Programmable Accounting
Management for Virtual Private
Networks *

A. Evlogimenou ~ R. Boutaba

University of Toronto University of Waterloo

annae@cs.toronto.edu rboutaba@bber. uwaterloo.ca
Abstract

Until now, proposals for IP accounting management have not exploited the
power of programmable networks. Thus, real-time charging and pricing schemes
are still regarded as impractical, because the accounting management tasks
are executed only at the edges. In this article, we introduce the notion of
programmable accounting management which is more flexible, efficient and
scalable. Specifically, we propose real-time charging and pricing mechanisms
using programmable networks. Moreover, we propose a novel programmable
accounting architecture for QoS-enabled Virtual Private Networks (VPNs).
This architecture gives the flexibility to the providers to employ real-time ac-
counting, and offers an open accounting interface inside the network nodes.
This entails that also the VPN subscribers can execute accounting tasks in-
side the network nodes. For example, they can keep their providers under
surveillance, or they can apply their own accounting policies for their users.

Keywords
Accounting management, programmable networks, virtual private networks,
real-time charging and pricing, metering, Quality of Services (QoSs), Differ-
entiated Services (DiffServ), auctioning

1. Introduction

The Internet provides a best-effort service. However, the demand for deploy-
ing QoSs implies also the need for accounting management in the Internet.
QoSs and accounting management encourage the users to choose the service
that is most appropriate for them, thereby discouraging over-allocation and
abuse of network resources.

In the literature, the terminology used for Internet accounting is quite con-
fusing [1]. In this article, the term accounting management is used to denote
the four processes: metering, charging, pricing, and accounting applications.

*This work was supported by a research grant from the Canadian Institute for Telecom-
munications Research (CITR)

0-7803-7382-0/02/$17.00 ©2002 IEEE

298 Session Seven Service Accounting

The first process of accounting management (metering) involves monitor-
ing and measuring the network resources. Metering granularity varies de-
pending on the network layer at which the meter is employed. An issue of
traditional meter design is that it does not consider processing traffic data in-
side the node, but rather it transmits raw data to a central accounting server
at the cost of network overhead. Metering is required only for usage-based
charging schemes and not for flat-rate schemes. During the second process
(charging), the tariffs and the accounting data from the first process, are
combined to charge the users.. Therefore, through this process the account-
ing records are transformed into monetary units for users per some period of
time. Tariffs are determined by the pricing process. Setting prices is often
treated as an optimization problem with several possible objective functions.
We classify these objective functions into two categories: maximize the social
welfare and maximize the producer surplus. At the final process, accounting
applications such as billing, auditing, capacity planning and trend analysis
are performed. Applications do not have the same security and reliability
requirements. As a consequence, the goal of IETF [2] is to provide a set of
tools that can be used to meet the requirements of each application, rather
than designing a single accounting protocol and a set of security services that
will meet all the needs.

Real-time accounting management is still an open issue. Several schemes
have been proposed, but few of them have been implemented and tested in real
environment. All of these schemes assume that they can be executed either at
the end-points of the network (i.e, hosts), or at the accounting server. How-
ever, some input parameters of these models exist inside the network. Thus,
they require feedback signals from the network nodes in order to perform their
operations. :

Following the philosophy of programmable networks, we can push the ac-
counting management tasks in the core of the network. The benefits will
be: (a) real-time metering, charging and pricing, (b) distributed management
which increases scalability and performance, and (c) integration of new mech-
anisms for charging and pricing without the need to introduce new protocols.

Accounting management is particularly important at the service manage-
ment layer. In this paper, emphasis lies on the virtual private network (VPN).
A VPN provided over a public infrastructure, like the Internet, is both cheaper
and more flexible compared to leased lines and to less extent to ATM or frame
relay virtual circuits. A major concern of providing VPN services over the
Internet is to segregate VPN’s traffic from the other traffics which share the
same network infrastructure. Nowadays, there are Internet protocols which
can satisfy the need of data integrity and privacy. Another concern is that
VPN subscribers require to control and manage “their” network resources, in
order to run service specific control software. For example, VPN subscriber
wants to deploy low-level monitoring of his traffic, or he wants to control
his own routing and addressing mechanisms. Finally, VPN subscribers re-

Programmable Accounting Management for Virtual Private Networks 299

quire service guarantees. The research area of Programmable Virtual Private
Networks investigates the above issues.

