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ith the increasing need for networked applications
and distributed resource sharing, there is a strong
incentive for an open, large-scale service infra-

structure that operates over multi-domain networks. Ongoing
research in Web Service [1] and Grid technologies [2] is push-
ing toward global access of services. However, most of these
works define only standards, protocols, and unified service
access interfaces. We have yet to see any concrete platform
specification that can support the envisioned service infra-
structure. In this work we will concentrate specifically on the
naming aspect of the infrastructure.

To support service invocation and access to resources, a
service or resource must be uniquely identifiable and address-
able. We denote as naming the process of assigning names to
services and resources. Accessing a service or resource
requires name resolution, which maps a name to an address.
Naming and name resolution provide essential support of ser-
vice discovery and service invocation since they allow for
uniquely identifying entities. Moreover, a naming scheme can
allow for abstracting the identity of a service or resource from
its location and access mechanism. This survey summarizes
and compares the most significant and representative existing
approaches in naming services and resources in large-scale
applications, and in resolving the names into addresses that
can be used to access those entities. To evaluate the existing
approaches in a clear and systematic way, we select a set of

criteria that are crucial for a naming approach to be widely
accepted, and appropriate for multi-domain applications.
Each naming approach is then assessed in terms of the select-
ed criteria: readability, extensibility, namespace size, naming
authority, name resolution architecture, name persistence, and
level of standardization (including available implementation).

We have chosen to focus our discussion on requirements
specific to application-layer services that may be discovered
and invoked across administrative domain boundaries in large
(Internet-scale) networks. These requirements are different
from those of applications in local-area networks, since they
must consider heterogeneity, flexibility, and a greater degree
of scalability. The main thrust behind our selection is there-
fore the suitability of a naming scheme to an Internet-scale
environment that spans several administrative domains and
provides many different types of services.

The rest of this article is organized as follows. We define
the terminology used in this article. We expand on these defi-
nitions to formalize the concept of naming. We present the
issues and challenges in naming and name resolution in the
context of a multi-domain service infrastructure, while we give
a brief overview of the existing approaches we have selected
for study. We then use the presented issues to analyze and
compare existing approaches. We put all the criteria together
and recommend the characteristics of a combination of candi-
date approaches that, in our opinion, would best meet the
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requirements of a large-scale multi-domain setting. We then
conclude the article. In our main discussion we have selected
a set of representative naming schemes. Appendix 1 supple-
ments this discussion by introducing a number of specialized
naming approaches that were omitted in our analysis, and we
provide reasons for their exclusion.

TERMINOLOGY

Service: A set of functionalities associated with a process or
system that performs a task. We say that the process or system
implements the service.

Resource: An entity that is used or acted upon by a process
or system. A service functionality takes resources as input.

To further clarify the difference between the two above
definitions, a functional representation can be used to show
the relationship between a service and a resource. We can
denote a service by a function f, and a resource by an input
variable x. The outcome of the service is then returned as f(x).
Notice that a service can be invoked by another service. In
this case, the outcome of the service f becomes a resource and
is used by another service, say g. This is called service compo-
sition and the outcome of the service g becomes g(f(x)).
Hence, we do not classify the service itself as a resource;
rather, the outcome produced by the service can be, again,
treated as a resource.

Since the act of providing a resource is in itself a service,
for the sake of simplicity we will occasionally say service nam-
ing where we mean naming of services and resources.

We now define several key concepts related to naming and
name resolution. These concepts will be elaborated in detail
in following sections.

Name: A linguistic object that singles out a particular entity
from among a collection of entities [3].

Namespace: The collection of all valid names.
In RFC 2611 [4], namespace is defined as the collection of

unique identifiers that have already been assigned. However,
in the literature it is also defined as a collection of all valid
names [5]. The latter definition is more consistent and hence
adopted in this work.

Address: An intermediary identifier between a name and a
route [3] that allows a resource or a service to be reached.

Address space: The collection of all valid addresses.
Naming authority: An entity that has the authority to assign

names to resources or services.
Name resolution: The mapping between namespace and

address space.
The following definitions concern a few concepts related to

services.
Service description: The set of descriptive attributes of a par-

ticular service.
A service description exposes the ability to perform certain

functions, may stipulate the manner in which available
resources will be used to perform the functions, and may
specify its method of access.

Context: The circumstance in which an application runs.
Context may include physical state, computational state, and
user state [6].

Cross-domain service: A service that can be discovered and
invoked by a user outside the provider’s administrative domain.

In this article we envision a multi-domain service infra-
structure that supports cross-domain services.

ANATOMY OF A NAMING SCHEME

Before we focus on the requirements of a naming architecture
in the context of a multi-domain service infrastructure, we will
first formalize the concepts related to naming. By identifying
the types and components of a name, we establish a basis for
analyzing naming schemes and their suitability for naming var-
ious types of services. Clearly defining the components of
name resolution gives us tools for understanding their impact
on flexibility and performance of the application in which the
naming architecture is used.

Note that the anatomy/structure of a name is not an evalu-
ation criterion that we use for comparison of naming schemes,
but rather a means to gain a better understanding of naming,
and to build a basis for developing comparison criteria. Figure
1 summarizes the components of a naming scheme. The three
main issues in naming are the prescribed format or structure
of a name, the characteristics of assigning names to entities,
and the scope of a naming scheme.

FORMAT

We can formally describe a namespace as a language. Given a
finite alphabet Σ of symbols, a namespace N ⊆ Σ* is a set of
finite-length strings (or names) produced by a formal gram-
mar G. The format of the names in a namespace depends on
the following characteristics of Σ and G.
• Alphabet: Names can be composed of ASCII or Unicode

characters, numbers, or a combination of the above.
They could also be defined as non-human-readable
strings of ones and zeroes.

• Grammar: The grammar of a naming scheme concerns
the organization of name components. Names can be
characterized as primitive (or flat), partitioned, or
descriptive [3].
A primitive or flat name has no internal structure (e.g.

JXTA 128-bit random UUIDs [7]).
A partitioned name is a succession of primitive names

identifying, respectively, a domain, subdomain, sub-subdomain
(where domain can be considered in a network, administra-
tive, or more abstract sense), followed by a primitive name
identifying the entity inside that sub-sub-…-domain. Domains
are arranged in a strictly nested structure and must not over-
lap (e.g., URL [8]).

A descriptive name is a list of attribute-value pairs that are
true for exactly one entity (in this case, a service). A parti-
tioned name is a particular form of descriptive name that has
a rigid structure (a rigid set of attributes). For example, the
Solar approach [6] uses descriptive names. (However, as we
will see, the Solar naming scheme leaves enforcing uniqueness
up to the application.) Hybrid types of naming schemes are
also possible, for example, a XORP Resource Locator [9] is a
hybrid partitioned-descriptive name type.

n Figure 1. Anatomy of a naming scheme.
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MAPPING NAMES TO SERVICES

An issue related to name uniqueness is the mapping of names
to the services (entities) that the names represent. Because a
name is defined as inherently unique to an entity, two entities
may not have the same name in the same scope. However, an
entity may or may not be allowed to have multiple names. For
example, a network card can have only one MAC address at a
time, but a Web server can have more than one Domain Name.

SCOPE

The scope of a naming scheme refers to the set of services
that will be named using the given namespace. This set may or
may not involve entities in different domains. In the design of
a naming scheme, it may be useful to consider how the nam-
ing scope will cope with intra-domain or inter-domain naming.

DESCRIPTION OF CRITERIA

To provide a comprehensive and in-depth analysis of the vari-
ous approaches to service naming, we hereby define a set of
evaluation criteria. These criteria are generated from issues
considered in a variety of surveyed works, and from the dis-
cussion presented earlier. This section provides a short
description of each criterion and the rationale for its inclu-
sion. To ground these criteria in our domain of interest, we
also discuss how these criteria affect the suitability of naming
systems to a multi-domain service infrastructure. Figure 2
summarizes the evaluation criteria and suggests their desirable
values.

READABILITY

Names may or may not be considered human-readable,
depending on whether they are memorable or comprehensi-
ble, and whether they provide useful information to the
humans who use them. Readability is determined by the set of
allowable characters (alphabet) in a naming scheme, as well as
the format and structure of a name.

