
101

Tracerouting Peer-to-Peer Networks

Wenli Liu andRaoufBoutaba
School ofComputer Science
University of Waterloo
200 University Ave. W
Waterloo, ON, Canada
{w7liu, rboutaba}@bbcr.uwaterloo.ca

Abstract
As Peer-to-Peer(P2P) networks are being developed and deployed on the Internet at
a fast pace, the need for a traceroute like mechanism at the application layer sur-
faces. Such mechanism, once implemented and deployed, will significantly reduce
the complexity involved in developing, researching and evolving P2P networks. It
will also help users understand how their queries are handled in P2P networks and
mitigate their frustration when their queries return nothing. In this paper, we pro-
pose and describe AppTraceroute, which is analogous to traditional traceroute but
determines the application layer hops and hosts that a query has visited. Meanwhile,
we studied the bandwidth consumptions involved when introducing AppTraceroute
into pure P2P networks, hybrid P2P networks and structured P2P networks. We have
implemented and experimented the concept of AppTraceroute on a structured P2P
network, and the results are promising.

Keywords
AppTraceroute, Application Layer Traceroute, Pure Peer-to-Peer Networks, Hybrid
Peer-to-Peer Networks, Structured Peer-to-Peer Networks

1. Introduction
With only a few years of development, Peer-to-Peer(P2P) networks have gained
tremendous popularity and have reshaped the Internet's landscape ever since. From
pure, fully decentralized P2P networks such as Gnutella, to hybrid P2P networks
such as KaZaA, and to structured P2P networks such as Pastry[4], Tapestry[5], and
CAN[14], P2P networks, once being deployed, can attract millions of users in the
Internet. At the same time, P2P networks have been increasingly utilized in applica-
tion layer multicast [1 1], Resilient Overlay Networks [6], Internet measurement [16],
[15], Search for Extraterrestrial Intelligence [7] and P2P phone calls [13], albeit file
sharing still remains as the prominent area. Measurements show that P2P networks
have surpassed web applications in generating more than half of the total traffic in
the Internet. It is estimated that such P2P applications will continue to be developed
and deployed in the Internet in the foreseeable future.

As P2P networks can easily gain popularity and generate a large amount of traf-

0-7803-9249-3/05/$20.00 t2005 IEEE E2EIVON 05

102

fic, efforts have to be made to ensure their proper functioning from various aspects.
One such aspect is whether queries are forwarded correctly across the P2P network
to their destinations. In pure P2P networks such as Gnutella, peers should forward
queries to all its neighbors and stop forwarding a query when the query has been
forwarded for a certain times. In hybrid P2P networks such as KaZaA, a regular peer
should always send its queries to the super node it connects to and the super node
should forward the queries to other super nodes subsequently. The correct forward-
ing of queries is of particular importance for structured P2P networks, e.g., Pastry,
wherein a query is supposed to be forwarded to its destination along one optimal
path. Are the queries actually been forwarded along the optimal path? However, no
known means are available to retrieve the paths taken by queries in a P2P network.

Nowadays P2P networks do not allow queries to reach all the peers in order to
mitigate the effect of flooding. For example, queries in Gnutella will not be for-
warded after their TTL expires [10]. This practice, however, lowers the chance for a
query to find a file when the file actually exists in the P2P network. A repeat of the
same query may visit some new peers, but most likely the majority of the peers will
be visited again and again. When a query returns nothing, a user might resend the
query again and again until the file is found or the user gets frustrated and gives up.
It would be much better if P2P networks were equipped with some mechanism that
would allow users to determine the peers visited by a query in P2P networks. To this
end, a user would bootstrap from peers that the query has not visited before so that a
resend of the query could reach more unvisited peers.

In this paper, we propose and describe a mechanism that is similar to traceroute
but works at the application layer. The mechanism, i.e., AppTraceroute, is able to
obtain the paths, if more than one path, that a query takes in a P2P network. Each
of these paths is organized as an ordered list of application layer hops, starting from
the source peer to the destination peers of the query. For each such application layer
hop, AppTraceroute recovers the underlying IP layer hops in the same manner as
traceroute does. Although AppTraceroute requires some minor modifications at each
peer, it would allow users and researchers to easily recover the paths that queries take
in P2P networks and to investigate the overlay topology and the network topology,
thus offering opportunities in synchronizing the two topologies.