Figure 1 illustrates a VPN subscriber consisting of Site 1 and 2, the Inter-
net Service Providers (ISP 1, ISP 2, ..., ISP n) which provide VPN services,
and the potential users/customers of the VPN subscriber. The arrows repre-
sent the flow of money, e.g., both users at Site 1 and 2 pay the VPN subscriber,
then the VPN subscriber pays the ISP1 and ISP n, then ISP 1 pays the ISP 2,
etc. The VPN subscribers can retail IP services to their users only if they are
able to monitor and control their users’ traffic, and apply their own accounting
management schemes, for charging their users. In addition, a VPN subscriber
has to deal with the heterogeneous policies (charging and pricing) adopted by
his ISPs. In order to handle this heterogeneity, the VPN subscriber has to
coordinate his resource requirement among the ISPs, and also he may have
to map the services provided by the one ISP into the services provided by
other ISPs. This entails the need of developing an open accounting interface
to allow subscribers to enforce their accounting policies in critical network
nodes.

__

[——= flowotmoney |

Figure 1: Accounting management for VPN: an example scenario

Although it is emphasized that accounting management is of great impor-
tance in programmable VPNs, no previous work has tackled this problem.
In addition, to our knowledge, the only work that used the programmable
networks for processing the metering data at the points where they are de-
rived from (i.e., network nodes) is [3]. However, in this article we do not only
process the metering data inside the network nodes, but we also execute the
pricing and charging tasks in these nodes.

In this article, (1) we examine how the programmable network can enhance
accounting management processes, and then (2) we propose a programmable
accounting management architecture for VPNs considering the accounting
management processes of metering, charging, pricing and billing. A detailed
version of this work can be found in [4].

300 Session Seven Service Accounting

The article starts with Section 2, which discusses how programmable net-
works can enhance charging and pricing models. In Section 3, we present
our accounting management architecture. Finally, Section 4 describes related
works and Section 5 concludes this article.

2. How charging and pricing can be enhanced by pro-
grammable networks

‘We propose here a new charging and pricing mechanism which executes inside
the network nodes. In this way, common problems can be overcome at the
expense of requiring more CPU cycles. Before presenting our mechanism, let
us explain what we mean by charging granularity.

Charging granularity is determined by the pricing policies. The pricing
policies can be either dynamic or static [5]. If dynamic pricing is applied,
then the prices fluctuate according to the network load, and the charging
granularity is on per-packet basis. An example of dynamic pricing is auc-
tioning, which has been advocated as an optimal pricing model. On the other
hand, if pricing is static, the prices are independent of the network conditions.
For instance, when the costs of SLAs are determined according to the time of
the day, then the pricing is constant. ‘ :

The major drawback of dynamic pricing is that it is considered imprac-
tical, because the prices change on per-packet basis. For every packet that
comes into the network, the provider has to decide the price of transmit-
ting it through the network. On the other hand, the disadvantage of static
pricing is that it is unfair. Specifically, users who do not fully utilize their
reserved resources are charged the same price as the users who utilize all their
resources.

We believe that charging on packet granularity can be better supported
with programmable networks. In the following paragraphs, we describe how
this is possible. We do not consider charging on coarser granularity, since bar-
gaining long-term SLAs is an application level job, and obviously it cannot
be executed in the network nodes. Since we refer to programmable networks,
each customer is able to execute a code at network nodes (see Figure 2). This
code controls all customer’s flows by selecting the quality of service and af-
fecting the charging on per packet granularity. We will examine the behaviour
of this basic idea in two cases: Differentiated Services and Auctioning mech-
anism. We will also discuss the benefits and the drawbacks of the proposed
schemes. .

In a differentiated services (DiffServ) IP network, in each border router
of ISP, which is a programmable router, customers of this ISP run a code
whose responsibility is to decide which class of service to buy for each packet.
The input parameters of customer’s code may be ISP’s tariffs (which may
change dynamically), maximum cost that customer can afford, the current
network characteristics (bandwidth, delay, etc.) and the traffic characteristics

Programmable Accounting Management for Virtual Private Networks 301

i S

S s
. iston %
] Customer B
Customer A] :
Ci

ode

Figure 2: Customer’s processes (i.e., charging mechanism) inside the network
node

of customer’s flows. Then the customer’s process marks each packet with the
class of service which he decided and finally forwards it to the scheduler of
the node.