A naming scheme may define names that are strictly
human readable, strictly non-human-readable, or it may allow
both kinds of names. In some cases, non-human-readable por-
tions of a name may have a human-transcribable representa-
tion. The readability/human-friendliness of an individual name
is a subjective measure, influenced by the authority assigning
the name. However, some naming schemes may lend them-
selves better than others to direct human use (e.g. a Domain
Name is more human-friendly than an IP address). In a ser-
vice infrastracture, human-readable names are important
when service management is performed by humans, or when
services are handled by human users during discovery or invo-
cation.

EXTENSIBILITY

The naming system may be required to be extensible for
future updates. Updates can occur in the format and structure
(e.g., more bits are allocated to the name), in the scope (i.e.,
introduction of new services to be named), and in the gram-
mar generating the namespace.

In a quickly-growing and quickly-changing environment
such as the Internet, it is desirable for naming schemes to be
extensible, while remaining compatible with existing, older

n Figure 2. Summary of criteria and desirable traits.
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names from the same naming schemes. The naming scheme
should accommodate changes in namespace and scope.

NAMESPACE SIZE

The size of the namespace determines how many unique enti-
ties can be named. A limit on the size of a name implies that
the namespace is finite. A finite namespace size allows devices
to allocate a fixed amount of space for storing and transmit-
ting names, which can improve computational performance
and reduce implementation complexity. However, a finite
namespace runs the risk of being exhausted, as evidenced by
the impending depletion of the IPv4 address space [10, 11].

In a multi-domain environment, a naming scheme should
have a namespace that is large enough to uniquely denote all
existing and future entities in its desired scope. Since we can
expect a global service infrastructure to grow unexpectedly, as
the Internet did, an infinite namespace is ideal.

NAMING AUTHORITY

A naming authority is the entity that assigns and manages
names in a namespace. In some cases a central authority is
responsible for the entire namespace (e.g., the Canadian gov-
ernment is a central naming authority that assigns social insur-
ance numbers to every eligible resident of Canada). However,
in a multi-domain naming scheme, it may be preferable to
implement distributed authority, whereby each domain is
responsible for naming the services under its own manage-
ment. In such cases, namespace conflicts are avoided by
assigning a defined section of the namespace to each domain.

In some cases a service may become its own naming
authority. For example, in AutoIP [12] a node joining a net-
work chooses its own IP at random (from a specified range),
and contacts nodes on that network to make sure that no
other node has chosen the same address. Regardless of its
management scope, a naming authority is responsible for
assigning and changing names, as well as preventing name-
space conflicts.

For reasons of scalability, we prefer a distributed naming
authority. Furthermore, in a multi-domain environment,
domains might not want to rely on a centralized naming
authority but rather have full control over the services within
their own domains.

NAME RESOLUTION ARCHITECTURE

While the choice of naming authority determines who assigns
names to entities, the name resolution process determines
how to translate names to the addresses that allow a user to
access the corresponding entities.

Name resolution encompasses two issues: the characteris-
tics of mapping the names to addresses, and the implementa-
tion of the name resolution architecture. In the following
sections we formalize these two issues.

The Characteristics of Mapping
While the related issue in naming discussed the mapping

of names to entities, the mapping discussed here concerns
assigning names to the addresses of entities. This is a slightly
different issue, as entities may have more than one address.

Given a namespace N and an address space A, we define a
name resolution mapping (or a resolver) Res : N → {A, Ø}
such that given a name n ∈ N, a single execution of Res returns
at most one a ∈ A. An execution of Res(n) returns Ø when
Res(n) is not defined, that is, if n is not mapped to any address
in A.

Name resolution can be deterministic or nondeterministic. A
deterministic resolver maps each name in N to at most one
address in A. Still, it is possible for Res to be defined in such a
way that it maps more than one name to a single address
(e.g., a name may have several aliases). Hence, a deterministic
mapping can be one-to-one or many-to-one.

A nondeterministic resolver may map a name in N to two
or more addresses. That is, two separate executions of Res
may return different values (however, only one at a time). In
this case, the name resolution mapping can be one-to-one,
one-to-many, many-to-one, or many-to-many.

While most name resolution systems are deterministic,
there are many cases where nondeterministic resolvers can be
useful. For example, busy Web sites may assign a single DNS
name to a cluster of machines with different IP addresses, or
to machines in diverse geographic locations. When the
resolver is invoked with that name, it may return any of the IP
addresses that correspond to the machines, according to its
own selection algorithm. If the machines form a load-balanc-
ing cluster, Res may select addresses at random, in a round-
robin fashion, or select the address of the machine with the
lightest load. If the goal is to improve performance by increas-
ing locality, the resolver will select the address of the machine
that is physically or logically closest to the user. It should be
noted that if mapping data is replicated, and the mapping
changes, the resolver may become unintentionally nondeter-
ministic because some replicas may contain a stale version of
the mapping.

Another aspect of the name-to-address mapping is how
closely the name is coupled to the address at which the
referred service resides. This aspect determines whether a
name is location-dependent or location-independent.

Implementation
System Architecture — In addition to implementing a

name-to-address mapping, an important issue in the design of
a name resolution system is its architecture. A name resolu-
tion system may be centralized (a single name resolution ser-
vice), hierarchical (as in DNS [13]), entirely distributed
(peer-to-peer), or a combination (e.g. layered peer-to-peer,
peer-to-peer with supernodes [14]).

There is an inter-dependence between the structure of the
naming scheme and both the name resolution process and the
architecture of the name resolution system. For example, in
DNS (Domain Name System) the hierarchical naming scheme
is tightly coupled to the name resolution process: each hierar-
chical layer of DNS servers is responsible for a specific section
of the domain name. Other distributed name resolution archi-
tectures (such as those based on CAN [15]) decouple the
naming scheme from the name resolution process, allowing a
location-independent naming scheme (for both physical and
logical meanings of “location”). This location-independence is
achieved by making the name of the entity independent of the
logical position of the name in the hierarchical naming
scheme.

Each of the design choices described above presents its
own set of challenges and tradeoffs in relation to scalability,
efficiency, robustness, and consistency. These four criteria are
described below:

Scalability — If a name resolution system is to handle a large
number of name-address mappings or a large number of ser-
vice users, it must be able to handle the load. Also, since the
size of a cross-domain system is likely to grow with the num-
ber and size of domains, the architecture should be able to
gracefully accommodate an increasing load.

The load on a name resolution architecture includes:
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• The amount of storage required to keep track of the
name-to-address mapping.

• Computation load on name resolution servers.
• The communication overhead of queries and responses.
• In the case of a distributed architecture, the communica-

tion overhead of sending update messages.
A fully centralized architecture does not need to handle

update messages (unless it uses replication), but creates a
potential performance bottleneck. A hierarchical system dis-
tributes the load among layers of name servers; however, the
top-layer servers can still experience overload. To alleviate
these conditions, implementations of centralized and hierar-
chical name resolution employ replication and caching [16].

Fully distributed systems scale well with respect to compu-
tation, storage, and network locality, but may require a high
communication overhead in update messages.

Efficiency — In addition to being scalable, a name resolution
system must also be as efficient as possible in its use of net-
work/computational resources and must provide an acceptable
level of performance. The exact definition of “acceptable level
of performance” may vary, but since name resolution is used
frequently, it is essential that it should not impede the perfor-
mance of other parts of the system.

To illustrate the importance of improving name resolution
performance, consider that in 1997 a study of wide-area Inter-
net traffic reported that DNS messages comprised 18 percent
of overall flows (where a flow is defined as a uni-directional
traffic stream with unique source and destination IP address-
es, port numbers, and IP protocol fields), second only to
World Wide Web traffic [17].

In a wide-area network, the response time of name resolu-
tion servers can be improved by moving the name resolution
server closer to the source of requests. This can be achieved
by caching previous requests and/or replication of name reso-
lution services. It has been found that in a network as diverse
as the Internet, the effectiveness of a client-side cache can be
very limited, with a cache miss ratio close to 100 percent [18].
However, in a system where users routinely access the same
resources, caching can be used to improve performance signif-
icantly.