The rest of this paper is organized as follows. The related works are presented in
Section 2 and Section 3 focuses on the detailed design and analysis of AppTracer-
oute. A prototype of a structured P2P network that adopts the concept of AppTracer-
oute has been implemented and Section 4 will describe the prototype. This paper will
conclude with a summary of the contributions of this work and some of the planned
future works in Section 5.

2. Related Works

Traceroute has been a powerful and well-known debugging tool used to determine
the hop by hop path from source to destination at the network layer by any cne and

0-7803-9249-3/05/$20.00 t2005 IEEE E2EMON 05

103

from anywhere in the Internet. During the early days of the Internet, traceroute was
utilized extensively in identifying routing loops and black holes.

Van Jacobson implemented the first version of traceroute [3] based on the sug-
gestions from Steve Deering. This version of traceroute works by sending out UDP
or ICMP ECHO requests with an increasing value in the TTL field. The TTL field of
the first packet is set to 1 and is incremented by 1 for each of the following packets*.
This process continues until the TTL field has reached the value that is large enough
for the packet to reach the destination, i.e., the ICMP PORT-UNREACHABLE re-
sponse from the destination has been received, or until a maximum number of re-
quests has been sent. When the TTL value is less than the required number of IP
hops to reach destination, an ICMP TIME-XCEEDED response will be generated
by the IP router at which the TIL value reaches 0. By observing the received ICMP
TIMEEXCEEDED or PORT-UNREACHABLE responses, the IP routers along the
path from the source to the destination, as well as the destination itself, can be re-
vealed.

Due to the widespread use offirewalls in the modem Internet, many ofthe UDP or
ICMP ECHO request packets that traceroute sends out end up being filtered, making
it impossible to completely trace the path to destinations. Layer four traceroute such
as (LFT)[1] and tcptraceroute[2] were introduced. These variants operate almost the
same way as traceroute, but send out TCP SYN packets instead of UDP or ICMP
ECHO packets. As firewalls cannot differentiate one TCP SYN packet from another,
ICMP TIMEFXCEEDED or PORT-UNREACHABLE responses will be echoed
back, thus allowing LFT or tcptraceroute to penetrate more firewalls and tracing
more destinations in the network.

Compared to traceroute series, i.e., traceroute, LFT and tcptraceroute, which all
determine the hop by hop path that packets take from source to destination at the
network layer, AppTraceroute works at the application layer, unveiling the applica-
tion layer hops that queries take in the overlays. To have a vivid idea of how App-
Traceroute differs from the former three, Figure 1 depicts a path consisting of two
application layer hops, which are determined by AppTraceroute, and each ofthem in
turn consists of a list of IP hops. While the application layer hops are determined by
a single AppTraceroute process at the source, the IP hops in each application layer
hop are determined by a separate traditional traceroute process running at the source
of the application layer hop.

In this paper, the peer that initiates the query is called the source peer, the peers
that forward the query to next hop peers are called forwarding peers, and the peers
that the query ends up with are called destination peers. All the forwarding peers and
the destination peers form the set which is termed the "reach of the query" in this
paper. Accordingly, Peer 1 in Figure 1 is the source peer, Peer 2 a forwarding peer
and Peer 3 a destination peer. The reach of the query is {Peer 2, Peer 3}.

0-7803-9249-3/05/$20.00 ©2005 IEEE

*In its implementation, traceroute allows the sending ofmore than one UDP or ICMP ECHO requests per
hop. As a matter of fact, the default value is 3.

