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Abstract—In large-scale enterprise networks, multiple
network intrusion detection and prevention systems are
used to provide high quality protection. A challenging
problem is to maintain load balancing of the systems,
while minimizing the loss of information due to distributing
traffic. Because anomaly-based detection and prevention of
some intrusions require a single system to analyze attack-
correlated flows, this loss of information might severely
reduce the accuracy of the detection and prevention.

In this paper, we address this problem by first for-
malizing the load balancing problem as an optimization
problem, considering both the load variance and the
information loss. We then present our Benefit-based Load
Balancing (BLB) algorithm as a solution to the problem.
We have implemented a prototype load-balancer with BLB
algorithm and evaluated it against a DDoS attack. Our
results show that the load-balancer significantly improves
the detection accuracy, while being able to keep the load
of the systems close within a desired bound.

I. INTRODUCTION

Nowadays, as people rely heavily on computer sys-
tems to conduct businesses and operate mission critical
devices, effects of viruses and worms are much more
disastrous. One way to combat the spread of viruses
and worms is by using network intrusion detection and
prevention systems (NIDPSs). An NIDPS is usually
placed at an edge of a network, between its internal
and external networks. The NIDPS monitors all packets
coming in from the external network and going out of
the internal network to detect and prevent intrusions.

Since network traffic speed and volume are increasing
with an exponential rate [1], and NIDPSs are becoming
more complex, a critical problem with using a single
NIDPS is that it could be easily overloaded. When
overloaded, the NIDPS eventually has to drop packets.
Dropping packets compromises the security offered by

the NIDPS, because some intrusions can not be detected
if their related packets are dropped.

Using clusters of NIDPSs offers the most affordable
and scalable solution to the above problem [1], [2]. When
a cluster of NIDPSs is used in a network, keeping load
evenly distributed among the NIDPSs is crucial because
even load distribution, most importantly, provides protec-
tion: there will be less likely an overloaded system. Ad-
ditionally, it allows for better traffic engineering which
improves the network’s quality of service.

A challenging problem, however, is to maintain load
balancing of the systems while minimizing the loss of
information due to distributing traffic. Since anomaly-
based detection and prevention of some intrusions, such
as distributed denial of service (DDoS) attacks and port
scans, require a single system to analyze correlated flows
of the attacks, this loss of information might severely
affect the accuracy of the detection and prevention.

In this paper, we propose a novel approach to dis-
tribute traffic to the NIDPSs. First, we formalize the
load balancing problem as an optimization problem,
considering both the load variance and the information
loss. We then present our Benefit-based Load Balancing
(BLB) algorithm as a solution to the problem. This
algorithm uses on-line clustering technique to distribute
flows in real-time such that: (1) Correlated flows are
grouped together at a single NIDPS to minimize the
information loss, and (2) load of NIDPSs are kept close
within a specified bound.

We have implemented a prototype load-balancer with
BLB algorithm and evaluated it against a DDoS attack.
Our results show that the load-balancer significantly
improves the detection accuracy while keeping the load
of the systems close within a desired bound. Fig. 1 shows
how our load-balancer fits into the network topology.
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Fig. 1. Placement of the NIDPS Load-Balancer

The rest of this paper is organized as follows: §II
describes the problem statement and approach overview.
In §III we formalize the problem. §IV provides an
approximation algorithm to solve the flow assignment
optimization problem. In §V we explain the on-line
clustering technique and describe the BLB algorithm.
§VI discusses the correlation between flows. In §VII we
describe the implementation and evaluation results. §VIII
presents related work. Finally, we conclude in §IX.

II. PROBLEM STATEMENT AND APPROACH

OVERVIEW

Problem Statement. Given a cluster of NIDPSs, we
want to develop a load-balancer which provides a desired
load balancing, i.e. keeps load of the NIDPSs close
within a specified bound, and minimizes the information
loss due to flow distribution, which in turn improves the
detection and prevention accuracy of the NIDPSs.

Approach Overview. First, we introduce cluster to
better capture correlations of flows, and more impor-
tantly, to provide some structures to the flows. Secondly,
benefit is introduced as a mean to measure the correlation
between a new flow and previous flows. Finally, our
approach can be summarized as follow: Flows in NIDPSs
are organized as clusters, and a desired level of load
balancing is specified as a variance constraint. When
a new flow comes, we find candidate NIDPSs which
satisfy the variance constraint. Then, among clusters of
these NIDPSs, we assign the new flow to the ones which
give the best benefits.

