParameter

Description
This class extends the class Parameter and represents the general PdpParameter of

the metapolicy framework. This class maintains the last Value sent by the PDP regarding
the value of the parameter

Fields

This class has no specific fields in the implementation. The field lastValue has
been 'uploaded' to the parent class for optimization purposes, but it will handle that field
as if it was local.

Methods

(Constructor)

Invocation public PdpParameter(String parameterPrid_,
String parameterName_,
byte[] lastValue)

Description This constructor creates a PdpParameter calling the super constructor
with the prid sent as first parameter, and parameterName as second
one.
Before that, it checks that the prid corresponds to a PdpParameter.
After the creation of the parent, also fills the lastValue field of the
class with the third parameter.
the field nextBytes will be null.

Parameters parameterprid - the prid of the parameter
parameterName - name of the parameter
lastValue - BER encoded last value of the parameter

Returns none
Throws MetaPibException - thrown when the prid that is being sent to

create a Pdp Parameter does not corresponds in fact with a
PdpParameter object

IMPLEMENTATION 76

(Constructor)

Invocation public PdpParameter(String parameterPrid_,
String parameterName_,
int lastValue)

Description Wrapper to the base constructor, for convenience purposes, when the
last value is a integer.

Parameters parameterprid - the prid of the parameter
parameterName - name of the parameter
lastValue - BER/INTEGER encoded last value of the
parameter

Returns none
Throws MetaPibException - thrown when the prid that is being sent to

create a Pdp Parameter does not corresponds in fact with a
PdpParameter object

(Constructor)

Invocation public PdpParameter(String parameterPrid_,
String parameterName_,
String lastValue)

Description Wrapper to the base constructor, for convenience purposes, when the
last value is a string.

Parameters parameterprid - the prid of the parameter
parameterName - name of the parameter
lastValue - BER/STRING encoded last value of the
parameter

Returns none
Throws MetaPibException - thrown when the prid that is being sent to

create a Pdp Parameter does not corresponds in fact with a
PdpParameter object

(Constructor)

Invocation public PdpParameter(String parameterPrid_,
String parameterName_,
InetAddress lastValue)

Description Wrapper to the base constructor, for convenience purposes, when the
last value is a InetAddress.

Parameters parameterprid - the prid of the parameter
parameterName - name of the parameter
lastValue - BER/IPV4ADDRESS encoded last value of
the parameter

Returns none

IMPLEMENTATION 77

Throws MetaPibException - thrown when the prid that is being sent to
create a Pdp Parameter does not corresponds in fact with a
PdpParameter object

(Constructor)

Invocation public PdpParameter(String parameterPrid_,
String parameterName_,
boolean lastValue)

Description Wrapper to the base constructor, for convenience purposes, when the
last value is a boolean.

Parameters parameterprid - the prid of the parameter
parameterName - name of the parameter
lastValue - BER/BOOLEAN encoded last value of the
parameter

Returns none
Throws MetaPibException - thrown when the prid that is being sent to

create a Pdp Parameter does not corresponds in fact with a
PdpParameter object

(Constructor)

Does not exist a constructor from a Parameter son because in fact there are no
subclasses from this one. If there would be those subclasses, there would be necessary to
implement that Constructor.

(Constructor)

Invocation public PdpParameter(Parameter parent)
Description This constructor creates a PdpParameter from an object of the

superclass Parameter.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after extracts or creates the specific object
fields from the bytes of the nextBytes field.
It will be used when creating a new Parameter from an object of its
parent class, when it is creating the right object from a stream of
bytes.

Parameters parent - Parameter to create the PdpParameter from
Returns none
Throws MetaPibException - when there is an error creating the parameter

or because the bytes not correspond directly to the established fields.

IMPLEMENTATION 78

GetBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the
object (in this case lastValue)

Parameters none
Returns stream of bytes that represent the object
Throws none

update

Invocation public void update(MetaObject parObject)
Description overrides the parent one.

First, the method checks that the metaObject sent as parameter is
instance of a PdpParameter. After checks that the prid of the object to
update, and the prid of the object to update from, are equal, to
maintain the consistency.
After the checking, it can copy the fields from the new object to this
one.

Parameters parObject - the metaObject (that must be instance of
PdpParameter) to update with.

Returns none
Throws MetaPibException - when there is an error updating or when the

parameter parObject is not from the correct class (PdpParameter)

getColumn

Description overrides the parent method but mantaining it:
If the column is not possible to be obtained in this class, it will call
the homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to obtain the column).

Parameters column- the index of the column to obtain
Returns BER encoded value (as a byte stream) of the column
Throws MetaPibException - if trying to get a column that does not exist in

this object

IMPLEMENTATION 79

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description overrides the parent method but mantaining it:

If the column is not possible to be updated in this class, it will call the
homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to update the column).

Parameters column- the index of the column to update
newValue - BER encoded new value of the column

Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

IMPLEMENTATION 80

Class MibPibParameter
thesis.metapib.MibPibParameter

Description
This class extends the class Parameter and represents the general

MibPibParameter of the metapolicy framework. This class maintains the targetOID from
where the parameter is evaluated and Evaluation Frequency that it is used for obtain that
parameter value.

Fields

Type Name Description
protected
String

targetOID mantains the prid form where the parameter is
evaluated

protected int evaluationFrequency evaluation frequency in miliseconds
protected int milisecondsToNextE

valuation
field for optimization purposes that represents the
milisecods left for the next evaluation.

protected
boolean

notEvaluatedYet flag to maintain if the MibPibParameter has been
evaluated or not

Methods

(Constructor)

Invocation public MibPibParameter(String parameterPrid_,
String parameterName_,
String targetOID_,
int evaluationFrequency_)

Description This constructor creates a MibPibParameter calling the super
constructor with the prid sent as first parameter, and parameterName
as second one.
Before that, it checks that the prid corresponds to a PdpParameter.
After the creation of the parent, also fills the targetOID field of the
class with the third parameter, and evaluationFrequency with the
fourth parameter.
The field nextBytes will be null, and the
milisecondsToNextEvaluation equal to the evaluationFrequency.

Parameters parameterprid - the prid of the parameter
parameterName - name of the parameter
targetOID - OID prid to evaluate from
evaluationFrequency - evaluation frequency in miliseconds.

Returns none

IMPLEMENTATION 81

Throws MetaPibException - thrown when the prid that is being sent to
create a Pdp Parameter does not corresponds in fact with a
PdpParameter object

(Constructor)

Does not exist a constructor from a Parameter son because in fact there are no
subclasses from this one. If there would be that subclasses, there would be necessary to
implement that Constructor.

(Constructor)

Invocation public MibPibParameter(Parameter parent)
Description This constructor creates a MibPibParameter from an object of the

superclass Parameter.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after extracts or creates the specific object
fields from the bytes of the nextBytes field.
It will be used when creating a new MibPibParameter from an object
of its parent class, when it is creating the right object from a stream of
bytes.

Parameters parent - Parameter to create the MibPibParameter from
Returns none
Throws MetaPibException - when there is an error creating the parameter

or because the bytes not correspond directly to the established fields.

getBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the
object (in this case targetOID and evaluationFrequency)

Parameters none
Returns stream of bytes that represent the object
Throws none

IMPLEMENTATION 82

update

Invocation public void update(MetaObject parObject)
Description overrides the parent one.

First, the method checks that the metaObject sent as parameter is
instance of a MibPibParameter. After checks that the prid of the
object to update, and the prid of the object to update from, are equal,
to maintain the consistency.
After the checking, it can copy the fields from the new object to this
one.

Parameters parObject - the metaObject (that must be instance of
MibPibParameter) to update with.

Returns none
Throws MetaPibException - when there is an error updating or when the

parameter parObject is not from the correct class (MibPidParameter)

getColumn

Invocation public byte[] getColumn(int column)
Description overrides the parent method but mantaining it:

If the column is not possible to be obtained in this class, it will call
the homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to obtain the column).

Parameters column- the index of the column to obtain
Returns BER encoded value (as a byte stream) of the column
Throws MetaPibException - if trying to get a column that does not exist in

this object

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description overrides the parent method but mantaining it:

If the column is not possible to be updated in this class, it will call the
homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to update the column).

Parameters column- the index of the column to update
newValue - BER encoded new value of the column

Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

IMPLEMENTATION 83

substractMilisecondsToNextEvaluation

Invocation public void substractMilisecondsToNextEvaluation
(int miliseconds2substract)

Description This method subtracts the parameter value from the field
milisecondsToNextEvaluatio.
It is called from the evaluation method for MibPibParameters, to
indicate the number of miliseconds awaited since the last time (that
was evaluated any MibPibParameter - see method
checkMibPibParameter in the METAPIB class for details)

Parameters miliseconds2substract - number of miliseconds awaited
Returns none
Throws none

IMPLEMENTATION 84

ClassMetaPolicyCondition
thesis.metapib.MetaPolicyCondition

Description
This class extends the base class MetaObject and represents the general Condition

of the metapolicy framework. Basically it inherits the field and methods of its parent (we
will see that overrides some methods to maintain the semantics)

This class will be superclass of the MetaPolicyComplexCondition,
MetaPolicyBooleanCondition, MetaPolicyGeneralCondition, and a new class not defined
in the metapib framework but created for optimization purposes, the
MetaPolicyNumberCondition

Fields

Type Name Description
protected
boolean

conditionReverse flag to identity if the condition must be evaluated as a
negative condition or not.

Methods

(Constructor)

Invocation public MetaPolicyCondition(String parameterPrid_,
boolean conditionReverse_)

Description This constructor creates a Condition calling the super constructor
with the prid sent as first parameter, and also filling the
conditionReverse field of the class with the second parameter.
the field nextBytes will be null.

Parameters parameterprid - the prid of the parameter
conditionReverse - flag to evaluate in a reverse way (if
necessary)

Returns none
Throws none

(Constructor)

Invocation public MetaPolicyCondition(MetaPolicyCondition son)
Description This constructor creates a MetaPolicyCondition from another

MetaPolicyCondition.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after copies all the fields of this class one by
one (in this case conditionReverse and nextBytes).

IMPLEMENTATION 85

It will be used when creating a new Parameter from one of its
descendants, useful in some case as we will see.

Parameters son - the Condition to construct from
Returns none
Throws MetaPibException - when there is an error creating the parameter

(Constructor)

Invocation public MetaPolicyCondition(MetaObject parent)
Description This constructor creates a MetaPolicyCondition from an object of

the superclass MetaObject.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after extracts or creates the specific object
fields from the bytes of the nextBytes field.
It will be used when creating a new MetaPolicyCondition from an
object of its parent class, when it is creating the right object from a
stream of bytes.

Parameters parent - MetaObject to create the Parameter from
Returns none
Throws MetaPibException - when there is an error creating the parameter

or because the bytes not correspond directly to the established fields.

transform

Invocation public transform()
Description This method overrides the homonym method of its parent class and

has the same semantic adapted to a MetaPolicyCondition: will
transform this general MetaPolicyCondition in a more correct,
specific one, one of its descendants, depending of the prid that it has.

Parameters none
Returns MetaObject - the correct descendant of MetaObject (Parameter in

this case) that corresponds to the prid.
Throws none

getType

Invocation public static int getType(String pridString)
Description Overrides the homonym parent method. returns the type (restricted to

the MetaPolicyCondition types) that corresponds to that prid
Parameters pridString - the prid to analize

Returns int - identifier (as definded in the Constant class) that
corresponds to the prid.

Throws none

IMPLEMENTATION 86

getBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the
object (in this case only conditionReverse)

Parameters none
Returns stream of bytes that represent the object
Throws none

update

Invocation public void update(MetaObject newMetaObject)
Description overrides the parent one.

First, the method checks that the metaObject sent as parameter is
instance of a MetaPolicyCondition. After, it checks that the prid of
the object to update, and the prid of the object to update from, are
equal, to maintain the consistency.
After the checking, it can copy the fields from the new object to this
one.

Parameters parObject - the metaObject (that must be instance of
MetaPolicyCondition) to update with.

Returns none
Throws MetaPibException - when there is an error updating or when the

parameter parObject is not from the correct class
(MetaPolicyCondition)

getColumn

Invocation public byte[] getColumn(int column)
Description overrides the parent method but mantaining it:

If the column is not possible to be obtained in this class, it will call
the homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to obtain the column).

Parameters column- the index of the column to obtain
Returns BER encoded value (as a byte stream) of the column

IMPLEMENTATION 87

Throws MetaPibException - if trying to get a column that does not exist in
this object

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description overrides the parent method but mantaining it:

If the column is not possible to be updated in this class, it will call the
homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to update the column).

Parameters column- the index of the column to update
newValue - BER encoded new value of the column

Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

isTrue

Invocation public boolean isTrue()
Description method called to evaluate whether a condition is true or not.

This method must be overridden for the sub classes that inherit from
this one.

Parameters none
Returns true - if the condition is evaluated true in a determined moment.

false - otherwise
Throws MetaPibException - if there is an error during the evaluation of the

conditions tree.
ImpossibleEvaluationException - if the conditions tree contains
a MibPibParameter that has not been evaluated yet.

getNumericalValue

Invocation public byte[] getNumericalValue()
Description gets a numerical value of the underlying condition tree, if possible.

It is useful when evaluating arithmetic conditions like (parameter1
== parameter2)
This method must be overridden for the sub classes that inherit from
this one.

Parameters none
Returns BER encoded value that represents the arithmetic value of the

evaluation

IMPLEMENTATION 88

Throws MetaPibException - if there is an error during the evaluation of the
conditions tree.
ImpossibleEvaluationException - if the conditions tree contains
a MibPibParameter that has not been evaluated yet.

IMPLEMENTATION 89

ClassMetaPolicyComplexCondition
thesis.metapib.MetaPolicyComplexCondition

Description
This class extends the class MetaPolicyCondition and represents the Complex

Condition of the metapolicy framework, that is used for construct more complex
conditions trees.

It represents a binary condition, so it maintains a left and a right term, and also an
operator to apply to these two terms.

Fields

Type Name Description
protected String leftTermPrid prid of the left term
protected String rightTermPrid prid of the right term
protected String operator operator between the two tems
protected
MetaPolicyCondition

leftTerm reference to the left term condition (for optimization
purposes)

protected
MetaPolicyCondition

rightTerm reference to the right term condition (for
optimization purposes)

Methods

(Constructor)

Invocation public MetaPolicyComplexCondition(
String conditionPrid_,
boolean conditionReverse_,
MetaPolicyCondition leftTerm_,
String operator_,
MetaPolicyCondition rightTerm_)

Description This basic constructor creates a Condition calling the super
constructor with the prid sent as first parameter, and the
conditionReverse as second one.
After it will fill the operator (calling 'checkOperator' to check that it
is a valid one), and the leftTerm, and rightTerm.
it will fill the leftTermPrid and rightTermPrid, obtaining the values
from the leftTerm and rightTerm, respectively.
the field nextBytes will be null.

Parameters conditionPrid_- the prid of the condition
conditionReverse_ - flag to evaluate in a reverse way (if
necessary)
leftTerm_ - reference to the left term condition
operator_ - operator as a string
rightTerm_ - reference to the right term condition

IMPLEMENTATION 90

Returns none
Throws MetaPibException - when there is an error (for example an

integrity error would be that the leftTerm or the rightTerm references
the condition itself)

(Constructor)

Invocation public MetaPolicyComplexCondition(
String conditionPrid_,
MetaPolicyCondition leftTerm_,
String operator_,
MetaPolicyCondition rightTerm_)

Description this calls the basic constructor putting false to the conditionReverse
parameter

Parameters conditionPrid_- the prid of the condition
leftTerm_ - reference to the left term condition
operator_ - operator as a string
rightTerm_ - reference to the right term condition

Returns none
Throws MetaPibException - when there is an error (for example an

integrity error would be that the leftTerm or the rightTerm references
the condition itself)

(Constructor)

Invocation public MetaPolicyComplexCondition(
MetaPolicyCondition leftTerm_,
String operator_,
MetaPolicyCondition rightTerm_)

Description This constructor is used when we don't care about the prid in
particular that it has, for example when it is needed to create
automatic conditions (as we will see very useful)
this calls the basic constructor with an automatically generated prid
(unique), and putting false to the conditionReverse parameter.

Parameters leftTerm_ - reference to the left term condition
operator_ - operator as a string
rightTerm_ - reference to the right term condition

Returns none
Throws MetaPibException - when there is an error (for example an

integrity error would be that the leftTerm or the rightTerm references
the condition itself)

IMPLEMENTATION 91

(Constructor)

Invocation public MetaPolicyComplexCondition(
boolean conditionReverse_,
MetaPolicyCondition leftTerm_,
String operator_,
MetaPolicyCondition rightTerm_)

Description The same type of (auto) constructor than the previous one, but with
the conditionReverse parameter too.

Parameters conditionReverse_ - flag to evaluate in a reverse way (if
necessary)
leftTerm_ - reference to the left term condition
operator_ - operator as a string
rightTerm_ - reference to the right term condition

Returns none
Throws MetaPibException - when there is an error (for example an

integrity error would be that the leftTerm or the rightTerm references
the condition itself)

(Constructor)

Invocation public MetaPolicyComplexCondition(
String conditionPrid_,
boolean conditionReverse_,
String leftTermPrid_,
String operator_,
String rightTermPrid_)

Description another constructor, but now instead of sending the term references,
the parameters regarding the terms are only the prids.
This constructor is used when creating a Complex Condition in the
PEP from sent bytes from the PDP. We have to realize that the PDP
will transmit a complex condition with the term prids established, but
not the terms themselves (because that terms reference objects in the
PDP context, not the PEP context).
For this reason after creating a complex condition with this
constructor, the term references are null, so it should be filled to
maintain the consistency of the metapib framework (this will be
responsibility of the METAPIB class, as we will see)

Parameters conditionPrid - prid of the condition
conditionReverse_ - flag to evaluate in a reverse way (if
necessary)
leftTerPrid_ - prid of the left term condition
operator_ - operator as a string
rightTerm_ - prid of the right term condition

Returns none

IMPLEMENTATION 92

Throws MetaPibException - when there is an error (for example an
integrity error would be that the leftTerm or the rightTerm references
the condition itself)

(Constructor)

Invocation public MetaPolicyComplexCondition(MetaPolicyCondition parent)
Description This constructor creates a MetaPolicyComplexCondition from an

object of the superclass MetaPolicyCondition.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after extracts or creates the specific object
fields from the bytes of the nextBytes field.
It will be used when creating a new MetaPolicyComplexCondition
from an object of its parent class, when it is creating the right object
from a stream of bytes.