E2EIVON 05

104

Peer 2
Application Layer i

/TCPlaycr \ -- - AppTraceroute/ TCP Layer
/ 2 IP Layer - traceroute series

/ Data LinklAyer _
Physical Layer

EPtlAyer IPLayr

y Uink Ly.ye LiAkyr

/ PhyicaltLaye, Ptrsic.L.r
/ $/ Router 2 octero3r ?3

Peor /
FLae IP Layre Peer3

Application Layer re Application Layer
TCP Layer Physiclr Layer |tPhysical TCP Layer
lP Layer Router 1 Router 4 IP Layer

Link Layer Link Layer

Physical Layer Physical Layer

Figure 1: The Difference between AppTraceroute and Traceroute Series

3. Design
The goal of AppTraceroute is to determine the application layer paths that a query
takes as well as the reach of the query after the query is initiated by a source peer.
The characteristics of each peer in the reach of the query will be measured by App-
Traceroute the same way as traceroute does for IP routers. The constituent IP hops
for each application layer hop, along with their characteristics, will be revealed as
well. During the operation, a source peer sends an AppTraceroute query. Upon the
reception of an AppTraceroute query, each forwarding peer reacts accordingly and
sends acquired results back to the source peer, which assembles all the received re-
sponses and interprets them at the end. The operation ofAppTraceroute at the source
peer as well as the actions performed by all the peers in a P2P network are illustrated
in detail in the next two sections.

3.1 AppTraceroute Operation
The operation ofAppTraceroute at the source peer can be roughly divided into three
phases, as depicted in Figure 2. During the first phase and third phase, i.e., the App-
Traceroute query formulation and handling phase and response interpretation phase,
all actions happen solely on the source peer and no actions are required at the for-
warding peers and the destination peers. In the response handling phase, however,
AppTraceroute expects actions to be taken by forwarding and destination peers and
responses to be sent back.
AppTraceroute Query Formulation and Handling
To obtain the paths that a regular query takes in a P2P network, an AppTraceroute
query has to emulate the regular query so that it can be handled exactly the same as
the corresponding regular query, and at the same time the AppTraceroute query has to
trigger actions at forwarding peers and destination peers accordingly. Consequently,
an AppTraceroute query has to be designed to search for the same item and to have
the same format as the regular query. To accommodate this, the query format is

0-7803-9249-3105/$20.00 ©2005 IEEE E2EMON 05

105

AppTraceroute query handling

-- --------I- -------------------------------___
Response handling

Response reception and storage

Old Xt
Response intepretation I I [iL]F;;-]I

I

Figure 2: AppTraceroute Operation Figure 3: New Query Format

expanded with an option field in the header so that AppTraceroute queries can be
differentiated from regular ones. Under this new query format, all regular queries
will have the option field set to zero, whereas the option field of AppTraceroute
queries are set to non-zero values. Figure 3 further illustrates the formation of the
new query format.

Once an AppTraceroute query is formulated, the source peer handles the App-
Traceroute query exactly the same way as a forwarding peer does to a received App-
Traceroute query. It forwards the AppTraceroute query to all the next hop peers in
the overlay as if the query was a regular query. Meanwhile, it starts tracerouting all
the next hop peers to determine the IP hops along the path to each of them. The
detailed handling of an AppTraceroute query at the source peer will be given in sub-
section 3.2 where AppTraceroute query handling at forwarding/destination peers is
described. Once the AppTraceroute query has been sent and tracerouting processes
have been handled, AppTraceroute enters its second phase of operation at the source

peer.

Response Handling
When AppTraceroute enters its second phase of operation, the AppTraceroute query
that was sent out in the first phase begins to reach its forwarding peers, to be for-
warded to next hop peers, and ultimately to arrive at its destination peers. Each for-
warding of the AppTraceroute query to a next hop will trigger the transmission of
a response message to the source peer. A response message has three fields, i.e.,
current, next and result. The current field corresponds to the IP address of the
current peer, i.e., the peer that initiates the response message, and the next field is
the IP address of the next hop peer, i.e., the peer to which the current peer forwards
the query. The result field describes the constituent IP hops from the current peer
to the next hop peer. In particular, the result field contains a list of four-tuples of
the format (ip, rtt1, rtt2, rtt3). The ilh tuple in the result field contains the IP ad-
dress of the ith gateway router along the path from the current peer to the next hop
peer and three measurements of the round trip delays from the current peer to the

