
Software defined networking
to support the software
defined environment

C. Dixon
D. Olshefski

V. Jain
C. DeCusatis

W. Felter
J. Carter

M. Banikazemi
V. Mann

J. M. Tracey
R. Recio

Software defined networking (SDN) represents a new approach in
which the decision-making process of the network is moved from
distributed network devices to a logically centralized controller,
implemented as software running on commodity servers. This enables
more automation and optimization of the network and, when
combined with software defined compute and software defined
storage, forms one of the three pillars of IBM’s software defined
environment (SDE). This paper provides an overview of SDN,
focusing on several technologies gaining attention and the benefits
they provide for cloud-computing providers and end-users. These
technologies include (i) logically centralized SDN controllers to
manage virtual and physical networks, (ii) new abstractions for
virtual networks and network virtualization, and (iii) new routing
algorithms that eliminate limitations of traditional Ethernet routing
and allow newer network topologies. Additionally, we present IBM’s
vision for SDN, describing how these technologies work together
to virtualize the underlying physical network infrastructure
and automate resource provisioning. The vision includes automated
provisioning of multi-tier applications, application performance
monitoring, and the enabling of dynamic adaptation of network
resources to application workloads. Finally, we explore the
implications of SDN on network topologies, quality of service,
and middleboxes (e.g., network appliances).

Introduction
Software defined networking (SDN) represents a
fundamental advancement, revolutionizing the network
industry [1]. SDN differs from traditional networking in three
critical ways. First, SDN separates the data plane, which
forwards traffic at full speed, from the control plane, which
makes decisions about how to forward traffic at longer time
scales. Second, SDN provides a well-defined interface
between the now-separated control and data planes, including
a set of abstractions for network devices that hide the many
of their details. Third, SDN migrates control plane logic to
a logically centralized controller that exploits a global
view of network resources and knowledge of application
requirements to implement and optimize global policies.
Figure 1 shows a high-level SDN architecture where the

SDN controller provides the centralized control plane
functionality for the switches and allows SDN applications
to provide network functionality. As a result of these
three seemingly simple changes to traditional network
architectures, SDN should radically increase the pace of
network innovation and improve the performance,
scalability, cost, flexibility, security, and ease of
management. Along with software defined compute
and software defined storage, IBM’s software defined
environment (SDE) allows for the automation and
optimization of entire computing environments providing
similar benefits.
At its core, SDN allows a high-level abstract specification

of network connectivity and services to be automatically
and dynamically mapped to a set of underlying network
resources. Figure 2 depicts an abstract representation of the
network for a three-tier web workload. The thick lines
represent connectivity between the tiers, whereas thin

�Copyright 2014 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

Digital Object Identifier: 10.1147/JRD.2014.2300365

C. DIXON ET AL. 3 : 1IBM J. RES. & DEV. VOL. 58 NO. 2/3 PAPER 3 MARCH/MAY 2014

0018-8646/14 B 2014 IBM

lines indicate policy and/or network services applied to
connectivity. Figure 3 shows the underlying network
resources for one potential realization of the abstract
network depicted in Figure 2. The thick arrows correspond to
the abstract connectivity in Figure 2, whereas thin lines
indicate the physical links in the network. The underlying
implementation is far more complicated than the abstract
representation. Traditional networks are specified in terms of
the underlying implementation. This is analogous to
programming in assembly language. Software defined

networks are specified in abstract terms that more closely
resemble programming in a high-level language.

Virtualization and abstraction
SDN defines open, standard abstractions for networks that
hide the details of the underlying infrastructure, similar to
how an operating system abstracts the complexity of
underlying hardware by exporting common application
programming interfaces (APIs) to services such as file
systems, virtual memory, sockets, and threads. These

Figure 1

A high-level view of a standard SDN network architecture where a (logically) centralized SDN controller provides the control plane for all of the
switches. The solid lines represent the physical connectivity between switches (either physical or virtual) and the dotted lines represent communication
between the controller and the switches to install forwarding rules. The controller provides new network functionality by hosting SDN applications.

Figure 2

The abstract network specification for a three-tier web workload including a firewall service and a load balancer service on the logical link between the
Internet and web servers. Further, connections between application servers and database servers are labeled with a higher quality of service.

3 : 2 C. DIXON ET AL. IBM J. RES. & DEV. VOL. 58 NO. 2/3 PAPER 3 MARCH/MAY 2014

abstractions provide new tools to enable the richer network-
ing functionalities demanded by recent industry trends
including dynamic virtual server workloads, multi-tenant
cloud computing, and warehouse-scale data centers. Existing
standards and abstractions have proven inadequate for
delivering this functionality Bat scale[; for example, 12-bit
virtual local area network (VLAN) identifiers [2] allow for up
to 4,096 isolated tenants. To address this, networks have
become increasingly complex, including proprietary routing,
traffic engineering mechanisms, and labor-intensive
configuration of network appliances used to secure and
optimize multi-tier systems. SDN offers the potential to
reverse this trend by addressing these problems in the
controller software running on commodity servers that
programs network hardware using open protocols.
The dominant use of SDN that enables solutions to these

problems is network virtualization. Network virtualization
involves abstracting the physical network in two ways:
(i) isolating multiple tenants and giving them a Bview[
such that they are the only ones using the network
and (ii) presenting an abstract topology that may differ from
the physical topology, e.g., an abstract topology with all
hosts attached to a single, large switch. A related concept is
Network Functions Virtualization (NFV) [3], which replaces
specialized appliances such as firewalls, load balancers,
and intrusion detection systems with virtual machines (VMs)
running on conventional servers [4–7] connected to the

network. In the server world, virtualization has enabled new
applications and revenue streams that would not have been
technically possible or economically feasible otherwise.
It is anticipated the same will be true for networking.

Splitting the data plane and the control plane
In conventional networks, each device implements both data
and control plane functionality. For example, when a packet
is received at a switch, the data plane matches fields in
the packet with respect to forwarding rules and performs
specified actions such as changing the destination Internet
Protocol (IP) address and forwarding the packet on a specific
port. To instantiate these rules, various mechanisms are
used. For basic forwarding, each device participates in
distributed control plane logic, communicating with peers
using protocols such as spanning tree [8] or Transparent
Interconnection of Lots of Links (TRILL) [9] for Ethernet
switchesVand Border Gateway Protocol (BGP) [10] or
Open Shortest Path First (OSPF) [11] for IP routers.
SDN combines these control channels into one mechanism

that can control both basic forwarding and more sophisticated
services. Each device continues to forward packets at full
speed on the basis of currently installed forwarding rules, but
the distributed control plane is replaced with a logically
centralized controller that programs the forwarding rules of
each device in the network. The controller uses its global
network view to create basic forwarding rules that are not

Figure 3

The underlying network implementing the abstract network shown in Figure 2. The thick arrows represent the tunnels that provide the abstract
connectivity from the Internet to the various services via the appropriate middleboxes. The hypervisor virtual switches (labeled vSwitch) are
responsible for routing traffic in to and out of the tunnels. The quality of service requirements between the application servers and database servers are
provided by configuration in the switches and are not shown.

C. DIXON ET AL. 3 : 3IBM J. RES. & DEV. VOL. 58 NO. 2/3 PAPER 3 MARCH/MAY 2014

limited to spanning trees and dovetail with higher-level
functionalities such as Network Address Translation (NAT)
and VLANs. The ability to control all aspects of the network
results in flexibility and innovation.