Parameters parent - MetaPolicyCondition to create the Complex
Condition from

Returns none
Throws MetaPibException - when there is an error creating the condition

or because the bytes does not correspond directly to the established
fields.

getBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the
object (in this case leftTermPrid, operator, rightTermPrid)

Parameters none
Returns stream of bytes that represent the object
Throws none

checkOperator

Invocation private String checkOperator(String operator_)
Description this method calls the isOperator method of the Constant class to

decide if the string sent as parameter is a valid operator or not.
Parameters operator_ - String of the operator

Returns the same operator sent as parameter
Throws MetaPibException - if the operator is not a valid one

IMPLEMENTATION 93

update

Invocation public void update(MetaObject newMetaObject)
Description overrides the parent one.

First, the method checks that the metaObject sent as parameter is
instance of a MetaPolicyComplexCondition. After, it checks that the
prid of the object to update, and the prid of the object to update from,
are equal, to maintain the consistency.
After the checking, it can copy the fields from the new object to this
one.

Parameters parObject - the metaObject (that must be instance of
MetaPolicyCondition) to update with.

Returns none
Throws MetaPibException - when there is an error updating or when the

parameter newMetaObject is not from the correct class
(MetaPolicyComplexCondition)

getColumn

Invocation public byte[] getColumn(int column)
Description overrides the parent method but mantaining it:

If the column is not possible to be obtained in this class, it will call
the homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to obtain the column).

Parameters column- the index of the column to obtain
Returns BER encoded value (as a byte stream) of the column
Throws MetaPibException - if trying to get a column that does not exist in

this object

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description overrides the parent method but mantaining it:

If the column is not possible to be updated in this class, it will call the
homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to update the column).

Parameters column- the index of the column to update
newValue - BER encoded new value of the column

Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

IMPLEMENTATION 94

isTrue

Invocation public boolean isTrue()
Description method called to evaluate whether a condition is true or not.

If the operator is a logical operator (and, or) it will return the logical
evaluation of the two terms (evaluated recursively).
If is a comparison operator (==, >, <, etc...) it will return the correct
evaluation, trying to get the values of the left and right term
(recursively) and comparing them with the correct operator. This last
part will be performed calling the correct comparison method of the
BER class.
In case of other operator (+, -), it will throw a MetaPibException,
since boolean evaluation of conditions like (3 + 6) are not permitted.
In case of an unknown operator it will throw a MetaPibException as
well.

Parameters none
Returns true - if the condition is evaluated true in a determined moment.

false - otherwise
Throws MetaPibException - if there is an error during the evaluation of the

conditions tree (right or left term equal to null, not known operator,
etc...)
ImpossibleEvaluationException - if the conditions tree contains
a MibPibParameter that has not been evaluated yet.

getNumericalValue

Invocation public byte[] getNumericalValue()
Description gets a numerical value of the underlying condition tree, if possible.

If the operator is an arithmetic one (+, -) it will return the correct
value, trying to get the values of the left and right term (recursively)
and operating with the correct method of the BER class.
In any other case it will throw a MetaPibException

Parameters none
Returns BER encoded value that represents the arithmetic value of the

evaluation
Throws MetaPibException - if there is an error during the evaluation of the

conditions tree, or is an unknow or not valid operator.
ImpossibleEvaluationException - if the conditions tree contains
a MibPibParameter that has not been evaluated yet.

IMPLEMENTATION 95

ClassMetaPolicyBooleanCondition
thesis.metapib.MetaPolicyBooleanCondition

Description
This class extends the class MetaPolicyCondition and represents the Boolean

Condition of the metapolicy framework, that is used for include parameters in a condition
tree.

It includes a reference to a Parameter of the parameterTable, so it can be a
MibPibParameter or a PdpParameter.

Fields

Type Name Description
protected String parameterReferencePrid prid of the parameter referenced
protected Parameter parameterReference reference to the parameter

Methods

(Constructor)

Invocation public MetaPolicyBooleanCondition(
String conditionPrid_,
boolean conditionReverse_,
String parameterReferencePrid)

Description This basic constructor creates a Condition calling the super
constructor with the prid sent as first parameter, and the
conditionReverse as second one.
It fills the parameterReferencePrid with the third parameter.
the field nextBytes will be null.
This constructor is used when creating a Complex Condition in the
PEP from sent bytes from the PDP. It is necessary to take into
consideration that this constructor will not find and fill the correct
parameter reference for the parameterReferencePrid. To set that
correct reference is a duty of the method that calls this constructor.
(method of the METAPIB class)

Parameters conditionPrid_- the prid of the condition
conditionReverse_ - flag to evaluate in a reverse way (if
necessary)
parameterReferencePrid - prid of the referenced parameter

Returns none
Throws MetaPibException - when there is an error

IMPLEMENTATION 96

(Constructor)

Invocation public MetaPolicyBooleanCondition(
String conditionPrid_,
String parameterReferencePrid_)

Description this calls the basic constructor putting false to the conditionReverse
parameter

Parameters conditionPrid_- the prid of the condition
parameterReferencePrid - prid of the referenced parameter

Returns none
Throws MetaPibException - when there is an error

(Constructor)

Invocation public MetaPolicyBooleanCondition(
String parameterReferencePrid_)

Description This constructor is used when we don't care about the prid in
particular that it has, for example when it is needed to create
automatic conditions (as we will see very useful)
this calls the basic constructor with an automatically generated prid
(unique), and putting false to the conditionReverse parameter.

Parameters parameterReferencePrid - prid of the referenced parameter
Returns none
Throws MetaPibException - when there is an error

(Constructor)

Invocation public MetaPolicyBooleanCondition(MetaPolicyCondition parent)
Description This constructor creates a MetaPolicyBooleanCondition from an

object of the superclass MetaPolicyCondition.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after extracts or creates the specific object
fields from the bytes of the nextBytes field.
It will be used when creating a new MetaPolicyBooleanCondition
from an object of its parent class, when it is creating the right object
from a stream of bytes.

Parameters parent - MetaPolicyCondition to create the boolean Condition
from

Returns none
Throws MetaPibException - when there is an error creating the condition

or because the bytes does not correspond directly to the established
fields.

IMPLEMENTATION 97

getBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the
object (in this case parameterReferencePrid)

Parameters none
Returns stream of bytes that represent the object
Throws none

update

Invocation public void update(MetaObject newMetaObject)
Description overrides the parent one.

First, the method checks that the metaObject sent as parameter is
instance of a MetaPolicyBooleanCondition. After, it checks that the
prid of the object to update, and the prid of the object to update from,
are equal, to maintain the consistency.
After the checking, it can copy the fields from the new object to this
one.

Parameters parObject - the metaObject (that must be instance of
MetaPolicyCondition) to update with.

Returns none
Throws MetaPibException - when there is an error updating or when the

parameter newMetaObject is not from the correct class
(MetaPolicyBooleanCondition)

getColumn

Invocation public byte[] getColumn(int column)
Description overrides the parent method but mantaining it:

If the column is not possible to be obtained in this class, it will call
the homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to obtain the column).

Parameters column- the index of the column to obtain
Returns BER encoded value (as a byte stream) of the column
Throws MetaPibException - if trying to get a column that does not exist in

this object

IMPLEMENTATION 98

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description overrides the parent method but mantaining it:

If the column is not possible to be updated in this class, it will call the
homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to update the column).

Parameters column- the index of the column to update
newValue - BER encoded new value of the column

Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

isTrue

Invocation public boolean isTrue()
Description method called to evaluate whether a condition is true or not.

This method will obtain the value of the parameter and will work
dependig the type of value (ber encoded):
- BOOLEAN: it will return true or false depending the value
- INTEGER: it will return true if value > 0 (false otherwise)
- DEFAULT: it will throw a MetaPibException because it does not
now how to evaluate true or false

Parameters none
Returns true - if the condition is evaluated true in a determined moment.

false - otherwise
(see description of the method)

Throws MetaPibException - if there is an error during the evaluation of the
conditions tree (parameterReference is null, error getting value)
ImpossibleEvaluationException - if the conditions references a
MibPibParameter that has not been evaluated yet.

getNumericalValue

Invocation public byte[] getNumericalValue()
Description gets the value of the parameter
Parameters none

Returns BER encoded value that represents the arithmetic value of the
parameter

Throws MetaPibException - if the parameter reference is null
ImpossibleEvaluationException - if references a
MibPibParameter that has not been evaluated yet.

IMPLEMENTATION 99

ClassMetaPolicyGeneralCondition
thesis.metapib.MetaPolicyGeneralCondition

Description
This class extends the class MetaPolicyCondition and represents the General

Condition of the metapolicy framework, that is used for representing xml conditions.
The general condition contains the xml condition as a xml formatted string. The

way to format that condition is based on a xmlDTD, so therefore this general condition
contains a reference to the object of the Xml Dtd table that is able to encode and analize
that kind of formatting.

Fields

Type Name Description
private String xmlDtdRefPrid prid of the xmlDtd referenced
private String xmlCondition string that contains the xml formatted

condition
private
MetaPolicyXmlDtd

xmlDtdRef reference to the xmlDtd object (for
optimization purposes)

Methods

(Constructor)

Invocation public MetaPolicyGeneralCondition(
String conditionPrid_,
boolean conditionReverse_,
String xmlDtdRefPrid_,
String xmlCondition)

Description This basic constructor creates a Condition calling the super
constructor with the prid sent as first parameter, and the
conditionReverse as second one.
After that It fills the xmlDtdRefPrid and xmlCondition, with the other
parameters.
the field nextBytes will be null.
This constructor is used when creating a Boolean Condition in the
PEP from sent bytes by the PDP. It is necessary to take into
consideration that this constructor will not find and fill the correct
xmlDtd reference for the xmlDtdRefPrid. To set that correct reference
is a duty of the method that calls this constructor. (method of the
METAPIB class)

Parameters xmlDtdRefPrid_ - reference to the xmlDtd
xmlCondition - formatted xml condition

Returns none

IMPLEMENTATION 100

Throws MetaPibException - when there is an error

(Constructor)

Invocation public MetaPolicyGeneralCondition(MetaPolicyCondition parent)
Description This constructor creates a MetaPolicyGeneralCondition from an

object of the superclass MetaPolicyCondition.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after extracts or creates the specific object
fields from the bytes of the nextBytes field.
It will be used when creating a new MetaPolicyGeneralCondition
from an object of its parent class, when it is creating the right object
from a stream of bytes.

Parameters parent - MetaPolicyCondition to create the General Condition
from

Returns none
Throws MetaPibException - when there is an error creating the condition

or because the bytes does not correspond directly to the established
fields.

getBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the
object (in this case xmlDtdRefPrid, xmlCondition)

Parameters none
Returns stream of bytes that represent the object
Throws none

update

Invocation public void update(MetaObject newMetaObject)
Description overrides the parent one.

First, the method checks that the metaObject sent as parameter is
instance of a MetaPolicyGeneralCondition. After, it checks that the
prid of the object to update, and the prid of the object to update from,
are equal, to maintain the consistency.
After the checking, it can copy the fields from the new object to this
one.

Parameters newMetaObject - the metaObject (that must be instance of

IMPLEMENTATION 101

MetaPolicyGeneralCondition) to update with.
Returns none
Throws MetaPibException - when there is an error updating or when the

parameter newMetaObject is not from the correct class
(MetaPolicyGeneralCondition)

getColumn

Invocation public byte[] getColumn(int column)
Description overrides the parent method but mantaining it:

If the column is not possible to be obtained in this class, it will call
the homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to obtain the column).

Parameters column- the index of the column to obtain
Returns BER encoded value (as a byte stream) of the column
Throws MetaPibException - if trying to get a column that does not exist in

this object

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description overrides the parent method but mantaining it:

If the column is not possible to be updated in this class, it will call the
homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to update the column).

Parameters column- the index of the column to update
newValue - BER encoded new value of the column

Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

isTrue

Invocation public boolean isTrue()
Description method called to evaluate whether a condition is true or not.

This method actually calls the method isTrue of the referenced
xmlDtd object, passing the xmlCondition as parameter.

Parameters none

IMPLEMENTATION 102

Returns true - if the condition is evaluated true in a determined moment.
false - otherwise

Throws MetaPibException - if there is an error during the evaluation of the
conditions tree (xmlDtd is null, error analizing xml string)

getNumericalValue

Invocation public byte[] getNumericalValue()
Description At the moment it always throws an exception, because it is not

possible to obtain a numerical value from a condition formatted as a
xml string.

Parameters none
Returns BER encoded value that represents the arithmetic value of the

evaluated condition.
Throws MetaPibException - if the parameter reference is null

IMPLEMENTATION 103

ClassMetaPolicyNumberCondition
thesis.metapib.MetaPolicyNumberCondition

Description
This class extends the class MetaPolicyCondition and although it was not

designed in the metapib framework, it is necessary to maintain numbers in conditions
trees. For example, a condition that uses a number (i.e. 'Parameter1 > 50'), can be
represented by an xmlString (and does not need this class to be maintainted in the
framework); or can be represented by a tree of condition pri's, so one of the leafs of the
tree will be '50', and that is the reason for this class to exist.

The number condition maintains the value of the number that represents.

Fields

Type Name Description
private byte[] value Ber encoded numeric value of the object

Methods

(Constructor)

Invocation public MetaPolicyNumberCondition(
String conditionPrid_,
byte[] value)

Description This basic constructor creates a Condition calling the super
constructor with the prid sent as first parameter, and false
conditionReverse. This is because a number can't be evaluated false
or true, it has always a numeric value
The value as parameter will be the value of the object.
the field nextBytes will be null.

Parameters conditionPrid - prid of the condition
value - ber encoded value to assign

Returns none
Throws MetaPibException - when there is an error

(Constructor)

Invocation public MetaPolicyNumberCondition(
String conditionPrid_,
int value)

Description Constructor when the value of the object is an integer.
Calls the basic constructor

IMPLEMENTATION 104

Parameters conditionPrid - prid of the condition
value - ber encoded value to assign

Returns none
Throws MetaPibException - when there is an error

(Constructor)

Invocation public MetaPolicyNumberCondition(
String conditionPrid_,
Stringvalue)

Description Constructor when the value of the object is an String , useful for
conditions like (Parameter2 == "level 0")
Calls the basic constructor.

Parameters conditionPrid - prid of the condition
value - ber encoded value to assign

Returns none
Throws MetaPibException - when there is an error

(Constructor)

Invocation public MetaPolicyNumberCondition(MetaPolicyCondition parent)
Description This constructor creates a MetaPolicyNumberCondition from an

object of the superclass MetaPolicyCondition.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after extracts or creates the specific object
fields from the bytes of the nextBytes field.
It will be used when creating a new MetaPolicyNumberCondition
from an object of its parent class, when it is creating the right object
from a stream of bytes.

Parameters parent - MetaPolicyCondition to create the General Condition
from

Returns none
Throws MetaPibException - when there is an error creating the condition

or because the bytes does not correspond directly to the established
fields.

getBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the

IMPLEMENTATION 105

object (in this case localValue)
Parameters none

Returns stream of bytes that represent the object
Throws none

update

Invocation public void update(MetaObject newMetaObject)
Description overrides the parent one.

First, the method checks that the metaObject sent as parameter is
instance of a MetaPolicyNumberCondition. After, it checks that the
prid of the object to update, and the prid of the object to update from,
are equal, to maintain the consistency.
After the checking, it can copy the fields from the new object to this
one.

Parameters newMetaObject - the metaObject (that must be instance of
MetaPolicyNumberCondition) to update with.

Returns none
Throws MetaPibException - when there is an error updating or when the

parameter newMetaObject is not from the correct class
(MetaPolicyNumberCondition)

getColumn

Invocation public byte[] getColumn(int column)
Description overrides the parent method but mantaining it:

If the column is not possible to be obtained in this class, it will call
the homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to obtain the column).

Parameters column- the index of the column to obtain
Returns BER encoded value (as a byte stream) of the column
Throws MetaPibException - if trying to get a column that does not exist in

this object

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description overrides the parent method but mantaining it:

If the column is not possible to be updated in this class, it will call the
homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it

IMPLEMENTATION 106

does not know how to update the column).
Parameters column- the index of the column to update

newValue - BER encoded new value of the column
Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

isTrue

Invocation public boolean isTrue()
Description method called to evaluate whether a condition is true or not.

Always throws a MetaPibException because it is supposed that it is
not possible to apply boolean evaluation to a Number. (This behavior
can be modified)

Parameters none
Returns true - if the condition is evaluated true in a determined moment.

false - otherwise
Throws MetaPibException - if there is an error during the evaluation of the

conditions tree (xmlDtd is null, error analizing xml string)

getNumericalValue

Invocation public byte[] getNumericalValue()
Description Returns directly the field value, that represents the value of the object
Parameters none

Returns BER encoded value that represents the arithmetic value of the object.
Throws MetaPibException - if the parameter reference is null

IMPLEMENTATION 107

ClassMetaPolicyAction
thesis.metapib.MetaPolicyAction

Description
This class extends the base class MetaObject and represents the general Action of

the metapolicy framework. Basically it inherits the field and methods of its parent (we
will see that overrides some methods to maintain the semantics)

This class will be superclass of the MetaPolicyActionValue, and
MetaPolicyActionParametricValue.

