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Motivation

e Cyber intrusions are more sophisticated
and harder to detect

— Malware, botnet, DDo0S

e Intrusion Detection System (IDS)

— Compare computer activity/traffic with known
intrusion patterns

— Host-based and network-based
— Can not cover all types of intrusions

— Easily compromised by unknown or new
threats

 An Collaborative Intrusion Detection
Network (CIDN) allows IDSes to share
knowledge and experience with others

— Cover more intrusion types
— Achieve higher detection accuracy
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Figure 1. CIDN Topology
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Figure 2. CIDN Architecture
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Problem Statement
e Input:

— A number of n collaborators
— The detection history of each collaborator
— Prior probability of intrusions
— Current feedback from each collaborator
— The cost of false positive, false negative
 Output:
— Final decision (yes/no)
e Goal:
— Minimize expected cost of false decisions
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n - Number of collaborators

7T, - Prior probability of intrusion
1¥,s---» ¥, } - Current feedback set
A - Forgetting factor

{50 Ty m, 1 - feedback history of node k for no intrusion test cases

{1} s rlink } - teedback history of node k for intrusion test cases

E - Probability that node k raises false alarm
T, - Probability that node k raises true alarm
C;, - Cost of a false positive decision

C, -Costof afalse negative decision
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FP, TP Modeling

We use Beta distribution to model posterior probability
of FP and TP
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Recursive Expression
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No need to keep all the history of all collaborators
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P[X = 1|Y = y]

Aggregation
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Aggregation

PX =1|Y =y]
P[Y = y|X = 1|P[X = 1]

P[Y = y|X = 1|P[X = 1] + P[Y = y|X = 0]P[X = 0]
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P[X

Aggregation
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Aggregation
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The density function of P is denoted by fr(p)
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Decision

We model the cost of false decisions

R(0)

:/:

(Crp(1 = 2)8 + Cra(l - 8) fp(x)da

= CpE[P|+0(Cfp = (Cpp + Cpn)E[P])

where

0=1

0 =20

Raise an intrusion alarm

No alarm
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Decision

[ (Alarm)  if E[P] > 7.

) —
O (No alarm) otherwise.

where T = Tt Crn
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Gaussian Approximation

We need to calculate E[P] to make a decision
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Gaussian Approximation

We need to calculate E[P] to make a decision
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When the number of samples is large enough,

Beta distribution can be approximated by
Gaussian distribution

1
E[P] ~ 0 0
L 2o [T S (v (G
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Cost of Decision

Cr (1 —E[P]) if E[P] > 7
R(5) =

CrrE|P] otherwise.



Optimal Decision Algorithm

Algorithm 1 Optimal_Decision(U,. A)

Require: U, >0V A #£(
Ensure: 46(U,, A)
U <« oo {U is the current cost.}
Q = :—‘;{Note that E[P] = ﬁ from (11).}
while A =0 AU > U, do
{More consultation if cost is higher than threshold U, }
a < firstElementOf(.4)
A<= A\a
r <« getFeedback(a){Receive feedback from acquain-
tance a}
if 7 =0 then
Q+=Q-Frd
else
Q=Q- 13
end if

U < min (qu 1C-|{5) {Get the lower cost of the two

possible decisions}
end while
if 141-Q > Cff;{gfﬂ then
Raise Alarm
else
No Alarm

end if
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Figure 3. Comparison of cost using different aggregation techniques

Simulation Result

| | I |

Simple —+—
Weighted ---x---
Bayesian —-&-—

~ . ONK
B g m ®

0.2 0.4 0.6 0.8
Threshold

24



Rate/Cost

0.8

0.6

0.4

0.2

Simulation Result

Simple ——
We|ghted ORIean
Bayes|an

Figure 4. Comparison of FP, FN, and cost
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Simulation Result
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Figure 5. Average Cost vs. Number of Acquaintances Consulted
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Conclusions and Future Work

e Framework of a distributed
collaborative intrusion detection
network

A Bayesian aggregation and decision
model to minimize expected cost

* Dynamic online aggregation and
decision

e As our future work, we intent to
implement and deploy our CIDN on
real life open source IDSes
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Questions
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