Fault Tolerance and Robustness — Name resolution is a
vital part of any network or system, and its failure usually
means a severe limitation of the system’s functionality. There-
fore, it is important that name resolution remain a robust,
high-availability service that retains a reasonable level of per-
formance even after the failure of other components of the
system.

An important goal toward a robust name resolution archi-
tecture is that it should not contain a single point of failure. A
centralized architecture is, in itself, a single point of failure,
but can be made more robust by employing replication or
keeping a hot-backup failover system in case of disaster. A
properly designed distributed architecture has no single point
of failure, but it still has to consider issues of fault tolerance
and fault recovery in the event of failure of individual compo-
nents or of path failure between components.

Consistency — While data replication and data caching can
improve the performance, efficiency, and robustness of a
name resolution system, it introduces the problem of main-
taining consistent data across all replicas. This is especially
important in the case of a system providing name resolution
for a variety of highly dynamic services. Stale name resolution
data may make some services temporarily unreachable, or
may result in unnecessary network load as users repeatedly

attempt to access services that have moved or have become
unavailable. Information must therefore be exchanged
between replicas in the form of push or pull update messages.
Depending on how often name resolution information is
updated, the system seeks to achieve a balance where data is
kept consistent in a timely manner, but where the update mes-
sages do not cause undue communication load.

We examine the name resolution architecture with respect
to the characteristics of name resolution mapping and system
architecture, observing especially their effect on the four com-
parison sub-criteria: scalability, efficiency, robustness, and
consistency.

NAME PERSISTENCE

Names can be divided into two categories: static or dynamic
[3]. A static name is a name that permanently denotes the
same entity. This is a very usual property of names and is
often implied. A dynamic name is a name that is assigned to
an entity for only a limited period of time, which is short with
respect to the lifetime of the entity.

A system that uses dynamic names may prevent the mean-
ing of a name (i.e., the entity to which the name refers) from
changing without the knowledge of consumers. This allows the
users to use a name without testing if its meaning has changed
since the last time it was used. However, this name persis-
tence is very hard to support in a large scale distributed sys-
tem, since the system must keep track of names and find out
which users hold a given name, which is similar to, for exam-
ple, the problem of distributed garbage collection. An alterna-
tive solution could involve broadcasting periodic updates of
name validity; however, this is also unlikely to be supportable
in a large-scale system [19].

If a name can change its meaning without notifying the
users, then some identification mechanism must be provided
to allow users to confirm that the name refers to the entity
that they expect. In a large scale system, it is difficult or
impossible to inform all current and potential users of changes
in the meaning of names. Therefore, careful consideration of
name persistence has to be taken when designing a large-scale
naming scheme.

STANDARDIZATION AND IMPLEMENTATION

The final criterion in comparing naming schemes is their pre-
sent level of acceptance in the Internet community. A naming
scheme that has a well-defined standard and is easy to incor-
porate into the existing infrastructure is far easier to deploy
than an experimental, constantly-changing scheme, even if the
latter is superior in other aspects. Ideally, the naming scheme
used in a multi-domain service management system would be
accepted by an official standards body, and would have most
components of its name resolution already in place.

OVERVIEW OF NAMING APPROACHES

In this section we give a brief overview of several existing
approaches to service naming. Examined approaches include
UUID; the different flavors of URIs, including URLs and
URNs; Web Service and Grid Service naming; XRLs; and the
INS and Solar naming approaches. In our comparison we
have attempted to cover those approaches most likely to be
suitable for large-scale applications, those that were already
well-accepted in the Internet community, and those that gave
a representative sample of various types of naming approach-
es.
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UUID

Universal Unique Identifiers (UUIDs), also known as Global-
ly Unique Identifiers (GUIDs) [20], are flat 128-bit identifiers
where the uniqueness of these identifiers is claimed to be
guaranteed across space and time without requiring a central
registration process.

The UUID relies upon a combination of components to
ensure the uniqueness of a UUID. A UUID contains a refer-
ence to the network address of the host that generated the
UUID, the timestamp (the precise time when the UUID is
generated), and a randomly generated component as a protec-
tion against situations when the first two components fail to
guarantee the uniqueness of a UUID.

Depending on the generation algorithm used, UUIDs are
either guaranteed to be unique until 3400 A.D. or extremely
likely to be different. Below is an example of a string repre-
sentation of a UUID:

f81d4fae-7dec-11d0-a76-00a0c91e6bf6

URI

The two main members of the Uniform Resource Identifier
(URI) family are the Uniform Resource Locators (URL) and
Uniform Resource Names (URN).

URL — Uniform Resource Locators provide formalized infor-
mation for location and access of resources via the Internet
[8]. They are used to ‘locate’ resources by providing an
abstract identification of the resource location. A URL may
also specify operations to be performed on an already located
resource such as access, update, replace, or find attributes. In
general, only the access method needs to be specified for a
URL scheme.

A URL typically contains the Internet application protocol
(http, ftp, etc.) required to access the resource to which it
refers, the domain name of the host that provides the
resource, and a path name. Below is an example of a URL
[21].

http://directory.google.com/Top/Reference/

URN — Uniform Resource Names (URNs) [22] are Internet
resource identifiers with the specific requirements for enabling
location independent identification, as well as longevity of ref-
erence. URNs are part of the larger Uniform Resource Iden-
tifier (URI) family [23] with the specific goal of providing
persistent naming of resources.

URNs can be distinguished from other URIs by the initial
urn:, followed by a Namespace Identifier (NID), a colon, and
a namespace-specific string. The official list of registered

NIDs is maintained by IANA. In April 2005 there were twen-
ty formal registered NIDs [24]:

ietf, pin, issn, oid, newsml, oasis, xmlorg,
publicid, isbn, nbn, web3d, mpeg, mace, fipa,
swift, liberty, swift, uuid, uci and clei

IANA also keeps a list of informal NIDs of the form “urn —
〈number〉” where 〈number〉 is assigned by IANA. Currently,
urn-1 through urn-5 are the registered informal NIDs [25].
Below are two examples of URNs [26, 27].

urn:isbn:0-395-36341-1
urn:xmlorg:objects:dtd:xml:docbook:v4.1.2
There has been a certain amount of discussion about the

relationship among the concepts of URIs, URLs, and URNs.
More precisely, there are currently two incompatible views on
URI partitioning [25]: the “classical” view and the “contempo-
rary” view.

Classical view. URI is partitioned into two classes: URL
and URN, where a URL specifies the location of a resource
and a URN specifies its name. Hence, http: would be a URL
scheme, while isbn: would be a URN scheme.

Contemporary view. URL does not refer to a formal parti-
tion of URI. Instead, it is an informal concept that describes a
subclass of URI schemes. URNs are defined by the URI
scheme “urn:.”

Figure 3 summarizes the URI hierarchy. Here, URLs and
URNs are seen as distinct but related subsets of URIs, and
XRLs as having a similar structure as URLs.

WEB SERVICES AND GRID SERVICES

Web Services are a set of standards and protocols that use
Web technologies (such as XML and HTTP) to provide a
means of operating between different software applications,
running on a variety of platforms and/or frameworks. Grid
Services build on Web Services to create a Grid system archi-
tecture, which includes support for stateful service instances,
supporting reliable and secure invocation (when required),
lifetime management, notification, policy management, cre-
dential management, and virtualization [2].

Instead of defining their own naming schemes, Web Ser-
vices and Grid Services take advantage of existing naming
schemes such as UUID and URI. We have decided to include
them in this article because of their importance as service-pro-
viding mechanisms, and because they illustrate how existing
naming schemes can be combined and adapted to the needs
of a particular application.

The most popular approach for Web Service name resolu-
tion is the Universal Description, Discovery and Integration
(UDDI) registry, in which service providers publish UDDI
documents. Each UDDI document contains the name and
description of a particular Web service. There are several
basic components of the UDDI data model, each of which is
associated with its own UUID identifier [28]:
• BusinessEntity (white pages)
• BusinessService (yellow pages)
• BindingTemplate (green pages), and
• tModel (allows the use of an external Web Service refer-

ence such as a Web Service Description Language
(WSDL) document).
UDDI combines the UUID with other information such as

discoveryURL, description protocol binding and access points
to integrate Web Service naming and name resolution, facili-
tating the use of Web services.