Fields

Type Name Description
protected int actionRefTag tag that represents the group of actions in which this

particular action is included.
protected StringactionTargetPrid prid (of the PIB) where will be installed this action

Methods

(Constructor)

Invocation public MetaPolicyAction(String actionPrid_,
int actionRefTag_,
String actionTargetPrid_)

Description This constructor creates a Action calling the super constructor (of the
MetaObject class) with the prid sent as first parameter, and also
filling the rest of the fields (actionRefTag, actionTargetPrid)
the field nextBytes will be null.

Parameters actionPrid - prid of the action object
actionRefTag - tag of the group of actions in which this one
is included
actionTargetPrid - prid (of the PIB) where this action will be
installed

Returns none
Throws none

(Constructor)

Invocation public MetaPolicyAction(MetaPolicyAction son)
Description This constructor creates a MetaPolicyAction from another

MetaPolicyAction.
It first calls the analog method of the parent (to copy the fields

IMPLEMENTATION 108

related to the parent) and after copies all the fields of this class one by
one (in this case actionRefTag, actionTargetPrid and nextBytes).
It will be used when creating a new Parameter from one of its
descendants, useful in some cases as we will see.

Parameters son - the Condition to construct from
Returns none
Throws MetaPibException - when there is an error creating the Action

(Constructor)

Invocation public MetaPolicyAction(MetaObject parent)
Description This constructor creates a MetaPolicyCondition from an object of

the superclass MetaObject.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after extracts or creates the specific object
fields from the bytes of the nextBytes field.
It will be used when creating a new MetaPolicyAction from an object
of its parent class, when it is creating the right object from a stream of
bytes.

Parameters parent - MetaObject to create the Action from
Returns none
Throws MetaPibException - when there is an error creating the parameter

or because the bytes not correspond directly to the established fields.

transform

Invocation public transform()
Description This method overrides the homonym method of its parent class and

has the same semantic adapted to a MetaPolicyAction: will transform
this general MetaPolicyAction in a more correct, specific one, one of
its descendants, depending of the prid that it has.

Parameters none
Returns MetaObject - the correct descendant of MetaObject (Parameter in

this case) that corresponds to the prid.
Throws none

getType

Invocation public static int getType(String pridString)
Description Overrides the homonym parent method. returns the type (restricted to

the MetaPolicyAction types) that corresponds to that prid
Parameters pridString - the prid to analize

Returns int - identifier (as defined in the Constant class) that
corresponds to the prid.

Throws none

IMPLEMENTATION 109

getBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the
object (in this case actionRefTag, and actionTargetPrid)

Parameters none
Returns stream of bytes that represent the object
Throws none

update

Invocation public void update(MetaObject newMetaObject)
Description overrides the parent one.

First, the method checks that the metaObject sent as parameter is
instance of a MetaPolicyAction. After, it checks that the prid of the
object to update, and the prid of the object to update from, are equal,
to maintain the consistency.
After the checking, it can copy the fields from the new object to this
one.

Parameters parObject - the metaObject (that must be instance of
MetaPolicyAction) to update with.

Returns none
Throws MetaPibException - when there is an error updating or when the

parameter newMetaObject is not from the correct class
(MetaPolicyAction)

getColumn

Invocation public byte[] getColumn(int column)
Description overrides the parent method but mantaining it:

If the column is not possible to be obtained in this class, it will call
the homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to obtain the column).

Parameters column- the index of the column to obtain
Returns BER encoded value (as a byte stream) of the column

IMPLEMENTATION 110

Throws MetaPibException - if trying to get a column that does not exist in
this object

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description overrides the parent method but mantaining it:

If the column is not possible to be updated in this class, it will call the
homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to update the column).

Parameters column- the index of the column to update
newValue - BER encoded new value of the column

Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

IMPLEMENTATION 111

Class MetaPolicyActionValue
thesis.metapib.MetaPolicyActionValue

Description
This class extends the class MetaPolicyAction and represents the Action Value of

the metapolicy framework.
It contains the value that will be inserted direcly into the actionTargetPrid (field

that inherits from its parent)

Fields

Type Name Description
protected
byte[]

valueEpd byte value of the pri that will be enforced when
corresponds

Methods

(Constructor)

Invocation public MetaPolicyActionValue(String actionPrid_,
int actionRefTag_,
String actionTargetPrid_,
byte[] valueEpd_)

Description This constructor creates a Action calling the super constructor (of the
MetaObject class) with the prid sent as first parameter, and also
filling the rest of the fields (actionRefTag, actionTargetPrid,
valueEpd)
the field nextBytes will be null.

Parameters actionPrid - prid of the action object
actionRefTag - tag of the group of actions in which this one
is included
actionTargetPrid - prid (of the PIB) where this action will be
installed
valueEpd - byte value of the pri to install

Returns none
Throws none

(Constructor)

Invocation public MetaPolicyActionValue(MetaPolicyAction parent)
Description This constructor creates a MetaPolicyActionValue from an object of

IMPLEMENTATION 112

the superclass MetaPolicyAction.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after extracts or creates the specific object
fields from the bytes of the nextBytes field.
It will be used when creating a new MetaPolicyActionValue from an
object of its parent class, when it is creating the right object from a
stream of bytes.

Parameters parent - MetaObject to create the Action from
Returns none
Throws MetaPibException - when there is an error creating the parameter

or because the bytes not correspond directly to the established fields.

getBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the
object (in this case valueEpd)

Parameters none
Returns stream of bytes that represent the object
Throws none

update

Invocation public void update(MetaObject newMetaObject)
Description overrides the parent one.

First, the method checks that the metaObject sent as parameter is
instance of a MetaPolicyActionValue. After, it checks that the prid of
the object to update, and the prid of the object to update from, are
equal, to maintain the consistency.
After the checking, it can copy the fields from the new object to this
one.

Parameters parObject - the metaObject (that must be instance of
MetaPolicyActionValue) to update with.

Returns none
Throws MetaPibException - when there is an error updating or when the

parameter newMetaObject is not from the correct class
(MetaPolicyActionValue)

IMPLEMENTATION 113

getColumn

Invocation public byte[] getColumn(int column)
Description overrides the parent method but mantaining it:

If the column is not possible to be obtained in this class, it will call
the homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to obtain the column).

Parameters column- the index of the column to obtain
Returns BER encoded value (as a byte stream) of the column
Throws MetaPibException - if trying to get a column that does not exist in

this object

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description overrides the parent method but mantaining it:

If the column is not possible to be updated in this class, it will call the
homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to update the column).

Parameters column- the index of the column to update
newValue - BER encoded new value of the column

Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

IMPLEMENTATION 114

Class MetaPolicyActionParametricValue
thesis.metapib.MetaPolicyActionParametricValue

Description
This class extends the class MetaPolicyAction and represents the Action

Parametric Value of the metapolicy framework.
It contains a reference to a parameter from wich the value that will be inserted

directly into the actionTargetPrid will be extracted

Fields

Type Name Description
protected
String

parameterRefPrid prid of the parameter from wich the value of the policy
will be extracted

protected
Parameter

parameterRef reference to the parameter (for optimization purposes)

Methods

(Constructor)

Invocation public MetaPolicyActionParametricValue(String actionPrid_,
int actionRefTag_,
String actionTargetPrid_,
String parameterRefPrid_)

Description This constructor creates a Action calling the super constructor (of the
MetaObject class) with the prid sent as first parameter, and also
filling the rest of the fields (actionRefTag, actionTargetPrid,
parameterRefPrid)
the field nextBytes will be null.
Also the parameterRef itself will be null when using this constructor,
so it will be necessary to be filled in by the method that calls this
constructor (method of the METAPIB)

Parameters actionPrid - prid of the action object
actionRefTag - tag of the group of actions in which this one
is included
actionTargetPrid - prid (of the PIB) where this action will be
installed
parameterRefPrid - prid of the parameter from which the value to
be inserted in the pri of the PIB, will be inserted

Returns none
Throws none

IMPLEMENTATION 115

(Constructor)

Invocation public MetaPolicyActionParametricValue(
MetaPolicyAction parent)

Description This constructor creates a MetaPolicyActionParametricValue from
an object of the superclass MetaPolicyAction.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after extracts or creates the specific object
fields from the bytes of the nextBytes field.
It will be used when creating a new
MetaPolicyActionParametricValue from an object of its parent class,
when it is creating the right object from a stream of bytes.

Parameters parent - MetaPolicyAction to create the Action from
Returns none
Throws MetaPibException - when there is an error creating the parameter

or because the bytes not correspond directly to the established fields.

getBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the
object (in this case valueEpd)

Parameters none
Returns stream of bytes that represent the object
Throws none

update

Invocation public void update(MetaObject newMetaObject)
Description overrides the parent one.

First, the method checks that the metaObject sent as parameter is
instance of a MetaPolicyActionParametricValue. After, it checks that
the prid of the object to update, and the prid of the object to update
from, are equal, to maintain the consistency.
After the checking, it can copy the fields from the new object to this
one.

Parameters parObject - the metaObject (that must be instance of
MetaPolicyActionValue) to update with.

Returns none

IMPLEMENTATION 116

Throws MetaPibException - when there is an error updating or when the
parameter newMetaObject is not from the correct class
(MetaPolicyActionParametricValue)

getColumn

Invocation public byte[] getColumn(int column)
Description overrides the parent method but mantaining it:

If the column is not possible to be obtained in this class, it will call
the homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to obtain the column).

Parameters column- the index of the column to obtain
Returns BER encoded value (as a byte stream) of the column
Throws MetaPibException - if trying to get a column that does not exist in

this object

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description overrides the parent method but mantaining it:

If the column is not possible to be updated in this class, it will call the
homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to update the column).

Parameters column- the index of the column to update
newValue - BER encoded new value of the column

Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

IMPLEMENTATION 117

ClassMetaPolicy
thesis.metapib.MetaPolicy

Description
This class extends the base class MetaObject and represents the general

MetaPolicy of the metapolicy framework. Basically it inherits the field and methods of its
parent (we will see that overrides some methods to maintain the semantics)

We will also see that the MetaPolicyStatus augments this class to represent the
current status of each meta-policy.

Fields

Type Name Description
protected String metaPolicyName String that identifies the policy with a

name, for legibility purposes.
protected String metaPolicyConditionPrid prid of the condition of this MetaPolicy
protected
MetaPolicyCondition

metaPolicyCondition reference to the condition itself (for
optimization purposes)

protected int metaPolicyAction tag that references the group of actions
(policies) that will be installed when this
meta-policy becomes active.

protected
MetaPolicyStatus

metaPolicyStatus reference to the Status associated to this
meta-policy

Methods

(Constructor)

Invocation public MetaPolicy(String metaPolicyPrid_,
String metaPolicyName_,
String metaPolicyConditionPrid_,
int metaPolicyAction_,
MetaPolicyStatus metaPolicyStatus_)

Description This basic constructor creates a MetaPolicy calling the super
constructor (of the MetaObject class) with the prid sent as first
parameter, and also filling the rest of the fields (MetaPolicyName,
metaPolicyConditionPrid, metaPolicyAction, metaPolicyStatus)
It is necessary to specify a reference to a MetaPolicyStatus, so if we
don't want to explicitly indicate this, we can use the next constructor
that creates one automatically.
It will be also mandatory to fill the metaPolicyCondition reference to
the one that refers the parameter metaPolicyConditionPrid_ (this
must be done by the method that calls this method., in this case a
methos of the METAPIB class)
the field nextBytes will be null.

IMPLEMENTATION 118

Parameters metaPolicyPrid_ - prid of the meta-policy object
metaPolicyName_ - desired name of the meta-policy
metaPolicyConditionPrid_ - prid of the associated condition
metaPolicyAction_ - tag of the associated actions
metaPolicyStatus_ - reference to the associated status

Returns none
Throws MetaPibException - when the referenced Status cannot be

associated with this metapolicy (do not have the same prid)

(Constructor)

Invocation public MetaPolicy(String metaPolicyPrid_,
String metaPolicyName_,
String metaPolicyConditionPrid_,
int metaPolicyAction_)

Description This constructor is used when creating a meta-policy with default
status, for example when is received from a PDP.
It calls the basic constructor.

Parameters metaPolicyPrid_ - prid of the meta-policy object
metaPolicyName_ - desired name of the meta-policy
metaPolicyConditionPrid_ - prid of the associated condition
metaPolicyAction_ - tag of the associated actions

Returns none
Throws MetaPibException - when there is an error creating the meta-

policy (see basic constructor)

(Constructor)

Invocation public MetaPolicy(MetaObject parent)
Description This constructor creates a MetaPolicy from an object of the

superclass MetaObject.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after extracts or creates the specific object
fields from the bytes of the nextBytes field.
It will be used when creating a new MetaPolicy from an object of its
parent class, when it is creating the right object from a stream of
bytes.

Parameters parent - MetaObject to create the Action from
Returns none
Throws MetaPibException - when there is an error creating the meta-

policy or because the bytes not correspond directly to the established
fields.

transform

IMPLEMENTATION 119

Invocation public transform()
Description This method overrides the homonym method of its parent class and

has the same semantic adapted to a MetaPolicy: returns the same
object, since the MetaPolicy class has no descendants

Parameters none
Returns MetaObject - the same object (MetaPolicy)
Throws none

getType

Invocation public static int getType(String pridString)
Description Overrides the homonym parent method. returns the type (restricted to

the MetaPolicy types) that corresponds to that prid.
Actually it will be the type of MetaPolicy, or Unknow if does not
correspond to a meta-policy

Parameters pridString - the prid to analize
Returns int - identifier (as defined in the Constant class) that

corresponds to the prid.
Throws none

getBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the
object (in this case metaPolicyName, metaPolicyConditionPrid,
metaPolicyAction, and metaPolicyStatus).
It sends the bytes of the metaPolicyStatus object associated (calling
the method getBytes of that object)

Parameters none
Returns stream of bytes that represent the object
Throws none

update

Invocation public void update(MetaObject newMetaObject)
Description overrides the parent one.

First, the method checks that the metaObject sent as parameter is
instance of a MetaPolicy. After, it checks that the prid of the object to

IMPLEMENTATION 120

update, and the prid of the object to update from, are equal, to
maintain the consistency.
After the checking, it can copy the fields from the new object to this
one.

Parameters newMetaObject - the metaObject (that must be instance of
MetaPolicy) to update with.

Returns none
Throws MetaPibException - when there is an error updating or when the

parameter newMetaObject is not from the correct class
(MetaPolicyAction)

getColumn

Invocation public byte[] getColumn(int column)
Description overrides the parent method but maintaining it:

If the column is not possible to be obtained in this class, it will call
the homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to obtain the column).

Parameters column- the index of the column to obtain
Returns BER encoded value (as a byte stream) of the column
Throws MetaPibException - if trying to get a column that does not exist in

this object

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description overrides the parent method but mantaining it:

If the column is not possible to be updated in this class, it will call the
homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to update the column).

Parameters column- the index of the column to update
newValue - BER encoded new value of the column

Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

hasToBeEnforced

IMPLEMENTATION 121

Invocation public boolean hasToBeEnforced()
Description This method calls the methos isTrue() of the associated condition, to

evaluate if it has to be enforced or not.
Parameters none

Returns True if its associated condition is true
False otherwise

Throws MetaPibException - if trying to update a column that does not
exist in this object

IMPLEMENTATION 122

ClassMetaPolicyStatus
thesis.metapib.MetaPolicyStatus

Description
This class extends the base class MetaObject and represents the general Status of

the metapolicy framework. In the design it augments the class MetaPolicy, so it is only
semantically correct that one object of this class exists when it is associated with an
object of the meta-policy class.

Declaring it as a object that descends from the MetaObject Class, we can handle it
as another object, with the same inherited methods, so it is easier. Also we can reference
a status as a object itself, so for example we can convey that object from PEP to PDP to
communicate the status of a meta-policy,

Fields

Type Name Description
protected
boolean

metaPolicyActive flag to indicate that a meta-policy is active
and enforced

protected
boolean

metaPolicySuppress flag to indicate that a meta-policy is
suppressing or is being suppressed by
another one

Depending of the values of these fields, we have the following possibilities:

metaPolicyActive
Value

metaPolicySuppress
Value

Meaning

TRUE TRUE meta-policy active, suppresses another one
TRUE FALSE meta-policy active, does not suppress

another one
FALSE TRUE meta-policy inactive, suppressed by

another
FALSE FALSE meta-policy inactive, because conditions

not met

Methods

(Constructor)

Invocation public MetaPolicyStatus(String metaPolicyPrid_)
Description This basic constructor creates a MetaPolicy calling the super

constructor (of the MetaObject class) with the prid sent as first
parameter, and also setting the rest of the fields (metaPolicyActive,
metaPolicySuppress) to the default values (false)

IMPLEMENTATION 123

the field nextBytes will be null.
Parameters metaPolicyPrid_ - prid of the meta-policy object that this object

represents its status
Returns none
Throws none

(Constructor)

Invocation public MetaPolicyStatus(MetaPolicyStatus son)
Description This constructor creates a MetaPolicy from an object of the same

class
It first calls the analog method of the parent (to copy the fields
related to the parent) and after copies the fields object-specific

Parameters parent - MetaObject to create the Action from
Returns none
Throws MetaPibException - when there is an error creating the meta-

policy or because the bytes not correspond directly to the established
fields.

(Constructor)

Invocation public MetaPolicyStatus(MetaObject parent)
Description This constructor creates a MetaPolicy from a parent object.

As usual, it first calls the constructor of the parent, and after tries to
get the field values form the field netxtBytes.

