
[image: image1.png]University of

Waterloo

Performance of TCP in Wireless Networks

Humphrey Rutagemwa

ID: 00801341

humphrey@bbcr.uwaterloo.ca
Department of Electrical and Computer Engineering

University of Waterloo, Waterloo, ON, Canada, N2L 3G1

July 27, 2001
Presented as Project

 For

MULTIMEDIA WIRED/WIRELESS INTERNET
CS 756M
Spring 2001
 TABLE OF CONTENTS

1.0 INTRODUCTION …………………………………………… 3

2.0 TRANSIMISSION CONTROL PROTOCOL .…………...…. 4

 2.1 TCP Basics …………………………… ……………….. 4

 2.2 TCP Variants …………………………………………… 5

3.0 TCP OVER WIRELESS LINK ………………………….… 6

 3.1 Wireless Link Characteristics ………………….………. 6

 3.2 TCP Performance over Wireless Link ………………….. 6

4.0 SIMULATION MODEL ………………………………...…… 7

4.1 System Model ……………..…….…………………….. 7

4.2 Wireless Channel Model ………………………………. 7

4.3 Simulation Results .……………………………..……. 8

5.0 SIMULATION RESULTS AND DISCUSSION……………. 9

5.1 Error Distribution Vs TCP Variants ……………...….. 9

5.2 Throughput Vs Maximum Window Size ….………..… 10

.

6.0 FUTURE DIRECTION …………………………………… 11

6.1 Sited Problems …………………………………… …. 12

6.2 Proposed Approach …………………………………… 12

6.3 Expected Benefits …………………………………….. 12

7.0 SUMMARY AND CONCLUSION ………………………… 13

8.0 REFERENCE ………………………………………………… 14

9.0 APPENDIX A: NS2 SIMULATION SCRIPT ……………….. 15

10.0 APPENDIX B: AVERAGE ERROR RATE … …………….. 17

1.0 INTRODUCTION

Recently, Internet has been growing tremendously with access demand increasing at the rate of 1000% a year [1]. The rapid development in cellular communication networks, advancement of portable computing devices, and increase of user reliance on internet services [1] suggests the need for people to have internet access from anywhere at anytime.

Internet is network of networks that uses a set of protocols, which are collectively known as TCP/IP protocol. TCP (Transmission Control Protocol) and IP (Internet Protocol) are two of the most important protocol in the Internet protocol suite. TCP is the connection orientated transport layer protocol that provides end-to-end reliable, in-order data transfer services to it’s above layer. It has embedded with error recovery and window-based congestion and flow control mechanisms that enhance the reliability of data transfer. IP is the network layer protocol that defines network-layer addressing, the fields in the datagram, and how the end systems and routers act on these fields [2]. It uses a unique IP address (that was assumed to encode host’s physical location) in identifying and routing of datagrams over the network. It provide a best effort, datagram delivery service to its above layer and runs over wide range of link layer technologies such as Ethernet, ATM, Token Ring, PPP, and SLIP.

Due to its robustness and scalability capabilities, TCP/IP protocol has been doing well over the wireline network and therefore widely accepted. However, by extending the use of the standard TCP/IP protocol over the wireless network may result to severe performance degradation. This is because wireless link characteristics, such as non-congest “burst” errors, violets the basic assumptions that TCP/IP protocol was built in the first place.

In this paper, we present a literature survey of TCP as a reliable transport protocol and discuss some potential problems that will arise when TCP is used over the wireless link. From our developed system modal, we present the simulation result that shows the impact of burst errors on TCP performance. As a proposal, we outline some steps that can be used to approach the problem.

The rest of is paper is organized is as follows. Chapter 2 introduces TCP protocol and discusses the congestion control mechanisms used in several TCP variants. Chapter 3 summarizes various characteristics of the wireless links and their impact to TCP performance. In chapter 4, we present our simulation model and discussion of the simulation results is in chapter 5. The outline of the proposed steps to approach the problem is given in chapter 6. Finally, we conclude by pre-sentencing a summary of our results and suggestions for future direction in chapter 7.