Grid Services use a two-layer naming scheme, whose com-
ponents — GSH and GSR — are described below.

GSH: The Grid Service Handle (GSH) is a globally-unique
name that distinguishes a specific Grid service instance from

n Figure 3. URI hierarchy.
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all other Grid service instances that have existed, exist now, or
will exist in the future. A GSH is often viewed as a permanent
network pointer to a particular Grid service instance. A GSH
is a minimal name in the form of a URI and may not carry
enough information to allow a client to communicate directly
with the service instance.

GSR: The Grid Service Reference (GSR) contains all
information that a client requires to communicate with the
service instance via one or more network protocol bindings.
The format of the GSR is specific to the binding mechanism
used by the client. For example, if SOAP binding is used, a
GSR would contain a URL pointing to a WSDL document.

Before using a Grid service, a GSH must be resolved into
a GSR. In contrast to GSH, GSR has an expiry-time and tem-
porarily binds a grid service to a network protocol. OGSI
specifies a standard interface, named “HandleResolver,” for
GSH-to-GSR mapping. A client performs this mapping before
accessing the service for the first time and at the end of each
expiry interval. The main purpose of using a two-tier naming
scheme is to separate service discovery from service access,
which offers great flexibility for large scale applications. How-
ever, the gain of this separation has a cost, as it does intro-
duce some complexity to the name resolution process.

The more recent WS-addressing [29] proposal has present-
ed a transport-independent mechanism that encodes the
source and destination and other important
address information directly within the Web Ser-
vice messages. In addition, an endpoint reference
is used in the WS-addressing proposal, making it
very similar to the concept of a GSR. WS-
Addressing extends the WSDL model (i.e. the
endpoint references take the form of an XML-
based document) to allow:
• Dynamic generation and customization of

service endpoint descriptions.
• Creation of stateful Web services.
• Flexible and dynamic exchange of endpoint

information.
The recent proposal for Web-Service

Resource Framework (WSRF) [29] combines

WS-Addressing (WS-A) and WS- RenewableReference (WS-
RR) [30] for addressing and accessing statefull-resource(s)
through stateless Web service. Analogous to the HandleRe-
solver interface in OGSI, WS-RR extends WS-A endpoint ref-
erence to incorporate service handle renewal and resolution
information. This WS-A/WS-RR combination is analogous to
the GSH/GSR/HandleResolver construct (Fig. 4), and pre-
serves the principle of separating service identifier from ser-
vice access.

XRL

XORP (eXtensible Open Routing Platform) [31] is an experi-
mental open-source router platform intended to test new
router software and routing protocols. XRLs (XORP
Resource Locators) [9] are used to mediate IPC (Interprocess
Communication) within XORP processes. Structurally, XRLs
are very similar to URLs. Instead of representing a hierarchi-
cal resource location, XRL uses a specific syntax to describe
an inter-process procedure call and its parameters. An XRL
contains the protocol family to be used for transport, the argu-
ments for the protocol family, the interface of the target being
called, the target’s version, the method, and the argument list.
An example XRL is given in Fig. 5.

To clarify this example:
finder: refers to a special process that coordinates the reso-

lution of XRL.
fea: (forwarding engine abstraction) is a special module

that is used to abstract the physical organization of the
underlying router hardware on which the XORP system
is running. XORP also supports

• rib: (Router Information Base)
• bgp: (Broader Gateway Protocol) and ospf (Open Short-

est Path First)
fti: refers to an interface within the process fea, and 1.0 is

the version number of the interface fti.
add_address: the method within the interface fti that is

being called.
The rest of the XRL represents the parameter to the

method add_address. The parameter section starts with “?”
and parameters are separated by “&.” Each parameter is
expressed as name:type=value. For the first parameter of the
above example vit is the parameter name, txt is the parameter
type, and fxp0 is the parameter value.

INS

Intentional Naming System (INS) [32] is a research project
introduced by the MIT Laboratory for Computer Science in
1999. INS provides protocols for service naming and discovery
in dynamically changing and mobile networks.

INS integrates resource/service name and description into
hierarchical descriptive names, called Intentional Names or

n Figure 4. OGSA vs. WSRF.
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name-specifiers. More precisely a
name-specifier is a tree-like struc-
ture of attributes and values, and
expresses the relationship between
attributes. If attribute Y depends on
attribute X then Y is placed as a
descendant of X, otherwise X and Y
are placed in different sub-trees.
This naming scheme is flexible and
can be used to name a wide variety
of resources and services.

For example, suppose we want
to name a printer located in room
3335 of the Davis Centre in the
University of Waterloo. Suppose
also that the printer has public
access and supports print resolution
up to 1200 dpi × 800 dpi. Clearly
the resolution, location, and access
rights of the printer are not related;
however, “room number” is mean-
ingless without the building name. A name-specifier for the
printer is shown in Fig. 6 (assuming an organizational scope).

Each name-specifier is accompanied by a name-record.
Two important entries of a name-record are network address
(i.e., IP address:port number pair) and AnnouncerID (unique
identifier for a service). These are used to distinguish between
multiple instances of a service running in different machines,
or in the same machine, respectively. Hence, while the
descriptive INS names are not intrinsically guaranteed to be
unique, the name-record provides this uniqueness of service
instances.

SOLAR

Chen et al. [6] present a naming scheme that is similar to INS,
but additionally supports names that are dynamic (change
over time). The proposed naming scheme is descriptive (i.e.
contains a list of attribute-value pairs) and some values in a
name can change to provide context information, typically the
location of a mobile service. The variable parts of a name are
evaluated each time the name is referenced.

Suppose we want to name laptops (with wireless cards) at
the University of Waterloo according to the Solar naming
scheme and want the names to incorporate location informa-
tion. Assume that inexpensive location tags are placed in dif-
ferent rooms and passively transmit the building and room
information in close vicinity. Naming software on the laptops
interprets a nearby transmission and updates two variables
named $building and $room. Then a laptop belonging to Bob
can be named:

[Device=Laptop, Owner=Bob,
location=$building:$room].
When Bob moves to room 3335 of the Davis Centre (DC),

his laptop will be named
[Device=Laptop, Owner=Bob, location=DC:3335].
As in INS, each entity in Solar is also identified by a

unique name-record.

COMPARISON OF NAMING APPROACHES

Based on the criteria defined earlier we now compare and
contrast naming approaches introduced in the previous sec-
tion.

READABILITY

It is worth noting that except for UUID, which we consider as
non-human readable, the readability of a naming scheme does
not depend on the scheme itself. More precisely, what we are
discussing is whether the naming scheme is able to support or
handle human-readable names. In fact, most of the schemes
we discuss here support using human-readable names, but it is
up to the naming authority to decide whether to name the
service in a human-readable manner.

UUID — A UUID is a non-human readable 128-bit
sequence. It can be represented in other string formats, such
as dash-separated hexadecimal strings.

A few solutions have been proposed to deal with the opaci-
ty of UUID as a service identifier. For example, Balakrishnan
et al. [33] propose mapping human-readable canonical names
to flat, not human-readable (UUID-like) identifiers. They
note also that the flat identifiers would be returned to a
human as a result of a human-directed search, which would
already provide a reasonable amount of supplementary infor-
mation. In addition, UUID identifiers returned as a search
result could be accompanied by descriptive meta-information
that would be independent of the naming scheme.

URI — While URIs are not required to be human-read-
able, they are required to be human-transcribable [34, 35], i.e.,
it must be possible for a human to copy out a URI on an arti-
cle or with a computer keyboard.

a) URL. A URL normally consists of human-readable
ASCII strings. However, non-ASCII octets (as well as reserved
characters) may be included in a URL by encoding them in a
character triplet consisting of a “ percent,” followed by two
hexadecimal digits. [8]

b) URN. The URN namespace ID consists of ASCII char-
acters. Most URN namespaces specify names in a convenient,
human-readable form. However, as in URLs, non-ASCII
characters can be encoded by character triplets consisting of a
“percent” and followed by two hexadecimal digits.