Parameters parent - MetaObject to create the MetaObjectStatus
Returns none
Throws MetaPibException - when there is an error creating the meta-

policyStatus or because the bytes not correspond directly to the
established fields.

(Constructor)

Invocation public MetaPolicyStatus(byte bytes[])
Description This constructor creates a MetaPolicy from an stream of bytes.

It is called from the constructor of the MetaPolicy Class
It first calls the analog method of the parent (to copy the fields
related to the parent) and after copies the fields object-specific

Parameters bytes - bytes from where the object will be created
Returns none
Throws MetaPibException - when there is an error creating the meta-

policyStatus or because the bytes not correspond directly to the

IMPLEMENTATION 124

established fields.

transform

Invocation public transform()
Description This method overrides the homonym method of its parent class and

has the same semantic adapted to a MetaPolicyStatus: returns the
same object, since the MetaPolicyStatus class has no descendants

Parameters none
Returns MetaObject - the same object (MetaPolicy)
Throws none

getType

Invocation public static int getType(String pridString)
Description Overrides the homonym parent method. returns the type (restricted to

the MetaPolicyStatus types) that corresponds to that prid.
Actually it will be the type of MetaPolicyStatus, or Unknow if does
not correspond to a meta-policy

Parameters pridString - the prid to analize
Returns int - identifier (as defined in the Constant class) that

corresponds to the prid.
Throws none

getBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the
object (in this case metaPolicyActive and metaPolicySuppress).
It sends the bytes of the metaPolicyStatus object associated (calling
the method getBytes of that object)

Parameters none
Returns stream of bytes that represent the object
Throws none

Note: Since this object will not be in a table/PRC of the framework, it does not need the
methods update, update column, etc. Nevertheless, since one status is related with a
MetaPolicy object, all this procedures can be done through this class.

IMPLEMENTATION 125

ClassMetaPolicyPriority
thesis.metapib.MetaPolicyPriority

Description
This class extends the base class MetaObject and represents the

MetaPolicyPriority of the metapolicy framework. Basically it inherits the field and
methods of its parent (we will see that overrides some methods to maintain the semantics)

Fields

Type Name Description
protected String higherPriorityPrid prid of the metapolicy with higher priority
protected MetaPolicy higherPriority reference to the metapolicy with higher

priority
protected String lowerPriorityPrid prid of the metapolicy with lower priority
protected MetaPolicy lowerPriority reference to the metapolicy with lower

priority

Methods

(Constructor)

Invocation public MetaPolicyPriority(String metaPolicyPriorityPrid_,
MetaPolicy higherPriority_ ,
MetaPolicy lowerPriority_)

Description This basic constructor creates a MetaPolicyPriority calling the super
constructor (of the MetaObject class) with the prid sent as first
parameter, and also filling the rest of the fields (higherPriority,
lowerPriority) with the references to the objects.
It also gets the prids of that objects and fills in the corresponding
fields (higherPriorityPrid, lowerPriorityPrid)
This constructor is used when we know the references to the objects

Parameters metaPolicyPriorityPrid_ - prid of the meta-policy object
higherPriority_ - reference to the MetaPolicy with
higher priority
lowerPriority_ - reference to the MetaPolicy with lower
priority

Returns none
Throws none

(Constructor)

IMPLEMENTATION 126

Invocation public MetaPolicyPriority(String metaPolicyPriorityPrid_,
String higherPriorityPrid_ ,
String lowerPriorityPrid_)

Description Constructor used when we only know the prid's of the metapolicies
the have higher / lower priority.
It will be mandatory to fill the reference fields (higherPriority,
lowerPriority) to ensure correct function. (This will be done by the
method that calls this constructor)

Parameters metaPolicyPriorityPrid_ - prid of the meta-policy object
higherPriorityPrid_ - prid of the MetaPolicy with higher
priority
lowerPriorityPrid_ - prid of the MetaPolicy with lower
priority

Returns none
Throws MetaPibException - when there is an error creating the meta-

policyPriority (see basic constructor)

(Constructor)

Invocation public MetaPolicyPriority(MetaObject parent)
Description This constructor creates a MetaPolicy from an object of the

superclass MetaObject.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after extracts or creates the specific object
fields from the bytes of the nextBytes field.
It will be used when creating a new MetaPolicy from an object of its
parent class, when it is creating the right object from a stream of
bytes.

Parameters parent - MetaObject to create the Priority from
Returns none
Throws MetaPibException - when there is an error creating the meta-

policy or because the bytes not correspond directly to the established
fields.

transform

Invocation public transform()
Description This method overrides the homonym method of its parent class and

has the same semantic adapted to a MetaPolicyPriority: returns the
same object, since the MetaPolicyPriority class has no descendants

Parameters none
Returns MetaObject - the same object (MetaPolicy)
Throws none

IMPLEMENTATION 127

getType

Invocation public static int getType(String pridString)
Description Overrides the homonym parent method. returns the type (restricted to

the MetaPolicyPriority types) that corresponds to that prid.
Actually it will be the type of MetaPolicyPriority, or Unknow if does
not correspond to a meta-policy

Parameters pridString - the prid to analize
Returns int - identifier (as defined in the Constant class) that

corresponds to the prid.
Throws none

getBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the
object (in this case higherPriorityPrid, and lowerPriorityPrid).

Parameters none
Returns stream of bytes that represent the object
Throws none

update

Invocation public void update(MetaObject newMetaObject)
Description overrides the parent one.

First, the method checks that the metaObject sent as parameter is
instance of a MetaPolicyPriority. After, it checks that the prid of the
object to update, and the prid of the object to update from, are equal,
to maintain the consistency.
After the checking, it can copy the fields from the new object to this
one.

Parameters newMetaObject - the metaObject (that must be instance of
MetaPolicyPriority) to update with.

Returns none
Throws MetaPibException - when there is an error updating or when the

parameter newMetaObject is not from the correct class
(MetaPolicyPriority)

IMPLEMENTATION 128

getColumn

Invocation public byte[] getColumn(int column)
Description overrides the parent method but maintaining it:

If the column is not possible to be obtained in this class, it will call
the homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to obtain the column).

Parameters column- the index of the column to obtain
Returns BER encoded value (as a byte stream) of the column
Throws MetaPibException - if trying to get a column that does not exist in

this object

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description overrides the parent method but mantaining it:

If the column is not possible to be updated in this class, it will call the
homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to update the column).

Parameters column- the index of the column to update
newValue - BER encoded new value of the column

Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

IMPLEMENTATION 129

ClassMetaPolicyXmlDtd
thesis.metapib.MetaPolicyXmlDtd

Description
This class extends the base class MetaObject and represents the

MetaPolicyXmlDtd of the metapolicy framework. It is in charge of maintain the DTDs
that the PEP is able to deal with, and the methods to analize the xml formatted strings
relatef with each DTD.

Fields

Type Name Description
protected String xmlDtdUrl String that represents the URL that

maintains the DTD.
XmlParseModule parseModule module that will parse the speciffic

formatting that is related to this DTD

Methods

(Constructor)

Invocation public MetaPolicyXmlDtd(String dtdPrid_,
String xmlDtdUrl_)

Description This is the basic constructor of the class. Depending of the url will try
to get the correct parseModule (calling the method
selectParseModule)

Parameters dtdPrid_ - prid of the object
xmlDtdUrl - url that contains the DTD

Returns none
Throws none

(Constructor)

Invocation public MetaPolicyXmlDtd(MetaObject parent)
Description This constructor creates a MetaPolicy from an object of the

superclass MetaObject.
It first calls the analog method of the parent (to copy the fields
related to the parent) and after extracts or creates the specific object
fields from the bytes of the nextBytes field.
It will be used when creating a new MetaPolicyXmlDtd from an
object of its parent class, when it is creating the right object from a
stream of bytes.

IMPLEMENTATION 130

Parameters parent - MetaObject to create the Priority from
Returns none
Throws MetaPibException - when there is an error creating the

metapolicyXmlDtd or because the bytes not correspond directly to
the established fields.

selectParseModule

Invocation public XmlParseModule selectParseModule(String url)
Description depending of the url, this method will obtain
Parameters url - url of the DTD

Returns A XmlParseModule object that is able to analyze the xml formatted
strings according to the url sent as parameter.

Throws none

transform

Invocation public transform()
Description This method overrides the homonym method of its parent class and

has the same semantic adapted to a MetaPolicyPriority: returns the
same object, since the MetaPolicyXmlDtd class has no descendants

Parameters none
Returns MetaObject - the same object (MetaPolicy)
Throws none

getBytes

Invocation public byte[] getBytes()
Description This method overrides the parent method and has the same semantic.

It first calls the homonym parent method to get the bytes of the parent
fields, and after adds the bytes corresponding to the fields of the
object (in this case xmlDtdUrl).

Parameters none
Returns stream of bytes that represent the object
Throws none

update

IMPLEMENTATION 131

Invocation public void update(MetaObject newMetaObject)
Description overrides the parent one.

First, the method checks that the metaObject sent as parameter is
instance of a MetaPolicyXmlDtd. After, it checks that the prid of the
object to update, and the prid of the object to update from, are equal,
to maintain the consistency.
After the checking, it can copy the fields from the new object to this
one.

Parameters newMetaObject - the metaObject (that must be instance of
MetaPolicyXmlDtd) to update with.

Returns none
Throws MetaPibException - when there is an error updating or when the

parameter newMetaObject is not from the correct class
(MetaPolicyXmlDtd)

getColumn

Invocation public byte[] getColumn(int column)
Description overrides the parent method but maintaining it:

If the column is not possible to be obtained in this class, it will call
the homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to obtain the column).

Parameters column- the index of the column to obtain
Returns BER encoded value (as a byte stream) of the column
Throws MetaPibException - if trying to get a column that does not exist in

this object

updateColumn

Invocation public void updateColumn(int column , byte[] newValue)
Description overrides the parent method but mantaining it:

If the column is not possible to be updated in this class, it will call the
homonym super method (that will do the same until reaching the
MetaObject class, and finally will throw a MetaPibException if it
does not know how to update the column).

Parameters column- the index of the column to update
newValue - BER encoded new value of the column

Returns none
Throws MetaPibException - if trying to update a column that does not

exist in this object

IMPLEMENTATION 132

isTrue

Invocation public boolean isTrue(String xmlCondition)
Description This method is called to evaluate a xmlCondition thru the methods of

the associated parseModule. In fact, it actually calls the method
isTrue of that module.

Parameters xmlCondition
Returns true - if the xmlCondition is evaluated true

false - otherwise
Throws MetaPibException - if there is an error evaluating the

xmlCondition

IMPLEMENTATION 133

Class METAPIB
thesis.metapib.METAPIB

Description
This is the most important class of the package, since it coordinates all the other

objects of the framework. It is responsible of the correct work of the metapib, checking
its integrity and consistency. The METAPIB class is also responsible for the functionality
that it is established in the design of the framework; hence, it checks the possible meta-
policies that has to be enforced and also calls the corresponding methods to actually
enforce the correct policies

Figure 16 : MetaPib Classes Diagram

METAPIB OVERVIEW DIAGRAM

METAPIB
associatedPibController :: PIBController
metaPolicyTable :: MetaPolicyTable
metaPolicyActionTable :: MetaPolicyActionTable
metaPolicyConditionTable :: MetaPolicyConditionTable
metaPolicyXmlDtdTable :: MetaPolicyXmlDtdTable
metaPolicyParameterTable :: MetaPolicyParameterTable
metaPolicyPriorityTable :: MetaPolicyPriorityTable
mibTable :: MibTable
enforcedMetaPoliciesSet:: MetaPolicySet
(constructor)
installPri()
removePri()
createMetaObject()
installParameter()
uninstallParameter()
updateColumnParameter()
installMetaPolicyCondition()
uninstallMetaPolicyCondition()
updateColumnCondition()
installMetaPolicyAction()
uninstallMetaPolicyAction()
updateColumnAction()
installMetaPolicyXmlDtd()
uninstallMetaPolicyXmlDtd()
updateColumnXmlDtd()
installMetaPolicy()
uninstallMetaPolicy()
updateColumnMetaPolicy()
updateColumnStatus()
installMetaPolicyPriority()
uninstallMetaPolicyPriority()
updateColumnPriority()
getValue()
getConditionFromConditionTable()
getParameterFromParameterTable()
getXmlDtdFromXmlDtdTable()
getMetaPolicyFromMetaPolicyTable()
checkParametersMibPib()
checkBeingEnforced()
checkMetaPoliciesEnforcement()
enforceMetaPolicySet()
unenforceMetaPolicySet()
enforceMetaPolicy()
unenforceMetaPolicy()
enforceActionsInPib()
unenforceActionsInPib()

PibController

MetaPolicyTable

MetaPolicyActionTable

MetaPolicyConditionTable

MetaPolicyXmlDtdTable

MetaPolicyParameterTable

MetaPolicyPriorityTable

MibTable

MetaPolicySet

MetaPolicy

MetaPolicyStatus

MetaPolicyCondition

MetaPolicyBooleanCondition

MetaPolicyComplexCondition

MetaPolicyGeneralCondition

MetaPolicyNumberCondition

MetaPolicyXmlDtd

MetaPolicyAction

MetaPolicyActionParametricValue

MetaPolicyActionValue

Parameter

MibPibParameter

PdpParameter

NOTE
For details of the

classes refer to the
related diagram

IMPLEMENTATION 134

Figure 17 : MetaPib Classes Diagram (Extended)

IMPLEMENTATION 135

Fields

Type Name Description
protected PIBController associatedPibController reference to the PIBController that

if fact controls the METAPIB. It is
necessary to send the orders to
enforce the policies

protected static
MetaPolicyTable

metaPolicyTable reference to the table that contains
the meta-policies.

Protected
MetaPolicyActionTable

metaPolicyActionTable reference to the table that contains
the actions

protected static
MetaPolicyConditionTable

metaPolicyConditionTable reference to the table that contains
the conditions

protected static
MetaPolicyXmlDtdTable

metaPolicyXmlDtdTable reference to the table that contains
the XmlDtd's

protected static
MetaPolicyParameterTable

metaPolicyParameterTable reference to the table that contains
the parameters

protected
MetaPolicyPriorityTable

metaPolicyPriorityTable reference to the table that contains
the priorities

protected MetaPolicySet enforcedMetaPoliciesSet set of MetaPolicies that are
enforced each moment

MibTable mibTable the MIB is simulated as another
table of the framework. this is its
reference

Methods

(Constructor)

Invocation public METAPIB(PIBController pibController_)
Description This is the constructor of the metapib. It will be called from a

PibController, so the reference is passed as parameter.
It is responsible for creating all the tables of the framework.

Parameters pibController_- reference to the pibControlled that actually controls
this metapib

Returns none
Throws MetaPibException - if there is any error creating the tables

IMPLEMENTATION 136

installPri

Invocation public void installPri(String prid, byte[] priData)
Description this is the main entry point when installing/updating a meta-policy

into the metapib.
This method is called from the pibController, and this are its
characteristics:
It is responsible of creating the correct MetaObject from the priData
calling the method createMetaObject, and also to choose its
destination (the correct table for that object).
For that purpose it first creates a new PriDescriptor that will contain
the correct destination table, the row, type of pri, etc ... (refer to the
object PriDescriptor for details)
 The descriptor can refer to an entry or a column of an entry, so
depending of that it will call the correct method to install/update a
entire entry, or update a column.

Parameters prid - prid of the object to install-update
priData- stream of bytes that represents the object

Returns none.
Throws MetaPibException - if the prid is incorrect, or if there is an error

installing/updating the object

removePri

Invocation public void removePri(String prid)
Description this is the main entry point when removing a meta-policy from the

metapib.
This method is called from the pibController, and it is, like the
installing method, responsible of creating the correct MetaObject
from the priData calling the method createMetaObject, and also to
choose its destination (the correct table for that object).
For that purpose also creates s a new PriDescriptor (as the method
installPri)
 depending of the descriptor it will call the correct method to remove
the metapolicy from the METAPIB.
It is not permitted to delete a row of an entry.

Parameters prid - prid of the object to remove from the METAPIB
Returns none
Throws MetaPibException - if the prid is incorrect, or if there is an error

removing the object, or when trying to remove only a row, as well.

createMetaObject

IMPLEMENTATION 137

Invocation private MetaObject createMetaObject(
String prid,
byte[] data)

Description creates the correct object (Parameter, Condition, ...) from the bytes
passed as parameter.