In addition, the problem of sender-pays or receiver-pays of differentiated
services (introduced by [6] and [7]) can be solved. To be more specific, in
DiffServ the sender marks the packets (i.e., selects the service of his flow),
and also the sender pays his local ISP for his traffic. The problem with this
scenario is that there are circumstances in which the receiver is the one who
should pay for service, and so is the one who wants to select the required class
of service. How can the receiver select the class of service? One solution in tra-
ditional networks is to utilize the control packets (like TCP acknowledgments
packets) flowing in the reverse direction from the receiver. These packets can
be enhanced to indicate the receiver’s preference of class of service.

However, with our approach this problem can be solved without utilizing:
the control packets, and can be applied on top of the current Internet pro-
tocols. In more details, the code that executes in ingress network nodes is
provided by the one who pays, i.e., either the sender or the receiver. If the
receiver is the natural party who should pay, then he executes his code at the
ingress network nodes of sender’s ISP. The receiver’s code is responsible to
select the class of services of his traffic. On the other hand, if the sender is
the natural party who should pay, then this is the one who executes a code
at the network nodes.

The above pattern can also be extended to the multicast sessions where
the flow somewhere inside the Internet cloud is replicated many times. There
are cases where receivers want to choose the class of service of these flows,
because those are the ones who pay. A scenario can be a media server which
transmits a video stream to more than one receivers. One receiver may desire
a poor quality of video, whereas another receiver may desire a high quality
of video. In this case receivers should send their code to the network node
where the replication takes place. Then, each receiver’s code pays marks its
flow, independently from the others.

302 Session Seven Service Accounting

Finally, the user’s mechanisms at end points of a connection can cooperate
and allocate resources in a more effective way. For example, if receiver’s access
link is bottlenecked and cannot forward the flow with the same arrival’s rate,
then receiver’s accounting process can send explicitly a message with the
maximum capacity that can be supported to the senders mechanism. In this
way, both senders and receiver’s accounting process allocate equal capacity
without wasting resources along the path of this connection. This is also useful
in DiffServ, in which class of services are provided in a connection-less way.
Thus, when a provider in the core of network or the receiver’s access link has
insufficient capacity, either implicit or explicit congestion signals are received
by the sender, although he has purchased enough capacity from his home-
ISP. With the proposed scheme, along these congestion signals the receiver’s
mechanism can also inform the sender’s mechanism of its free capacity. Then,
sender may buy less capacity, equal to the amount of free capacity at the
receiver’s access link.

Our scheme it can also be applied to the auctioning mechanisms (called
as smart market) proposed by economists Mackie-Mason and Varian [8, 9].
Specifically, the user associates a bid in each packet, which denotes the user’s
willingness to pay for transmission. The network node shorts all the bids;
determines the threshold value, which is the marginal congestion cost; and
finally the packets with bid greater than this marginal cost are transmitted
and charged this cost. Roughly, all the transmitted packets are charged less
than their bids, and consumer’s surplus is always positive. Considering our
scheme, user is able to submit bids to the auctioning system in the network
node. More specifically, instead of executing the process which computes the
bids at the end-points, we propose to execute it inside the network nodes.

Figure 3 depicts the smart market pricing method in traditional networks
and in programmable networks. In the former case, users set their bids at the
source point of their traffic, and at each congested hop these bids either win
or lose. In our example, users A and B win and the user whose bid is 15 is
defeated. Thus, users A and B transmit their packet with cost equal to 15
(i-e., equal to the highest defeated bid). In the proposed case, users set their
bids in each congested hop. Note, that the bids offered by the users in the
first case are greater than the bids offered by the users in the second case,
since in the first case the users value the service from the origin to destination,
whereas in the second case users value the service for accessing only one hop.
In our case, the total cost of transmitting a packet from the source to the
destination equals to the sum of marginal costs in each congested link. For
example the winning users A and B transmit their packet with cost equal to
5+2=T.