III. PROBLEM FORMALIZATION

Formalization. At time t, let n be the number of
NIDPSs and m be the number of clusters. The mapping

Listing 1 Flow Assignment Optimization Problem P
Maximize:

(1)
−→
X · −→B

Constraints:
(2)

−→
X · −→I ≤ F

(3)
−→
X · −→Gi ≤ 1, ∀i ∈ [1, n]

(4) 1
n

∑n
i=1

[
(Li + Lf (

−→
X · −→Gi)− (µ+ Lf

−→
X ·−→I

n )
]2
≤ V

Where:−→
X : Solution vector of size m−→
B : Benefit vector of size m−→
Gi : Cluster-ownership vector of size m of NIDPS i−→
I : Vector of 1’s of size m
F : Maximum number of NIDPSs to assign f
Li : Load of NIDPS i
µ : Average load of all NIDPSs
Lf : Predicted load of f
V : Upper bound for the new variance

between NIDPSs and clusters is one-to-many. For each
NIDPS i (i ∈ [1, n]), let

−→
Gi be a vector of size m

whose jth element (j ∈ [1,m]) is either 1 if NIDPS i
owns cluster j or 0 otherwise. Now let f be the new
flow. Assigning f to a cluster j gives a benefit Bj .
Essentially, this benefit reflects how much correlation
there is between f and flows in cluster j. Following,
let
−→
B be a vector of size m whose jth element is the

benefit Bj .
We use Li to denote the load of NIDPS i in the

system at the current time. Li’s could be either indirectly
estimated or directly updated by using periodical SNMP
queries or time-based traps. Next, let µ be the current
average load of all NIDPSs and V be the upper bound
for the new variance after the assignment. Subsequently,
let Lf be the predicted load of the new flow. Afterward,
let F be the maximum number of NIDPSs which f could
be assigned to concurrently, and finally, let

−→
X be the

solution vector of size m whose jth element is either 1
if f is going to be assigned to cluster j or 0 otherwise.

In order to determine which clusters to assign f to, we
solve the optimization problem P specified in listing 1.
In the case that there is no solution to P, a new cluster
is created with f as its centroid. This new cluster is then
assigned to an NIDPS with the lowest load.

Our optimization problem P is a Non-linear Binary
Integer Programming problem. Expression (1) states that
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we want to maximize the total benefit. The first con-
straint, expression (2), requires that f could be concur-
rently assigned to at most F NIDPSs. The second con-
straint, expression (3), requires that f could be assigned
to at most one cluster in each NIDPS. Finally, the third
constraint, expression (4), requires that the variance of
the load of all NIDPSs after the assignment must be less
than or equal to the desired variance V . A small value of
V means high level of load balancing is expected while
a high value of V indicates otherwise.

For instance, if V is set at 9 (%2 CPU utilization)
and assuming that load are normally distributed among
the NIDPSs, then 99.73% of the NIDPSs will have load
within 3

√
V = 9 (% CPU utilization) of the average load

µ, or within 18 (% CPU utilization) of each other.

Configurable Security. When it is desirable to favor
security, i.e. low information loss, over performance, i.e.
load balancing, this formalization provides three possible
configurations:

1) Relaxing variance constraint: Setting V high
loosens the load balancing requirement; thus,
higher benefit might be achieved. To the extreme,
V could be set high enough so that load balancing
is completely ignored. In this case, traffic is dis-
tributed based on only benefit, resulting in the use
of only one NIDPS, which might be a desirable
setting when the traffic load is low.

2) Duplicating flows: A high value of F reduces the
loss of information because flows are duplicated
up to F times to be sent to NIDPSs. However,
duplication of flows consumes system resources
like bandwidth and CPU load; therefore, it must
be used selectively.