2.0 TRANSIMISSION CONTROL PROTOCOL

2.1 TCP Basics

TCP is a connection-oriented unicast transport protocol. It provides fully reliable, in-order, byte-stream, end-to-end data delivery services by using its embedded congestion, flow, and error control mechanisms. TCP as a reliable transport protocol performs functions like, loss recovery, congestion control, flow control, and connection management. The rest of this section briefly describes how these tasks are accomplished in TCP.

2.1.1 Connection Management

TCP has a complex connection mechanism. It uses 3-way handshakes to open a bi-directional data channel and if connection is establishment successful then data will be transferred. Individually, sender and receiver use 2-way handshakes to close the pre-established data channel.

2.1.2 Loss Recovery
When segments get lost on transfer, in the network, normally TCP sender detects a lost segment and recovers the segment by retransmitting it. TCP uses a timer-driven and data-driven retransmissions mechanisms to discover and recover segment losses.

Data-driven recovery

This mechanism relies on feedback from cumulative acknowledgements (ACKs). When a segment get lost, the receipt of all later segments after a lost one will generate duplicate cumulative ACKs to the TCP sender. By receiving these duplicate ACKs, the sender assumes that a segment has lost and retransmits it. However, this method seems to be inaccurate when packet reordering occurs, that is the later segments being received ahead of the earlier ones, since the sender will prematurely retransmit a segment. One way of solving this problem is to set a minimum number of received duplicate ACK (as a threshold) before the sender decides to do the retransmission. A widely adapted number for threshold is three, “triple-dupack”.

Timer-driven recovery

In this approach timer is maintained at the sender. If a positive cumulative ACK for a segment is not received within a certain timeout interval, the TCP sender retransmits a missing segment. Timeout interval can be determined by using an estimated round-trip time. Furthermore, the retransmission is exponentially backed off after each unsuccessful retransmission. The details of this estimation can be found in [2]. Since it is fundamentally impossible to estimate accurately the timeout interval, then this method is only be used as a final option after the failure of other methods in recovery process.

2.1.2 Congestion and Flow control

Various schemes that TCP use to control network congestion can be categorize into two types, window-based schemes and rate-based schemes. This paper will focus on window-based schemes, which are largely based on Jacobson’s seminal paper [3] and on the principles of additive-increase/multiplicative-decrease “AIMD”.

TCP maintains a congestion window that regulates the number of unacknowledged data packets in the network. Sending data consumes slots in the window of the sender, and the sender can send a packet only if a free slot is available. When an acknowledgement for outstanding packets is received, the window is shifted, and free slot become available.

TCP uses slide window (in sequence space) to implement a flow control between sender and receiver. The TCP sender performs flow control by ensuring that the transmission window does not exceed the receiver’s advertised window size.

2.2 TCP Variants

This section gives a brief overview of TCP variants, Tahoe, Reno, NewReno, and SACK and their congestion control algorithms.

2.2.1 TCP Tahoe

Tahoe uses Slow-Start, Congestion Avoidance, and Fast Retransmit algorithms for controlling network congestion. After connection establishment phase, the TCP sender initializes its slow-start threshold (ssthresh) to the size of the advertised receiver window (rwnd), and congestion window (cwnd) to one Maximum Segment Size (MSS). At this stage or whenever cwnd is below ssthresh, Tahoe follows the Slow-Start algorithm where by cwnd is increased exponentially by one MSS for every new acknowledgement (ack) received. The Congestion Avoidance algorithm is used when cwnd exceeds ssthresh. Here, a cwnd is increased linearly by (MSS /cwnd) MSS for every new ack. Round-trip time is sample for every sender window (swnd) and from that, timeout (rto) interval is estimated. Whenever timeout occurs the most unacknowledged packet is retransmitted and ssthresh is set to half of the current cwnd while cwnd to one MSS. When the sender receives, consecutively, three duplicate ack (triple-dupacks), sender assumes that the most unacknowledged packet has lost and therefore Fast Retransmit the packet. Cwnd and ssthresh are also initialized in the same way as in the case of timeout.