Centralizing network control
Once the data and control planes are split, it is no longer
necessary to have a distributed control plane. As a
consequence most realizations of SDN migrate a substantial
portion of network control functionality to a logically
centralized SDN controller. The controller connects to every
switch in the network, typically through a separate control
network, which allows it to monitor and control each device.
A tightly coupled cluster of SDN controllers can be used
for scale-out and fault-tolerance [12–14]. In such clusters,
consistently distributing shared state can be problematic and
many recent efforts have explicitly distributed some tasks
either to a subset of the cluster or to switches to alleviate
these issues [15, 16]. Though less common, the distributed
management plane can also be replaced with a logically
centralized management point, possibly the same controller,
to enable network-wide monitoring, management, and
policy enforcement [17].
While there are well-recognized trade-offs between

distributed and centralized control, the advantages of
centralization appear to greatly outweigh the disadvantages
in the context of SDN. Most of the problems described earlier
can be solved using SDN technology. For example, an
SDN controller has global visibility into the current state
of the network, e.g., link and buffer utilization, device
failures, and where hosts are located, so it can implement
end-to-end quality of service (QoS) and respond rapidly
to failures [18, 19]. However, SDN need not centralize
control entirely. Internet scale networks and networks
of large organizations will continue to consist of numerous
independent administrative domains.
The rest of this paper is organized as follows. The next

section describes several example SDN scenarios: network
virtualization and abstraction, middlebox connectivity,
fabrics, monitoring-control loops, and QoS. That is followed
by a discussion of IBM’s SDN vision and offerings including
the OpenDaylight** Project [20]. After that, examples of
early adopters of SDN technology are presented. Two final
sections briefly discuss migration to SDN technology and
provide concluding remarks.

Example SDN scenarios
SDN provides a platform on which a wide variety of
scenarios can be realized. Ultimately, the functionality
delivered via this platform will be limited only by
developers’ ingenuity and imagination. Here, we describe
six scenarios that have already been realized: network
virtualization, network abstraction, middlebox insertion,
fabrics, monitoring-control loops, and QoS. These examples

are chosen to both give an idea of the breadth of SDN’s
uses and illustrate some of the most prevalent current
use cases.

Network virtualization
Perhaps the most common SDN scenario is network
virtualization. In fact, people sometimes mistakenly equate
SDN with virtualization. The Merriam-Webster dictionary
defines virtual as Bbeing such in essence or effect though not
formally recognized or admitted.[For example, a virtual
Ethernet switch, such as Open vSwitch [21], behaves just like
a physical Ethernet switch. It receives incoming Ethernet
frames on its ports and forwards them, transmitting each on
the appropriate port(s), based on fields in the frame header
such as the destination address. Unlike a physical Ethernet
switch, however, a virtual switch is realized in software,
typically in a hypervisor running on a general-purpose
computer. This enables virtual switches, and virtual
networks, to be created quickly and easily, which is one of
the key benefits of virtualization.
Virtual Ethernet switches forward Ethernet frames between

virtual network interface cards (vNICs) associated with
VMs running on a hypervisor and one or more of the
hypervisor’s physical Ethernet NICs. This allows a single
physical Ethernet NIC to be shared by multiple VMs. By
itself, interface sharing only allows vNICs to be connected
to physical Ethernet switches. A typical physical Ethernet
network consists of multiple interconnected switches. To
construct a virtual network, the connections between
switches must be virtualized as well. This raises some
interesting challenges for which SDN is particularly
well-suited.
Virtual networks can be implemented using a variety of

means. One is by using VLAN tags. Such tags segment traffic
flowing throughout a single Ethernet into multiple conceptual
or Bvirtual[local area networks. Switches direct traffic
tagged for a particular VLAN only to ports associated with
the corresponding tag thus enforcing the appearance of
multiple and separate networks. At first glance, VLANs
might appear to be an ideal mechanism for network
virtualization. Their effectiveness for this purpose is limited
by several factors. First, VLANs do not, by themselves, span
multiple Ethernet networks, or even multiple Ethernet
switches. Instead, they require careful coordination of the
configuration at all switches that might need to handle traffic
for that VLAN. This is a severe limitation for a virtual
network, which can reasonably be expected to span multiple
physical networks potentially over geographically dispersed
regions. Second, the total number of VLANs is limited to
4,096 because of the number of bits in the VLAN tag.
This limit is smaller than the number of virtual networks
that might be needed in even a small to medium sized data
center. VLANs, though useful, do not provide an ideal
solution for network virtualization.

3 : 4 C. DIXON ET AL. IBM J. RES. & DEV. VOL. 58 NO. 2/3 PAPER 3 MARCH/MAY 2014

A more effective approach to network virtualization is to
use an overlay network. With this approach, the virtual
switches encapsulate or Bwrap[virtual Ethernet frames in
one or more higher layer network protocols, typically User
Datagram Protocol (UDP) and/or IP. Virtual switches are
connected to one another via IP Btunnels[for which there
are two leading and competing standards: Virtual eXtensible
Local Area Network (VXLAN) [22] and Network
Virtualization using Generic Routing Encapsulation
(NVGRE) [23].
The tunnels form a network that is overlaid on top of an IP

network. This approach has several benefits. One is the lack
of any need to configure or otherwise control physical
switches. The only requirement overlays have on the
underlying network is IP connectivity, which has long been
ubiquitous. Another benefit is their significantly greater
scalability relative to VLANs. One important consideration
with overlays is the approach used to select switches
between which a tunnel is established. Tunnels could be
established between every pair of switches. This generates n2

tunnels where n is the number of virtual switches. In another
approach, a single virtual switch is selected with which
all other switches establish a tunnel. Both approaches can run
into scalability issues when there are very large numbers
of virtual switches. Current solutions use traditional routing,
e.g., BGP or OSPF, to interconnect different overlay
networks when they reach these scaling limits.
Overlays also have some drawbacks. Perhaps the largest

is that the mappings from destination addresses to
corresponding tunnels have to be disseminated and kept
up-to-date even as VMs join, leave and move. This adds
either increased latency to the first packet while the virtual
switch pulls this information from a centralized service
or extra communication and complexity overhead to keep
correct entries pre-cached. Further, encapsulation adds
additional headers reducing the amount of data in each
physical Ethernet frame available for useful data (slightly)
decreasing throughput. Encapsulation and de-encapsulation
also entail processing and memory overhead. Finally,
while building on top of IP eases deployment, it also means
accepting IP’s best effort delivery. Alternately, the overlay
controller can leverage QoS features in the underlying
switches at the cost of the added complexity involved in
configuring and using QoS queues in each switch.
A third approach to network virtualization leverages

OpenFlow** [24]. OpenFlow is a standard protocol by
which an SDN controller can configure forwarding rules in
Ethernet switches. The protocol allows packets to be
identified by a comprehensive set of header fields such as
source and destination Media Access Control (MAC)
addresses, IP addresses and Transmission Control Protocol
(TCP) or UDP port numbers. OpenFlow can be used to
implement a virtual network by programming virtual and
physical switches to forward packets between network

interfaces attached to the same virtual network while
prohibiting flows between different networks. OpenFlow
does not require encapsulation. Furthermore, once a switch is
programmed for a particular flow, it forwards frames using
the same mechanism and identical performance as for a
conventional nonvirtualized network.
A key consideration when leveraging OpenFlow is

the approach used to program switch forwarding rules. Rules
may be programmed reactively, where packets that do not
match an already-installed rule are sent to the controller,
which then installs an appropriate rule. They may also be
programmed proactively, for example, when a new host
is discovered or a virtual network is defined. This exposes
a tradeoff between the added latency of contacting the
controller on the first packet of each flow and needing to keep
rules installed for all flows versus only currently active flows.
The reactive approach is more commonly used today as
the number of fully flexible rules that can be simultaneously
installed in physical switches is often quite limited, e.g.,
1,000 rules. Increasing rule sizes and hybrid approaches
promise to improve this state of affairs.
OpenFlow provides fine-grained control over a switch’s

forwarding behavior including the ability to enforce QoS.
This can be leveraged to limit or eliminate performance
interference between distinct virtual networks. OpenFlow too
has its limitations. Its primary drawback is that it requires
OpenFlow capable switches and the administrative authority
to exploit that capability. OpenFlow is a new and still
emerging technology so its deployment is currently limited.
Currently deployed OpenFlow controllers typically manage
a limited set of switches such as those within a single
data center. Thus, while highly effective for use within a
data center, OpenFlow, by itself does not currently represent
a viable solution for network virtualization across
geographically dispersed sites without using overlay tunnels
between Bislands[of OpenFlow switches.
The preceding discussion of virtualization options may

seem to reflect increasing complexity rather than the
simplification promised by SDN. However, the details of
the implementation and ultimately the selection of an
implementation are handled by the SDN controller. A virtual
network user need only specify the required connectivity
and desired network services. The controller takes these
specifications and configures implementation artifacts such as
tunnels or OpenFlow rules as needed to realize virtual
networks on the available underlying network resources.