3) Threshold-based load distribution: Load balanc-
ing requirement could be replaced by threshold-
based requirement, which is easier to satisfy. The
later requirement gives more room to obtain higher
benefit, hence lower information loss. Threshold-
based load distribution could be readily achieved
by replacing constraint (4) with a simpler con-
straint: (4∗) Li +Lf (

−→
X ·−→Gi) < thl , ∀i ∈ [1, n]

IV. SOLVING OPTIMIZATION PROBLEM P

P is very hard to solve since its decision version is
an NP-complete problem. The proof of NP-completeness
can be found in our technical report [3]. Because of the
real-time requirement of the flow assignment, we pro-
pose a greedy-based approximation algorithm SolveP
to solve the problem P in linear time. Listing 2 shows the

Listing 2 SolveP Algorithm

1 solution set = ∅
2 nidps set = all NIDPSs
3 for i from 1 to F do
4 cluster set = all clusters of nidps set
5 find cluster in cluster set
- which satisfies variance constraint
- and has the biggest benefit
6 if no cluster found, quit for loop
7 solution set = solution set ∪ cluster
8 nidps = NIDPS which has cluster
9 update load of nidps
10 nidps set = nidps set \ nidps
11 end for
12 return solution set

algorithm. SolveP searches for a cluster, which gives
maximum benefit and satisfies the constraints, at a time.
This could be done in O(m) time, and it tries to do this
up to F times. We also note that when F is set to 1, the
result of SolveP is the optimal solution to P.

V. ON-LINE CLUSTERING TECHNIQUE

We have customized an on-line clustering technique,
introduced by Aggarwal et al. [4], to create a suitable
algorithm for our load-balancer. Specifically, we have
integrated into the existing technique three concepts:
cluster weight, decay of weight, and benefit.

Weights of Clusters. Each cluster has a weight whose
value is between 0 and 1 inclusive. A weight of a cluster
reflects both the number of flows the cluster has and the
distances of the flows to the cluster centroid – a flow
representing the cluster. At any time t, the weight of
cluster j is as follow: Wj,t = λ(tj−t)Wj,tj

. Where λ > 1
is the decaying factor, and tj is the last time when a
new flow or a new packet gets assigned to this cluster.

Adding a new flow f to an existing cluster j changes
tj and the cluster’s weight. Let sj be the number of
flows cluster j already has. Let D(f, cj) be the logical
distance between f and the centroid cj . A logical dis-
tance between two flows is a value reflecting how much
correlated the two flows are. If f is added to cluster j
at time t, then the cluster’s weight is:

Wj,t = λ(tj−t)Wj,tj
+ (1− λ(tj−t)Wj,tj

)
e−D(f,cj)

sj + 1
The smaller the distance between f and cj is, i.e.

smaller D(f, cj), the larger weight it adds to the cluster,
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Listing 3 Benefit-based Load Balancing Algorithm

1 use k-Means to create n clusters
2 while there is a new flow f
3 C = solveP(f )
4 if C = ∅
5 if number of clusters > mmax

6 delete clusters whose weights < thw

7 end if
8 create a cluster (centroid f , weight 1)
9 assign it to lowest load NIDPS
10 else
11 assign f to clusters in C
12 update those clusters
13 end if
14 end while

i.e. larger e−D(f,cj). In addition, when f is further away
from cj , i.e. e−D(f,cj) ∼ 0, the weight it adds to the
cluster is negligible. This formula also guarantees that
the weight of any cluster is never bigger than 1.

Benefit-based Load Balancing Algorithm. At the
beginning, a traditional k-Means algorithm [5] is used
on a set of past flows to create n clusters with weight 1,
which are then mapped to n NIDPSs. At time t, when
there is a new flow f , benefits of adding f to existing
clusters are needed to solve P. Benefit of adding f to
cluster j is: Bj = (1 − D(f, cj))Wj,t. This formula
expresses that: (1) The closer f is to cj , the higher benefit
the assignment gives because of larger 1−D(f, cj), and
(2) the heavier the cluster j is, the higher benefit the
assignment gives because of larger Wj,t. Consequently,
the assignment giving the highest benefit would give
the highest possible correlation, taking into consideration
both logical distances and weights.

If P has a solution then f is added to the appropriate
clusters. Otherwise, a new cluster, whose centroid is f
and weight is 1, is created. Afterward, this cluster is
added to an NIDPS with the lowest load. The number
of clusters is closely monitored. If this number exceeds
a limit mmax, old clusters having weights less than a
threshold thw are deleted. The deleting of old clusters,
together with the creating of new ones, occurs in real-
time and assures that the existing clusters are represent-
ing the current traffic. Listing 3 details this algorithm.