2.2.2 TCP Reno

TCP Reno is similar to TCP Tahoe with an additional Fast Recovery algorithm. TCP Reno considers duplicate ACKs as transit congestion, and timeout as severe congestion. After Fast Retransmit, it initializes cwnd and ssthresh to half of current cwnd, and enters in Fast Recovery phase. In this phase duplicate ACKs are ignored until half of the window is acknowledged and after that the sender will send new segment for every received duplicate ACK. Fast Recovery ensure that Congestion Avoidance follows Fast Retransmit phase and not Slow-Start phase. However, when multiple packet loss occurred in one sender window, in most case, this algorithm fails to recover the second lost without using a timeout option.

2.2.3 TCP NewReno [8]

The main objective of NewReno is to improve Reno by using Partial Acknowledgement (pack) algorithm when multiple packet losses occurred in one swnd. A pack is defined as a cumulative ACK that does not acknowledge the original window completely. NewReno remains in Fast Recovery if the received acknowledgement is pack. By doing that it will generate more dupacks, which will trigger another Fast Retransmit and therefore the most unacknowledged packet will be sent without a timeout. This algorithm can recover one lost packet in every rtt if multiple losses occur in one swnd.

2.2.4 TCP SACK [4]

When multiple losses occurred, in NewReno, it takes one rtt to recover each lost packet. SACK addresses this problem by enabling the receiver to report gaps in received data, and therefore sender can resend all missing segments in one rtt. TCP SACK seems to be a better approach for congestion management than Tahoe, Reno, and NewReno, since the sender has more information about network conditions. However, this approach has some limitation when transmission window is small. Chapter 5 presents the effect of window size on SACK performance, in the presence of burst error.

3.0 TCP OVER WIRELESS LINK

3.1 Wireless Link Characteristics

Wireless links are often characterized by having burst errors, poor availability, and asymmetric and uni-directional behaviors for the down and up links. The continuous link availability may not be guaranteed for the possible geographical shadowing and hand-off in the wireless network. Wireless link may also exhibit the asymmetric and unidirectional characteristic due to the requirement of the network engineering. Furthermore, the mismatch in transmission speed between the wireless and wireline links may results in congestions at the attachment point between the Internet and the wireless segment.

3.2 TCP Performance over Wireless Link

With its elegant mechanism to provide end-to-end reliable service, TCP has been performing well in wireline network. However, by just extending unmodified TCP into wireless network, might results to a serious drop in throughput. The reasons for the expected performance degradation can be explained as follows

1. Combined error control and congestion control.

In wireless, most the packet losses are due to transmission errors. The proper reaction for transmission error is simply to retransmit the lost packet. Unfortunately, a traditional TCP invokes the congestion control algorithms, which unnecessary reduce the amount of in-flight data and lower application throughput.

2. The Conservative and Coarse RTT estimation.

This is another reason for poor performance of TCP in wireless environment. Due to the rapid change of wireless transmission latency, the RTT estimation algorithm sometimes does not give a good approximation of RTT values. As a result, TCP sender may have unnecessary retransmissions due to pre-mature timeouts, and/or idle period in data transfer.

3. Symmetric and bi-direction assumptions.

Normally TCP assumes that forward link and backward link are symmetrical and only consider the forward link for data transfer. Unfortunately, in wireless environment, forward and backward link could be asymmetrical in bandwidth, latency or error behavior and thus violent assumptions made in TCP’s feedback mechanism.

In this paper, we are going to study the impact of wireless channel errors on TCP performance.

4.0 SIMULATION MODEL

As the main objective of this simulation is to study the impact of error distribution on TCP performance, the following are the main assumptions made for our system model

· Mobility issue is handled at the network layer and is completely transparent to the transport layer.