At the following paragraphs we discuss the benefits of our schemes. First,
makes practical the auctioning mechanism. Auctioning [7] has been criticized
as being impractical for many reasons. One problem is that the auctioning
process takes place on a hop-by-hop manner; whereas the bids are set by the

Programmable Accounting Management for Virtual Private Networks 303

15| Marginai congestion cost

2 [Marginal congestion cost

Tradinional smart market model, Smart market In each congested programmable network,
where the bids are set at the where the bids are set at each congested network node
origin point

Congested link

Uncongested link

Figure 3: Traditional smart market scheme vs. Smart-market in pro-
grammable networks

customer only at the origin of the traffic. However, the bid submitted by
the customer values the service from the origin to the destination, though it
participates in an auctioning system for getting access in one hop and not in an
auctioning system for getting access from the origin to destination point. The
correct approach is that customer submits a bid for each hop along the path.
How can this be implemented? An obvious solution is that the packet carries
the bid of each hop which is not an efficient solution. Instead, we propose
to exploit the programmable networks, where each user can execute a code
in each congested network node. This code is responsible for submitting the
bids to the auctioning system of this network node.

Second, it allows customers to select class of service on per packet granular-
ity. In other words, customers can treat each packet differently, and indepen-
dently on which flow it belongs to. Traditionally the classification was based
only on static parameters, such as the fields of the packet header, whereas
our mechanism allows customers to mark their packets according to dynamic
parameters. For example, during periods of peak traffic, a customer buys
a better class of service for the packets of a real-time application, than for
the packets which belong to elastic applications. However, during the off-peak
periods customer buys a lower quality class of service for both real-time appli-
cations and non real-time applications without experiencing any performance
penalty.

Third, customers react more quickly to the network state (e.g., traffic
load and tariffs), because they do not have to wait feedback in order to make
their decisions. More specifically, they show their willingness to pay inside
the network node and they do not have to encode it in a field of the packet
header. Likewise, providers do not have to send pricing information or any

304 Session Seven Service Accounting

other information which is necessary for the customers to select class of service
for their traffic. In few words, everything operates where the parameters are
being captured. This also entails, shorter delays which in turn means that
the pricing information can be updated at finer time granularity.

The major disadvantage of the proposed scheme is the CPU overhead. In-
deed the proposed scheme requires extra-processing inside the network com-
pared to traditional accounting management schemes. However in the auc-
tioning pricing mechanism, we expect negligible performance degradation,
because the auctioning is applied only when there is congestion. Usually, con-
gestion does not occur on each network node. This means that if there is a
congestion in two network nodes along the path, the auctioning is executed
at most twice along the path. A final limitation is that this mechanism is
not suitable for mobile networks. The reason is that, if either the sender or
the receiver is a roaming user, then the path from the sender to the receiver
changes dynamically, in short time scales. This requires the customer’s pro-
cess to migrate from one network node to another network node (involved in
the new path), which includes an additional overhead.

3. A generic architecture for Programmable Accounting
Management of VPNs

In this section, we describe the components of a programmable Accounting
Management Architecture for VPNs. We have adopted the MIBlet architec-
ture proposed in {10]. Briefly, a MIBlet is a logical partition of the MIB which
is executed in the network node. The VPN provider installs one MIBlet for
each VPN subscriber. Through the MIBlets, we segregate the accounting
information among the VPN customers. Furthermore, we provide an open
accounting interface through which any customer can control and manage his
resources. Finally, network nodes perform accounting tasks which tradition-
ally were executed into centralized accounting servers.

The overall accounting management architecture in a single VPN is de-
picted in Figure 4. There are three major components which are involved in
our architecture: Accounting Management Controllers (AMCs), MIBlet Con-
trollers, and Accounting Manager (AM). The first two components are in the
resource management layer and the last one is in the network management
layer. In the Network Management Layer, the VPN provider manages and
controls its resources through the MIB, while the customer manages and con-
trol his resources through the MIBlet. In the Resource Management Layer,
there are the network nodes which are programmable.