Web Services and Grid Services — In a UDDI entry,
non-human readable UUIDs are used to identify the business-
es and services. In OGSA, a GSH takes the URI format.

XRL — In XORP, two forms of XRLs are used: the unre-
solved form and the resolved form. An example of these two
forms is shown below.
finder://fea/fti/0.1/add route?

net:ipv4net=10.0.0.1&gateway:ipv4=192.150.187.1
xudp://192.150.1.5:1992/fti/0.1/add route?

net:ipv4net=10.0.0.1&gateway:ipv4=192.150.187.1

n Figure 6. Example of an INS name-specifier.
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Unresolved XRLs are expected to be issued by a human
user from a command-line interface (CLI) or be embedded in
configuration and management scripts. For this reason unre-
solved XRLs are designed to be human-friendly. On the other
hand, a resolved XRL can include a non-human-friendly net-
work-specific address (like an IP-address:port-number pair),
and are used within the application, transparent to the user.

INS — Names in INS are human readable and have fewer
structural restrictions than other naming schemes such as
URLs and XRLs. INS name specifiers can express hierarchi-
cally-related or orthogonal name components. Logically, the
components are interpreted to have a tree-like arrangement,
and can be written using nested parentheses or XML nota-
tion. Figure 6 shows an example of an INS name specifier in a
tree representation and its corresponding nested-parentheses
notation.

Solar — Solar names are human-readable and are con-
structed using a list of descriptive attribute-value pairs, where
the variable portions of a name are marked as $variable-
name. Meaningful variable names can be selected to improve
readability.

EXTENSIBILITY

UUID — UUID uses 128-bit binary strings to identify ser-
vices. To accommodate a larger number (i.e. larger than 2128)
of services, more bits will be needed. However, the UUID
scheme does not consider an extension to its namespace. The
UUID generation algorithm suggested in the current UUID
scheme would also need to be modified in order to generate
UUIDs with longer length. Also, it is unclear how to ensure
the compatibility between the new (longer) UUIDs and the
existing UUIDs.

URI — The URI namespace can be extended by register-
ing new schemes that can be used to denote new types of
resources or services. Some of the existing URI schemes are
ftp, http, file, and urn. The urn scheme can be further
subdivided into namespaces such as urn:ietf and urn:isbn.
In this example the first namespace is used to specify IETF
documents, the second to uniquely specify book identification
records [36]. Proposed URI extensions include:
• Use of URIs as identifiers for non-network resources (for

example, to identify an abstract object such as an XML
namespace, or a physical object such as a book or a per-
son) [25].

• IRIs (Internationalized Resource Identifiers): the exten-
sion of URI syntax to non-ASCII characters, in order to
allow the use of languages which do not use a Latin
alphabet [37].
Web Services and Grid Services — In the case of Web

Services, information about businesses and services is mod-
eled in the UDDI data model. Due to the use of UUIDs as
unique identifiers, the extensibility of this scheme largely
depends on how UUIDs can be extended to accommodate
more businesses and services (as discussed earlier). In the
case of Grid Services, since a GSH takes the format of a URI,
it is extensible for future updates.

XRL — XRLs are designed specifically for inter-process
communication in the XORP platform and are flexible enough
to handle new XORP APIs. However, for our purposes (i.e.
naming a wide variety of services), XRLs are not very extensi-
ble in scope due to their rigid structure. The components of
an XRL are fixed and have pre-determined semantics. Unlike
URLs, XRLs have a fixed number of name components in the
section preceding parameters. Hence, it may be difficult or
impossible to extend the structure of the XRL naming scheme.
For example, XRL does not give us the liberty to name enti-

ties that cannot be addressed in terms of a procedure call.
INS — INS allows names to have service-defined attributes

and values. There is no restriction on the number of levels in
a name-specifier, or on the number of children of a node in
the name-specifier tree. These features ensure the extensibili-
ty of the INS scheme. INS aims to name a wide variety of ser-
vices and is expected to adapt to the changes in scope. It is
possible to adapt INS to a multi-domain environment by
arranging individual name-trees that represent different
administrative domains under a dummy root node.

Solar — Like INS, names in Solar are composed of arbi-
trary sets of attributes and values. A service has the liberty to
specify attributes and values according to its own require-
ments. This mechanism makes possible the naming of a wide
variety of services with great extensibility.

NAMESPACE SIZE

All of the naming schemes discussed here, except for UUID,
have an infinite namespace size. The size of the UUID names-
pace is fixed at 2128.

NAME RESOLUTION ARCHITECTURE

UUID — The UUID specification does not specify a name
resolution architecture. Applications that use UUID for nam-
ing must provide their own name resolution mechanism. The
UUID resolution process, i.e., the process of matching the
UUID to the data structure or document with which it is asso-
ciated, depends on the architecture and the data structures
used by the application. Hence, the properties of name resolu-
tion remain an implementation issue.

Recently, Balakrishnan et al., [33] have proposed an Inter-
net-scale three-layered service naming scheme based on flat,
non-human-readable names such as UUIDs. In this scheme,
given a user-level descriptor (ULD) or search string, a search
engine query would return a flat (e.g., UUID) service identifi-
er (SID). The SID would, in turn, resolve to one or more
triples containing a flat endpoint identifier (EID) accompa-
nied by additional access information about the transport pro-
tocol and port. For example, if a SID refers to a Web server,
it might be resolved to (EID of the web server, TCP,
port 80). The EID would then be resolved into the current
IP address of the endpoint. Both the SID-to-EID and the
EID-to-IP resolution would be executed using a distributed
hash table (DHT), giving O(logN) resolution performance,
where N is the number of nodes in the DHT.

URI
URL: A hierarchical architecture is used to resolve URLs.

The Domain Name System [13] is used to resolve the domain
name component of the URL into an IP address, while the
rest of the URL is usually resolved by application-specific
components. For example, when a URL is used to locate a
Web page, the Web server hosting the page resolves the URL
path into a physical file location.

The hierarchical DNS architecture used to resolve URLs
has proven to be efficient and scalable, and suitable for Inter-
net-size applications. The top-layer resolvers introduce poten-
tial bottlenecks and single points of failure. However, this
problem can be resolved both by caching resolutions at lower-
layer DNS servers, and by replicating the top-layer DNS
servers. Although caching higher-layer DNS requests provides
a performance increase and a measure of fault-tolerance, it
also introduces a potential delay in propagating name map-
ping changes throughout the system, which could introduce
inconsistency of resolution. Therefore, the URL resolution
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scheme (and, in particular, Internet-scale DNS) is less suitable
for resolution of highly dynamic names.

A distributed hash table (DHT)-based Cooperative
Domain Name System (CoDoNS) [38] has recently been pro-
posed as an alternative to hierarchical DNS resolution. This
system uses the Pastry DHT [39] along with the Beehive [40]
replication framework to provide failure resistance and a mea-
sure of protection against denial-of-service attacks, at the
price of increased storage and communication overhead. The
proactive caching technique adjusts the amount of replication
for each object based on its popularity, and dynamically
adjusts as the popularity of the object changes over time,
resulting in an average constant-time lookup. This dynamic
adjustment of replication allows for handling unexpected
loads on the resolution architecture such as the flash crowd
effect. CoDoNS can be used as a stand-alone resolution archi-
tecture, or as an extension of the existing DNS. While a DHT-
based name resolution architecture is more fault-tolerant than
a hierarchical architecture [38], it introduces a problem of
ownership of resolution nodes. The canonical DNS infra-
structure depends on a “pay-for-your-own” model: domains
provide their own service, while the central facilities required
(the root servers) are minimal and relatively inexpensive [33].

A cooperative DNS architecture would require a new eco-
nomic model, likely consisting of cooperating resolution ser-
vice providers with mutual peering relationships.

URN: The URN specification separates the notions of
name assignment and name resolution [41]. A provider of a
resource or service can choose resolver services independently
of other providers.