Parameters prid - prid of the object to contruct
data - stream of bytes that represent the object

Returns the correct MetaObject created from the bytes of data
Throws MetaPibException - when there is an error creating the object

 installParameter

Invocation private void installParameter(Parameter parObject)
Description private method called from the installPri method, when the object to

install/update is a Parameter
Parameters parObject - parameter to install/update

Returns none
Throws MetaPibException - when there is an error installing/updating

uninstallParameter

Invocation private void uninstallParameter(String parameterPrid)
Description private method called from the removePri method, when the object to

remove is a Parameter
Parameters removePri - prid of the parameter to remove

Returns none
Throws MetaPibException - when there is an error removing the object, or

when it was being referenced by another object

updateColumnParameter

Invocation private void updateColumnParameter(
String prid,
byte[] priData,
int row,
int column)

Description this private method is called from installPri, whenever it has to
update a column of a Parameter.
It is actually a wrapper method for the updateColum of the
MetaPolicyParameterTable

Parameters prid - prid of the object to update
priData- stream of bytes that represents the object

IMPLEMENTATION 138

row - row of the object inside the table
column- column to update

Returns none
Throws MetaPibException - if there is an error updating

 installMetaPolicyCondition

Invocation private void installMetaPolicyCondition(
MetaPolicyCondition condition)

Description private method called from the installPri method, when the object to
install/update is a Condition

Parameters condition - condition to install/update
Returns none
Throws MetaPibException - when there is an error installing/updating

uninstallMetaPolicyCondition

Invocation private void uninstallMetaPolicyCondition(
String prid)

Description private method called from the removePri method, when the object to
remove is a Condition

Parameters prid - prid of the condition to remove
Returns none
Throws MetaPibException - when there is an error removing the object, or

when it was being referenced by another object

updateColumnCondition

Invocation private void updateColumnCondition(
String prid,
byte[] priData,
int row,
int column)

Description this private method is called from installPri, whenever it has to
update a column of a Parameter.
It is a wrapper method for the updateColum of the
MetaPolicyConditionTable

Parameters prid - prid of the object to update
priData- stream of bytes that represents the object
row - row of the object inside the table
column- column to update

Returns none

IMPLEMENTATION 139

Throws MetaPibException - if there is an error updating

 installMetaPolicyAction

Invocation private void installMetaPolicyAction(
MetaPolicyAction action)

Description private method called from the installPri method, when the object to
install/update is a Action

Parameters action - action to install/update
Returns none
Throws MetaPibException - when there is an error installing/updating

uninstallMetaPolicyAction

Invocation private void uninstallMetaPolicyAction(
String prid)

Description private method called from the removePri method, when the object to
remove is a Action

Parameters prid - prid of the condition to remove
Returns none
Throws MetaPibException - when there is an error removing the object, or

when it was being referenced by another object

updateColumnAction

Invocation private void updateColumnAction(
String prid,
byte[] priData,
int row,
int column)

Description this private method is called from installPri, whenever it has to
update a column of a Condition.
It is a wrapper method for the updateColum of the
MetaPolicyActionTable

Parameters prid - prid of the object to update
priData- stream of bytes that represents the object
row - row of the object inside the table
column- column to update

Returns none
Throws MetaPibException - if there is an error updating

IMPLEMENTATION 140

 installMetaPolicyXmlDtd

Invocation private void installMetaPolicyXmlDtd(
MetaPolicyXmlDtd xmlDtdObject)

Description private method called frrom installPri , when the object to
install/update is a XmlDtd

Parameters xmlDtdObject - action to install/update
Returns none
Throws MetaPibException - when there is an error installing/updating

uninstallMetaPolicyXmlDtd

Invocation private void uninstallMetaPolicyXmlDtd(
String prid)

Description private method called from the removePri method, when the object to
remove is a XmlDtd

Parameters prid - prid of the xmlDtd to remove
Returns none
Throws MetaPibException - when there is an error removing the object, or

when it was being referenced by another object

updateColumnXmlDtd

Invocation private void updateColumnXmlDtd(
String prid,
byte[] priData,
int row,
int column)

Description this private method is called from installPri, whenever it has to
update a column of a XmlDtd.
It is a wrapper method for the updateColum of the
MetaPolicyXmlDtdTable

Parameters prid - prid of the object to update
priData- stream of bytes that represents the object
row - row of the object inside the table
column- column to update

Returns none
Throws MetaPibException - if there is an error updating

installMetaPolicy

IMPLEMENTATION 141

Invocation private void installMetaPolicy(
MetaPolicy metaPolicy)

Description private method called from the installPri method, when the object to
install/update is a MetaPolicy

Parameters metaPolicy - action to install/update
Returns none
Throws MetaPibException - when there is an error installing/updating

uninstallMetaPolicy

Invocation private void uninstallMetaPolicy(
String prid)

Description private method called from the removePri method, when the object to
remove is a MetaPolicy

Parameters prid - prid of the xmlDtd to remove
Returns none
Throws MetaPibException - when there is an error removing the object, or

when it was being referenced by another object

updateColumnMetaPolicy

Invocation private void updateColumnMetaPolicy(
String prid,
byte[] priData,
int row,
int column)

Description this private method is called from installPri, whenever it has to
update a column of a MetaPolicy.
It is a wrapper method for the updateColum of the MetaPolicyTable

Parameters prid - prid of the object to update
priData- stream of bytes that represents the object
row - row of the object inside the table
column- column to update

Returns none
Throws MetaPibException - if there is an error updating

updateColumnStatus

Invocation private void updateColumnStatus(
String prid,
byte[] priData,
int row,
int column)

IMPLEMENTATION 142

Description this private method is called from installPri, whenever it has to
update a column of a Status.
It actually always raises an Exception, because is not semantically
correct to update the Status of a MetaPolicy from a PDP

Parameters prid - prid of the object to update
priData- stream of bytes that represents the object
row - row of the object inside the table
column- column to update

Returns none
Throws MetaPibException - always raised, because it is not semantically

correct to update the Status of a MetaPolicy from a PDP

 installMetaPolicyPriority

Invocation private void installMetaPolicyPriority(
MetaPolicyPriority priority)

Description private method called from the installPri method, when the object to
install/update is a Priority

Parameters prioriry - priority to install/update
Returns none
Throws MetaPibException - when there is an error installing/updating

uninstallMetaPolicyPriority

Invocation private void uninstallMetaPolicyPriority(
String prid)

Description private method called from the removePri method, when the object to
remove is a Priority

Parameters prid - prid of the priority to remove
Returns none
Throws MetaPibException - when there is an error removing the object, or

when it was being referenced by another object

updateColumnPriority

Invocation private void updateColumnPriority(
String prid,
byte[] priData,
int row,
int column)

Description this private method is called from installPri, whenever it has to
update a column of a Status.

IMPLEMENTATION 143

It is a wrapper method for the updateColum of the
MetaPolicyPriorityTable

Parameters prid - prid of the object to update
priData- stream of bytes that represents the object
row - row of the object inside the table
column- column to update

Returns none
Throws MetaPibException - when there is an error updating

getValue

Invocation public byte[] getValue(String prid)
Description This method obtains the value associated with the prid.

Nowadays it can get values for the PIB, METAPIB and MIB (the
interface with the MIB is simulated with another table).
If the prid refers to an entry, it returns the bytes of that entry.
If the prid refers to a column of an entry, it return that concrete
column.

Parameters prid - prid of the object-column that we want to get its
value

Returns value of the object that the parameter prid refers to.
Throws MetaPibException - when there is an error getting the value

getConditionFromConditionTable

Invocation public static MetaPolicyCondition
getConditionFromConditionTable(

String conditionPrid_)
Description this static method gets the reference to the MetaPolicyCondition that

has the conditionPrid_, from the metaPoliciyConditionTable.
It is called from some methods that has to obtain the correct
reference to maintain the consistency of the metapib (for example
when updating a MetaPolicy with a new MetaPolicyConditionPrid,
it has to look for the installed Condition that has that prid, and emit
an error if it not installed)

Parameters conditionPrid_- the prid of the MetaPolicyCondition that we are
looking for

Returns the reference to the MetaPolicyCondition that has the indicated prid.
Throws MetaPibException - if the condition is not installed in the

MetaPolicyConditionTable

getParameterFromParameterTable

IMPLEMENTATION 144

Invocation public static Parameter
 getParameterFromParameterTable(

String parameterPrid_)
Description the same that the method above, but for Parameters.
Parameters parameterPrid_ - the prid of the Parameter that we are looking

for
Returns the reference to the MetaPolicyParameter that has the indicated prid.
Throws MetaPibException - if the parameter is not installed in the

MetaPolicyParameterTable

getXmlDtdFromXmlDtdTable

Invocation public static MetaPolicyXmlDtd
getXmlDtdFromXmlDtdTable(String xmlDtdPrid_)

Description the same that the method above, but for XmlDtd's.
Parameters xmlDtdPrid_ - the prid of the xmlDtd that we are looking for

Returns the reference to the XmlDtd that has the indicated prid.
Throws MetaPibException - if the xmlDtd is not installed in the

MetaPolicyXmlDtdTable

getMetaPolicyFromMetaPolicyTable

Invocation public static MetaPolicy
getMetaPolicyFromMetaPolicyTable(String metaPolicyPrid_)

Description the same that the method above, but for meta-policies
Parameters metaPolicyPrid_ - the prid of the meta-policy that we are

looking for
Returns the reference to the MetaPolicy that has the indicated prid.
Throws MetaPibException - if the meta-policy is not installed in the

MetaPolicyTable

checkParametersMibPib

Invocation public synchronized int
checkParametersMibPib(int milisecondsSlept)

Description this method checks and updates the parameters that refer to a objects
in the PIB or in the MIB (MibPibParamters).
It is called continually from the PibControlled, and if any value has
changed since last time, it will call the method

IMPLEMENTATION 145

checkMetaPoliciesEnforcement to see if any condition have changed,
and accordingly if has to enforce/unenforce any metapolicy.
Moreover it will call checkBeingEnforced for each updated
parameter, to see if it was referenced by an enforced metapolicy, and
to update to its new value.

Parameters milisecondsSlept - miliseconds slept since this function was
called last time

Returns the number of miliseconds to sleep until next time that is necessary to
call this method again.

Throws MetaPibException - If there is an error updating a parameter calue

checkBeingEnforced

Invocation public synchronized void
checkBeingEnforced(String parameterPrid)

Description With this method it is possible to check if a parameter was already in
as enforced policy, and then it will update that parameter into the PIB

Parameters parameterPrid - prid of the parameter to check
Returns none
Throws MetaPibException - if there is an error updating the parameter (it

it was enforced)

checkMetaPoliciesEnforcement

Invocation public synchronized void checkMetaPoliciesEnforcement()
Description This is the main method to check and enforce (and unenforce) meta-

policies, and it is called from the constantly from the PibController to
ensure that the correct policies are enforced. It is also called from the
same METAPIB when, for example, installs a new meta-policy, to
check immediately if it has to be enforced.
The functionality of this method is the next:
It obtains the set of MetaPolicies susceptibles to enforce (the ones
that its conditions are evaluated TRUE).
First, checks if there is any enforced policy that has to be unenforced
(Policies that were previosly enforced and now are NOT
evaluatedTrue), calling the method unenforceMetaPolicySet with
those that has to be unenforced.
Second, it check ti enforce new policies(policies whose conditions
evaluated true and are not already active), calling
enforceMetaPolicySet.

Parameters none
Returns none
Throws MetaPibException - When there is an error (see called methods

like unenforceMetaPolicySet or enforceMetaPolicySet)

IMPLEMENTATION 146

enforceMetaPolicySet

Invocation private synchronized void
enforceMetaPolicySet(

MetaPolicySet metaPolicySet,
MetaPolicySet metaPoliciesEvaluatedTrue)

Description This general to enforce policies obtains the intersection between the
two parameters (obtaining the policies that have to be enforced AND
that are evaluated true); and calls the method enforceMetaPolicy for
each meta-policy that is in the intersection.

Parameters metaPolicySet - Set of metaPolicies that we want to
enforce
metaPoliciesEvaluatedTrue - Set of metaPolicies that have
the condition=true in a determined moment

Returns none
Throws MetaPibException - If there is an error enforcing a meta-

policy

unenforceMetaPolicySet

Invocation private synchronized void
unenforceMetaPolicySet(

MetaPolicySet metaPolicySet,
MetaPolicySet metaPoliciesEvaluatedTrue
boolean isSuppressed by another)

Description makes the contrary of the previous method, 'unenforcing' a set of
metapolicies, calling for each one the method
unenforceMetaPolicySet

Parameters metaPolicySet - Set of metaPolicies that we want to
un-enforce
metaPoliciesEvaluatedTrue - Set of metaPolicies that have
the condition=true in a determined moment
isSuppressed by another - flag to determined if the
reason to unenforce the policies is because it is being suppressed by
another (and not because its conditions=false)

Returns none
Throws MetaPibException - If there is an error un-enforcing a

meta-policy

enforceMetaPolicy

Invocation private synchronized void
enforceMetaPolicy(

MetaPolicy metaPolicy,
MetaPolicySet metaPoliciesEvaluatedTrue)

IMPLEMENTATION 147

Description this method checks if a condition that is able to be enforced/active
(condition=true), is possible to be actually enforced (not higher
policies in conflict); and puts the fields ACTIVE and SUPPRESS in
its corrects values.
This private method will be called from the more general method
enforceMetaPolicySet.

Parameters metaPolicy - metaPolicy to be enforced
metaPoliciesEvaluatedTrue - Set of metaPolicies that have the
condition=true in a determined moment

Returns none
Throws MetaPibException - If the metapolicy was already

enforced

unenforceMetaPolicy

Invocation private synchronized void
unenforceMetaPolicy(

MetaPolicy metaPolicy,
MetaPolicySet metaPoliciesEvaluatedTrue,
boolean isSuppressed by another)

Description this method 'unenforces' a metapolicy (because of its condition has
become false, or because it is being suppressed by another with
higher priority) and puts the fields ACTIVE and SUPPRESS in its
corrects values.
first it retires the enforced actions/policies from the PIB (
unenforceActionsInPib), and after that it extracts the policy from the
enforced-policies vector.
Afterwards, it checks if it was suppressing another (or others), so if
this is true, it will call enforceMetaPolicySet with each of these
suppressed meta-policies, to check if each meta-policy has to be
enforced, or not.
This private method will be called from the more general method
unenforceMetaPolicySet.

Parameters metaPolicy - metaPolicy to be enforced
metaPoliciesEvaluatedTrue - Set of metaPolicies that have the
condition=true in a determined moment
isSuppressedByAnother - flag to indicate that the unenforcing is
because it is suppresed by another (and not because condition=false)

Returns none
Throws MetaPibException - If the metapolicy was not enforced, or

there is an error deinstalling policies.

enforceActionsInPib

IMPLEMENTATION 148

Invocation private void enforceActionsInPib(MetaPolicy metaPolicy)
Description this method gets the Actions of a metaPolicy and enforces them in the

Pib (calling pibController)
Parameters metaPolicy - the metapolicy to get the actions to enforce in

the PIB
Returns none
Throws MetaPibException - if there is an error installing a

determined action in the PIB

unenforceActionsInPib

Invocation private void unenforceActionsInPib(MetaPolicy metaPolicy)
Description this method works in a reverse way that enforceActionsInPib.

It unenforces the actions from the PIB
Parameters metaPolicy - the metapolicy to get the actions to unenforce

from the PIB
Returns none
Throws MetaPibException - if there is an error removing a

determined action in the PIB

IMPLEMENTATION 149

Class ActionSet
thesis.metapib.METAPIB

Description
This class is one of the util classes that are not direcly defined in the METAPIB,

but it helps in the implementation.
It represents a set of Actions, and has a number of methods to ease the deal

Fields

Type Name Description
Vector set set that contains the actions

Methods

(Constructor)

Invocation public ActionSet()
Description basic constructor that creates the set of actions
Parameters none

Returns none
Throws none

addAction

Invocation public void addAction(MetaPolicyAction newAction_)
Description Adds an Action to the set
Parameters newAction_ - action to add

Returns none
Throws none

size

Invocation public int size()
Description returns the number of actions in the set
Parameters newAction_ - action to add

Returns number of elements of the set
Throws none

elementAt

IMPLEMENTATION 150

Invocation public MetaPolicyAction elementAt(int index)
Description rmethod to obtain the Action at the indicated index
Parameters index - index of the Action to obtain

Returns returns a MetaPolicyAction
Throws none

getAction

Invocation public MetaPolicyActiongetAction(int index)
Description the same functionality of the above method
Parameters index - index of the Action to obtain

Returns returns a MetaPolicyAction
Throws none

IMPLEMENTATION 151

Class ConditionSet
thesis.metapib.METAPIB

Description
This class is another of the util classes that are not direcly defined in the

METAPIB, but it helps in the implementation.
It represents a set of Conditions, and has a number of methods to ease the deal

Fields

Type Name Description
Vector set set that contains the Conditions

Methods

(Constructor)

Invocation public ConditionSet()
Description basic constructor that creates the set of Conditions
Parameters none

Returns none
Throws none

addCondition

Invocation public void addCondition(MetaPolicyAction newCondition_)
Description Adds a Condition to the set
Parameters newCondition_ - Condition to add

Returns none
Throws none

size

Invocation public int size()
Description returns the number of conditions in the set
Parameters none

Returns number of elements of the set
Throws none

elementAt

IMPLEMENTATION 152

Invocation public MetaPolicyAction elementAt(int index)
Description rmethod to obtain the Condition at the indicated index
Parameters index - index of the Condition to obtain

Returns returns a MetaPolicyCondition
Throws none

getMetaPolicyCondition

Invocation public MetaPolicyAction getMetaPolicyCondition(int index)
Description the same functionality of the above method
Parameters index - index of the Condition to obtain

Returns returns a MetaPolicyCondition
Throws none

IMPLEMENTATION 153

Class MetaPolicySet
thesis.metapib.METAPIB

Description
This class is another of the util classes that are not direcly defined in the

METAPIB, but it helps in the implementation.
It represents a set of MetaPolicies, and has a number of methods to ease the deal.