3.1 Functional Blocks of Resource Management Layer

Accounting Management Controllers (AMCs) are the components which re-
alize the accounting tasks inside the network nodes. They are installed at

Programmable Accounting Management for Virtual Private Networks 305

VPNA
Accounting
Network r Manager
Management
Layer VPN Provider 3
Accounting
L L Manager
VPN- VPN-
AMCs Provider AMCs Provider
AMCs AMCs
MiBlet || . MiBlet
C C
MIB MIB
VPN A VPN A
_____ A . S

<) \Local
X

AMCs: Accounting Management Controllers —‘

® . Network Node

Figure 4: Overall Accounting Management architecture in a Customer VPN,
called VPN A

specific network nodes. Figure 4 illustrates AMCs being executed at the bor-
der routers of local-ISPs of the two sites (’Site 1’ and ’'Site 2’). However
AMCGs can be executed either at the borders of local ISPs of the VPN or at
any network node in the Internet core. This depends on how the VPN service
is provided by the ISPs and also on the QoSs. If for example, DiffServ are
supported, then accounting takes place only at the border network routers of
local ISPs; whereas if auctioning is applied, then the accounting tasks are ex-
ecuted at the congested network nodes. Both the provider and the customer
have their own AMCs.

The Accounting Management Controllers can be classified according to

their functionality:

e Charging and Pricing Conirollers: These controllers are executed when
charging granularity is in terms of packets. They realize the mechanism
we have proposed in Section 2. Some of their parameters can be received
by the AM and some other parameters may be maintained in the MIBlet
controllers (such as the current tariffs of the class of services).

o Accounting Group Controllers: These controllers are mainly responsible

306 Session Seven Service Accounting

for (1) processing of accounting data (such as compressing the account-
ing data before transmitting them to the AM), (2) configuring the Ac-
counting Group in the MIB, (3) updating the MIB. It is this controller
that configures the access of the MIB objects. A MIBlet Controller of
a customer can access only the rows that refer to its sessions. That
means that different MIBlet Controllers are permitted to read different
rows/tables of MIB.

MIBlet Controller not only has access to specific rows of the MIB, but also
can maintain its own MIB objects. For example, a customer can request a
basic accounting summary from his provider, and maintain his own MIB data.
Thus, customer can configure the Accounting Group of his MIB, as desired.
For example, he can classify his packets according to which applications they
belong to, and also he can maintain some statistics about his traffic.

In the context of hierarchical VPNs (see Figure 1), an advantage of the
MIBIlet controllers and the AMCs, is that the VPN customer can retail the
network resources to its users, i.e., the VPN customer can act as a third-party
provider. This is feasible, because the MIBlet controllers let this third-party
provider maintain its own accounting group independently of the accounting
group of VPN provider. Thus, this MIBlet holds accounting information of
the users of this third-party provider. Moreover, the third-party provider
can execute any charging, pricing and accounting mechanism, without being
restricted by its provider.

In this scenario, the users are charged by the third-party provider, and
they do not need to have specific knowledge of the charging and pricing
schemes adopted by the local ISPs of their end-points, which most proba-
bly will not be the same (each ISP will adopt and will execute its own tech-
niques). Instead, users have a general view of the Internet infrastructure, and
they exchange pricing information, such as bargaining SLAs, only with the
third-party provider. In the contrary, third-party provider has to deal with
the heterogeneous charging schemes of several ISPs, and has to map these
schemes into a uniform accounting system for its users. The AMCs realize
this mapping. For example, if a user asks for premium service from his third-
party provider, then the provider corresponds this premium service with the
similar service supported by the local ISPs.

3.2 Functional Blocks of Network Management Layer

The Network Management Layer consists of the Accounting Manager (AM).
The VPN Provider initializes one AM per customer. This gives the flexibility
for provider of applying different policies between the customers. For example
one customer could request real-time accounting, whereas another customer
could request a monthly accounting. Each AM in the Provider interacts with
the corresponding AM in the customer’s side. The AM in Provider acts as
a server and the AM in the Customer acts as a client. The accounting tasks

Programmable Accounting Management for Virtual Private Networks 307

in each AM are (see Figure 5): Billing, Pricing, maintaining an accounting
database, accounting data aggregation.