· Packet losses are mainly due to wireless links transmission errors and packet loss due to congestion are relatively small and randomly distributed over transmission time.

· RSVP protocol is used allocate necessary network resources for every TCP connection.

4.1 System Model

Fixed Host Base Station Mobile Host

FIGURE 1: Network Topology

Figure 1 depicts the system model used in our simulation. It consist three nodes Fixed Host (FH), Base Station (BS), and Mobile Host (MH). It is assumed that source has always data to transfer in a single unidirectional fashion. A single-hop wireline link, characterized by delay (τ1) and available bandwidth (W1) , is used to approximate a series of the links from FH to BS. To avoid packet drop due to the congestion at the wireline-wireless interface , we set BS to have large (enough) buffer size (B) and therefore only a queuing delay is introduced in the network. A wireless channel , between BS and MH, is considered to be a lossy link . It is characterized by characterized by delay (τ2) , available bandwidth (W2) and a lossy model which we are going to explore in the next section. At the receiver end (MH), an acknoledgement packet (ACK) is sent to FH immediealy on the arrival of each data packet and it never will never be corrapted.
4.2 Wireless Channel Model

Since we are interested in analyzing the impact of different error distributions on the performance of TCP in wireless link, we consider the random and burst error distributions in our simulation.

To realize aforementioned error distributions, we use a three state error model. This model can capture most of the channel dynamics while staying relatively simple compared to the other higher order models.

 FIGURE 2: Multi-State Error Model

Figure 2 shows error model, which has three states (namely GOOD, MODERATE, and BAD) that are independent in error behavior. GOOD state represents the channel in its best condition (very low error rate) where as BAD state, when the channel is in the poor condition (deep fading). MODERATE is an intermediate state that mostly represents the channel transient phases. The transition between each state is defined in state transition probability matrix P,

[image: image2.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

With matrix P the steady state probability matrix, [πg πm πb], of the channel being in GOOD, MODERATE , and BAD can found (see Appendix B)

If the average error rate for each state and mean time spent there before the transition occurred is [Rg Rm Rb] and [Tg Tm Tb] respectively, then the overall average error rate, R, can be obtained by

 R = πg Rg Tg + πm Rm Tm + πb Rb Tb
4.3 Simulation Setup

We use NS-2 Network Simulator [5] to simulate our system model. NS-2 is an object-oriented discrete event network (Protocol) simulator, written mainly in C++ and Otcl. It has rich modules for transport layer, network layer, and link layer that can simulate various flavors of TCP in wired and wireless networks.

For the bulk-traffic generation, we attach FTP-like source/TCP on the sender (FH) and TCP sink on the receiver side (MH). In order to see the impact of random and burst error in performance of transport protocol, we use two variants of TCP, namely Tahoe (as a basic TCP) and SACK (as an enhanced TCP). We realize the random and burst errors models with equal pre-calculated average error rate [see section 4.2 & Appendix B] by changing the values of matrix P, R, and T. To reduce the effect of network transients to the results, we use a long (enough) simulation time and different random seeds.

5.0 SIMULATION RESULTS AND DISSCUSION

 In this chapter, the results of various simulations are presented and discussed. The focus of this investigation is on how random and burst error distributions affect the throughput of Tahoe and SACK. The analysis of the throughput in various TCP maximum window size extends this study.

5.1 Error distributions Vs TCP variants

Figure 1 and Figure 2 illustrate the growth of the number of successfully received packets for Tahoe and SACK respectively. The number of successfully received packets is determined by observing the sequence number of received ACKs packet (Cumulative) at the sender with the time in seconds. In these Figures, different state-transition probability matrices were used to obtain random and burst error distributions of equal average error rate.