Network abstraction
Traditionally, one measure of virtualization quality is the
extent to which virtual entities appear to be as real as
possible. Fidelity between real and virtual entities allows the
entire ecosystem of software and expertise developed in
the real world to be leveraged in the virtual one. It eliminates
the need for solutions already perfected on real resources

C. DIXON ET AL. 3 : 5IBM J. RES. & DEV. VOL. 58 NO. 2/3 PAPER 3 MARCH/MAY 2014

to be re-implemented. One benefit of virtualization
however is the ability of virtual entities to offer enhanced
functionality. SDN therefore provides not only network
virtualization, but also abstraction. The Merriam-Webster
dictionary defines the term abstract as Bdisassociated
from any specific instance.[An abstract network,
therefore, is one that retains the fundamental capabilities of a
general class of networks, for example packet forwarding,
without exhibiting the specific behaviors of any one instance,
such as a network of Ethernet switches.
An abstract network adheres to a given model. The model

defines the entities supported by the network and their
behaviors including interactions among entities and with
the external world. Many models are possible. Virtual
Ethernet, described earlier, though not particularly
abstract, represents one network model. Virtual Ethernet
implementations typically provide some level of abstraction.
One popular model is the Bbig switch[in which all virtual
network interfaces appear to be plugged into a single
switch regardless of the presence of multiple underlying
physical and virtual Ethernet switches. A single link in a
virtual Ethernet may actually correspond to multiple links
or paths in the physical network. Higher levels of abstraction
are possible. Ethernet follows a Bdefault on[approach.
In the absence of specific action to the contrary, all interfaces
connected to the same network can communicate with one
another.
An alternate model from IBM Research called

Meridian [25] takes a Bdefault off[approach. With
Meridian, specifying that server A can communicate with
both server B and server C does not imply B and C can
communicate with each other. This facilitates handling real
world scenarios that are not as well suited to a default on
model. One example is where a set of web servers must
communicate with a set of application servers but there
is no requirement for communication among the web
or application servers themselves.
As with high level programming languages, numerous

models are possible and model development is expected to
continue for the foreseeable future. A good model is
generally easy to use, abstract, dynamic, comprehensive and
composable. A model should be intuitive to use and naturally
fit typical scenarios. It should not mandate specification
of details that may not always be necessary. A good model is
adept at handling changes in both the abstract and physical
networks. Strong models provide comprehensive network
services, for example address assignment and name
resolution, enabling but not requiring essential services be
provided externally. Finally, a good model facilitates
composition of higher-level services from fundamental
model entities.
An SDN controller may support multiple models

concurrently. These models may exhibit equivalence in
which any scenario described in one can be identically

represented in another. In this case, it may be possible to
interact with a single abstract network instance using
multiple models. Incompatibilities between models may also
exist. In such cases, the controller may augment or adapt one
or more models to enable better interoperation. Alternately,
such incompatibilities may simply prohibit an abstract
network specified using one model from being manipulated
via another.

Middlebox insertion
A middlebox is a hardware or virtual appliance that provides
functionality along a network path. Example middleboxes
include firewalls, intrusion detection and/or prevention,
proxies, caches, and wide area network (WAN) accelerators.
Middlebox deployment is a significant pain point for data
centers. Physical appliances are expensive to purchase
and require a specialized skill set to configure thus increasing
both capital and operational expense. They often have to
be cabled in-line at specific locations in the network limiting
flexibility. Firmware upgrades can be a risky undertaking.
To date, the industry has failed to converge on a standard
protocol for configuration of firewalls, load balancers
and other middleboxes. Data centers are left with a variety of
heterogeneous appliances, each with their own method of
configuration whose semantics differ from device to device.
An emerging trend is replacement of physical

middleboxes with virtual appliances, most recently termed
NFV. Virtual appliances are highly flexible in that they
can be placed on any host server. Being VMs, they can be
copied and started throughout the data center making them
ideal for auto-scaling in response to traffic load. One
approach taken in this direction is to create a distributed
platform for middlebox appliances (e.g., vAMOUR [26] or
Embrane** [27]). The middlebox platform controller is
separate from the SDN controller and deploys the required
middlebox functionality across the VMs it manages. The
middlebox controller tunnels traffic between middlebox VMs
as specified by a user-specified chain. A drawback to this
approach is that, typically, a given middlebox controller only
interoperates with middleboxes from that vendor either
limiting the set of available middleboxes or requiring
multiple such controllers.
IBM’s vision is for the SDN controller to manage

middlebox deployment as an integral part of virtual network
deployment, and to consider middleboxes as first class
entities within the network model. In actuality, we would like
to manage network services, which might be middleboxes or
other network functionality, such as higher QoS. The user
can specify which types of cloud provided network services
need to service which flows. The user may accept the
default rule set that is provided by a firewall or specify
some custom changes in a manner that declares the desired
semantics without having to delve into a low-level rule
specification language.

3 : 6 C. DIXON ET AL. IBM J. RES. & DEV. VOL. 58 NO. 2/3 PAPER 3 MARCH/MAY 2014

To support middleboxes from different vendors, the SDN
controller provides a plug-in mechanism that enables vendors
to manage their company’s middleboxes using their
vendor-specific protocol. The SDN controller maps the
virtual network model, including its network services, to an
internal representation and calls the appropriate vendor
plug-in to configure the appropriate middleboxes. The SDN
controller manages the routing of all packet flows in the
networkVbetween hosts and network services. This
integrated, global view and control allows for fast
scale up/down, insertion and removal of network services
and servers.
Current virtualized middleboxes mimic their physical

counterparts and thus inherit certain drawbacks. This
includes the need for network interfaces into each network
that they service. Overlay network based service chaining
can aid in removing these restrictions thereby simplifying the
deployment of these devices.

Network fabrics
A fabric is a set of network devices, such as switches, that
provide connectivity as a holistically managed unit. Fabrics
are a natural fit for SDN because a controller normally
manages a set of switches in much the same way. Fabrics
typically provide shortest path forwarding and some degree
of multipathing. They can thus offer significantly more
bandwidth than traditional networksVespecially at the
Ethernet layer where the spanning tree protocol typically
restricts these features. Fabrics also usually allow
for straightforward host mobility, a feature missing from
traditional IP networks since moving between subnets
requires changing a host’s IP address.
While there are recent standards that build fabrics in a

distributed manner [9, 28], with SDN fabrics are constructed
by having the logically centralized controller determine
the network topology, e.g., via Link Level Discovery
Protocol (LLDP) [29], and then directly compute and
install routes. This centralized approach can offer faster
convergence to network changes, e.g., failures, and globally
optimized use of network resources. A variety of such
SDN fabrics have been proposed and some built [30–33]
offering different trade-offs. IBM’s SDN controller
implements a fabric called Scalable Per-Address RouTing
Architecture (SPARTA) based on PAST (Per-Address
Spanning Tree) [34]. A key benefit of SDN fabrics is the
ability to improve, or replace, the fabric simply by upgrading
the SDN controller.
As fabrics need not implement standard routing

protocols internally, they open the possibility of using more
exotic topologies than the typical folded-Clos-style fat trees
used today. There are a variety of existing topologies
optimized for different communication patterns, e.g.,
HyperX [35], the cabling-optimized Dragonfly [36], and the
randomly wired Jellyfish [37]. These topologies provide

multiple shortest paths between endpoints, so fabrics’
support for multiple paths can exploit these unconventional
topologies to increase performance and/or lower cost. These
new topologies typically employ a single type of switch
instead of the different core, aggregation, and edge switches
commonly found in current networks. Thus, an entire
fabric can be built out of a large number of relatively
inexpensive top-of-rack switches.
When a fabric has multiple paths available, it must

choose which path to use for each flow. Typically,
switches hash packet header fields and use the hash
function to choose the path; this spreads different flows
onto different paths while preventing packets of a single
flow from being reordered. Hashing works well when
there are a large number of flows of roughly equal
bandwidth, but high-bandwidth flows and random
hash collisions cause load imbalances within fabrics.
Advanced fabrics can monitor for such imbalances and
reroute flows to spread load more evenly, reducing
congestion and increasing overall network throughput.
SDN makes such automatic traffic engineering easier
to implement because the central controller can aggregate
measurements of the whole network and perform global
optimizations [18, 19].