Accounting Manager Accounting Manager
in Provider B in Provider A

Pricing Billing

Figure 5: Functional Blocks in the Accounting Manager. Figure 5.a (left)
Pricing/charging performed at the network management layer. Figure 5.b
(right) Pricing/charging performed at the resource management layer

The Aggregator collects the accounting data of a specific customer from
many routers. Note that there can be more than one network node which
maintain accounting data for a specific customer. For example, if a local ISP
provides DiffServs, then there are at least two network nodes which meter
the traffic of a customer. Accounting data are aggregated at the Network
Management Layer and are stored at the accounting database.

The accounting records in the accounting database can be very detailed
(e.g., the resources consumed by each application of the customer) or can be
coarsed (e.g., the resources consumed by each site of the customer). Both cus-
tomer and provider are the ones who select how much detailed the accounting
base is. It is similar to the accounting summaries we get from the telephone
companies. The basic fields of an accounting record are: (1) the amount of
the resource that was consumed, (2) the period that was consumed, (3) in
which network node it was consumed, (4) the price per unit of the resource
that was consumed.

In case a provider applies non real-time charging and pricing processes,
these processes are deployed in the Network Management Layer. In this case,
there is also a Pricing task at the Network Management Layer (see Figure 5.a).
On the other hand, if real-time processes are executed then these are executed
in the Resource Management Layer (see Figure 5.b) as it will be explained
later.

Finally, the task which interacts with the customer is the Billing. Provider
sells SLAs through this task, or sends the accounting status of customer at
specific time periods.

At customer’s side, the Billing process is just a client application, which
displays the account summary. Specifically, interaction between the customer
and provider is done through a web browser and Java applets. The customer
downloads an applet from the provider that communicates with the web server
of the provider, and displays the current status of customer’s account.

308 Session Seven Service Accounting

3.3 Example application scenarios & advantages

In this subsection we show the flexibility and efficiency of our architecture by
providing some examples:

o Customer wants to execute a “Smart Marker” in the network nodes of
a provider. “Smart Marker” monitors the network load, and whenever
there are free resources in the non real-time class of service, it marks real-
time traffic as non real-time. Note, that customer will not experience
any performance penalty, because the non real-time class of service is
under-utilized. In this way, customer saves money, since the non real-
time is cheaper than the real-time class of service.

e Customer wants to check whether there are errors in the bills or not.
Therefore, customer meters his traffic using his own MIBlet controller,
periodically. Then he computes his expenses and compares them with
the bills received by the provider.

e A provider wants to charge the customers for the CPU cycles consumed
by their controllers, in order to discourage them to execute heavyweight
controllers. Thus, provider just downloads a controller to the network
node, which monitors the CPU and maintains a MIB. This MIB contains
a table with the CPU cycles that have been wasted by each customer.
Finally, provider includes into the bill of each customer the cost of uti-
lizing the CPU.

e A provider decides to make the accounting protocol more efficient by
reducing the traffic -overhead at the expenses of requiring more CPU
cycles in the network node. Thus, he executes a controller which com-
presses the accounting data before transmitting them to the Accounting
Managers.

o Consider an ISP that provides a VPN service and deploys the auction-
ing pricing mechanism. Each customer has a bidding controller which
computes the bids for his packet. The VPN provider has an auction-
based scheduler which sends requests to the bidding controllers whenever
there is a congestion. Then these bidding controllers compute the bids
and respond to the auction-based scheduler, which finally decides which
packets will be transmitted considering the customers’ bids.

4. Related Work

In this section we compare our architecture with other accounting architec-
tures. In [3], the ATACE (Active IP Accounting Co-processor Environment)
considers the active networks for accounting. It dynamically pushes the intel-
ligence into network nodes and exploits the power of open and active network
nodes for metering. Our architecture is fully compatible with the ATACE.
However, we exploit the programmability of network nodes for charging and
pricing mechanisms in addition to metering. Furthermore, we propose a spe-
cific accounting management architecture for programmable VPNs.

Programmable Accounting Management for Virtual Private Networks 309

Briscoe et.al. in [11] proposes an architecture that follows the principle
that pricing, charging, metering and accounting should be performed at the
end-points. He introduces the term active tariffs, meaning that prices are esti-
mated at the end-points according to the congestion signals from the network
nodes, and also according to the tariffs of network nodes. In the literature,
real-time pricing schemes which run at the end-points (such as [12]) have been
proposed. As we have argued previously, the accounting management at the
end points induces delays and traffic overhead, because the input parameters
of accounting management tasks exist in the network core.