[image: image3.png]Received Pakets(Ack)

100
a0
an
o
a0
™
m
e
an
0
a0
=
m
E
an
=
m
10
10
=

Packet Vs Time
(Tahoe)

BusErar
« FandamErar

P

0

)

@ w0 W e
Time (Second)

 EMBED MSPhotoEd.3 [image: image4.png]Received Packets (Ack)

100
a0
an
o
a0
™
m
e
an
0
a0
=
m
E
an
=
m
10
10
=

Packet Vs Time

(SACK) e
* Fandom rar
7
7
4
W m @ wm e w

Time (Second)

10

From Figure 1 and Figure 2 the number of packets received in random error grows fast with small vertical idle gaps where as in burst error, grows slowly with large horizontal idle gaps. This is because TCP uses triple-dupack or timeout (as the last and inefficient option) to recover lost packets. In most case burst errors, collapses multiple packets from one sender window, this will lead to insufficient number of dupack that can trigger the fast retransmit mechanism or a further recovery of lost packets.

It can easily be seen, in Figure 1 and Figure 2, that always SACK has higher throughput than Tahoe but it suffers more, in burst error environment than Tahoe. For example at Time = 160 seconds, in SACK (Figure 2) there is a difference of 188 packets between random and bust error where as in Tahoe (Figure 1) there is a difference of 125 packets. Normally, SACK performs better than Tahoe since it has extra option of recovering lost packets. However, in burst error environment this extra option seems to be affected or interfered.

We can summarize the above observations by saying that, burst errors have more impact on the on TCP performance than random errors and SACK is more sensitive to burst error than Tahoe.

5.2 Throughput Vs Maximum Window Size (TCP variants)

In previous section, we have seen that one of the reasons for performance degradation in burst error is insufficient number of dupack. However, the number of generated dupack does not depend only on the magnitude of the burstiness but also the size of sender window at each particular moment. In this section, the variation of throughput against maximum window size in burst error environment is presented and discussed.

[image: image5.wmf]Throughput Vs MaxWindowSize

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

MaxWindowSize

Throughput (Packets/450Sec)

Tahoe

SACK

For each simulation run a TCP variable maxcwnd_, the upper bound on the congestion window for the TCP connection, is initialized with different values and other parameter kept constant. Figure 3 shows the throughput (in terms of number of received packets in 450 Seconds) as a function of Maximum Window Size. To study the behavior of throughput we observe its growth in three ranges of maximum window size; (1- 6), (7-16), and (17- 29).

In the first range, (1 - 6), throughput for Tahoe and Sack seems to be equal and increases proportionally with MaxWindowSize. When the window size is small, in burst error environment, SACK is unable to utilize its capability of recovering lost packets without using a timeout option and that is why it has a throughput approximately equal to Tahoe. In addition, at this stage maximum window size is relatively small to the network “data pipe”. So the bigger the maximum limit is the more TCP can probe the bandwidth and this explains the proportional increase of throughput with maximum window size.

When a maximum window size is between (17 – 29) SACK has higher throughput than Tahoe. This is because at this stage, SACK has large enough average congestion window to recover lost packet without using timeout. Contrary to the first range (1- 6), at this stage maximum window size is relatively large compared to the network “data pipe” and therefore congestion window is not bounded by maximum window but rather the size of data pipe and burst error. This situation explains why throughput of Tahoe and SACK remains constant regardless of the magnitude of maximum window size.

For the range between 7-16, the throughput of Tahoe seems to be constant with the same reasons as in the range 17-29. However, throughput of SACK gradually increases with some oscillations. The gradual increase of the throughput is, partially, because of the interference of burst error in packet lost recovery procedures is reduced and limit to send more packet is raised up. Another reason is that TCP behavior is very complex and not only depends on burst error or maximum window size but also on how close lost packets were spaced in the sender window.

We can summarize this section by point out the following important observations. Impact of burst error on TCP performance becomes significance when TCP connections has small congestion window. Through of SACK in burst error environment not only depends on maximum window size but also on the other factors that needs to be investigated.