Monitoring-control loops
While the most significant work on SDN has come on the
control side, the ability to program switches is worthless
without the context of how they are connected and what
traffic they must forward.
To provide this context, SDN solutions typically

provide three monitoring mechanisms:

1. Topology discoveryVMechanisms to discover links
between network devices and thus deduce the topology
of the network. This includes both physical links, and
multi-hop links, e.g., tunnels.

2. New flow detectionVA way to get notifications of new
flows where a flow can be defined as a new host joining,
a new host-pair communicating, or a new TCP/UDP
connection depending on the circumstances.

3. CountersVCounters track the number of bytes and
packets handled at different granularities, e.g., per switch,
per host, or per port.

These mechanisms provide an unprecedented level of
automated monitoring. Rather than painstakingly maintaining
an authoritative diagram of network topology, the network
itself can produce the diagram more accurately. New flow
detection and counters provide feedback about network
utilization in near real-time. This allows for both human
operators and automated tools to understand what their
networks are doing and why at time scales and fidelities
previously impossible.

C. DIXON ET AL. 3 : 7IBM J. RES. & DEV. VOL. 58 NO. 2/3 PAPER 3 MARCH/MAY 2014

Polling counters on all network devices from a centralized
SDN controller may prove to be costly. Prior work has
shown that to be effective, the polling should finish within
a second or less [38, 39], which is difficult. Several
researchers have explored using flow monitoring techniques
such as NetFlow [40] and sFlow [41] in conjunction with
topology discovery [42]. Nearly all current virtual and
physical switches support NetFlow or sFlow. NetFlow
enabled switches send Netflow records to a collector
at periodic intervals. These contain details about all flows
observed during the last monitoring interval. sFlow enabled
switches sample one out of every N packets (where N is a
configured sampling rate) and sends the packet header to
a collector. These approaches offer potentially lower-latency
and more scalable approaches to monitoring the current
network state. Significant prior work has focused on how
to use these measurements to effectively infer network
conditions [43] and perform high layer functions such as
network aware VM management [44].
Combining accurate knowledge of the network topology,

flows, and link utilization with the ability to change
forwarding behavior illustrates the strength of SDN. This
combination allows an adaptive control loop to monitor and
react to network events in real time. For example, this can
be used to redirect large flows away from congested links.
Over time, with proper annotation of particular

workloads, the controller can even learn the network
behavior of different workloads and adapt the forwarding
rules in anticipation rather than merely as a reaction.
In a virtualized environment, VM placement can be based on
network conditions and VMs can be migrated if beneficial.
At even longer time-scales, knowledge of fine-grained
workload usage combined with big data analytics can inform
decisions of how to reconfigure and upgrade the network.
For example, simply adding an extra link between certain
racks might have the same effect for certain workloads
as upgrading the entire network.

Quality of service
SDN enables several types of network QoS. A coarse form
of Bbest-effort[QoS can be achieved by quickly detecting
congestion and rerouting traffic around congested links.
This is an active area of research and several researchers
have looked at how to reduce time required to detect
congestion and reroute flows [45].
Providing stronger QoS guarantees typically requires

two switch features: (i) the ability to create and configure
queues with dedicated bandwidth at each switch port and
(ii) the ability to place flows into these queues [46].
The latter is easily available through the OpenFlow
enqueue action, whereas the former has been largely
achieved out-of-band. Configuration of queues is an essential
part of the OF-Config specification [15]. An alternate
approach proposed recently is to combine rate control at end

hosts with OpenFlow-based control of flows in the physical
network to give end-to-end guarantees [47].
In an environment, where SDN is supported only at the

network edge, QoS options are limited. A controller can
employ explicit rate control (supported in Open vSwitch),
but without knowledge of the internal topology it is difficult
or impossible to avoid oversubscribing links. Alternately,
the controller can explicitly set the IP type of service [48]
and/or Ethernet priority code point [49] packet header fields
for downstream routers and switches to act on.

IBM’s SDN approach, architecture, and offerings
IBM SDN for Virtual Environments (SDN-VE) is
an SDN controller that can control an overlay network, a
fabric, or both together. The SDN-VE controller is
based on the Linux Foundation’s OpenDaylight
Project [20]. Alongside the controller, IBM provides virtual
switches designed for specific hypervisor platforms
including virtual switch for VMware (the IBM System
Networking’s Distributed Virtual Switch 5000V [50])
and a virtual bridge for Kernel-based VM (KVM) as part
of SDN-VE.
This section describes SDN-VE including its

OpenDaylight base, the architectural framework, how
that framework integrates with cloud infrastructure such as
OpenStack, and operates over various underlying protocols
such as OpenFlow.

OpenDaylight
IBM was a founding member of the OpenDaylight Project, a
Linux Foundation project chartered to create a unified, open
source SDN controller and other technologies. IBM’s most
significant contribution to date is the Open Distributed
Overlay Virtual Ethernet (Open DOVE) network
virtualization component based on earlier research at
IBM [51]. The project’s first release includes support for a
wide range of network protocols including OpenFlow 1.0,
OpenFlow 1.3, Path Computation Element Communication
Protocol (PCEP) [52], Border Gateway Protocol (BGP)
[10], the Locator/ID Separation Protocol (LISP) [53], and
services including Distributed Denial of Service (DDoS)
mitigation and network virtualization. At its core, the
OpenDaylight controller consists of Java**-based,
OSGi bundles [54] that allow for individual components of
the controller to be easily swapped in and out combined
with a Service Abstraction Layer (SAL) that insulates
applications or services running on top of the controller from
the protocol details of Bdrivers[that logically sit at the
bottom of the controller.

Architectural framework
The SDN-VE architecture consists of: (i) the controller
core, northbound APIs and southbound driver plug-in
interfaces; (ii) integrated network services and applications,

3 : 8 C. DIXON ET AL. IBM J. RES. & DEV. VOL. 58 NO. 2/3 PAPER 3 MARCH/MAY 2014

which can be hosted within or outside the SDN-VE platform;
and (iii) the underlying physical network. The SDN-VE
platform has a layered architecture. Network services and
applications sit at the top layer and interact with the
controller via an abstract network API. The middle layer is
an orchestration layer that interprets the abstract network
API calls, converts them into network specific tasks and
implements the tasks through one or more drivers at
the bottom layer. The bottom layer is composed of a set of
protocol drivers or interfaces enabling the controller to

communicate with different devices as well as deployed
environments in the network. Figure 4 shows the
architecture of the SDN-VE controller.