VI. FLOWS CORRELATION

Logical Distance Function. Given two flows f1 and

Fig. 2. Matching Order of Correlations given by IP Addresses, Port
Numbers and Protocols

f2, logical distance between them D(f1, f2) is formally
defined as follow: D(f1, f2) =

∑
∀i∈F αidi(f1, f2).

Where F is either ip, port, or protocol; and α’s are the
weights of the fields. Depending on attack scenarios, αip

might be bigger or smaller than αport. For example, in
a DDoS attack scenario where an attacker uses many
hosts to attack many services of a single victim, αip

should be bigger because it is desirable to group flows
having the same destination IP address. On the other
hand, in a port sweep attack scenario, where an attacker
uses many hosts to scan a specific port of many victims,
αport should be bigger. Generally, αprotocol is always the
smallest because it is common to have flows with the
same protocol, like TCP or UDP.

Logical Distance by IP Addresses – dip(). We match
the correlation given by IP addresses of two flows
with the following correlations: identical and subnet
correlations. dip() returns a value between 1 and 0,
corresponding to the matching. The correlations are
defined as follow:

• Identical Correlation: If source IP addresses or
destination IP addresses of two flows are identical
then their correlation matches identical correlation.

This correlation is the most important correlation
between two flows. For example, in a DDoS at-
tack scenario, different source IP addresses might
be used for the attack [6]. However, computers
corresponding to those source IP addresses attack
the same target. Because they all have the same
destination IP address, flows belong to the attack
have identical correlation.

• Subnet Correlation: If destination IP addresses of
two flows belong to the same subnet or vlan, then
their correlation matches subnet correlation.

In practice, attackers often try to find vulnerabil-
ities in different computers in a target network, so
attack-correlated flows are sent to the same network.
Identifying this type of correlation helps to group
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these flows together to detect this type of intrusion.

Fig. 2 shows the order in which the matching is
done. Going from top to bottom, the significances of
the correlations decrease, so do the values dip() returns.

Logical Distance by Port Numbers – dport(). Be-
cause destination port numbers represent target ser-
vices, they play a more important role than source port
numbers. As a result, we concentrate on investigating
correlations between destination port numbers. Similar
to the IP address case, in order to determine a value
between 1 and 0, which dport() returns, we match the
correlation between two destination port numbers with
one of the following correlations:

• Identical Correlation: If destination port numbers
of two flows are identical then their correlation
matches identical correlation.

This correlation supports the detection and
prevention of intrusions targeting a particular ser-
vice provided by a computer. For example, flows
belonging to an attack aiming at a web server all
have 80 as their destination port number.

• Functional Correlation: If destination port num-
bers of two flows are functionally correlated then
their correlation matches functional correlation.

For example, flows belonging to an FTP connec-
tion have both destination port number 20 and 21.
Thus, it is desirable to group these flows together.

• Configuration Correlation: If destination port
numbers of two flows belong to a set of port
numbers provided by administrators, then their cor-
relation matches configuration correlation.

In practice, administrators might want to group
together flows belonging to different services, for
instance, telnet and web, to detect certain attacks.
This correlation enables them to do so.

Logical Distance by Protocol – dprotocol(). Either 1
or 0 is returned, depending on the following correlation:

• Identical Correlation: If protocols of two flows are
identical then they have identical correlation.

VII. IMPLEMENTATION AND EVALUATION

Implementation. The load-balancer is developed using
libpcap library [7] – a library for capturing and sending
network packets directly from and to network interfaces
in real-time. Both BLB and the naive flow-based round
robin algorithms are implemented in the load-balancer.

Fig. 3. Values of Yn over time

In addition, a DDoS detector is developed using
CUSUM – a simple and robust algorithm to detect DDoS
by T. Peng, et al. [8]. Fundamentally, CUSUM detects
the change of the mean value of the percentage of the
number of new source IP addresses overtime. A sequence
{Yn} is used to characterize the change. If at any time, a
value of {Yn} is bigger than a predefined threshold thy,
then an attack is detected.