6.0 FUTURE DIRECTION

A really mobile computing that offers a confident access to Internet for anybody at anytime from anywhere will set us free from ties that binds us to our desktop. However, some problems must to be solved before users enjoying mobile computing. In this chapter, we present one of the sited problems in the wireless network, a summary of the proposed approach to the problem, and expected benefits.

6.1 Sited Problem

From chapter five it is evident that burst errors, which are common in wireless links, causes significant TCP through degradation compared to random ones. This is even worst in scenarios where TCP connection is limited to small congestion window. Two reasons for this degradation are multiple losses in one sender window and small congestion window. In the next section, we present possible steps to approach this problem.

6.2 Proposed Approach

There are many ways of approaching and solving the aforementioned problem. One of the possible approaches can be as follows.

Step 1: Extensive Study of the TCP Behaviors

A clear understanding of the TCP behavior is the most important step toward the solution of the problem. By doing simulations and using different TCP parameters, we can study TCP performance in various network conditions.

The following are parameters of interest that can be used to study TCP behavior.

· Performance Metrics: Throughput, Wireless Channel Utilization, End-to-end Delay,

 Jitter, and Goodput.

· TCP Variables: Maximum Window Size, Packet Length, Dupack Threshold , and

· Channel Conditions: Error Rate, Channel Delay, and Degree of Burstiness.

Step 2: Enhancing the TCP Algorithm

 The Fast Retransmit algorithm can be improved by using a more accurate dupack threshold. By using dynamic threshold instead of static will enable Fast Retransmit to adapt, a constantly changing, channel conditions. This will reduce the number of pre-matured retransmissions while minimizing packet loss timeouts. In scenarios where congestion window is limited and therefore insufficient generation of dupacks, changing acknowledging policy and incorporating explicit notifications algorithms could be effective ways of improving performance. However, the latter approach is difficult to implement since it requires some changes to be done not only at the end host but also in the core of network.

6.3 Expected Benefits

Emerging applications, such as HTTP–based Web browsing or request/reply applications, seems to suffer more in presence of burst error. Since their TCP connection duration is relatively short, then their average achievable congestion window is small. By introducing intelligent and robust congestion control algorithms, which improve the performance of TCP in presence of burst errors (wireless network) will promote the use of request/reply applications in wireless Internet.

7.0 SUMMARY AND CONCLUSION
In this study, a survey of TCP and brief discussion on TCP performance over the wireless link was presented.

To study behavior of TCP in wireless, we developed our system model that approximates the wireless channel. Based on that, we presented simulation results that focus on the impact of the burst errors on TCP performance. Our preliminary results show that

· Burst errors have higher impact on TCP performance than random errors and the impact is severe when TCP connection is limited to small congestion window.

· The TCP SACK is more sensitive to burst errors than Tahoe

This is because burst error causes multiple losses in one sender window

Finally, extensive studying on the TCP behavior and Enhancing TCP algorithms were the two steps proposed in approaching the problem.

REFERENCES

[1] S. A. Karim, and P. Hovell, “ Everything over IP: an overview of the strategic change in voice and data networks,” BT Technol J Vol. 17 No. 2, April, 1999.

[2] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach Featuring the Internet, preliminary ed., Addison-Wesley, 2000.

[3] V. Jacobson, “ Congestion Avoidance and Control,” ACM SIGCOMM 88, Aug. 1988.

[4] M. Matthis, J. Mahdavi, S. Floyd, A. Romanow, “ TCP Selective Acknoledgement Options,” IETF RFC 2018, 1996.

[5] The Network Simulator ns-2 Home Page http://www.isi.edu/nsnam/ns
[6] J. W. Mark, X. Shen, Y. Zeng, and J. Pan, “TCP/IP in Wireless/Internet Interworking”, Proc. IEEE 3Gwireless’2000, San Francisco, CA, June 14-6,2000, pp. 438-445

[7] Sheldom M. Ross, “Introduction to Probability Models,” 7rd Ed., Harcourt, 2000.