SDN-VE controller coreVThe core provides a set of
common functionality essential for building network
services and applications. It includes an object modeling
infrastructure to represent network elements such as
switches, routers and gateways along with their
configuration and interconnections as well as a data store

Figure 4

The IBM SDN-VE architecture. The core platform consists of three layers: (i) the abstract, northbound network API, which is compatible with
OpenStack Neutron, (ii) an orchestration layer (represented by BCore Services and Apps[and the BOpenDaylight-based SDN controller,[which maps
abstract API calls to actions on devices and vice versa, and (iii) the southbound drivers for devices including OpenFlow and DOVE. Provisioning
platforms make use of the northbound APIs to configure the network. The DOVE driver provides overlay virtual networks (shown on the middle right)
across both OpenFlow and IP networks (shown at the bottom), while the OpenFlow driver allows for control of the underlying fabric if it supports
OpenFlow.

C. DIXON ET AL. 3 : 9IBM J. RES. & DEV. VOL. 58 NO. 2/3 PAPER 3 MARCH/MAY 2014

for maintaining configurations, topology, state, policies
and other critical data needed for controller operation.
Further, it provides synchronization between controller
instances deployed in a cluster for fault-tolerance and to
scale-out. In addition, the core provides methods for
unified topology discovery and maintenance.
Northbound APIsVThe SDN-VE northbound API is a
superset of Neutron [55], the OpenStack networking
API. This has been deliberately designed to make the
integration of SDN with SDE, which is based on
OpenStack, easier as discussed in SDN integration section
below. Currently, the SDN-VE northbound API provides
support layer-2 virtualization using networks, subnets,
and ports as primitives. Further, it can perform layer-3
routing between subnets it manages. It also supports
several Neutron extensions such as port binding and
provider network [56] extensions.
Southbound driversVThe SDN-VE platform offers
extensibility through southbound drivers that control
network devices. In particular it uses (i) OpenFlow 1.0
and 1.3 drivers to manage switches that support those
protocols and (ii) drivers for virtual switches in
hypervisors to implement overlay virtualization using
Distributed Overlay Virtual Ethernet (DOVE) including
support for KVM [57] and VMware environments.
Over time, we expect that SDN-VE will add additional
drivers both from OpenDaylight and IBM efforts.
Orchestration layerVThe orchestration layer is
responsible for mapping requests received from
northbound layer to the appropriate set of devices and
consequently drivers. A similar mapping from devices to
northbound API concepts translates events generated in
the network to applications that have registered for
such notifications.
Network applications integrated with SDN-VEVThe
SDN-VE platform is designed to be extensible through the
addition of network applications and even possibly open
to third-party developers, but a variety of core
applications come pre-integrated with SDN-VE:

• Logical networksVThis service enables creation of
disparate logical networks over the shared physical
infrastructure, along with provisioning for the necessary
physical and virtual resources. It supports multi-tenancy
with per tenant virtual network configuration, policies,
traffic isolation, statistics and topology views.

• Connectivity serviceVBased on the grouping of hosts
into logical networks, the connectivity determines
whether hosts should be allowed to communicate and if
so, through what middleboxes and/or network services.

• Scalable Per-Address RouTing Architecture
(SPARTA)VSPARTA is a scalable layer-2 forwarding
solution designed to make efficient use of network
fabrics. SPARTA, which is based on PAST [34],

computes per-MAC-address, destination-rooted spanning
trees and programs switches to forward traffic to each
host in the network along its associated tree. SPARTA
supports an arbitrary (mesh) topology and balances
flows across multiple paths, thus helps do away with
the limitations of traditional Ethernet networks with a
single spanning tree. Further, SPARTA leverages access
to larger layer-2 specific forwarding tables to support
more than 100,000 hosts on some switches.

• Flow replication and redirectionVThis allows a higher
layer application to logically tap into flows between a
given source and destination by having the traffic
replicated to another destination. This service can be used
for pushing selected flows to diagnostic tools. It can also
test new services on live traffic before deployment.

Service plane integrationVAs SDN is deployed, a key
aspect is how the SDN controller integrates network
services and appliances. SDN-VE supports three different
kinds of network services. First, the controller can route
traffic through an existing physical appliance, but if the
appliance is not SDN-aware, the traffic may need to
be proxied by an SDN gateway that removes any
SDN-specific encapsulation and headers. Second, virtual
appliances behave similarly, but can be dynamically
instantiated as VMs on commodity servers and proxied by
the hypervisor virtual switch. Finally, some network
services can be implemented purely via OpenFlow rules
installed by a software module running in the controller.

To orchestrate this integration, the SDN-VE northbound
API extends the Neutron API to allow for the specification
of network service and middlebox insertion. In particular,
when using overlay routing, SDN-VE provides the ability to
define and configure special virtual networks that contain
(either physical or virtual) network services such as firewalls
and load balancers. Further, these services can be chained
and applied to fine-grained subsets of traffic. For example,
only TCP traffic on port 80 between two virtual networks.
The application of these chains and the services in them
is determined solely by properties of the traffic and the
grouping of the source and destination into virtual networks,
rather than being based on hosts’ physical locations.
IBM is in the process of proposing these service chaining
features and APIs as additions to OpenStack Neutron.

IBM SDN integration with SDE architectures
OpenStack [58], an open source platform for cloud
computing is emerging as the platform of choice for building
open clouds and forms the core of IBM’s SDE. The
OpenStack networking component, Neutron, provides ways
to create basic layer-2 and layer-3 connectivity and is quickly
expanding to support higher-level network services. In
particular, Neutron currently defines standard ways to specify

3 : 10 C. DIXON ET AL. IBM J. RES. & DEV. VOL. 58 NO. 2/3 PAPER 3 MARCH/MAY 2014

that firewalls, load balancers and Virtual Private Network
(VPN) services should be applied to certain traffic. Both
OpenDaylight and IBM’s SDN-VE provide plug-ins to
interface with Neutron. Further, the extensibility of Neutron
allows the differentiating features of SDN-VE to be presented
to OpenStack users through Neutron extensions.
While overlay network virtualization merely uses the

existing physical network for IP transport, SDN-VE is also
able to control the underlying fabric and coordinate actions
between the underlay and overlay. For example, when
SDN-VE provides a SPARTA fabric, the overlay component
can ask for link-disjoint paths to avoid correlated failures.
When it comes to interoperability between the fabric
and/or overlay and existing physical networks, SDN-VE
ensures the behavior at the edge is compatible with the
layer-2 and layer-3 expectations of existing physical
networks.

Early adoption
This section describes several early SDN deployments to
give an idea of what real-world use cases exist and thus how
others might start to deploy SDN.

Financial data distribution in real time
A provider of financial information had specific service-level
agreement (SLA) requirements to deliver financial
information to different subscribers while ensuring fairness
so each subscriber received information at the same time.
They used IBM’s OpenFlow solution including IBM
switches and IBM’s Programmable Network Controller to
move forwarding decisions off servers/firewalls and into an
OpenFlow network. Defining flow rules that rewrote packets,
added them to multicast groups and forwarded them to
specified ports, all in a few microseconds ensured that they
were able to meet the SLA requirement.

Application-driven network bandwidth allocation
A large European university deployed an SDN-based
solution using IBM switches that enables network
administrators to easily configure and manage virtual
networks that control traffic on a per-flow basis based on
application requirements. This helps to ensure more
predictable performance for large transfers of data in the
university’s complex environment.

On-demand network monitoring via virtual taps
A large managed service provider deployed an SDN-based
solution using IBM switches to provide the ability to
Btap[any location in their data center network and send
packets from the tap to a centralized location for analysis.
This gave them the flexibility to deploy virtual monitoring
points throughout the network to diagnose performance
and other network issues without having to dedicate physical
resources to the monitoring when it is not in use.

Careful management of expensive and critical
network resources
One of the first high-profile displays of the current generation
of SDN solutions was Google’s announcement that it
was using OpenFlow to operate its BG-Scale[private
inter-data-center WAN. The SDN features of this network
allow for traffic over their WAN to be scheduled and to
take non-default paths enabling them to more efficiently use
the expensive resource. In particular, they are able to
persistently drive their WAN links to near-maximum
utilization without ill effects giving a 2–3 times improvement
over standard practices [59–61].