In [13], an architecture of QoS-enabled VPNs over the Internet is de-
scribed. This work is a part of the CATI project funded by the Swiss Na-
tional Science Foundation. IP Differentiated Services are supported by means
of service brokers for communication between different domains as well as
within domains. Customers agree on SLAs, which must be flexible enough to
store a vast variety of payment schemes. These SLAs can be established dy-
namically. In order to provide QoS through the entire network, SLAs should
be negotiated between customer and ISP, and also between ISPs across the
communication path. The main differences with our architecture is that they
do not deal with real-time pricing models and they do not consider the pro-
grammable networks for providing VPN services. Thus, their architecture is
not as flexible and configurable as ours. Furthermore, they do not address
the issue of setting the prices dynamically. Similar with our architecture,
they have also adopted the edge-pricing model, in which the VPN customer
is charged only by the local ISPs. Finally, they define specific SLAs, which
can be also deployed in our architecture at the network management layer.

In the following paragraphs, we outline some architectures proposed for
accounting in the Internet. These architectures are orthogonal to our architec-
ture (i.e., policy-based vs. process-oriented), because open interfaces are not
considered and specific policies are defined. Moreover, our architecture has
been proposed in the context of programmable VPNs, whereas the following
architectures have been proposed for providing general IP services. However,
the Accounting Management Controllers can be deployed for charging IP ser-
vices, and they are not restricted only to the VPN service.

In SUSIE [14] (an European ACTS project), a charging and accounting
architecture for IntServ, DiffServ and ATM has been proposed. Charging
schemes for ATM services are adapted and used for IntServ and DiffServ.
Furthermore, the mapping of the services in the IntServ architecture into
the ATM services has been examined from the charging perspective. Finally,
the implementation of this architecture was based on the TINA framework.
Several charging approaches have been implemented, but no result is reported
on the effectiveness and fairness of these approaches.

To our knowledge, there are only two projects which investigated the ef-
ficiency of usage-based pricing through experiments. The Internet Demand
Experiment (INDEX [15]) is a prototype alternative ISP model that offers

310 Session Seven Service Accounting

differentiated-quality service on demand, with prices that reflect resource cost.
The findings of INDEX project are that today’s system of flat-rate pricing by
ISPs is very inefficient, and also ISPs with differentiated quality service is
technically feasible. Moreover, INDEX shows that customers pay less and
suppliers increase their profits. Another implementation of network billing
system was for the New Zealand Gateway [16], where users were charged by
volume for their traffic, in order to cover the costs of this gateway. They have
developed the NeTraMet [17].

In [18], a system for billing users instead of hosts for their traffic is de-
scribed. This is accomplished by postponing the establishment of connections
while the user is contacted, verifying in a secure way that he is prepared to
pay. The results show that this billing system is feasible even for large campus
networks. Furthermore, it is indicated that pricing schemes may be used to
control network congestion.

Two different accounting and billing principles are discussed in [19]: (1) de-
centralized accounting where a backbone service provider charges its adjacent
service providers and in turn these providers charge their adjacent providers
etc. and (2) multiple service queues.

Another preliminary work is [20], in which the author introduces the prin-
ciple of open accounting technology that can be used to build a proprietary
billing scheme. This is achieved with private MIBs for each individual op-
erator. The private MIBs proposed in this work, are similar to the MIBlet
controllers used in our architecture. These MIBs also belong to the users of
network node and they let users control their traffic characteristics and have
access to their accounting information. Finally, he proposed the Temporal
MIB which represents the past and the current accounting information. The
main difference with our architecture is that this architecture did not consider
programmable network nodes, and thus the private MIBs are as rigid as the
traditional MIB.

5. Summary

In this article, we have addressed the issue of accounting management in the
context of programmable networks (more information can be found in [4]). We
have shown that programmable networks can enhance most of the processes
involved in accounting management including metering, charging and pricing.
These processes have been discussed in the scope of a generic accounting
management architecture. They can be customized easily to develop a specific
accounting management application.