0-7803-9249-3105/$20.00 02005 IEEE

AppTraceroute query
formulation a I

AppTraceroute query formulation

E2EIVON 05

106

<Current> = ipCurrent

<Next> = ipNext

<Result> = <0p1, rl, r2, rtt3>
<ip2, rnfl, t2, rtt3>
<1p3, rttl, ,rtat3>

Figure 4: A Response Message
ipCurrent Application Layer hop

-Application Laycr - - - - - - - - - - - - - -> Application Layer
TCP Layer TCP Layer
IP Layer IPLae 30 IPLyr} IP Layer I ae

Link Layer Link Layer | Link Layer | Link Layer | Data Link Layer
Physical Layer Physical Layer | Physical Layer | Physical Layer Physical Layer

Router ip1 Router ip2 Router ip3

Figure 5: Graphical Representation ofthe Response Message

ith gateway router. To illustrate this further, Figure 4 describes a response message
with specific values for each of the three fields and the information conveyed by the
response message is graphically represented in Figure 5.

In its second phase of operation, AppTraceroute at the source peer receives re-
sponses from forwarding peers, and records the received responses for further pro-
cessing in the third phase. It continues to receive and save responses until all the
expected responses have been received or a timeout value has been exceeded. Until
then, AppTraceroute operation remains in its second phase at the source peer.
Response Interpretation
AppTraceroute constructs two directed graphs based on the received responses. The
first directed graph Gapp (Vapp, Eapp) represents the application layer paths that
the AppTraceroute query takes, wherein the vertex set Vapp is the set of peers that
the query has visited and a directed edge (p, q) E Eapp indicates that peer p once
forwarded the query to peer q. The second directed graph Gip = (VipI Eip), on
the other hand, represents the IP layer routes that the AppTraceroute query takes,
wherein the vertex set V7p is the union of the set of the IP routers that the query has
visited and the set ofthe hosts on which the visited peers run. Accordingly, a directed
edge (p, q) E Eip indicates that either router p forwarded the query to router q, host
p forwarded the query to router q, or router p forwarded the query to host q. In
addition, each edge in Eip is labeled by the average one-way delay introduced by the
corresponding IP hop. Figure 6 details the creation of the two graphs.

The visualization of the two graphs can be either a plain text printout or graph-
ical representation, which is out of the scope of this paper and hence it will not be
described here.

3.2 Actions Required at Peers in a P2P Network

Figure 7 sketches the actions a peer takes in a P2P network upon the arrival of a
query. No matter which type the received query is, the peer determines all the next
hop peers and forwards the query to each of the next hop peers. The peer then checks

0-7803-9249-3/05/$20.00 @2005 IEEE E2EIVON 05

107

Figure 6: The Creation of the Two Graphs

the option field ofthe query to find out whether the query is an AppTraceroute query.

If the query is an AppTraceroute query, i.e., the option field is not zero, the query

is further processed as an AppTraceroute query. As mentioned before, the handling
of an AppTraceroute query at the source peer and each of the forwarding peers is
the same, whereas the handling at destination peers is slightly different. Figure 8
describes the handling of AppTraceroute queries in detail.

Given an AppTraceroute query, the current peer, either a source peer, a forwarding
peer, or a destination peer, checks whether the query has arrived at its destination. In
case that the current peer is actually the destination ofthe query, the current peer, i.e.,
the destination peer, discards the AppTraceroute query and takes no further actions.
Otherwise, the current peer first retrieves its own IP address, ipCurrent. Then for
each of the next hop peers that the AppTraceroute query has been forwarded to, the
current peer retrieves the next hop peer's IP address ipNext, and starts a traditional
traceroute process to discover the IP hops from the current peer to the next peer.
At the end of the traceroute process, the current peer converts the traceroute result
into an ordered list of four-tuples in accordance with the definition of the response
message, and sends a response message back to the source peer. In the response
message, the current field is set to ipCurrent, the next field is set to ipNext, and
the result field is filled with the ordered list of four-tuples.