Evaluation. Because of the limited space, we only
present one evaluation result related to the detection
accuracy. Other results related to the load balancing
performance can be found in our technical report [3]. We
carry out an experimentation to evaluate how BLB algo-
rithm increases the detection accuracy of DDoS attacks,
in comparison with the naive round robin algorithm.
V is set at 9, i.e. NIDPSs have load within 18% of

each other, and F is set at 1, i.e. no duplication of flows.
A large scale UDP flood attack, which involves about
10000 distinct attacking hosts and a victim, is generated.
Each UDP packet is of fixed size 1 KB, and its source
port and destination port are randomly selected. The
simulation lasts 100 seconds, during which the victim
has to manage a constant rate of traffic about 1 MBps.
The victim sees about 100 new source IP addresses
per second. Also, the background traffic is insignificant
comparing to the attack traffic.

There are 10 NIDPSs in our system. Using the round
robin algorithm, each NIDPS detects about 10 new
source IP addresses per second. Using our BLB algo-
rithm, there exists an NIDPS which detects a signifi-
cantly higher number of new IP addresses per second.
Fig. 3 shows values of Yn over time when a single
NIDPS, 10 NIDPSs with BLB, and 10 NIDPSs with
round robin are used. It could be observed that Yn values
when the round robin algorithm is used is significantly
smaller than when the BLB algorithm is used. Thus,
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there are scenarios when the round robin algorithm fails
to detect the attack but the BLB algorithm succeeds. For
example, if the threshold thy is set at 20, the round robin
algorithm will fail to detect the DDoS attack; however,
the BLB algorithm detects the attack at second 25, which
is 5 seconds later than when a single NIDPS is used.

We note that when a single NIDPS is used, the attack
is detected earlier because all flows go to this NIDPS,
and thus it has a complete picture of the network traffic.
Also, hash-based algorithm, used by others [1], [2],
would perform similarly to the round robin algorithm in
this experimentation since flows having different source
IP addresses are not grouped together in both algorithms.
In conclusion, our load-balancer with BLB distributes
traffic in a way which increases the detection accuracy
of the DDoS attack significantly.

VIII. RELATED WORK

Network Intrusion Detection (NIDS) Cluster. In a
recent literature by Vallentin et al. [2], the authors
present an NIDS cluster as a solution for realizing high-
performance and stateful network intrusion detection on
commodity hardware. This work is very particular to
Bro, an NIDS developed at UC Berkeley, and it also
requires communication between NIDSs. Quite different
from this approach, ours is independent of NIDS; thus,
it could be applied to a cluster of any NIDPSs. More-
over, we examine correlation between flows instead of
introducing communication between NIDSs to improve
the detection and prevention accuracy.

Hash-based Load-balancer. Schaelicke et al. [1]
present a load-balancer with a hash table and multiple
hash functions. A hash function is used on flows to
hash them into buckets, which are then assigned to
NIDSs. The main focus is to handle the case when
an NIDS is overloaded. Overload condition is handled
by reassigning buckets to different NIDSs or applying
multiple hash functions. This approach, however, does
not examine correlations between flows and does not
provide fine-grained load balancing.

In summary, none of the related work gives a satisfac-
tory solution to balance the load of the NIDPSs, and
more importantly, examines correlations between flows.
Correlated flows are not optimally assigned to increase
the accuracy of intrusion detection and prevention. Our
approach gives solutions to both of the above problems.

IX. CONCLUSION

In this paper we have proposed a novel Benefit-based
Load Balancing algorithm, which thoroughly considers
both the load variation of NIDPSs and the loss of
information due to flow distribution. As far as we know,
none of the previous work has considered this loss of
information in their approaches.

We have implemented a prototype load-balancer,
which uses the BLB algorithm to distribute traffic flows
in real-time such that: (1) Correlated flows are grouped
together at a single NIDPS to minimize the information
loss, which greatly increases the accuracy of anomaly-
based intrusion detection and prevention; and (2) the load
of NIDPSs are maintained close within a desired bound,
which provides protection and allows for better traffic
engineering. The evaluation results show that our load-
balancer significantly improves the detection accuracy of
DDoS attacks while keeping the load of NIDPSs close
within a bound.
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