[8] S. Floyd, T. Henderson, “ The NewReno Modification to TCP’s Fast Recovery Algorithm,” IETF RFC 2582, 1999.

APPENDIX A

Ns2 Simulation Script

In this appendix, we present a sample script of ns2 that was used in simulation.

Get Maximum Window Size from command line

set w [lindex $argv 0]

#Create a simulator object

set ns [new Simulator]

#Open the Trace file

set tf [open out.tr w]

$ns trace-all $tf

#Define a 'finish' procedure

proc finish {} {

 global ns nf w tcp tf

 $ns flush-trace

 #Close the Trace file

 close $tf

 #Output MaxWindowSize and the number of received (ack’ed) packet

 puts " $w \t[$tcp set ack_]"

 # End exit the simulation

 exit 0

 }

#Define a 'cwndDump' procedure

proc cwndDump { src interval } {

global ns

$ns at [expr [$ns now] + $interval] "cwndDump $src $interval"

puts [$ns now]\t[$src set cwnd_];}

#Create three nodes

set node_(s) [$ns node]

set node_(r) [$ns node]

set node_(d) [$ns node]

#Create links between the nodes

$ns duplex-link $node_(s) $node_(r) 0.5Mb 150ms DropTail

$ns duplex-link $node_(d) $node_(r) 0.1Mb 50ms DropTail

#Set Queue Size of link (r-d) to 100 (very large)

$ns queue-limit $node_(r) $node_(d) 100

$ns duplex-link-op $node_(r) $node_(d) queuePos 0.5

#Tracing a queue

$ns trace-queue $node_(r) $node_(d)

#Setup error Multistate Error Module “bursty module”

 #Define error distribution for each state

 set good [new ErrorModel/Uniform 0 pkt]

 set moderate [new ErrorModel/Uniform .1 pkt]

 set bad [new ErrorModel/Uniform .6 pkt]

 #Array of states (error models)

 set m_states [list $good $moderate $bad]

 #Durations for each of the states , good, moderate, bad respectively

 set m_periods [list 2 .01 .01]

 # Transition state model matrix

 set m_transmx { {0.9 0.1 0} {0 0.1 0.9} {0.9 0 0.1} }

 set m_trunit pkt

 # Use time-based transition

 set m_sttype time

 set m_nstates 3

 set m_nstart [lindex $m_states 0]

 set em [new ErrorModel/MultiState $m_states $m_periods $m_transmx $m_trunit $m_sttype $m_nstates $m_nstart]

 $ns link-lossmodel $em $node_(r) $node_(d)

#Setup a TCP connection

set tcp [new Agent/TCP]

$tcp set window_ 40

$tcp set maxcwnd_ $w

$tcp set class_ 1

$ns attach-agent $node_(s) $tcp

set sink [new Agent/TCPSink]

$ns attach-agent $node_(d) $sink

$ns connect $tcp $sink

$tcp set fid_ 1

#Setup a FTP over TCP connection

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ftp set type_ FTP

#Schedule events for the CBR and FTP agents

#$ns at 0.0 "cwndDump $tcp 0.01 "

$ns at 0.1 "$ftp start"

$ns at 100.1 "$ftp stop"

$ns at 100.2 "finish"

#Run the simulation

$ns run

APPENDIX A

 Average Error Rate

For the Markov chain [7] with transition probability matrix P, the long-run proportion of time,
[image: image6.wmf]j

P

, that Markov chain is in state j , is given by

[image: image7.wmf]å

=

P

=

P

N

i

ij

i

j

P

1

 1

[image: image8.wmf]å

=

P

=

N

i

i

1

1

 2

Therefore from Figure 2, steady state probability for each state is

[image: image9.wmf]}

From eqn-3 we have four equations, three unknown. Dropping one equation, then we have.