In summary, AppTraceroute can determine the routes that a query takes in a P2P
network not only at the application layer, but at the IP layer as well. However, this
is achieved at the cost of some minor modifications at each peer in the P2P net-

0-7803-9249-3/05/$20.00 0)2005 IEEE

Vapp = Eapp = Vip = Eip = 0;
FOR each response (ipCurrent, ipNext, (ipi, rtti, rtt?, rtt3), i = 1...k)

Vapp = Vapp U {ipCurrent, ipNext};
Eapp = Eapp U {(ipCurrent, ipNext)};
Vip = V7p U {ipCurrent, ipNext};
IF ipCurrent 5$ ip,

E2p = Eip U {(ipCurrent, ipl)};
ENDIF
IF ipk 5 ipNext

Eip = Eip U {(ipk, ipNext)};
ENDIF
Vip = VipU {ipi};
FOR i = 2...k

Vip = Vip U {ipi};
Eip= Eip U {(ip- 1,ip)};
1abe1Edge((ipi_l X1,i) = rttl+rtt2+rt3 _ rttl_,+rtt? 1+rtt3_6 6

ENDFOR
ENDFOR

E2EMON 05

108

Figure 7: Modified Be- at the source peer
haviors of Peers in a P2P Discard the AppTraceroute query
Network e '

Figure 8: AppTraceroute Query Handling

work as described in this section. In addition, one traditional traceroute process is
initiated and one response message is transmitted for each application layer hop that
AppTraceroute queries undergo. This will inevitably introduce a certain amount of
traffic into the network and the actual amount varies from one P2P network to an-
other. In the subsequent sub sections, the amount of traffic introduced by a single
AppTraceroute query is analyzed at the source peer and at a forwarding peer in three
representative P2P networks, i.e., Gnutella for pure P2P networks, KaZaA for hy-
brid P2P networks and Pastry for structured P2P networks. The introduced traffic,
fortunately, is acceptable.

3.3 AppTraceroute in Pure P2P Networks

In a pure P2P network like Gnutella [10], a source peer sends a query to all its neigh-
bors, and its neighbors, upon the reception ofthe query for the first time, forward the
query to all their neighbors except the one from whom they just received the query.
To control the extent of flooding, a TTL mechanism is utilized, which is set to a
default value at a source peer and decremented by I at each forwarding peer. Peers
stop forwarding a query once the TTL value reaches zero.

To help quantify the amount of traffic introduced, Table 1 defines a list of pa-
rameters that will be used in the following analysis. For the ease of presentation, the
length of messages, i.e., I and L, is assumed to have already taken into consideration
the overhead introduced by lower layers in the protocol stack.

In Gnutella, a forwarding peer initiates n - 1 traditional traceroute processes for

0-7803-9249-3/05/$20.00 ©2005 IEEE E2EMON 05

109

Table 1 Parameter Definition

Name Description

n The number of neighbor peers on average
r The default TTL value
h The number of IP hops per application layer hop on average
d The average delay in millisecond per application layer hop
m The number of traceroute probes per IP hop
I The length in bytes of the traceroute probes and responses
L The length of AppTraceroute queries and their responses

each received AppTraceroute query and these processes are supposed to finish in
about 2 x d milliseconds. Meanwhile, it has to forward each AppTraceroute query
n - 1 times and send n - 1 AppTraceroute responses back to the source peer. With
all these taken into consideration, a forwarding peer is expected to send and receive
2(n - 1)mhl + 2(n - 1)L bytes in 2d milliseconds, an average of (n-l)mhl+(n-l)Ld
bytes per millisecond for a time duration of about 2d milliseconds.