Fields

Type Name Description
Vector set set that contains the Conditions

Methods

(Constructor)

Invocation public MetaPolicySet()
Description basic constructor that creates the set of MetaPolicies
Parameters none

Returns none
Throws none

addMetaPolicy

Invocation public void addMetaPolicy(MetaPolicy newMetaPolicy_)
Description Adds a MetaPolicy to the set
Parameters newMetaPolicy_ - MetaPolicy to add

Returns none
Throws none

size

Invocation public int size()
Description returns the number of MetaPolicies in the set
Parameters none

Returns number of elements of the set
Throws none

IMPLEMENTATION 154

elementAt

Invocation public MetaPolicy elementAt(int index)
Description rmethod to obtain the MetaPolicy at the indicated index
Parameters index - index of the MetaPolicy to obtain

Returns returns a MetaPolicy
Throws none

getMetaPolicy

Invocation public MetaPolicy getMetaPolicyCondition(int index)
Description the same functionality of the above method
Parameters index - index of the MetaPolicy to obtain

Returns returns a MetaPolicy
Throws none

getSet

Invocation public Vector getSet()
Description returns the complete set of MetaPolicies
Parameters none

Returns a Vector that contains all the MetaPolicies
Throws none

contains

Invocation public boolean contains(MetaPolicy object)
Description method that tells if a MetaPolicy is in the set
Parameters object - MetaPolicy that is checked that is in the set

Returns true - if the metaPolicy is in the set
false - otherwise

Throws none

removeMetaPolicy

Invocation public boolean removeMetaPolicy(MetaPolicy object)
Description removes the indicated metapolicy from the set
Parameters object - metapolicy to remove

Returns none
Throws none

IMPLEMENTATION 155

removeAll

Invocation public boolean removeAll(MetaPolicySet removeSet)
Description removes all the methods that are in removeSet from the set of

MetaPolicies
Parameters removeSet - set of policies to remove

Returns true - if everithing is removed ok
false - otherwise

Throws none

clone

Invocation public Object clone()
Description clone interface to obtain another set exactly to this one
Parameters none

Returns a copy of the set
Throws none

substraction

Invocation public MetaPolicySet substraction(MetaPolicySet substractSet)
Description substracts the substractSet from the set of metapolicies. It asctually

calls the method removeAll to remove the policies, and after returns
the result.

Parameters substractSet - set of metapolicies to substract
Returns the set of metapolicies, after substracting the ones that are in the

parameter substractSet
Throws MetaPibException - If there is any error in the substraction

procedure

intersection

Invocation public MetaPolicySet intersection(MetaPolicySet intersectSet)
Description method to obtain the intersection between the metaPolicySet, and the

set sent as paramenter
Parameters intersectSet - set of metapolicies to intersect

Returns a set of metapolicies that contains the intersection between the ones
that are in the paramenter, and the set of metaPolicies

Throws none

IMPLEMENTATION 156

getActives

Invocation public MetaPolicySet getActives()
Description returns the metapolicies that are actives from the ones that are in the

set
Parameters none

Returns a new set that contains the metapolicies that are actives (in this
moment)

Throws MetaPibException - If there is any error

getNotActives

Invocation public MetaPolicySet getActives()
Description The reverse method of the previous one.
Parameters none

Returns a new set that contains the metapolicies that are NOT actives (in this
moment)

Throws MetaPibException - If there is any error

containsActionRef

Invocation public boolean containsActionRef(int actionTag)
Description method to check if the actionTag sent as paramenter is being

referenced by any of the metapolicies of the set
Parameters actionTag - tag to check

Returns true - if at least one metapolicy of the set contains the
actionTag

Throws none

getActionsEnforced

Invocation public ActionSet getActionsEnforced(ActionSet actionSet)
Description method to obtain the actions that are enforced in one moment, calling

the method ContainsActionRef to check if the action is being
referenced (and adding to the resultSet, if so)

Parameters actionSet - actions that we want to check
Returns a new Action set that contains the Actions that are enforced in a

determined moment
Throws none

IMPLEMENTATION 157

Class XmlDtdSet
thesis.metapib.XmlDtdSet

Description
This class is another of the util classes that are not direcly defined in the

METAPIB, but it helps in the implementation.
It represents a set of XmlDtd objects, and has a number of methods to ease the

deal

Fields

Type Name Description
Vector set set that contains the XmlDtd

objects

Methods

(Constructor)

Invocation public XmlDtdSet()
Description basic constructor that creates the set of XmlDtd objects
Parameters none

Returns none
Throws none

addXmlDtd

Invocation public void addXmlDtd(MetaPolicyAction newXmlDtd_)
Description Adds a Condition to the set
Parameters newXmlDtd_ - XmlDtd object to add

Returns none
Throws none

size

Invocation public int size()
Description returns the number of XmlDtd objects in the set
Parameters none

Returns number of elements of the set
Throws none

IMPLEMENTATION 158

elementAt

Invocation public MetaPolicyXmlDtd elementAt(int index)
Description rmethod to obtain the Condition at the indicated index
Parameters index - index of the Condition to obtain

Returns returns a MetaPolicyCondition
Throws none

getMetaPolicyCondition

Invocation public MetaPolicyXmlDtd getXmlDtd(int index)
Description the same functionality of the above method
Parameters index - index of the Condition to obtain

Returns returns a MetaPolicyCondition
Throws none

IMPLEMENTATION 159

Class PriDescriptor
thesis.metapib.PriDescriptor

Description
This class is not defined in the design of the Metapib framework, but it is useful

in the implementation, so it is declared as a util class.
It represents a prid and its characteristics, so we can use it to obtain information

about the object that is referring a particular prid.
All the identifiers that we refer to, are defined in the CONTANT class.

Fields

Type Name Description
protected
String

effectivePrid Prid of the accesed entry (if
applicable)

protected
int

addessSpace addressSpace that it is refering:
METAPIB, PIB, OTHER (MIB)

protected
int

priType type of the pri, inside its
addressSpace:
COLUMN, ENTRY, ALL (THE
ENTRIES OF A TABLE)

protected
int

tableId Identifier of the table (if applicable)

protected
int

row row that it is refering (if aplicable)

protected
int

column column that it is refering (if
aplicable)

Methods

(Constructor)

Invocation public PriDescriptor(String prid)
Description basic constructor that creates a PriDescriptor from a prid. It will

analize the prid to obtain as much information as possible, filling in
all the applicable fields

Parameters prid - prid to analize
Returns none
Throws MetaPibException - error analizing prid

IMPLEMENTATION 160

checkPriTypeMib

Invocation private void checkPriTypeMib(String prid)
Description private method called form the constructor when the pri address

space corresponds to the MIB.
It will continue the analizing and fill the applicable fields
(addressSpace).
Afterwards it will call the method checkRestPrid with the part of the
prid not analized yet, to fill the rest of the fields

Parameters prid - prid to analize
Returns none
Throws MetaPibException - error analizing prid

checkPriTypePib

Invocation private void checkPriTypePib(String prid)
Description private method called form the constructor when the pri address

space corresponds to the PIB.
It will continue the analizing and fill the applicable fields
(addressSpace).
Afterwards it will call the method checkRestPrid with the part of the
prid not analized yet, to fill the rest of the fields

Parameters prid - prid to analize
Returns none
Throws MetaPibException - error analizing prid

checkPriTypePib

Invocation private void checkPriTypePib(String prid)
Description private method called form the constructor when the pri address

space corresponds to the METAPIB.
It will continue the analizing and fill the applicable fields
(addressSpace).Also it will try to discern the concrete table of the
METAPIB that the prid is refering to
Afterwards it will call the method checkRestPrid with the part of the
prid not analized yet, to fill the rest of the fields

Parameters prid - prid to analize
Returns none
Throws MetaPibException - error analizing prid

IMPLEMENTATION 161

checkRestPrid

Invocation private int checkRestPrid(String restPrid)
Description checks the rest of the prid looking for applicable information.

This method will try to identify if it is refering to a COLUMN, and
ENTRY, or ALL the table. With the result it will fill the field
priType.
It will also obtain the correct effectivePrid to access the object (
usually the prid of the table that it is accessing.

Parameters restPrid - rest of the prid to analize what type (priType) is.
Returns the type (according to the priType value) of the prid.
Throws MetaPibException - error analyzing

chopPrid

Invocation public static String chopPrid(String PRID, String prefix)
Description method to chop the prefix from the PRID
Parameters PRID - prid value

prefix - prefix to chop
Returns the result from the chopping.
Throws MetaPibException - error chopping the prid

IMPLEMENTATION 162

TABLES PACKAGE

The objects in this package represent the related tables of the Metapib and its
associated methods. Each table is descendant of the basic class Table, which contains the
common methods.

Each descendant object contains particular methods that serve with any specific
functionality.

Figure 18 : Table Class Diagram

MetaPolicyPriorityTable

findMetaPolicyPriorityIndex()
installMetaPolicyPriority()
uninstallMetaPolicyPriority()
uninstallMetaPolicyPrioritySet()
getHigherPriorityMetaPolicies()
getLowerPriorityMetaPolicies()
referencesMetaPolicy()
printTable()

MetaPolicyTable

findMetaPolicyIndex()
installMetaPolicy()
installUpdateMetaPolicy()
uninstallMetaPolicy()
getMetaPolicies()
getMetaPolicyEvaluatedTrue()
referencesMetaPolicyCondition()
printTable()

Table

table :: Vector

findMetaObjectIndex()
findMetaObject()
installMetaObject()
installUpdateMetaObject()
unistallMetaObject
deleteAll()
deleteStartsWith()
updateColumn()
getColumn()
getMetaObjectBytes()

TABLE CLASS DIAGRAM

MetaPolicyActionTable

findMetaPolicyActionIndex()
installAction()
installUpdateAction()
uninstallAction()
getActionSet()
UninstallActionSet()
referencesParameter()
getActionsThatReferencesParameter()
printTable()

MetaPolicyConditionTable

findMetaPolicyConditionIndex()
getMetaPolicyCondition()
getMetaPolicyCondition()
installCondition()
installUpdateCondition()
uninstallCondition()
getMetaPolicyConditions()
getMetaPolicyComplexConditions()
getMetaPolicyBooleanConditions()
getMetaPolicyGeneralConditions()
getMetaPolicyNumberConditions()
referencesParameter()
referencesMetaPolicyCondition()
referencesXmlDtd()
printTable()

MetaPolicyParameterTable

findParameterIndex()
getParameter()
installParameter()
uninstallParameter()
getParameters()
getMibPibParameters()
getPdpParameters()
references()
printTable()

MetaPolicyXmlDtdTable

findMetaPolicyXmlDtdIndex()
installMetaPolicyXmlDtd()
installUpdateMetaPolicyXmlDtd()
uninstallMetaPolicyXmlDtd()
getMetaPolicyXmlDtd()
printTable()

MibTable

getColumn()

IMPLEMENTATION 163

Figure 19 Table Class Diagram (Extended)

IMPLEMENTATION 164

Class Table
thesis.metapib.tables.Table

Description
The Table class refers to the basic table that maintains MetaObjects. It can be

considered as a PRC that will be parent of all the other PRCs (ConditionTable,
ActionTable..) of the METAPIB framework.

Actually it is implemented as a vector where we can allocate all the objects, but it
can be modified to be implemented as a Hash Table, etc ...

Fields

Type Name Description
Vector table table that maintains all the

MetaObjects

Methods

(Constructor)

Invocation public public Table()
Description this is the basic constructor that sets the table (Vector)
Parameters none

Returns none
Throws none

findMetaObjectIndex

Invocation public int findMetaObjectIndex(String searchedPrid_)
Description method to get the index of a looked MetaObject (by its prid)
Parameters searchedPrid - prid of the MetaObject to look for

Returns integer >= 0 - index (inside the table) of the object found
-1 - object not found

Throws none

findMetaObject

Invocation public int findMetaObject(int index)
Description method to get the a reference to a looked MetaObject (by its index in

the table)
Parameters index - index of the looked Object inside the table

Returns the searched MetaObject d, or null if is not in the table

IMPLEMENTATION 165

Throws none

findMetaObject

Invocation public MetaObject findMetaObject(String searchedPrid_)
Description method to get the a reference to a looked MetaObject (by its prid)
Parameters searchedPrid - prid of the MetaObject to look for

Returns the searched MetaObject , or null if is not in the table
Throws none

installMetaObject

Invocation public void installMetaObject(MetaObject metaObject_)
Description method to install a MetaObject in the table. This method does not

updates a previously installed one (see intallUptateMetaObject
instead.

Parameters metaObject - object to install in the table
Returns none
Throws MetaPibException - if there is any error installing (for example if

the object was already in the table)

installUpdateMetaObject

Invocation public void installUpdateMetaObject(MetaObject metaObject_)
Description method to install or update a MetaObject in the table.
Parameters metaObject - object to install/update in the table

Returns none
Throws MetaPibException - if there is any error installing or updating

uninstallMetaObject

Invocation public void uninstallMetaObject(string searchedPrid_)
Description method to uninstall a MetaObject from the table.
Parameters searchedPrid - prid of the object to remove.

Returns none
Throws MetaPibException - if the object was not in the table

deleteAll

Invocation public void deleteAll()
Description method to delete all the object of the table
Parameters none

Returns none
Throws none

IMPLEMENTATION 166

deleteStartsWith

Invocation public void deleteStartsWith(String prefix)
Description method to delete all the object of the table that its prid starts with the

prefix
Parameters prefix - prefix of the objects that we want to delete

Returns none
Throws none

updateColumn

Invocation public void updateColumn(
String prid,
byte[] priData,
int row,
int column)

Description method to update a determined column, from a determined object of
the table.

Parameters prid - prid of the object to update
row - row of the object in the table (actually not used in the
final implementation)
column- column of the object to update
pridData - data to update with

Returns none
Throws MetaPibException - if there is any error updating

getColumn

Invocation public byte[] getColumn(
String prid,
int row,
int column)

Description method to get the value of a determined column, of a determined
object

Parameters prid - prid of the object to get the column
row - row of the object in the table (actually not used in the
final implementation
column- column to get

Returns stream of bytes with the data of the requested column
Throws MetaPibException - if there is any error obtaining the column

IMPLEMENTATION 167

getMetaObjectBytes

Invocation public byte[] getMetaObjectBytes(String prid)
Description with this method we can obtain the representation of the object with

the requested prid, as a byte stream.
It actually first find the object (findMetaObject), and afterwards it
calls its particular getBytes method.

Parameters prid - prid of the object that we want its bytes
Returns stream of bytes that represents the object.
Throws none

IMPLEMENTATION 168

Class MetaPolicyActionTable
thesis.metapib.tables.MetaPolicyActionTable

Description
This class represents the table where all the MetaPolicyActions are maintained,

and of course, is a descendant of the class Table.
It inherits the majority of the methods of its parent class, and also defines new that

deal with specific issues of the MetaPolicyActions. Also, in some cases, there are some
wrappers to parent functions, to maintain consistency with the syntax of the class.

Fields

No specific defined fields

Methods

(Constructor)

Invocation public public MetaPolicyActionTable()
Description this is the basic constructor that sets the table (Vector). It actually

calls the constructor of the parent
Parameters none

Returns none
Throws none

findMetaPolicyActionIndex

Invocation public int findMetaPolicyActionIndex(String searchedPrid_)
Description method to get the index of a looked MetaPolicyAction (by its prid). It

is actually a wrapper for the parent method findMetaObjectIndex
Parameters searchedPrid - prid of the MetaObject to look for

Returns integer >= 0 - index (inside the table) of the object found
-1 - object not found

Throws none

installAction

Invocation public void installAction(MetaPolicyAction action_)
Description Wrapper to the parent function installMetaObject.

The functionality is the same: install a MetaObject in the table. This
method does not update a previously installed one (see

IMPLEMENTATION 169

intallUptateAction instead.
Parameters action - MetaPolicyAction to install in the table

Returns none
Throws MetaPibException - if there is any error installing (for example if

the object was already in the table)

installUpdateAction

Invocation public void installUpdateAction(MetaPolicyAction action_)
Description Wrapper to the parent function installUpdateMetaObject

Functionality: install or update a MetaPolicyAction in the table.
Parameters action - MetaPolicyAction to install/update in the table

Returns none
Throws MetaPibException - if there is any error installing or updating

uninstallAction

Invocation public void uninstallAction(String actionPrid_)
Description Wrapper to the parent function uninstallMetaObject

method to uninstall a MetaObject from the table.
Parameters actionPrid_ - prid of the MetaPolicyAction to remove.

Returns none
Throws MetaPibException - if the MetaPolicyAction was not in the table

getActionSet

Invocation public ActionSet getActionSet(int actionTag_)
Description Method to get the actions from the table that have the indicated

actionTag
Parameters actionTag - actionTag that we are looking for

Returns a new ActionSet that contains the MetaPolicyActions from the table
that has the actionTag.

Throws MetaPibException - if actionTag is not a positive number

uninstallActionSet

Invocation public void uninstallActionSet(int actionTag_)
Description Method to uninstall the actions from the table that have the indicated

actionTag
Parameters actionTag - actionTag that we are looking for

Returns none
Throws MetaPibException - if actionTag is not a positive number

IMPLEMENTATION 170

referencesParameter

Invocation public boolean referencesParameter(String parameterPrid_)
Description Method that returns true if there is any Action

(MetaPolicyActionParametricValue) hat references the
parameterPrid_

Parameters parameterPrid - prid that we want to check
Returns none
Throws none

referencesParameter

Invocation public boolean referencesParameter(ParameterSet parameterSet)
Description Method that returns true if there is any Action

(MetaPolicyActionParametricValue) that references ANY of the
Parameters contained in parameterSet

Parameters parameterSet - set of parameters that we want to check
whether they are referenced or not

Returns none
Throws none

getActionsThatReferencesParameter

Invocation public ActionSet getActionsThatReferenceParameter(
String parameterPrid_)

Description Method that returns all the Actions
(MetaPolicyActionParametricValue) that reference the
parameterPrid_

Parameters parameterPrid - prid of the parameter that we want to check
Returns a new ActionSet with all the Actions that reference the parameter
Throws none

printTable

Invocation public void printTable()
Description This is a method to show (print on the screen) all the objects that are

installed in a determined moment.
It will format correctly according with the fields of the table

Parameters none
Returns none
Throws none

IMPLEMENTATION 171

Class MetaPolicyConditionTable
thesis.metapib.tables.MetaPolicyConditionTable

Description
This class represents the table where all the MetaPolicyConditions are

maintained, and is again descendant of the class Table.
As the previous defined table for the Actions, this class inherits the majority of

the methods of its parent class, and defines new that deal with specific issues of the
MetaPolicyCondition as well. Also, in some cases, there are some wrappers to parent
functions, to maintain consistency with the syntax of the class.