A resolver translates URNs into URLs, URCs (Uniform
Resource Characteristics) or other URNs; it may also provide
direct access to the referred service or resource. Resolution is
not required (or guaranteed) to be deterministic; the resolu-
tion of a URN into an instance of a resource may reach dif-
ferent instances under different conditions [41].

The URI community uses the concept of a heuristic of fol-
lowing meta-information “hints” to achieve URN name reso-
lution. To better formalize URN resolution concepts,
Architectural Principles of URN Resolution [41] define a set
of guidelines/requirements with respect to the evolvability of
URN resolution, delegation of naming authority, efficiency of
resolution, and privacy/security concerns. An additional speci-
fication [42] proposes a formal description of interaction in
the URN resolution process.

To facilitate URN resolution, the Naming Authority Point-
er (NAPTR) specification [43] defines a new DNS resource
record that may be used to discover resolvers for URNs. The
“services” field in the record specifies the “resolution proto-
col” as well as the “resolution services” it offers. Resolution
protocols for URN include Z3950 [44], THTTP [45], RCDS
[46], HDL [47], and RWHOIS [48]. The NAPTR specification
also lists a variety of resolution services such as:
• N2L (given a URN, return a URL).
• N2R (given a URN, return the named resource).
• N2Ns (given a URN, return URNs that refer to the same

resource, also known as equivalent URNs).
For example, the THTTP protocol uses HTTP GET com-

mands to resolve a URN into a URL or a list of URLs that
specify the location of the desired resource. It can also be
used to retrieve the resources themselves. For example, a
URN that describes a picture can be resolved into JPEG,
GIF, and PNG versions of that picture.

Web Services and Grid Services — In Web Services, the
name resolution process involves translating a given UUID
into an access point of a service, contained in a UDDI docu-
ment. An access point is usually a URL but could also be an

external reference to a WSDL document that contains proto-
col-binding information in XML format. Both in Web Ser-
vices and Grid Services, WSDL can be used to specify how
location-independent names can be resolved into access points
so that services can be invoked through these access points.
However, storing name and access point mapping information
for all the businesses and services in a centralized registry
does not scale well.

Web Services uses a centralized registry model for name
resolution. A “cloud” of UDDI registry services can be main-
tained to distribute replicas of the directory information
among many UDDI nodes so that the UDDI registry is logi-
cally centralized but physically distributed. The use of external
WSDL reference allows service providers to update the ser-
vice descriptions (including attributes such as protocol binding
and access points) without changing the registry record. This
reduces not only the amount of information stored in the reg-
istry but also the amount of service update requests to the
UDDI registry, helping scalability. However, a centralized
approach always retains a potential scalability problem, bal-
ancing the replication overhead with the need for consistency.
Efficiency of name resolution depends on the load and dis-
tance of the replica, and on how efficiently the external
WSDL document can be retrieved.

Name resolution in Grid Services (specifically, in the Open
Grid Service Architecture (OGSA)) is achieved through the
use of HandleMap or Handle Resolver PortType, which is
a specialized Grid service that resolves GSHs to GSRs. A
GSH can be resolved into different GSRs at different times
and by different users according to policies. However, a single
resolution of a GSH will return only one GSR. A centralized
registry is used for name resolution, which improves consis-
tency of resolution, but implies the scalability and single-
point-of-failure problems associated with any centralized
approach.

Although Grid Services are based on Web Services, the
current implementation of the Globus Toolkit (the widely-
used open-source set of tools used for building computational
grids) does not yet support UDDI.

XRL — XRL name resolution is performed using an inter-
process communication (IPC) call to a central process called a
finder, which keeps track of all the registered target names and
the communication protocols they support. In an unresolved
XRL, the protocol family is set to “finder” and the protocol
parameters are set to the target name for which the XRL call
is intended. When a process wishes to dispatch an XRL (acti-
vate the IPC call) for the first time, it passes the unresolved
XRL to the finder, who then replaces the target name with a
network address and “finder” with appropriate the protocol,
sending the result back to the client. The client process then
uses the resolved XRL to access the desired resource. The
client process also caches resolved XRLs to avoid consulting
the finder process for future references.

All of the resolution messages are sent through IPC mech-
anisms (between processes). Hence, the XRL name resolution
scheme is only as scalable as the underlying IPC. The central-
ized finder is efficient and ensures consistency, but introduces
a single point of failure.

INS — In INS, a name-specifier can be resolved into one
or more name records. The name record contains two compo-
nents related to the resolution process:
• Network address of the service, i.e. IP address and port

number.
• AnnouncerID, a unique identifier for a service, construct-

ed from the host IP address and the service creation
time. AnnouncerID is used to distinguish between ser-
vices advertising the same name-specifier and residing in
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the same host.
All the name-specifiers in the system are stored in a data-

structure called a name-tree, an attribute-wise merge of all
the name-specifiers. Suppose two name-specifiers have the
same attribute X in the same level with values V1 and V2.
Then the name-tree will have a node X in that level with two
children, V1 and V2. The leaf nodes of the name-tree have
links to the associated name-records. An example name-tree
is shown in Fig. 7. The name resolution process uses the
name-tree to look up a name-specifier and returns the associ-
ated name-records.

In INS, the directory information (i.e. the name-tree) is
replicated in each resolver node, also known as an INR
(Intentional Name Resolver). Hence, name resolution is per-
formed locally to an INR, based on cached information.
Keeping the replicated name-trees consistent consumes a con-
siderable amount of network bandwidth, especially in dynami-
cally changing networks such as the Internet. Because of this
overhead, this system does not scale well in wide-area net-
works. The system can tolerate failure of services but cannot
handle INR failures efficiently.

To address the scalability issues of INS name resolution, in
2002 the MIT Laboratory developed INS/Twine [49] as an
extension to INS. INS/Twine splits name-specifiers into
strands (partial or complete paths from root to leaves in the
tree), generates a numeric key for each strand using MD5,
and uses Chord [50], a distributed hashing mechanism, to dis-
tribute these keys (and the accompanying name-records) in
appropriate INRs. Some replication among INRs is addition-
ally used to provide better tolerance of INR failures.

Solar — Solar adopts the INS name resolution mecha-
nism. In Solar, mobile services (e.g., roaming laptops) connect
to a proxy, which resolves a dynamic name into a static name.
The static name is then transmitted to a nearby INR, which
performs further name resolution (Fig. 8).

To populate an INR with name resolution information, an
application registers with a proxy, which then advertises the
appropriate INS name to the INR network. Whenever the
dynamic name changes in another proxy, the changed name is
disseminated using Intentional Multicast to all proxies where
the name was previously registered.

As in INS, the INR network in Solar fully replicates all the
name resolution information. The proxies, while retaining
more independence, may also require a great deal of replica-
tion if services often move between proxies. The amount of
required update messages hinders Solar’s scalability, while the
dynamic character of names can harm consistency of resolu-
tion if the network of proxies is too slow in propagating name
changes.

NAMING AUTHORITY

UUID — Ensuring the uniqueness of UUIDs does not require
a centralized naming authority. The uniqueness of UUIDs is
ensured through the use of a timestamp, a random compo-
nent and a unique value over space for each UUID generator
(usually a MAC address). Each UUID generator in this case
becomes a naming authority, so that names can be assigned
locally (i.e., on each device). The generation algorithm sug-
gested in [51] supports very high allocation rates of up to 10
million requests per second per machine if necessary.

URI
URL: For use in Internet-wide applications, URL scheme

identifiers such as http or ftp are registered with IANA [52].
Furthermore, the Domain Name portion of a URL must be
registered with the Internet Corporation for Assigned Names
and Numbers (ICANN) [53]. Finally, the remaining portion of
a URL is assigned hierarchically within a domain.

URN: Each URN Namespace Identifier (NID) must be
registered with the central authority IANA using the process
outlined in URN Namespace Definition Mechanisms [4]. The
entity that registers the NID then becomes the naming author-
ity for names inside that namespace. URN name authority can
be assigned hierarchically, where each domain is free to
choose the structure of names within its own namespace, sub-
ject to the restrictions or constraints of its parent namespace.