[image: image10.wmf]}

Write the system of above equations in matrix form

[image: image11.wmf]ê

ê

ê

ê

ë

é

[image: image12.wmf]ú

ú

ú

ú

û

ù

 =
[image: image13.wmf]ê

ê

ê

ê

ë

é

[image: image14.wmf]ú

ú

ú

ú

û

ù

[image: image15.wmf]ê

ê

ê

ê

ë

é

[image: image16.wmf]ú

ú

ú

ú

û

ù

 Hence matrix π can be obtained by

[image: image17.wmf]ê

ê

ê

ê

ë

é

[image: image18.wmf]ú

ú

ú

ú

û

ù

 =
[image: image19.wmf]ê

ê

ê

ê

ë

é

[image: image20.wmf]ú

ú

ú

ú

û

ù

[image: image21.wmf]ê

ê

ê

ê

ë

é

[image: image22.wmf]ú

ú

ú

ú

û

ù

γg βg αg

αm γm βm

βb αb γb

Figure1: Received packets - Tahoe

Figure2: Received packets - SACK

Figure3: Through Vs Maximum Window Size – SACK & Tahoe (Burst)

Lossy Link

Lossless Link

τ1 + τ2

τ2, W2

τ1, W1

Delay

B=Large

Drop

GOOD

BAD

MODERATE

αg

βb

γm

γg

γb

βm

βg

αb

αm

πm

πg

πb

P

. 3

πg

πm

πb

πg

πm

πb

-1

πg = πg γg + πm αm + πb βb

πm = πg βg + πm γm + πb αb

πb = πg αg + πm βm + πb γb

1 = πg + πm + πb

0 = πg (γg – 1) + πm αm + πb βb

0 = πg βg + πm (γm - 1) + πb αb

1 = πg + πm + πb

0

0

1

 (γg – 1) αm βb

 βg (γm - 1) αb

 1 1 1

. 4

0

0

1

 (γg – 1) αm βb

 βg (γm - 1) αb

 1 1 1

PAGE
3

_1058438792.bin

_1058719683.unknown

_1058719701.unknown

_1058643609.unknown

_1058645423.unknown

_1058648154.unknown

_1058645379.unknown

_1058635943.unknown

_1058189016.bin

_1058438766.xls
SACK

		1		816

		2		1526

		3		2096

		4		2491

		5		3111

		6		3757

		7		3823

		8		4272

		9		4195

		10		4460

		11		4301

		12		4505

		13		4455

		14		4516

		15		4516

		16		4689

		17		4694

		18		4694

		19		4677

		20		4678

		21		4678

		22		4678

		23		4678

		24		4678

		25		4678

		26		4678

		27		4678

		28		4678

		29		4678

Chart1

		1		1

		2		2

		3		3

		4		4

		5		5

		6		6

		7		7

		8		8

		9		9

		10		10

		11		11

		12		12

		13		13

		14		14

		15		15

		16		16

		17		17

		18		18

		19		19

		20		20

		21		21

		22		22

		23		23

		24		24

		25		25

		26		26

		27		27

		28		28

		29		29

Tahoe

SACK

MaxWindowSize

Throughput (Packets/450Sec)

Throughput Vs MaxWindowSize

816

816

1526

1526

2076

2096

2614

2491

3145

3111

3533

3757

3617

3823

3701

4272

3740

4195

3742

4460

3749

4301

3768

4505

3784

4455

3798

4516

3787

4516

3783

4689

3777

4694

3740

4694

3731

4677

3727

4678

3727

4678

3727

4678

3727

4678

3727

4678

3727

4678

3727

4678

3727

4678

3727

4678

3727

4678

Tahoe

		1		816

		2		1526

		3		2076

		4		2614

		5		3145

		6		3533

		7		3617

		8		3701

		9		3740

		10		3742

		11		3749

		12		3768

		13		3784

		14		3798

		15		3787

		16		3783

		17		3777

		18		3740

		19		3731

		20		3727

		21		3727

		22		3727

		23		3727

		24		3727

		25		3727

		26		3727

		27		3727

		28		3727

		29		3727

Sheet3

		

_1046620258