Fields

No specific defined fields

Methods

(Constructor)

Invocation public public MetaPolicyConditionTable()
Description this is the basic constructor that sets the table (Vector). It actually

calls the constructor of the parent
Parameters none

Returns none
Throws none

findMetaPolicyConditionIndex

Invocation public int findMetaPolicyConditionIndex(String searchedPrid_)
Description method to get the index of a looked MetaPolicyCondition (by its

prid). It is actually a wrapper for the parent method
findMetaObjectIndex

Parameters searchedPrid - prid of the MetaObject to look for
Returns integer >= 0 - index (inside the table) of the object found

-1 - object not found
Throws none

getMetaPolicyCondition

Invocation public iMetaPolicyCondition getMetaPolicyCondition(
String searchedPrid_)

Description method to get a MetaPolicyCondition (by its prid). It is actually a

IMPLEMENTATION 172

wrapper for the parent method findMetaObjectIndex
Parameters searchedPrid - prid of the MetaPolicyCondition to look for

Returns a MetaPolicy Condition, or null
Throws none

getMetaPolicyCondition

Invocation public MetaPolicyCondition getMetaPolicyCondition(
int index)

Description method to get a MetaPolicyCondition (by its prid). It is actually a
wrapper for the parent method findMetaObjectIndex

Parameters index - index of the MetaPolicyCondition in the table
Returns a MetaPolicy Condition, or null
Throws none

installCondition

Invocation public void installCondition(MetaPolicyCondition action_)
Description Wrapper to the parent function installMetaObject.

The functionality is the same: install a MetaPolicyCondition in the
table. This method does not update a previously installed one (see
intallUptateAction instead.

Parameters action - MetaPolicyCondition to install in the table
Returns none
Throws MetaPibException - if there is any error installing (for example if

the object was already in the table)

installUpdateCondition

Invocation public void installUpdateCondition(MetaPolicyCondition action_)
Description Wrapper to the parent function installUpdateMetaObject

Functionality: install or update a MetaPolicyCondition in the table.
Parameters action - MetaPolicyAction to install/update in the table

Returns none
Throws MetaPibException - if there is any error installing or updating

uninstallCondition

Invocation public void uninstallCondition(String actionPrid_)
Description Wrapper to the parent function uninstallMetaObject

method to uninstall a MetaObject from the table.
Parameters actionPrid_ - prid of the MetaPolicyCondition to remove.

Returns none

IMPLEMENTATION 173

Throws MetaPibException - if the MetaPolicyCondition was not in the
table

getMetaPolicyConditions

Invocation public ActionSet getMetaPolicyConditions()
Description returns all the installed MetaPolicyConditions
Parameters none

Returns a new ConditionSet with all the MetaPolicyConditions of the table
Throws none

getMetaPolicyComplexConditions

Invocation public ActionSet getMetaPolicyConditions()
Description returns all the installed MetaPolicyComplexConditions
Parameters none

Returns a new ConditionSet with all the MetaPolicyComplexConditions of
the table

Throws none

getMetaPolicyBooleanConditions

Invocation public ActionSet getMetaPolicyBooleanConditions()
Description returns all the installed MetaPolicyBooleanConditions
Parameters none

Returns a new ConditionSet with all the MetaPolicyBooleanConditions of the
table

Throws none

getMetaPolicyGeneralConditions

Invocation public ActionSet getMetaPolicyGeneralConditions()
Description returns all the installed MetaPolicyGeneralConditions
Parameters none

Returns a new ConditionSet with all the MetaPolicyGeneralConditions of the
table

Throws none

getMetaPolicyNumberConditions

Invocation public ActionSet getMetaPolicyGeneralConditions()
Description returns all the installed MetaPolicyNumberConditions
Parameters none

Returns a new ConditionSet with all the MetaPolicyNumberConditions of the
table

IMPLEMENTATION 174

Throws none

referencesParameter

Invocation public boolean referencesParameter(String parameterPrid_)
Description Method that returns true if there is any Condition

(MetaPolicyBooleanCondition) that references the parameterPrid_
Parameters parameterPrid - prid that we want to check

Returns none
Throws none

referencesParameter

Invocation public boolean referencesParameter(ParameterSet parameterSet)
Description Method that returns true if there is any Condition

(MetaPolicyBooleanCondition) that references ANY of the
Parameters contained in parameterSet

Parameters parameterSet - set of parameters that we want to check
whether they are referenced or not

Returns none
Throws none

referencesMetaPolicyCondition

Invocation public boolean referencesMetaPolicyCondition(
String prid_)

Description Method that returns true if there is any Condition (complexCondition)
that references the Condition with the prid

Parameters prid_ - prid of the Condition that we want to check
Returns true - if any ComplexCondition referenced the condition

with the prid.
Throws none

referencesXmlDtd

Invocation public boolean referencesXmlDtd(
String xmlDtdPrid)

Description Method that returns true if there is any Condition (generalCondition)
that references the XmlDtd with the xmlDtdPrid

Parameters prid_ - prid of the XmlDtd that we want to check
Returns true - if any generalCondition referenced the xmlDtd with

the prid.
Throws none

IMPLEMENTATION 175

referencesXmlDtd

Invocation public boolean referencesXmlDtd(
XmlDtdSet xmlDtdSet)

Description Method that returns true if there is any Condition (generalCondition)
that references any of the XmlDtd objects contained in the xmlDtdSet

Parameters xmlDtdSet - Set of XmlDtd objects that we want to check
Returns true - if any generalCondition referenced the xmlDtd with

the prid.
Throws none

printTable

Invocation public void printTable()
Description This is a method to show (print on the screen) all the objects that are

installed in a determined moment.
It will format correctly according with the fields of the table

Parameters none
Returns none
Throws none

IMPLEMENTATION 176

Class MetaPolicyParameterTable
thesis.metapib.tables.MetaPolicyActionTable

Description
This class represents the table where all the MetaPolicyParameters are

maintained, and of course, is a descendant of the class Table.
It inherits the majority of the methods of its parent class, and also defines new that

deal with specific issues of the Parameters. Also, in some cases, there are some wrappers
to parent functions, to maintain consistency with the syntax of the class.

Fields

No specific defined fields

Methods

(Constructor)

Invocation public public MetaPolicyParameterTable()
Description this is the basic constructor that sets the table (Vector). It actually

calls the constructor of the parent
Parameters none

Returns none
Throws none

findParameterIndex

Invocation public int findParameterIndex(String searchedPrid_)
Description method to get the index of a looked MetaPolicyParameter(by its

prid). It is actually a wrapper for the parent method
findMetaObjectIndex

Parameters searchedPrid - prid of the Parameter to look for
Returns integer >= 0 - index (inside the table) of the object found

-1 - object not found
Throws none

getParameter

Invocation public Parameter getParameter(
String searchedPrid_)

Description method to get a Parameter (by its prid). It is actually a wrapper for the

IMPLEMENTATION 177

parent method findMetaObjectIndex
Parameters searchedPrid - prid of the Parameter to look for

Returns a Parameter reference, or null
Throws none

getParameter

Invocation public Parameter getParameter(
int index)

Description method to get a Parameter (by its index). It is actually a wrapper for
the parent method findMetaObjectIndex

Parameters index - index of the Parameter in the table
Returns a Parameter reference, or null
Throws none

installParameter

Invocation public void installParameter(MetaPolicyParameter parameter_)
Description Wrapper to the parent function installMetaObject.

The functionality is the same: install a MetaObject (in this case its
descendant class, Parameter) in the table. This method does not
update a previously installed one.

Parameters parameter - Parameter to install in the table
Returns none
Throws MetaPibException - if there is any error installing (for example if

the object was already in the table)

uninstallParameter

Invocation public void uninstallParameter(String actionPrid_)
Description Wrapper to the parent function uninstallMetaObject

method to uninstall a Paramter from the table, by its prid
Parameters parameter_ - prid of the Parameter to remove.

Returns none
Throws MetaPibException - if the Parameter was not in the table

uninstallParameter

Invocation public void uninstallParameter(Parameter parameter_)
Description Wrapper to the parent function uninstallMetaObject

method to uninstall a Paramter from the table, by the reference.

IMPLEMENTATION 178

Parameters parameter_ - reference to the Parameter to remove.
Returns none
Throws MetaPibException - if the Parameter was not in the table

getParameters

Invocation public ParameterSet getParameters()
Description Method to get all the installed parameters.
Parameters none

Returns a new ParameterSet that contains the Parameters.
Throws none

getMibPibParameters

Invocation public ParameterSet getMibPibParameters()
Description Method to get all the installed MibPibParameters.
Parameters none

Returns a new ParameterSet that contains the Parameters.
Throws none

getPdpParameters

Invocation public ParameterSet getPdpParameters()
Description Method to get all the installed PdpParameters.
Parameters none

Returns a new ParameterSet that contains the Parameters.
Throws none

references

Invocation public boolean referencesParameter(String prid_)
Description Method that returns true if there is at least one MibPib in the table

thath references prid_
Parameters prid_ - prid that we want to check

Returns none
Throws none

printTable

Invocation public void printTable()
Description This is a method to show (print on the screen) all the objects that are

IMPLEMENTATION 179

installed in a determined moment.
It will format correctly according with the fields of the table

Parameters none
Returns none
Throws none

IMPLEMENTATION 180

Class MetaPolicyPriorityTable
thesis.metapib.tables.MetaPolicyPriorityTable

Description
This class represents the table where all the MetaPolicyPriorities are maintained,

and of course, is a descendant of the class Table.
It inherits the majority of the methods of its parent class, and also defines new that

deal with specific issues of the MetaPolicyPriorities. Also, in some cases, there are some
wrappers to parent functions, to maintain consistency with the syntax of the class.

Fields

No specific defined fields

Methods

(Constructor)

Invocation public public MetaPolicyPriorityTable()
Description this is the basic constructor that sets the table (Vector). It actually

calls the constructor of the parent
Parameters none

Returns none
Throws none

findMetaPolicyPriorityIndex

Invocation public int findMetaPolicyPriorityIndex(String searchedPrid_)
Description method to get the index of a looked MetaPolicyPriority (by its prid).

It is actually a wrapper for the parent method findMetaObjectIndex
Parameters searchedPrid - prid of the Priority to look for

Returns integer >= 0 - index (inside the table) of the object found
-1 - object not found

Throws none

installMetaPolicyPriority

Invocation public void installMetaPolicyPriority(
MetaPolicyPriority priority_)

Description Wrapper to the parent function installMetaObject.
The functionality is the same: install a MetaObject in the table. This

IMPLEMENTATION 181

method does not update a previously installed one
Parameters action - MetaPolicyPriority to install in the table

Returns none
Throws MetaPibException - if there is any error installing (for example if

the object was already in the table)

uninstallMetaPolicyPriority

Invocation public void uninstallMetaPolicyPriority(String
metaPolicyPriorityPrid_)

Description Wrapper to the parent function uninstallMetaObject
method to uninstall a MetaPolicyPriority from the table.

Parameters metaPolicyPriorityPrid - prid of the MetaPolicyPriority
to remove

Returns none
Throws MetaPibException - if the MetaPolicyAction was not in the table

uninstallMetaPolicyPrioritySet

Invocation public void uninstallMetaPolicyPrioritySet(String
metaPolicy2RemovePrid_)

Description this method removes the MetaPolicyPriority objects that refer (as
higher or lower priority) to the MetaPolicy with prid equal to
metaPolicy2RemovePrid_

Parameters metaPolicy2RemovePrid_ - prid of the MetaPolicy that is refering
Returns none
Throws MetaPibException - if the MetaPolicyAction was not in the table

getHigherPriorityMetaPolicies

Invocation public MetaPolicySet getHigherPriorityMetaPolicies(
MetaPolicy referenceMetaPolicy)

Description This is a method to obtain the Metapolicies that higher defined
priority that the one that we sent as parameter (referenceMetaPolicy
)

Parameters referenceMetaPolicy - the prid of the MetaPolicy that we
want to obtain the higher Priority MetaPolicies

Returns A new MetaPolicySet that contains the MetaPolicies with higher
priority that the reference one

Throws none

getLowerPriorityMetaPolicies

Invocation public MetaPolicySet getLowerPriorityMetaPolicies(

IMPLEMENTATION 182

MetaPolicy referenceMetaPolicy)
Description This is a method to obtain the Metapolicies that lower defined

priority that the one that we sent as parameter (referenceMetaPolicy
)

Parameters referenceMetaPolicy - the prid of the MetaPolicy that we
want to obtain the lower Priority MetaPolicies

Returns A new MetaPolicySet that contains the MetaPolicies with lower
priority that the reference one

Throws none

referencesMetaPolicy

Invocation public boolean referencesMetaPolicy(String metaPolicyPrid_)
Description Method that returns true if there is any MetaPolicyPriority object that

refers (as higher, or lower) to the MetaPolicy with prid equal to
metaPolicyPrid_

Parameters metaPolicyPrid - prid that we want to check
Returns true - if there is at least one object that refers to that

metaPolicy
Throws none

referencesMetaPolicy

Invocation public boolean referencesMetaPolicy(
MetaPolicySet metaPolicySet)

Description Method that returns true if there is any MetaPolicyPriority object that
refers (as higher, or lower) any of the MetaPolicy objects contained
in the set metaPolicySet

Parameters metaPolicySet - set of MetaPolicies that we want to check
Returns true - if there is at least one object that refers to that

metaPolicy
Throws none

printTable

Invocation public void printTable()
Description This is a method to show (print on the screen) all the objects that are

installed in a determined moment.
It will format correctly according with the fields of the table

Parameters none
Returns none
Throws none

IMPLEMENTATION 183

Class MetaPolicyTable
thesis.metapib.tables.MetaPolicy

Description
This class represents the table where all the MetaPolicy are maintained, and of

course, is a descendant of the class Table.
This is one of the most important tables because it maintains the MetaPolicies that

will be checked for possible enforcement. For this purpose, this class will implement
some methods that facilitate this.

Fields

No specific defined fields

Methods

(Constructor)

Invocation public public MetaPolicyXmlDtdTable()
Description this is the basic constructor that sets the table (Vector). It actually

calls the constructor of the parent
Parameters none

Returns none
Throws none

findMetaPolicyIndex

Invocation public int findMetaPolicyIndex(String searchedPrid_)
Description method to get the index of a looked MetaPolicy (by its prid). It is

actually a wrapper for the parent method findMetaObjectIndex
Parameters searchedPrid - prid of the Priority to look for

Returns integer >= 0 - index (inside the table) of the object found
-1 - object not found

Throws none

installMetaPolicy

Invocation public void installMetaPolicy(
MetaPolicy metaPolicy_)

Description Wrapper to the parent function installMetaObject.
The functionality is the same: install a MetaObject in the table. This

IMPLEMENTATION 184

method does not update a previously installed one (see method
installUpdateMetaPolicy)

Parameters metaPolicy_ - MetaPolicy to install in the table
Returns none
Throws MetaPibException - if there is any error installing (for example if

the object was already in the table)

installUpdateMetaPolicy

Invocation public void installUpdateMetaPolicy(
MetaPolicy metaPolicy_)

Description this method install or updates a MetaPolicy
Parameters metaPolicy_ - MetaPolicy to install in the table

Returns none
Throws MetaPibException - if there is any error installing

uninstallMetaPolicy

Invocation public void uninstallMetaPolicy(
String metaPolicyPrid_)

Description Wrapper to the parent function uninstallMetaObject
method to uninstall a MetaPolicy from the table.

Parameters metaPolicyPriority - prid of the MetaPolicy to remove
Returns none
Throws MetaPibException - if the MetaPolicy was not in the table

getMetaPolicies

Invocation public MetaPolicySet getMetaPolicies()
Description This is a method to obtain all the installed Metapolicies
Parameters none

Returns A new MetaPolicySet that contains all the MetaPolicies of the table
Throws none

getMetaPolicyEvaluatedTrue

Invocation public MetaPolicySet getMetaPolicyEvaluatedTrue()
Description This is a method to obtain the Metapolicies susceptibles to be

enforce.
For each MetaPolicy of the table, it checks if its condition is true, and
if this is the case, it adds to the result set.

Parameters none
Returns A new MetaPolicySet that contains the MetaPolicies that are

IMPLEMENTATION 185

evaluated true.
Throws none

referencesMetaPolicyCondition

Invocation public boolean referencesMetaPolicyCondition(String prid_)
Description Method that returns true if there is any Condition, of the installed

MetaPolicies, that is the same as the sent prid
Parameters prid - the prid of the Condition that we want to check

Returns true - if there is at least one MetaPolicy whose condition is
the one that we are checking
false - otherwise

Throws MetaPibException - If there is any error (for example an integrity
error when a MetaPolicy has not any Condition)

referencesMetaPolicyCondition

Invocation public boolean referencesMetaPolicyCondition(ConditionSet
conditionSet_)

Description Method that returns true if there is any Condition, of the installed
MetaPolicies, that is equal to any of the Conditions of the set.

Parameters prid - the prid of the Condition that we want to check
Returns true - if there is at least one condition that refers to that

condition
false - otherwise

Throws MetaPibException - If there is any error (for example an integrity
error when a MetaPolicy has not any Condition)

printTable

Invocation public void printTable()
Description This is a method to show (print on the screen) all the objects that are

installed in a determined moment.
It will format correctly according with the fields of the table

Parameters none
Returns none
Throws none

IMPLEMENTATION 186

Class MetaPolicyXmlDtdTable
thesis.metapib.tables.MetaPolicyXmlDtdTable

Description
This class represents the table where all the MetaPolicyXmlDtd objects are

maintained, and of course, is a descendant of the class Table.

Fields

No specific defined fields

Methods

(Constructor)

Invocation public MetaPolicyXmlDtdTable()
Description this is the basic constructor that sets the table (Vector). It actually

calls the constructor of the parent
Parameters none

Returns none
Throws none

findMetaPolicyIndex

Invocation public int findMetaPolicyXmlDtdIndex(String searchedPrid_)
Description method to get the index of a looked MetaPolicyXmlDtd (by its prid).