Web Services and Grid Services — The use of UUID in
Web Services implies that there is no centralized naming
authority, since each UDDI node can assign UUIDs to the
services that want to register in the UDDI registry. A UDDI
registry is logically centralized but can be physically distribut-

n Figure 7. A sample INS name-tree.

Name-record Name-record

Building

DWEDCMC

Room Resolution

Printing
Camera Public Private

Access
Service

Root

Type

3245 3335 3356 1200X800 600X300 B&WColor

                                  



IEEE Communications Surveys & Tutorials • Third Quarter 2005 13

ed. There can be many types of UDDI registries and many
UDDI operators that host UDDI registry nodes. (For exam-
ple, Microsoft and IBM both host a UDDI Business Registry
node for e-commerce applications.) These registry nodes
interoperate with each other to form a “cloud” so that a busi-
ness can register its service on any UDDI node.

In OGSA, since a GSH is a valid URI, it also follows the
hierarchical approach used in URI name assignment. Also,
since a factory approach is used to create a transient service
instance for each client, we have to consider how to uniquely
name every service instance. OGSA uses globally unique
names (URLs) combined with locally-generated identifiers
(usually a large hash value) to form a valid URI that can
uniquely identify Grid service instances.

XRL — XORP is an open source research project main-
tained by the XORP group [31]. The protocol family part of an
XRL is defined by this group, and the implementations for
new protocols (on XORP platform) can be realized through
this group. In the runtime environment, the finder process
works as the naming authority for handling module names,
interface names, interface version, and method names.

INS — In INS, a service has the freedom to choose the
attributes and values according to its requirements. However,
to make the lookup process more efficient, a predefined root-
level attribute named “name-space” is used to narrow down
the scope of the search by fragmenting the entire namespace
into “virtual namespaces.”

Solar — Solar allows services to select their own names, so
the existence of a central naming authority is not required.
Both of the descriptive naming schemes (INS and Solar) do
not assume a centralized naming authority, and applications
can specify any attribute and value pairs. Although this offers
a great deal of freedom in naming services, it raises an impor-
tant question of how to discover services and how to ensure
the completeness of a service discovery request. The most
important issue, however, is one of name uniqueness, which is
not ensured by the INS and Solar naming schemes as is, and
is left to implementation. One possible solution is to have a
set of predefined well known attribute-value pairs to facilitate
the service discovery process. However, this would be equiva-
lent to having a naming authority similar to other naming
schemes. This issue has not been addressed clearly in these
two schemes.

NAME PERSISTENCE

UUID — Theoretically (and for all practical purposes),
UUIDs are unique across both time and space, and hence can
be used as static (persistent) names.

URI — URIs can be persistent or not (i.e. static or not),
depending on the amount of location information they con-
tain. For example, if a document’s URI contains the IP of the

machine on which the document is located, the URI will
become invalid if the document is moved to a different
machine. In order to keep the URIs of documents valid for as
long as possible, it is recommended that they do not contain
the author’s name, the subject, status, access-control status,
filename extension, or software mechanisms (e.g. cgi, exec).
[54] Clearly, since URLs are location-dependent, it is com-
mon for URLs to become invalid when, for example, the
name of their parent domain changes. URNs attempt to over-
come this problem by providing location-independent static
names that can be resolved into location-specific names such
as URLs.

Web Services and Grid Services — In Web Services,
UDDI entries are persistent since persistent UUIDs are used
to identify the business and services. When a service moves to
a different location or becomes unavailable, the access point
can be updated or the UDDI entry can be removed from the
registry. This will not change the UUIDs that are used to
identify the services. A GSH is persistent since it is defined as
a globally unique name that distinguishes a specific Grid Ser-
vice instance from all other Grid Service instances that have
existed, exist now, or will exist in the future [2, 55]. On the
other hand, a GSR is not persistent since it is created with an
expiry time, or may become invalid due to various reasons
(e.g. the service access point has been moved to a different
machine).

XRL — Unresolved XRLs are static. Whenever the inter-
face definition for a module is changed, the version number
changes as well. However, different versions of a module name
can coexist on the same XORP platform, enhancing the per-
sistence of XRLs. On the other hand, in resolved XRLs the
module name is replaced by the network location (e.g., IP-
address:portnumber pair) of the module. A resolved XRL,
therefore, is not static because of the changes that can occur
in this “network location” module.

INS — In INS, names associated with a service remain
valid throughout the lifetime of the service. State information
of services, such as current location (i.e. network address) and
load, are kept separately in the associated name-records,
hence a change in state does not change the name. In essence,
INS offers location independence by storing the descriptive
name of a service in the name-specifier and the actual net-
work address information in the name-record.

Solar — Solar uses a dynamic naming scheme where some
part of a name can be variable. A name containing variable
component(s) has to be resolved each time it is used. The
resolved name can change over time, depending on the state
of the associated service.

STANDARDIZATION AND IMPLEMENTATION

Of the naming approaches examined here, UUID and URI
stand out as the most standardized and accepted by the Inter-
net community. Both are standardized by IETF, with URL
having been embraced as the de-facto naming standard. In
particular, the advantages of a URI-based approach is that it
can be easily incorporated into the existing Internet naming-
authority and name-resolution infrastructure. The more
involved Web Service and Grid Service naming schemes are
both based on URIs. The remainder of the approaches, while
well-known, are experimental. See Table 1 for an illustration
of this comparison.

n Figure 8. The use of INS in Solar.
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GUIDELINES FOR SELECTION
In this section we intend to evaluate the existing technologies
using our selected criteria, and eventually select a set of can-
didates that fit well in our context and meet most, if not all, of
our requirements.

The requirements of a multi-domain naming scheme are,
most of all, scalability, extensibility, and flexibility. These cri-
teria have been the driving force in our selection. Having
studied a variety of naming schemes, we feel that in general, a
naming scheme that would fare well in our vision:
• Has a human-readable name.
• Is fairly flexible and extensible.
• Has persistent names.
• Has location-independent names.
• Has a partitioned name structure with a limited set of

descriptive attributes.
• Has a distributed naming authority.
• Has a distributed name resolution architecture.
• Is standardized and widely accepted in the Internet com-

munity.
Table 2 summarizes the naming approaches we chose to

compare in this work. By comparing this summary to the illus-
tration from Fig. 2, and to the list of requirements outlined
above, we see that no single naming scheme meets all our

desired criteria for a multi-domain environment. However,
based on our background research into various naming
approaches, as highlighted earlier, we feel that the naming
schemes that are based on URIs and have a loose coupling
between naming and name resolution, are the best-suited can-
didates for a multi-domain naming scheme. These schemes
include URN, Web Service naming, and Grid Service naming
schemes. It is worth noting that a combination of a candidate
scheme with other naming schemes such as the UUID might
offer richer features (through the possibility of a fully-dis-
tributed assignment of unique names) and is worth exploring.

While the choice of a naming mechanism for service man-
agement would ultimately be determined by the choice of the
service discovery, management, and invocation mechanisms,
the insights and innovations of other mechanisms we have
studied in this article can serve to influence the finer points of
the design of a naming and name resolution scheme.

CONCLUSIONS

This article has investigated the characteristics and challenges
in designing a multi-domain, large-scale naming service. As a
guideline for analysis, and to ease the readers through various

n Table 1. Standardization and implementation of naming approaches: comparison.

Scheme Status Institution References

UUID Defined by a standards body or forum IETF [20]

URI Defined by a standards body or forum IETF; de facto standard [8, 22, 23, 25]

Web services Defined by a standards body or forum W3C [56] [28, 57, 58]

Grid services Defined by a standards body or forum OGSA [59] OASIS [60] [55, 61]

XRL Experimental Project XORP Project [31] [62]

INS Experimental Project MIT Laboratory for Computer Science [32, 63]

Solar Experimental Project Dartmouth College [6]

n Table 2. Comparison of naming approaches: summary.

