
Qi Zhang1, M. Faten Zhani1, Raouf Boutaba1, Joseph L. Hellerstein2

1 University of Waterloo

2 Google Inc.

IEEE International Conferences on Distributed Computing Systems (ICDCS)

Philadelphia PA USA, July 8-11, 2013

Introduction
� Data centers consume tremendous amount of energy

� Energy costs accounts for 12%-20% of the costs of

running a data center (Gartner 2011)

� A well-known technique for reducing data center

energy consumption is Dynamic Capacity Provisioning

(DCP)

� Turning unused servers to save energy

2

Dynamic Capacity Provisioning (DCP)

� Dynamically adjusting resource capacities by turning
machines on and off

3

Dynamic Capacity Provisioning (DCP)
� Objectives

� Cloud user: Low scheduling (e. g. queuing) delay

� Cloud provider: High resource utilization

� Adjusting the number of servers according to demand
fluctuation

� Too many servers causes low utilization

� Too few servers causes high scheduling delay

� Need to consider cost of turning on and off machines

� Wear-and-tear effect

4

Challenges
� Dynamic Capacity Provisioning has been studied extensively

� Adjusting the number of server replicas to handle demand
fluctuations

� Assuming servers and resource requests are homogenous

� In many production data centers, both servers and application
requests are heterogeneous
� Multiple types of servers (with different capacities and energy

efficiencies) coexist in a single data center
� Resource demand, running-time and priorities vary significantly

across applications
� Not every server can schedule every application process

� How to adjust the number of each type of servers to achieve
low scheduling delay and high utilization over time?

5

Harmony: A Heterogeneity-Aware DCP

Framework

� Using clustering to divide workload into distinct types

of tasks (e.g. VMs)

� At run-time, monitor the arrival of each type of tasks

� Run a control algorithm to dynamically adjust

number of servers of each type

6

Agenda
� Introduction

� Trace Analysis

� Harmony

� Evaluation

� Conclusion

7

Machine and Workload Analysis
� Workload traces collected from a production compute cluster

in Google over 29 days
� ~ 12,000 machines

� ~2,012,242 jobs

� 25,462,157 tasks

� Applications are represented by jobs
� User-facing jobs: e.g., 3-tier web applications

� Batch jobs: e.g., MapReduce jobs

� Each job consists of one or more tasks

� There are 12 priorities that are divided into three priority
groups: gratis(0-1), other(2-8), production(9-11)

8

Trace Analysis: Total Resource

CPU Demand
over 30 days

Memory Demand
over 30 days

Figure: Total resource demand in Google’s Cluster Data Set

9

Trace Analysis: Machine Heterogeneity

� 10 types of machines, some (e.g type 2 and 4) have high CPU
capacity, others (e.g type 3 and 8) have high memory capacity

10

Trace Analysis: Task Size

� Tasks are either CPU intensive or Memory intensive
� Little correlation between CPU size and Memory size

11

Trace Analysis: Task Priority and

Running Time

� Different groups have different scheduling delays
� Running-time across groups can differ significantly

12

Summary
� Machines have different resource capacities

� Some have more CPU capacities, while others have more
memory capacities

� Tasks belong to different jobs have different resource
requirements, running time and priorities

� Heterogeneity-awareness is important
� Different machines are likely to have different energy

characteristics
� Scheduling CPU-intensive tasks on high memory machines

can lead to inefficient schedule
� Not every task can be scheduled on every machine

13

Agenda
� Introduction

� Trace Analysis

� Harmony

� Evaluation

� Conclusion

14

System Architecture of Harmony

15

Task Classification

� Classify tasks based on their size and duration using k-means

clustering algorithm
� First divide tasks according to priority group and running time
� Run k-means for each group of tasks

� Capture the run-time workload composition in terms of arrival
rate for each task class
� First classify according task resource requirements
� Update classification over-time

� Define container as a logical allocation of resources to a task that
belongs to a task class
� Use containers to reserve resources for each task class

16

DCP formulation

• where

• Subject to constraints

(Performance objective)

(Energy cost)

(Switching cost)

(Num. Machine constraint)

(Capacity constraint)

17

(Workload state constraint)

(Machine state constraint)

Solutions
� Container-Based Provisioning (CBP)

� Round up the number of machines to the nearest integer
value

� At run-time, schedule tasks using existing VM scheduling
algorithms such as first-fit
� Must respect the reservations computed by the algorithm

� Container-Based Scheduling (CBS)
� Statically allocate containers in physical machines
� At run-time, schedule tasks in containers

� Overprovisioning factor can be used to handle
underestimation of resource requirements

18

Experiments
� Task classification

� Classify tasks based on task
size

Class size (gratis) Task duration (gratis)

Number of tasks (gratis)

19

Experiments

Aggregated task arrival rates Number of containers

Machine Configurations

20

Experiments

� 3 types of schedulers
� Baseline: always pick the most energy-efficient machine first

� Container-based Provisioning

� Container-based Scheduling

21

Number of machines baseline Number of Machines CBS/CBP

Experiments: Machine Utilization

� 3 types of schedulers
� Baseline: always pick the most energy-efficient machine first
� Container-based Provisioning
� Container-based Scheduling

22

CPU Utilization Memory Utilization

Experiments: Scheduling Delay

Baseline Contain-based Provisioning Contain-based Scheduling

23

� 3 types of schedulers
� Baseline: always pick the most energy-efficient machine first
� Container-based Provisioning
� Container-based Scheduling

Conclusion
� We present Harmony, a heterogeneity-aware dynamic

capacity provisioning framework
� Dynamically adjust number of machines according to run-

time task composition

� Experiments achieves much better scheduling delay and
resource utilization than heterogeneity oblivious solutions

� Future work
� Better clustering algorithms

� Handling task placement constraints

� Consider heterogeneous machine performances

24

Thank you!

25