It is actually a wrapper for the parent method findMetaObjectIndex
Parameters searchedPrid - prid of the Priority to look for

Returns integer >= 0 - index (inside the table) of the object found
-1 - object not found

Throws none

installMetaPolicy

Invocation public void installMetaPolicyXmlDtd(
MetaPolicyXmlDtd metaPolicyXmlDtd_)

Description Wrapper to the parent function installMetaObject.
The functionality is the same: install a MetaObject (XmlDtd objects)
in the table. This method does not update a previously installed one
(see method installUpdateMetaPolicy)

IMPLEMENTATION 187

Parameters metaPolicy_ - MetaPolicy to install in the table
Returns none
Throws MetaPibException - if there is any error installing (for example if

the object was already in the table)

installUpdateMetaPolicyXmlDtd

Invocation public void installUpdateMetaPolicyxmlDtd(
MetaPolicy metaPolicy_)

Description this method install or updates a MetaPolicyXmlDtd object
Parameters metaPolicy_ - MetaPolicy to install in the table

Returns none
Throws MetaPibException - if there is any error installing

uninstallMetaPolicyXmlDtd

Invocation public void uninstallMetaPolicyXmlDtd(
String searchedPrid_)

Description Wrapper to the parent function uninstallMetaObject
method to uninstall a MetaPolicy from the table.

Parameters searchedPrid - prid of the MetaPolicyXmlDtd to remove
Returns none
Throws MetaPibException - if the MetaPolicyXmlDtd was not in the table

getMetaPolicyXmlDtd

Invocation public MetaPolicySet getMetaPoliciesXmlDtd(String
searchedPrid_)

Description This is a (another) method to obtain a MetaPolicyXmlDtd by its prid
Parameters searchedPrid_ - the prid of the MetaPolicyXmlDtd that we are

looking for
Returns The MetaPolicy that has the prid that we are looking.
Throws MetaPibException - error getting the MetaPolicyXmlDtd

printTable

Invocation public void printTable()
Description This is a method to show (print on the screen) all the objects that are

installed in a determined moment.
It will format correctly according with the fields of the table

Parameters none
Returns none

IMPLEMENTATION 188

Throws none

IMPLEMENTATION 189

Class MibTable
thesis.metapib.tables.MibTable

Description
This class represents an API to access the MIB of the PEP.

The access is exactly the same as another table, so it is easier to implement. Nowadays,
and because we need to simulate, the MIB is represented as (physical) files that contains
the individual elements of the MIB.

That is, if for example the MIB contains three parameters, we will have three
different files that contain the value of those parameters. The access to that files, is
through the method getColumn. Depending of the column that we access, it will get the
value from the real file.

This class could be superseded by the real API to the MIB on the PIB, when it be
executed in the real PEP.

Fields

No specific defined fields

Methods

(Constructor)

Invocation public MibTable()
Description this is the basic constructor that sets the table (Vector). It actually

calls the constructor of the parent, and also installs all the (artificial)
objects that represent the parameters of the Mib that we can access.

Parameters none
Returns none
Throws MetaPibException - if there is any error when installing the

(artificial) objects

getColumn

Invocation public byte[] getColumn(
String prid,
int row,
int column)

Description This method overrides the parent one, and depending of the column
that we are accessing it will provide access to the file that
corresponds.

IMPLEMENTATION 190

Parameters prid - prid that we want to access
row - row that we want to access
column- column of the object that we will access

Returns stream of bytes that represent the value of the column
Throws none

CONCLUSIONS AND FUTURE WORK 191

7 CONCLUSIONS AND FUTURE WORK
This chapter complete the work described in this final project describing the final

results achieved the end of the project. We also introduce some possible future guidelines
to work in the same line that the present work.

7.1 CONCLUSIONS

This work presented the current situation in some aspects of network management
and also introduced some new ideas that were only some actuation guidelines when I
began to be interested in this area.

The idea of the MetaPolicies is a new trend that has been recently presented and
that was only a design idea before the position of this project.

With the conclusion of this project, It has been demonstrated that the area of policy
based networking is very interesting and still lots of work can be directed in this domain.

At the end of this work, a complete framework of policy based networking based in
MetaPolicies has been completely developed, implemented and tested. The functioning of
this framework is of high quality, and the obtained results are very promising for the
future of the Internet.

7.2 FUTURE WORK

Although the work is complete in the meaning of the a functioning framework and
it has been tested with some simulations, a testing environment with real routers and big
networks would be necessary to obtain the real performance measurement of the
introduced approach.

Some utilities like a graphic console to control and check the framework would be
desirable, and in fact is in the schedule for the next immediate work in the Broadband
Communications Research Group of the University Of Waterloo.

REFERENCES 192

References

[1]. “Introduction to Policy-based Networking and Quality of Service”; IPHighway,
White paper, January 2001

[2]. “Policy Standards and IETF Terminology”; IPHighway, White paper, January
2001.

[3]. “Policy Based Networking Products, Design and Architecture”; IPHighway,
White paper, February 2001.

[4]. “Target Market and Case Studies”; IPHighway, White paper, February 2001.

[5]. “Policy Based Networking”; Smartpipes Inc., White paper,

[6]. D. Kakadia, “Enterprise Qos Policy Based Sytems & Network Management”;
Sun Microsystems, White Paper.

[7]. “FCAPS OVERVIEW”; http://www.fore.com/products/fv/fc_fcaps_wp.html
(September 2000)

[8]. J. Young, “A Framework for Providing Differential Services in Policy-Based
Networking”; Thesis, October 1999.

[9]. “Delivering End-to-End Security in Policy-Based Networks”, Cisco Systems,
WhitePaper, 1998.

[10]. “A Primer on Policy-based Network Management”;Hewlett-Packard, White
Paper, September 1999.

[11]. “Introduction to QoS policies” Stardust.com, Whitepaper, July 1999.

http://www.fore.com/products/fv/fc_fcaps_wp.html

REFERENCES 193

[12]. Nichols, K., Blake, S., Baker, F., Black, D., "Definition of the Differentiated
Services Field (DS Field)in the IPv4 and IPv6 Headers", IETF RFC 2474,
Proposed Standard, December 1998.

[13]. Bernet, Y., Yavatkar R., Ford, P., Baker, F., Nichols, K., Speer, M., "A
Framework for End-to-End QoS Combining RSVP/Intserv and Differentiated
Services", IETF , November 1998.

[14]. A. Westerinen, J. Schnizlein,J. Strassner, Mark Scherling,Bob Quinn,Jay Perry,
Shai Herzog, An-Ni Huynh, Mark Carlson, Steve Waldbusser; "Terminology";
IETF, Internet-Draft, draft-ietf-policy-terminology-02.txt, November 2000
(http://www.ietf.org/internet-drafts/draft-ietf-policy-terminology-02.txt)

[15]. “Internet Engineering Task Force”; http://www.ietf.org/

[16]. “Policy-Powered Networking and the Role of Directories”; 3COM, White paper,
July 1998.

[17]. Susan J. Shepard; “Policy-based networks: hype and hope“; IT Professional, Vol.
2, No. 1, January-February 2000, pp.12 –16

[18]. “Introduction to Policy-based Networking and Quality of Service”; IPHighway,
White paper, January 2000

[19]. R. Boutaba, K. El-Guemhioui, P. Dini; "An Outlook on Intranet Management";
IEEE Communications Magazine, Special issue on Intranet Services and
Communication Management, October 1997, pp.92-97

[20]. R. Boutaba, S. Znaty, "An Architectural Approach for Integrated Networks
and Systems Management"; ACM-SIGCOM Computer Communication Review,
Vol. 25, No 5, October 1995, pp. 13-39

[21]. M. Sloman; "Policy Driven Management For Distributed Systems";
International Journal of Network and Systems Management, Vol. 2, No. 4,
December 1994, pp. 333-360

[22]. “Policy Standards and IETF Terminology”; IPHighway, White paper, January
2000.

[23]. S. Herzog, Ed.J.Boyle, R.Cohen, D.Durhan, R.Rajan, A.Sastry, “COPS usage for
RSVP” IETF, RFC 2749, January 2000

[24]. “Policy Based Networking Products, Design and Architecture”; IPHighway,
White paper, January 2000.

http://www.ietf.org/internet-drafts/draft-ietf-policy-terminology-02.txt

REFERENCES 194

[25]. D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, A. Sastry; "The COPS
(Common Open Policy Service) Protocol"; IETF, RFC 2748, January 2000;
(http://www.ietf.org/rfc/rfc2748.txt)

[26]. “Resource Allocation Protocol (rap)”; http://www.ietf.org/html.charters/rap-
charter.html

[27]. “Intel COPS client Software Development Kit”; http://www.intel.com/ial/cops/

[28]. “IPHighway – COPS open source”; http://www.iphighway.com/opensource1.htm

[29]. “COPS Download Page”; http://www.vovida.org/protocols/downloads/cops/

[30]. K. Chan, J. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F.
Reichmeyer, R. Yavatkar, A. Smith; "COPS Usage for Policy Provisioning";
IETF, RFC 3084, March 2001 (http://www.ietf.org/rfc/rfc3084.txt)

[31]. M. Fine, K. McCloghrie, J. Seligson, K. Chan, S. Hahn, A. Smith, F. Reichmeyer;
“Differentiated Services Quality of Service Policy Information Base”; IETF,
Internet-Draft, draft-ietf-diffserv-pib-03.txt, March 2001
(http://www.ietf.org/internet-drafts/draft-ietf-diffserv-pib-03.txt)

[32]. D. Rawlins, A. Kulkarni, K. Ho Chan, D. Dutt, “Framework of COPS-PR Policy
Information Base for Accounting Usage”; IETF, Internet-Draft, draft-ietf-rap-
acct-fr-pib-01.txt, July 2000
(http://www.ietf.org/internet-drafts/draft-ietf-rap-acct-fr-pib-01.txt)

[33]. J. Ottensmeyer, M. Bokaemper, K. Roeber; “A Filtering Policy Information Base
(PIB) for Edge Router Filtering Services and Provisioning via COPS-PR”;
IETF, Internet-Draft, draft-otty-cops-pr-filter-pib-00.txt, November 2000
(http://www.ietf.org/internet-drafts/draft-otty-cops-pr-filter-pib-00.txt)

[34]. M. Li, D. Arneson, A. Doria, J. Jason, C. Wang; “IPSec Policy Information
Base”; IETF, Internet-Draft, draft-ietf-ipsp-ipsecpib-02.txt, March 2001
(http://www.ietf.org/internet-drafts/draft-ietf-ipsp-ipsecpib-02.txt)

[35]. Harsha Hegde, Brad Stone; "Load Balancing Policy Information Base"; IETF,
Internet-Draft, draft-hegde-load-balancing-pib-00.txt, February 2001
(http://www.ietf.org/internet-drafts/ draft-hegde-load-balancing-pib-00.txt)

[36]. M. Fine, K. McCloghrie, J. Seligson, K. Chan; S. Hahn, R. Sahita, A. Smith, F.
Reichmeyer; "Framework Policy Information Base", IETF, Internet-Draft, draft-
ietf-rap-frameworkpib-04.txt, November 2000 (http://www.ietf.org/internet-
drafts/draft-ietf-rap-frameworkpib-04.txt)

http://www.ietf.org/rfc/rfc2748.txt
http://www.ietf.org/html.charters/rap-charter.html
http://www.ietf.org/html.charters/rap-charter.html
http://www.intel.com/ial/cops/
http://www.iphighway.com/opensource1.htm
http://www.vovida.org/protocols/downloads/cops/
http://www.ietf.org/rfc/rfc3084.txt
http://www.ietf.org/internet-drafts/draft-ietf-diffserv-pib-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-rap-acct-fr-pib-01.txt
http://www.ietf.org/internet-drafts/draft-otty-cops-pr-filter-pib-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-ipsp-ipsecpib-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-rap-frameworkpib-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-rap-frameworkpib-04.txt

REFERENCES 195

[37]. K. McCloghrie, M. Fine, J. Seligson, K. Chan, S. Hahn, R. Sahita, A. Smith, F.
Reichmeyer; "Structure of Policy Provisioning Information (SPPI)"; IETF,
Internet-Draft, draft-ietf-rap-frameworkpib-06.txt, February 2001
(http://www.ietf.org/internet-drafts/ draft-ietf-rap-frameworkpib-06.txt)

[38]. A. Polyrakys, R.Boutaba: “The Meta Policy Information Base “, IETF, draft-
ietf-rap-mpib-00.txt

ARTICLES AND PRESENTATIONS:

[39]. S. Hezog, “Policy Based Networking for QoS”; TF-TANT, Presentation, April
2000.

[40]. J. Strassner, “Policy-Based Networking”; Cisco System, Presentation.

[41]. J. Strassner, “Policy-Based Networking Standards Report”; Cisco System,
Presentation.

[42]. J. Fukuda, K. Iseda, M. Minoura, H. Ueno, T. Chujo, “Policy-based Networking
Service over Heterogeneus Public IP Networks (DynaServ)”; Fujitsu
Laboratories LTD., Presentacion.

[43]. J. Conover, “Policy-Based Network Management”, Article,
(http://www.networkcomputing.com/1024/1024f1.html), November 1999.

[44]. J. Conover, “Policy-Based Network Management Solution Features”,
Comparison table, (http://www.networkcomputing.com/1024/1024f1.html),
November 1999.

LINKS TO PBN-RELATED-PRODUCTS:

[45]. “Intel COPS Client SDK”; (http://developer.intel.com/ial/cops/index.htm)

[46]. “CiscoAssure Policy Manager” ;
(http://www.cisco.com/warp/public/cc/pd/nemnsw/cap/index.shtml)

[47]. “Cisco COPS Qos Policy Manager Data Sheet, version 2.0” ;
(http://www.cisco.com/warp/public/cc/pd/nemnsw/cap/index.shtml)

[48]. “Cisco Qos Policy Manager”;
(http://www.cisco.com/warp/public/cc/pd/nemnsw/cap/index.shtml)

http://www.networkcomputing.com/1024/1024f1.html)
http://www.networkcomputing.com/1024/1024f1.html)
http://developer.intel.com/ial/cops/index.htm
http://www.cisco.com/warp/public/cc/pd/nemnsw/cap/index.shtml
http://www.cisco.com/warp/public/cc/pd/nemnsw/cap/index.shtml
http://www.cisco.com/warp/public/cc/pd/nemnsw/cap/index.shtml

REFERENCES 196

[49]. “Jade Communications Products – Policy Based Networking”;
(http://www.cisco.com/warp/public/cc/pd/nemnsw/cap/index.shtml)

[50]. “Allot – bandwidth management, QoS, service level agreement’;
(http://www.allot.com)

[51]. “Hewlett Packard – policyExpert”;
(http://www.openview.hp.com/products/policyexpert/index.asp)

[52]. “Check Point Flood Gate”;
(http://www.openview.hp.com/products/policyexpert/index.asp)

[53]. “Solaris Bandwidth Manager”;
(http://www.openview.hp.com/products/policyexpert/index.asp)

BOOKS :

[54]. D. Kosiur, S. Herzog, “Understanding Policy-Based Networking”; Book ISBN:
0471388041, Wiley Computer Publishing, January 2001.

[55]. D. C. Verma, “Policy-Based Networking: Architecture and Algorithms”; Book
ISBN: 1578702267, New Riders Publishing, November 2000.

http://www.cisco.com/warp/public/cc/pd/nemnsw/cap/index.shtml
http://www.allot.com/
http://www.openview.hp.com/products/policyexpert/index.asp
http://www.openview.hp.com/products/policyexpert/index.asp
http://www.openview.hp.com/products/policyexpert/index.asp

	INTRODUCTION
	PURPOSES AND GOALS
	STATE OF THE ART
	DEPENDENCIES

	NETWORK MANAGEMENT
	INTRODUCTION
	FCAPS FRAMEWORK
	STANDARDIZATION
	TRADITIONAL NETWORK MANAGEMENT: SNMP
	SNMP Technology - The Internet Management Model

	FUTURE OF NETWORK MANAGEMENT
	SNMPv3
	Active Management
	Directory-Enabled Networking
	Policy-Based Networking

	POLICY BASED NETWORKING
	INTRODUCTION
	COMPONENTS
	Logical Components: POLICIES
	Architectural Components

	OUTSORCING AND PROVISIONING MODELS
	DIFFERENCES BETWEEN DIRECTORIES AND PBN
	BENEFITS OF POLICY BASED NETWORKING
	PBN PROTOCOLS
	COPS (Common Open Policy Service) Protocol
	COPS Working mode
	Cops Defined Protocol

	COPS-PR (COPS for Policy Provisioning) Protocol
	Cops-Pr working mode: Interaction between PDP and PEP
	Policy Information Base (PIB)
	Cops-pr defined protocol

	EXAMPLE OF A FRAMEWORK

	METAPOLICIES
	DEFICIENCIES OF THE TRADITIONAL APPROACH
	SOLUTIONS
	THE CONCEPT OF THE META-POLICIES
	FORMAL DEFINITION
	METAPIB EXAMPLE

	ANALYSIS AND DESIGN OF THE FRAMEWORK
	PDP
	PEP
	Cops-Pr Comm Module
	Pib
	Meta-Pib
	Requirements
	Analysis
	Meta-Policies
	Conditions
	Actions
	Parameters
	Pib approach

	Design
	Meta-Pib

	Controlled Device

	IMPLEMENTATION
	PDP
	PDP Working mode
	PDP architecture
	PDP Classes

	PEP
	PEP working mode
	PEP architecture
	PEP Classes

	CONCLUSIONS AND FUTURE WORK
	CONCLUSIONS
	FUTURE WORK