Pervasive security enforcement
One of the major changes between traditional networking and
SDN is the notion that SDN holistically manages the network
in a logically centralized manner. An obvious area that
this can help with is security. Security appliances such as
firewalls and intrusion detection/prevention systems have
typically been point solutions and ensuring that they sit
at choke points in the network has been error-prone and
performance limiting. Instead SDN allows for a controller
to dictate logically pervasive security and route traffic
through the appropriate appliances or services. HP has
demonstrated this approach with clients in the enterprise
space in their presentation at the 2013 Open Network
Summit [62]. IBM offers similar features in SDN-VE.

Migration
Given the magnitude of the shift between traditional
networking and SDN, it is difficult not to wonder how to
introduce SDN into an existing network, allowing for
interoperation with legacy networks, and eventually
migrating more of the network to SDN. While this paper
elides a fuller discussion of these issues due to space
limitations, we highlight some of the issues.
SDN deployments can involve an overlay, control of

physical devices, or both. In general, deploying an overlay
alone requires less effort as it does not usually require new
hardware and instead uses existing layer-3 connectivity.
Overlays do generally require new software often in the
form of a specialized virtual switch for hypervisors
and a controller, but this is still less invasive than deploying
a full SDN solution which controls physical network
devices as well.
Interoperation with existing networks requires some

planning and while there are a variety of strategies, a
common strategy is to use existing internetworking
approaches to stitch SDN-enabled portions of the network to
legacy networks. For example, having a layer-3 gateway
that handles traffic to and from the SDN-enabled network
as though it were a normal IP prefix or subnet reduces,
but does not eliminate, the integration issues. Alternately, the
SDN-enabled network can speak typical interoperability

C. DIXON ET AL. 3 : 11IBM J. RES. & DEV. VOL. 58 NO. 2/3 PAPER 3 MARCH/MAY 2014

protocols like OSPF, BGP, or Intermediate System to
Intermediate System (IS-IS). Recent research efforts have
also looked at how to maximally benefit from a limited
deployment of SDN by using traditional network approaches
to ensure that all paths traverse at least one SDN-enabled
device [63].
Lastly, deploying SDN can change the set of risks a

network operator or architect must take in to consideration.
The SDN controller and the channels between it and
network devices are new elements that need to be considered
from both a security and stability standpoint. In terms of
stability, a variety of recent work [64–66] has applied model
checking and software verification to SDN controllers and
applications to find bugs and instabilities. As for security,
if the SDN controller is attached to an already-secured
management network, it should offer little additional attack
surface, but in some cases, especially when controlling
hypervisor virtual switches, the controller must connect
to the data network which makes it more critical to secure
both the controller and switches. Fortunately, most SDN
protocols, including OpenFlow, allow for authenticated and
encrypted communication.

Conclusion
SDN promises to drastically increase the flexibility and
efficiency of computer networks. By separating the
forwarding plane from the control plane and moving the
control plane to logically centralized software running on
commodity hardware, we can rapidly innovate and provide
new network features while globally optimizing network
behavior. This can already be seen in current solutions,
which offer the ability to easily deploy multiple virtual
networks on the same physical hardware while also
providing simpler, higher-level abstractions of the network to
ease configuration and management. Going forward, SDN
will enable more efficient use of network resources by
enabling tight monitoring-control loops to perform adaptive
traffic engineering, intelligent workload placement and QoS
guarantees.
IBM’s SDN efforts can be seen in the SDN-VE product,

which allows for abstract virtual networks to be rapidly
instantiated. Further, SDN-VE interoperates with OpenStack
and provides the networking features of IBM’s broader SDE
initiative via an OpenStack Neutron plugin, which offers
virtual networking APIs. It is capable of providing overlay
virtual networks, managing the underlying fabric, or
both in concert. It also includes a suite of network
applications including middlebox interposition, flow
redirection/duplication, and network-aware VM placement.
Combined, these enable SDN-VE to easily manage networks
for multi-tenant clouds. Going forward, SDN-VE will
serve as a platform for IBM’s future SDN efforts.
SDN remains a fertile ground for research and

development. Remaining challenges include (i) the design

and implementation of abstract network models that both
allow for expressive policy and are easy to understand,
(ii) developing frameworks to allow SDN controllers to be
extended with third-party modules while avoiding conflicts,
and (iii) more intelligent orchestration of network
resources to provide self-managing and self-tuning networks.

Acknowledgments
We thank Amitabha Biswas and Uday Shankar Nagaraj for
their contributions to this paper as well as the development
teams that have made IBM’s SDN products a reality
including the SDN-VE team and the open source community
surrounding OpenDaylight. We also appreciate the
constructive feedback from our anonymous reviewers.

**Trademark, service mark, or registered trademark of OpenDaylight
Project, Inc., Open Networking Foundation, Embrane, Inc., Sun
Microsystems, or InfiniBand Trade Association in the United States,
other countries, or both.

References
1. Software Defined Networking Creates a New Approach to

Delivering Business Agility. [Online]. Available: http://www.
gartner.com/newsroom/id/2386215

2. IEEE 802.1Q Virtual LANs (VLANs). [Online]. Available: http://
www.ieee802.org/1/pages/802.1Q.html

3. [Online]. Available: http://www.etsi.org/technologies-clusters/
technologies/nfv

4. V. Sekar, N. Egi, S. Ratnasamy, M. Reiter, and G. Shi, BDesign
and implementation of a consolidated middlebox architecture,[in
Proc. NSDI, 2012, p. 24.

5. Middlebox communication architecture and framework, IETF RFC
3303. [Online]. Available: http://www.ietf.org/rfc/rfc3303.txt

6. V. Sekar, S. Ratnasamy, M. Reiter, N. Egi, and G. Shi,
BThe middlebox manifesto: Enabling innovation in middlebox
deployment,[in Proc. HotNets, 2011, p. 21.

7. J. Sherry, S. Hasan, and C. Scott, BMaking middleboxes someone
else’s problem: Network processing as a cloud service,[in Proc.
SIGCOMM, Helsinki, Finland, 2012.

8. Spanning Tree Protocol (STP). [Online]. Available: http://www.
cisco.com/en/US/docs/switches/lan/catalyst6500/ios/12.2SX/
configuration/guide/spantree.html

9. Transparent Interconnection of Lots of Links (TRILL). [Online].
Available: http://tools.ietf.org/html/rfc5556

10. Border Gateway Protocol (BGP). [Online]. Available: http://www.
ietf.org/rfc/rfc1771.txt

11. Open Shortest Path First (OSPF). [Online]. Available: http://www.
ietf.org/rfc/rfc2328.txt

12. D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
BLogically centralized? State distribution trade-offs in software
defined networks,[in Proc. Hotnets, 2012, pp. 1–6.

13. A. Panda, C. Scotty, A. Ghodsiy, T. Koponen, and S. Shenker,
BCAP for networks,[in Proc. HotSDN, 2013, pp. 91–96.

14. T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker, BOnix: A distributed control platform for large-scale
production networks,[in Proc. OSDI, 2010, pp. 1–6.

15. S. H. Yeganeh and Y. Ganjali, BKandoo: A framework for efficient
and scalable offloading of control applications,[in Proc. HotSDN,
2012, pp. 19–24.

16. S. Schmid and J. Suomela, BExploiting locality in distributed SDN
control,[in Proc. HotSDN, 2013, pp. 121–126.

17. OpenFlow Configuration and Management Protocol (OF-Config).
[Online]. Available: https://www.opennetworking.org/
sdn-resources/onf-specifications/openflow-config

3 : 12 C. DIXON ET AL. IBM J. RES. & DEV. VOL. 58 NO. 2/3 PAPER 3 MARCH/MAY 2014

18. M. A. Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, BHedera: Dynamic flow scheduling for data center
networks,[in Proc. NSDI, 2010, p. 19.