The situation is slightly complicated for the source peer. During the time period
[0, 2d], the source peer sends the AppTraceroute query n times and handles n tracer-
oute processes for all next hop peers. Afterwards, it is expected to receive r waves
of AppTraceroute responses triggered by the AppTraceroute query, wherein the ith
wave has about n(n - 1)i-1 responses [10] that begin to arrive at the source peer 2id
milliseconds after the source peer sends the AppTraceroute query. Assuming that all
the responses within the ith wave arrive at the source peer within the time period
[2id, 2(i + 1)d], the bandwidth consumption at the source peer for the ith wave is
about (n)L bytes per millisecond on average. Assembling all these together,2d btsp
equation (1) gives the average bandwidth consumption incurred by each AppTracer-
oute query at the source peer as a function of time t, which starts from time 0 when
the AppTraceroute query is sent, to the time when all the responses have been re-
ceived, i.e., 2(r + 1)d milliseconds.

BandwidthConsumption(t) = 2d ? 0 < t < 2d
2dn(n- 1)t-L 2id < t < 2(i + 1)d Vi-=1.. .r

(1)

3.4 AppTraceroute in Structured P2P Networks

Instead of being flooded to all neighboring peers, a query in a structured P2P net-
work like Pastry [4] is only forwarded to the best candidate peer that the forwarding
peer is aware of. As such, queries are guaranteed to reach their destinations in at

0-7803-9249-3/05/$20.00 02005 IEEE E2EIVON 05

110

most FlOg2b Ni application layer hops, where N is the total number of peers in the
structured P2P network and b is the number of bits per digit in a peer's identifier [4].

Given the same definitions and conditions for h, d, m, 1 and L as for pure P2P
networks, a forwarding peer in a structured P2P network is expected to forward App-
Traceroute query only once and at the same time to traceroute only one of its neigh-
bors, thus sending an AppTraceroute response only once. This results in a total traffic
of 2mhl + 2L bytes in 2d milliseconds, which equals a bandwidth consumption of
mhl+L bytes per millisecond for about 2d milliseconds. Similarly, a source peer in a
structured P2P network is expected to initiate only one traceroute process and to re-
ceive at most Flog2b Ni - 1 waves ofAppTraceroute responses. However, one wave
contains only one response in a structured P2P network. Accordingly, Equation (2)
gives the average bandwidth consumption by the source peer as a function of time t,
where 0 < t < 2d([log2b Ni + 1).

BandwidthConsumption(t) 2mhl + l O <2d

L
= 2id < t < 2(i +1)d, V= 1...10og2b NJ

(2)

3.5 AppTraceroute in Hybrid P2P Networks

In a hybrid P2P network like KaZaA, regular nodes(RN) are dynamically elected as
super nodes(SN) and all the SNs organize themselves into an overlay network. A
regular node then attaches itself to one of the SNs and this SN becomes the parent
node of the RN. In KaZaA, a RN always forwards its queries to its parent node, which
in turn forwards the queries to other SNs. Queries initiated by a SN are forwarded
to other SNs as well. Due to the use of encryptions in the signalling traffic, how a
SN forwards queries to other SNs in KaZaA is unknown. [9] mentions that queries
are forwarded to one or more SNs while [12] argues that queries are flooded among
SNs. As a SN has about 40-50 SN neighbors [9], the extent of flooding, if it was
the case, would be significant. On the other hand, the "one or more" behavior in [9]
is relatively vague. For the purpose of this study, i.e, to understand the number of
responses per wave after an AppTraceroute query is initiated, a SN is assumed to
forward a query to next hop peers with a probability that decreases with the number
of application layer hops that the query has travelled. In particular, the probability
has the following probability density fimction: f (x) - e-XX where x is the number
of application layer hops a query has travelled so far and A > 0 is a parameter that
controls the extent of flooding. When A = 0 queries are flooded and when A gets
positively larger, e.g. 3, the "one or more" behavior can be emulated.

In this work, A is set to 3 and the average number of responses per wave is sim-
ulated for the first 5 waves when a SN is the source peer in a KaZaA overlay that
is assumed to be well balanced with each SN having 50 neighbor SNs. At the same
time, the number of SNs that a query is forwarded to is acquired for the KaZaA
overlay as well.