Common problems of packet-level charging and pricing schemes can be
overcome, if we use programmable networks. We execute all the processes
into the network nodes instead at the end-points. Hence, no pricing policies
are transmitted, and the traffic overhead is reduced. Furthermore, there is no
delay, because the processes retrieve their parameters in the same machine

Programmable Accounting Management for Virtual Private Networks 31

where they are performed. Another important benefit is that these mecha-
nisms can be executed more than one time along the path. Specifically, they
can be executed where there is congestion, and users are able to select a class
of service according to the network load in the network core.

Finally, we proposed an accounting management architecture for pro-
grammable VPNs. We exploit the MIBlets [10] in order to isolate the account-
ing information among the VPNs which share the same network resources.
Another feature of our architecture is that the accounting management tasks
can be performed in the network nodes.

References

[1] Aiko Pras, Bert-Jan van Beijnum, Ron Sprenkels, and Robert Parhonyi.
Internet Accounting. IEEE Communications Magazine, May 2001.

[2] Berbard Aboba, Jari Arkko, and David Harrington. Introduction to
Accounting Management. RFC 2975, October 2000.

[3] Franco Travostino. Towards an Active IP Accounting Infrastructure.
IEEE OPENARCH, 2000.

[4] Anna Evlogimenou. Programmable Accounting Management for Virtual
Private Networks. Master’s thesis, University of Toronto, 2001.

[5] Luiz A. DaSilva. Pricing for QoS-Enabled Networks: A Survey. IEEE
Communications Survey and Tutorials, Second Quarter 2000.

[6] David D. Clark. A Model for Cost Allocation and Pricing in the Internet.
MIT Workshop in Internet Economics, 1995.

7

—

S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pricing in Computer
Networks: Reshaping the Research Agenda. ACM Computer Communi-
cation Review, Vol. 26, No. 2, 1996.

[8] J. Mackie-Mason and Hal Varian. Pricing the Internet. Public Access to
the Internet, Brian Kahin and James Keller, eds. Cambridge, MA: MIT
Press, 1995.

[9] Jeffrey K. Mackie-Mason. A Smart-Market for Resource Reservation in
a Multiple Quality of Service Information Network. 1997.

[10] Walfrey Ng, Andrew Do-Sung Jun, HungKei Keith Chow, Raouf
Boutaba, and Alberto Leon-Garcia. MIBlets: A Practical Approach to
Virtual Network Management. Sizth IFIP/IEEE International Sympo-
sium on Integrated Network Management, 1999.

312 Session Seven Service Accounting

[11] Bob Briscoe, Mike Rizzo, Jerome Tassel, and Konstantinos Damianakis.
Lightweight Policing and Charging for Packet Networks. IEFEE OPE-
NARCH, 2000.

[12) P. Marbach. Differentiated Services Networks: Pricing and Software
Agents. Technical Report CSRG-422, 2001.

[13] Manuel Gunter, Torsten Braun, and Ibrahim Khalil. An Architecture for
Managing QoS-enabled VPNs over the Internet. IEEE, Local Computer
Networks, 1999.

[14] SUSIE project (ACTS). , 1999. http://www.teltec.dcu.ie/susie/.

[15] Richard Edell and Pravin Varaiya. Providing Internet Access: What We
Learn From INDEX. IEEE, Network vi3, n5, Sept-Oct 1999.

[16] Nevil Brownlee. New Zealand Experiences with Network Traffic Charg-
ing. MIT Workshop in Internet Economics, 1995.

[17] Nevil Brownlee. NeTraMet Version 4.3 Now Available.

[18] Richard J. Edell, Nick McKeown, and Pravin P. Varaiya. Billing Users
and Pricing for TCP. IEEE Journal On Selected Areas In Communica-
tion, 13(7), September 1995.

[19] Hans-Werner Braun, Kimberly C. Claffy, and George C. Plyzos. A frame-
work for flow-based accounting on the Internet. IEEE, International
Conference on Information Engineering, 1993.

[20] Theodore K. Apostolopoulos. Accounting management in Communica-
tions Networks: Concepts and Architecture. IEEE, Computers and Com-
munications, 1997.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