19. T. Benson, A. Anand, A. Akkela, and M. Zhang, BMicroTE: Fine
grained traffic engineering for data centers,[in Proc. CoNEXT,
2011, p. 8.

20. OpenDaylight j A Linux Foundation Collaborative Project.
[Online]. Available: http://www.opendaylight.org/

21. Open vSwitchVAn Open Virtual Switch. [Online]. Available:
http://www.openvswitch.org

22. VXLAN: A Framework for Overlaying Virtualized Layer 2
Networks over Layer 3 Networks, IETF draft
draft-mahalingam-dutt-dcops-vxlan-04.txt

23. NVGRE: Network Virtualization using Generic Routing
Encapsulation, IETF draft draft-sridharan-virtualization-
nvgre-00.txt

24. OpenFlow Switch Specification V1.1.0, Feb. 2011. [Online].
Available: http://www.openflow.org

25. M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang,
BMeridian: An SDN platform for cloud network services,[IEEE
Commun. Mag., vol. 51, no. 2, pp. 120–127, Feb. 2013.

26. vARMOUR. [Online]. Available: http://www.varmour.com/
27. Embrane. [Online]. Available: http://www.embrane.com/
28. IEEE 802.1aq Shortest Path Bridging (SPB). [Online]. Available:

http://www.ieee802.org/1/pages/802.1aq.html
29. Link Layer Discovery Protocol (LLDP). [Online]. Available:

http://www.ieee802.org/1/pages/802.1ab.html
30. A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,

P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, BVL2:
A scalable and flexible data center network,[in Proc. SIGCOMM,
2009, pp. 51–62.

31. J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul,
BSPAIN: COTS data-center ethernet for multipathing over
arbitrary topologies,[in Proc. USENIX NSDI, 2010, p. 18.

32. R. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, BPortLand:
A scalable fault-tolerant layer 2 data center network fabric,[in
Proc. SIGCOMM, 2009, pp. 39–50.

33. C. Kim, M. Caesar, and J. Rexford, BFloodless in seattle:
A scalable ethernet architecture for large enterprises,[in Proc.
SIGCOMM, 2008, pp. 3–14.

34. B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter,
BPAST: Scalable ethernet for data centers,[in Proc. CoNEXT,
2012, pp. 49–60.

35. J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
BHyperX: Topology, routing, and packaging of efficient large-scale
networks,[in Proc. SC, 2009, p. 41.

36. J. Kim, W. J. Dally, S. Scott, and D. Abts, BTechnology-driven,
highly-scalable dragonfly topology,[in Proc. ISCA, Jun. 2008,
pp. 77–88.

37. A. Singla, C. Hong, L. Popa, and P. Godfrey, BJellyfish:
Networking data centers randomly,[in Proc. NSDI, 2012, p. 17.

38. C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wischik, and
M. Handley, BData center networking with multipath TCP,[in
Proc. HotNets, 2010, p. 10.

39. A. R. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, BDevoFlow: Scaling flow management for
high-performance networks,[in Proc. SIGCOMM, 2011,
pp. 254–265.

40. Netflow. [Online]. Available: www.cisco.com/go/netflow
41. sflow. [Online]. Available: http://www.sflow.org
42. V. Mann, A. Vishnoi, and S. Bidkar, BLiving on the edge:

Monitoring network flows at the edge in cloud data centers,[in
Proc. COMSNETS, 2013, pp. 1–9.

43. D. Arifler, G. de Veciana, and B. L. Evans, BA factor analytic
approach to inferring congestion sharing based on flow level
measurements,[IEEE Trans. Netw., vol. 15, no. 1, pp. 67–79,
Feb. 2007.

44. V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya,
R. Poddar, and A. Iyer, BRemedy: Network-aware steady state
VM management for data centers,[in Proc. IFIP Netw.,
2012, pp. 190–204.

45. J. Su, T. Kwon, C. Dixon, W. Felter, and J. Carter, BOpenSample:
A low-latency, sampling-based measurement platform for SDN.[
IBM Research Technical Report, IBM Corporation, 2014.

46. V. Mann, A. Vishnoi, A. Iyer, and P. Bhattacharya, BVMPatrol:
Dynamic and automated QoS for virtual machine migrations,[in
CNSM, 2012, pp. 174–178.

47. M. Mishra, P. Dutta, P. Kumar, and V. Mann, BOn managing
network utility of tenants in oversubscribed clouds,[in IEEE
MASCOTS, 2013, p. 221.

48. Type of Service in the Internet Protocol Suite. [Online]. Available:
http://tools.ietf.org/html/rfc1349

49. IEEE 802.1p Ethernet Priority Code Point. [Online]. Available:
http://www.juniper.net/techpubs/en_US//junos/topics/concept/
cos-qfx-series-lossless-ieee8021p-priority-config-understanding.
html

50. IBM CorporationIBM Distributed Virtual Switch 5000V. [Online].
Available: http://www-03.ibm.com/systems/networking/switches/
virtual/dvs5000v/

51. K. Barabash, R. Cohen, D. Hadas, V. Jain, R. Recio, and
B. Rochwerger, BA case for overlays in DCN virtualization,[in
Proc. 3rd Workshop DC CAVES, pp. 30–37. [Online]. Available:
http://www.itc23.com/fileadmin/ITC23_files/papers/
DC-CaVES-m1569472213.pdf.

52. Path Computation Element Communication Protocol (PCEP).
[Online]. Available: http://tools.ietf.org/html/rfc5440

53. Locator/ID Separation Protocol (LISP). [Online]. Available: http://
www.lisp4.net/

54. OSGi. [Online]. Available: http://www.osgi.org/
55. NeutronVOpenstack. [Online]. Available: https://wiki.openstack.

org/wiki/Neutron
56. Quantum provider network extensions. [Online]. Available: https://

review.openstack.org/#/c/25843/
57. KVM. [Online]. Available: www.linux-kvm.org/page/

Main page
58. OpenStack. [Online]. Available: http://www.openstack.org/
59. S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,

A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla,
U. Hölzle, S. Stuart, and A. Vahdat, BB4: Experience with a
globally-deployed software defined WAN,[in Proc. SIGCOMM
Conf., Hong Kong, 2013, pp. 3–14.

60. A. Vahdat, BSDN@Google: Why and how,[presented at the Open
Networking Summit, Santa Clara, CA, USA, 2013. [Online].
Available: http://www.opennetsummit.org/archives-april2013/

61. U. Hoelzle, BOpenFlow@Google,[presented at the Open
Networking Summit, Santa Clara, CA, USA, 2012. [Online].
Available: http://www.opennetsummit.org/archives/apr12/
hoelzle-tue-openflow.pdf

62. B. Mayer, BVirtual application networks innovations advance
software-defined network leadership,[presented at the
Open Networking Summit, Santa Clara, CA, USA, 2013. [Online].
Available: http://www.opennetsummit.org/pdf/2013/presentations/
bethany_mayer.pdf

63. D. Levin, M. Canini, S. Schmid, and A. Feldmann,
BToward transitional SDN deployment in enterprise
networks,[presented at the Open Networking Summit,
Santa Clara, CA, USA, 2013. [Online]. Available: http://
www.opennetsummit.org/pdf/2013/research_track/poster_papers/
final/ons2013-final22.pdf

64. A. Khurshid, X. Zou, W. Zhou, M. Caesar, and
P. B. Godfrey, BVeriFlow: Verifying network-wide invariants
in real time,[in Proc. 10th USENIX Symp. NSDI, Apr. 2013,
pp. 15–28.

65. P. Kazemian, G. Varghese, and N. McKeown, BHeader space
analysis: Static checking for networks,[in Proc. 9th USENIX
Symp. NSDI, Apr. 2012, p. 9.