Criterion UUID URI Grid naming WS naming XRL INS Solar

Human-readable No Yes Yes Yes Yes Yes Yes

Extensibility No Yes Yes Yes Up to API Yes Yes

Namespace size Finite (2128) Infinite Infinite Infinite Infinite Infinite Infinite

Naming authority Fully
distributed Hierarchical Hierarchical

Fully
distributed or
centralized

API-deter-
mined

Fully
distributed

Fully
distributed

Name resolution DHT or
app-specific

Hierarchical or
DHT

Centralized
registry

Centralized
registry

Application-
dependent

Replicated
or DHT

Centralized
and replicated

Name persistence Static
URL: location-
dependent;
URN: static

GSR: location-
dependent;
GSH: static

Location-
dependent Static Static Dynamic

Standardization Defined by
IETF

Defined by
IETF

Defined by
W3C

Defined by
OGSA

Experimental
project

Experimental
project

Experimental
project
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aspects of a naming system, we first presented our view on the
anatomy of a naming scheme along with naming design con-
cerns and challenges. Following this discussion, we reasoned a
set of design criteria that not only represents the fundamental
issues of a naming scheme design, but also the unique chal-
lenges intrinsic to a multi-domain and large-scale context.
More specifically, these requirements stress heterogeneity,
flexibility, and a high degree of scalability.

Based on our design criteria, we performed a critical study
of the well-known naming schemes in academia and industry,
focusing on how each scheme fits our design criteria, and
drew conclusions about their usefulness in a multi-domain,
large-scale context. The results of our analysis lead us to
believe that URI naming and the related Web Service and
Grid Service naming schemes are the most suitable current
candidate schemes. This suitability can be attributed to their
scalability of naming resolution and name authority architec-
tures, extensibility of the naming scheme, and the level of
standardization of the selected approaches.

This article can serve as an aid for architects and system
engineers in designing a large-scale naming system designed
for a multi-service and multi-domain environment. The results
of our investigation, as distilled in this article, indicate the
current lack of such a naming system. Since this kind of sys-
tem would be a crucial function block for any large-scale ser-
vice framework, it remains an important research challenge.
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APPENDIX 1: OTHER NAMING SCHEMES

While this article attempts to provide a good survey of naming
approaches, it omits a number of technologies deemed irrele-
vant or unsuitable to a multi-domain service-infrastructure set-
ting. In this Appendix we describe some of the omitted
approaches and the reasons for their unsuitability for this article.

HUMAN-FRIENDLY NAMES

Currently, most resources on the Internet are identified with
Universal Resource Locators (URLs), which identify both the
resource and its location/access method. The drawback associ-

ated with this dual function is that it makes it difficult to
assign the same identifier to widely-distributed multiple repli-
cas of a resource, and that it ties the identifier to a specific
location. URNs (which resolve to URLs) have remedied these
drawbacks by creating a name that identifies only the resource,
without specifying the replica identity or the location. Howev-
er, URNs are not required to be human-readable (only
human-transcribable), therefore they may still be difficult for
humans to use.

Ballintijn, van Steen, and Tanenbaum [16] have proposed a
naming scheme that builds on the present URN/URL system,
and uses descriptive human-friendly names (HFNs) which
resolve to URNs that identify resources. This scheme allows for
each HFN to resolve to one or more URNs, each of which can
resolve to one or more URLs. Because DNS is used for name
resolution in this scheme, HFNs have a similar format to URNs.

The HFN scheme is designed specifically for highly-popu-
lar and replicated Web resources, and is not suitable for a
large number of lesser-used resources or highly-mobile
resources. It also provides an extra level of name resolution
onto the URN-to-URL infrastructure, thus adding a signifi-
cant overhead. These restrictions make this approach inappro-
priate for a system that identifies a large variety of services
and resources which may or may not require to be directly
usable by humans.

IPC MECHANISMS

Several mechanisms exist for enabling (procedure-oriented
and object-oriented) inter-process communication in distribut-
ed applications. In addition to naming objects, these mecha-
nisms include facilities for remote procedure calls, and often
for advanced access-control and security. These mechanisms
are often quite complex and require significant effort to
implement. They are better suited to tightly coupled enter-
prise and desktop applications rather than to distributed Web
applications [64]. Also, the naming schemes included with
these systems are designed specifically for naming software
components, and may not have the flexibility required for
naming a large variety of services and resources.

In this article we have examined XRL, a language for nam-
ing entities for the eXtensible Open Routing Platform, which
is designed specifically for routing systems. We have chosen to
include XRL in the survey due to its applicability to routing,
and hence to cross-domain applications. Other IPC mecha-
nisms include the Distributed Computing Environment
(DCE) [65], Common Object Request Broker Architecture
(CORBA) [66] (which uses the Interface Definition Lan-
guage), and Microsoft’s Distributed Common Object Model
(DCOM) [67].

DIRECTORY SYSTEMS

Another approach to naming objects is through directory sys-
tems such as X.500, or its more lightweight grandchild,
Lightweight Directory Access Protocol (LDAP) [68]. LDAP
uses the LDAP Data Interchange Format [69] to store direc-
tory entries, which are sets of attribute-value pairs, including a
distinguished name that combines several of the a-v pairs to
uniquely identify each entry. LDAP supports a variety of
operations, including searching and updating; a format exists
to express these operations in the form of a URL [70]. While
LDAP can be used to store information about a variety of
entities, its most natural function is to store phonebook-type
information about people and institutions. Moreover, its pur-
pose is better geared toward description rather than naming
itself.
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NETWORK MANAGEMENT NAMING SYSTEMS

No discussion related to management of network services
would be complete without mentioning network management
naming systems such as SNMP, CMIP, DMI, and CIM, which
incorporate mechanisms for uniquely identifying and accessing
entities.

The Simple Network Management Protocol (SNMP) is the
de-facto standard for managing network and computer system
devices. A more powerful system, Common Management
Information Protocol (CMIP) [71], has been devised for tele-
com devices; however, few implementations exist because of
its complexity and resource overhead. Desktop Management
Interface (DMI) [72] was designed by the Distributed Man-
agement Task Force (DMTF) [73] as a method to standardize
obtaining and managing information about the internals of a
desktop system. All of the above approaches use the ASN.1
registration tree for assigning globally unique Object Identi-
fiers, which can take the form of a dot-separated number or
translated to more human-readable dot-separated strings.
While the sole purpose of this registration hierarchy is to
assign unique identifiers, the systems that use this hierarchy
assign their own set of inheritance and containment relation-
ships on the tree. The Management Information Base (MIB)
specifies the collection of related objects in specific devices,
following the rules set out by the Structure of Management
Information (SMI) model [74].

CIM, The Common Information Model (CIM) [75], is an
object-oriented naming scheme designed for management
information for systems, networks, and applications. It unifies
existing standards (SNMP, DMI, CMIP) and uses a standard
language — Managed Object Format. The model replaces the
Management Information Bases with Management Object
Files (MOF) claimed to make it easier to track the relation-
ships between managed objects, and, like SNMP, supports
model operation methods. CIM strives to be more compre-
hensive and extensible than the previous standards.

While these network management systems provide a rich
set of functionalities for naming and managing network and
software resources, the included naming systems identify the
types of entities rather than the entities themselves. Moreover,
these types of systems are notoriously complex, rigid, and dif-
ficult to implement.

FILE SYSTEM NAMING SCHEMES

Distributed file systems provide a method of naming resources
(files) across local-area or wide-area networks. The classic
example is the Network File System [76] developed by Sun
Microsystems, which allows a computer to access files over a
network as if they were on its local disks. Other approaches
include the Common Internet File System (CIFS) [77], the
Andrew File System (AFS) [78], and Coda [79].

Most distributed file systems provide a location-indepen-
dent hierarchical naming scheme, which closely follows the
familiar conventions of a single-machine file system, and may
or may not include facilities for context-sensitive variable file
name components. Distributed file systems are generally
designed for local-area networks, or at most single-domain
wide-area networks. A larger-scale attempt, GASS (Global
Access to Secondary Storage) [80], which forms a part of the
Globus toolkit for Grid applications, defines a global name
space via Uniform Resource Locators. However, even those
file systems designed for wide-area use provide facilities for
naming only a narrow set of resources: files and those
resources that can be identified with files.

          