0-7803-9249-3/051$20.00 ©2005 IEEE E21EMON 05

111

Table 2 Branching Factor and Bandwidth Consumption at a Forwarding Peer

NetworksThe Branching Factor Bandwidth Consumption (Bytes per second)

Pastry 1 23500
Gnutella 3 70500
KaZaA 2.59 60767

Gnutella and Pastry are studied as representatives for pure and structured P2P
networks respectively. Both Gnutella and Pastry overlays are also assumed to be well
balanced and to have as many peers as required for a query to travel 5 application
layer hops. For Gnutella, the number of neighbors is set to its default value 4 [10].
An application hop in this work is assumed to have 10 IP hops and the traditional
traceroute probes 3 times for each IP hop. In addition, each traceroute probe and its
response have a length of 60 bytes while an AppTraceroute query and its responses
have an average length of 80 bytes.

Table 2 lists the number ofnext hop peers a query is forwarded to, i.e., the branch-
ing factor, and the bandwidth consumed by a forwarding peer on average due to the
initiation oftraceroute processes and the transmission ofresponses back to the source
peer. While Pastry consistently makes one forwarding only, Gnutella and KaZaA for-
ward queries to 3 or 2.59 peers on average, respectively. For KaZaA, the branching
factor is determined by solving x+X2+x3+X4+X5 = Number of Visited Peers,
where the number of peers that a query can visit within 5 application layer hops is
acquired during the simulation. As it shows in the table, the bandwidth consumption
at a forwarding peer grows linearly with the branching factor, with Pastry consumes
the least, Gnutella the most and KaZaA in the middle.

Figure 9 describes AppTraceroute bandwidth consumption at the source peer for
Gnutella, Pastry and KaZaA. As illustrated in Figure 9, the source peer in all the stud-
ied networks consumes a relatively larger amount of bandwidth during time period
[0, 2d]. This is due to the fact that a source peer has to send AppTraceroute queries
and to handle the traditional traceroute processes for the first application hop. After-
wards, the source peer is only expected to receive waves of responses periodically.
Since the source peer in Pastry consistently receives one response per wave, its band-
width consumption levels off for the remaining waves. The source peer in KaZaA
receives responses at an increasing pace at the beginning and then the number of
responses decreases to almost nothing, thus yielding a high amount of bandwidth
consumption at the beginning and almost nothing at the end. The bandwidth con-
sumption by the source peer in Gnutella, however, keeps climbing due to the fact
that more and more responses are sent back as queries travel further in Gnutella.

0-7803-9249-31051$20.00 @2005 IEEE E2EMON 05

112

AppTraceroute Barndwidth Consumption
Gnutefla
Pastry

lo - - - - KaZaA

loS'
104

102

101 lt|-l%t 4@t @;5- ;till -il

10°

lo-l.'

10-
0 100 200 300 400 500 600 700 800 900

Tinme (Millisecond)

Figure 9: AppTraceroute Bandwidth Consumption at a Source Peer

4. Implementation

The concept of AppTraceroute has been implemented and experimented within a
prototype of a structured P2P network based on Pastry[4]. More precisely, Pastry
is only a distributed platform that implements scalable object location and routing.
P2P applications, instead of building their own object location and routing facilities
individually, can share the facilities provided by Pastry, which provides a common
API [8] to facilitate the development ofP2P applications.

In the prototype, each peer is given a 128bit identifier and manages a list of ob-
jects whose identifiers are numerically very close to the peer's identifier. To search
an object, a query with the same identifier as the object is formulated and is then
forwarded to a peer with an identifier that is numerically the closest to the object's
identifier. The concept of AppTraceroute is completely incorporated into the proto-
type, thus for the first time offering users and researchers the capability to determine
the paths that queries take in the P2P network. This can be used by researchers to
study the dynamics of the P2P network and to establish more efficient and scalable
P2P networks. In addition, the determined paths, both in terms of a series of appli-
cation layer hops and a series of IP hops are visualized. Figure 10 is a screen shot
that describes the operation ofAppTraceroute in the prototype. At the top of the fig-
ure, users can specify an object to be sought and once the AppTraceroute button is
pressed, an AppTraceroute query is formulated and the paths that the query takes in
the P2P network are visualized at the bottom of figure. In the visualization, routers
and hosts are represented by distinguishing icons and users can click on an item, e.g.,

0-7803-9249-3/05/$20.00 @2005 IEEE E2EIVON 05

113

Figure 10: AppTraceroute Operation in the Prototype

a router, a host or a link, to retrieve a list of properties of that item, such as the IP
address of the router or host, the delays of a link, etc.