66. M. Canini, D. Venzano, P. Perešı́ni, D. Kosti, and J. Rexford,
BA NICE way to test OpenFlow applications,[in Proc. 9th
USENIX Symp. NSDI, Apr. 2012, p. 10.

Received August 23, 2013; accepted for publication
September 18, 2013

C. DIXON ET AL. 3 : 13IBM J. RES. & DEV. VOL. 58 NO. 2/3 PAPER 3 MARCH/MAY 2014

Colin Dixon IBM Research Division, Austin Research Lab, Austin,
TX 78758 USA (ckd@us.ibm.com). Dr. Dixon is a Researcher in the
Data Center Networking Group at the IBM Austin Research Lab.
His recent work has focused on software-defined networking with a
focus on data centers, but more generally, his research interests are
broadly in systems, spanning networks, distributed systems,
operating systems and security with an emphasis on building real,
secure, reliable, and efficient computer systems. He earned his M.S.
and Ph.D. degrees in computer science from the University of
Washington in Seattle in 2007 and 2011, respectively. Previously he
received a B.S. degree in mathematics and a B.S. degree in computer
science from the University of Maryland in Collage Park in 2005.
He has coauthored more than a dozen technical papers and articles as
well as several patents and patent applications.

David Olshefski IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (olshef@us.ibm.
com). Dr. Olshefski is a Research Staff Member in the Systems
Department at the IBM T. J. Watson Research Center. He received a
B.S. degree in computer science from SUNY Albany, M.S. degree
in computer science from RPI at Hartford, and a Ph.D. degree in
computer science from Columbia University. He has coauthored more
than a dozen technical papers and articles as well as several patents.

Vinit Jain IBM Systems and Technology Group, Austin, TX 78758
USA (vjain@us.ibm.com). Mr. Jain is the Chief SDN Solutions
Engineer for IBM Systems Networking and currently leads the
integration of IBM SDN products into solutions. During the past
15 years with IBM, he has led the delivery of several innovations in
networking and virtualization products. He is a Master Inventor with
more than 50 issued patents. Mr. Jain has a B.Tech. degree in computer
science from Indian Institute of Technology, New Delhi, India, and
an M.S. degree in computer science University of Maryland,
College Park.

Casimer DeCusatis IBM Systems and Technology Group,
Poughkeepsie, NY 12603 USA (decusat@us.ibm.com). Dr. DeCusatis is
an IBM Distinguished Engineer and CTO for Strategic Alliances,
System Networking Division. He received the M.S. and Ph.D. degrees
from Rensselaer Polytechnic Institute (Troy, NY) in 1988 and 1990,
respectively, and the B.S. degree magna cum laude in the Engineering
Science Honors Program from the Pennsylvania State University
(University Park, PA) in 1986. He is an IBM Master Inventor with more
than 120 patents and has published more than 100 technical papers.
He has received the IEEE Kiyo Tomiyasu Award, the Electronic Device
News Innovator of the Year Award, the Mensa Research Foundation
Creative Achievement award, the Sigma Xi Walston Chubb award,
the Penn State Outstanding Scholar Alumni award, and the
IEEE/Eta Kappa Nu Outstanding Young Electrical Engineer award
(including a citation from the President of the United States and
an American flag flown in his honor over the U.S. Capitol). He is editor
of the Handbook of Fiber Optic Data Communication (now in its
fourth edition), a member of the Order of the Engineer, and a Fellow of
the IEEE, Optical Society of America, and SPIE, the International
Society of Optical Engineering.

Wes Felter IBM Research Division, Austin Research Lab, Austin,
TX 78758 USA (wmf@us.ibm.com). Mr. Felter is a researcher in the
data-center networking group at the IBM Austin Research Lab.
His current research focus involves building scalable low-cost network
fabrics, and in the past, he worked extensively on server and storage
power management. He received a B.S. degree in computer science
from the University of Texas at Austin in 2001.

John Carter IBM Research Division, Austin Research Lab, Austin,
TX 78758 USA (retrac@us.ibm.com). Dr. Carter leads the Future
Systems department of IBM Research - Austin, which includes teams
investigating next generation data center network architectures,

enterprise mobile and cloud runtimes and services, and energy-efficient
server, storage, and memory system design. His personal research
has spanned many areas of systems research, including distributed
systems (Munin and Khazana), multiprocessor computer architecture
(Avalanche and S-COMA), advanced memory system design
(Ultraviolet and Impulse), and networking (SPARTA). Dr. Carter
received his Ph.D. degree from Rice University in 1993. He spent
15 years on the faculty of the School of Computing at the University of
Utah and several years as Chief Scientist of MangoSoft before joining
IBM Research. He has published over 60 conference and journal
articles and written several dozen patents, and is a Senior Member
of the IEEE and ACM.

Mohammad Banikazemi IBM Research Division, Thomas J.
Watson Research Center, Yorktown Heights, NY 10598 USA
(mb@us.ibm.com). Dr. Banikazemi is a Research Staff Member in the
Systems Department at the IBM T. J. Watson Research Center. His
research interests include cloud computing and software-defined
networking. He has an M.S. degree in Electrical Engineering and a
Ph.D. degree in computer science both from the Ohio State University,
where he was an IBM Graduate Fellow. He is an author or coauthor
of several technical papers and patents. He is a Senior Member of
IEEE and ACM.

Vijay Mann IBM Research - India, New Delhi, India
(vijamann@in.ibm.com). Mr. Mann is a senior software engineer and
manager at IBM Research - India in New Delhi. He currently manages
the data center networking team at IBM Research - India. This is
his tenth year at IBM Research - India. In the past, he has worked
on systems for portfolio analytics at Morgan Stanley, New York.
He has more than 12 years of experience in enterprise systems
development and research. He has authored more than 20 publications
in well-known conferences and journals and has several filed and
issued patents to his credit. He holds an M.S. degree from Rutgers
University, New Jersey, and a B.E. degree from Malaviya National
Institute of Technology (MNIT), Jaipur, India.

John M. Tracey IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (traceyj@us.ibm.
com). Dr. Tracey is a Senior Technical Staff Member in the Systems
Networking Department at the IBM T. J. Watson Research Center.
He received his B.S. and M.S. degrees, both in electrical engineering,
from the University of Notre Dame in 1990 and 1992, respectively.
In 1996, after receiving his Ph.D. degree in computer science, also
from Notre Dame, he joined IBM’s Research Division as an Advisory
Software Engineer. His primary professional focus is on system
software for networking. He has contributed to multiple technical
publications, patents and IBM products and has been named an IBM
Master Inventor. He a member of the ACM and IEEE.

Renato Recio IBM Systems and Technology Group, Austin,
TX 78758 USA (recio@us.ibm.com). Mr. Recio is IBM Fellow and
System Networking CTO, responsible for IBM’s Software defined
Networking strategy and roadmap. For the past 15 years, he has
played a leadership role in the strategy, architecture and design of future
IBM system IO and Networks. His recent contributions include:
Ethernet Virtual Bridging (EVB), Distributed Overlay Virtual Ethernet
(DOVE) networks, EVB/DOVE adapter offload, and SDN service
chaining. He has been a founding engineer and author of several
input/output and network industry standards, including InfiniBand**
(cluster network), IETF Remote Direct Data Placement (over TCP/IP),
PCI IO Virtualization, Convergence Enhanced Ethernet (CEE), RoCE
(RDMA over CEE), Fibre Channel over CEE, and IEEE 802.1Qbg
EVB. He has filed over 200 patents, of which more than 100 have
already issued. He has published dozens of refereed technical
conference (e.g., IEEE and ACM) papers. He is an IEEE member and
chaired the IEEE Data Center Converged and Virtual Ethernet
Switching (DC CAVES) workshops.

3 : 14 C. DIXON ET AL. IBM J. RES. & DEV. VOL. 58 NO. 2/3 PAPER 3 MARCH/MAY 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