5. Conclusion
In this paper, we proposed and described AppTraceroute, a traceroute like mecha-
nism that operates at the application layer. We analyzed the bandwidth consumption
at the source peer and at a forwarding peer when introducing AppTraceroute into
pure P2P networks, hybrid P2P networks and structured P2P networks. In addition,
we implemented and experimented with AppTraceroute in a structured P2P network
that fully incorporates the concept of AppTraceroute. In the future, we will incorpo-
rate AppTraceroute into other P2P networks, such as Gnutella and KaZaA. Also, the
bandwidth consumption of AppTraceroute at source peers and forwarding peers will
be measured and compared with the analysis in this paper. As Gnutella and KaZaA
have gained their popularity and boast large numbers of users in the Internet, the co-
existence of AppTraceroute compliant and non-compliant peers will be inevitable
when incorporating AppTraceroute into these networks. Hence, we will investigate
the possible negative influence on AppTraceroute operation, and will study some
adaptive algorithms to improve the correctness and precision of AppTraceroute in
such networks.

0-7803-9249-3/05/$20.00 02005 IEEE E2EMON 05

114

References
[1] Layer Four Traceroute(LFT). Available at http://oppleman.com/Ift/.
[2] tcptraceroute. Available at http://michael.toren.net/code/tcptraceroute/.
[3] traceroute. Available at http://www-nrg.ee.lbl.gov/.
[4] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems. In IFIP/ACMInternational Con-
ference on Distributed Systems Platforms (Middleware), November 2001.

[5] Ben Y Zhao, John Kubiatowicz and Anthony Joseph. Tapestry: An Infras-
tructure for Fault-tolerant Wide-area Location and Routing. Ucb tech. report
ucb/csd-0l- 1 141, University of California at Berkeley, April 2001.

[6] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Resilient
Overlay Networks. In 18th ACMSymposium on Operating Systems Principles,
October 200 1.

[7] E. Korpela, D. Werthimer, D. Anderson, J. Cobb and M. Lebofsky.
SETI@home-Massively distributed computing for SETI. In Computing in Sci-
ence and Engineering, January 2001.

[8] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica.
Towards a Common API for Structured P2P Overlays. In The Second Interna-
tional Workshop on Peer-to-Peer Systems(IPTPS), February 2003.

[9] J. Liang, R. Kumar, and K. Ross. The KaZaA Overlay: A Measurement Study.
In Technical Report, September 2004.

[10] J. Ritter. Why Gnutella Can't Scale. No, Really. Available at
http://www.darkridge.com/jpr5/doc/gnutella.html., February 2001.

[11] M. Castro, P. Druschel, A-M. Kermarrec and A. Rowstron. SCRIBE: A large-
scale and Decentralised Application-level Multicast Infrastructure. In IEEE
Journal on Selected Areas in Communications, October 2002.

[12] N. Leibowitz, M. Ripeanu, and A. Wierzbicki. Deconstructing the KaZaA Net-
work. In 3rd IEEE Workshop on Internet Applications(WIAPP), June 2003.

[13] S. Garfinkel. Peer-to-Peer Comes Clean. MIT Technolgoy Review Magazine,
October 2004.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Schenker. A Scalable
Content-Addressable Network. In The 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocolsfor Computer Communications, 2001.

[15] S. Srinivasan and E. Zegura. Network Measurement as a Cooperative Enter-
prise. In The First International Workshop on Peer-to-Peer Systems(IPTPS),
March 2002.

[16] W. Liu, R. Boutaba and J. Hong. pMeasure: A Tool for Measuring the Internet.
In The Second Workshop on End-to-End Monitoring Techniques and Services,
October 2004.

0-7803-9249-3105/$20.00 02005 IEEE E2EIVON 05

