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Introduction
� Data centers consume tremendous amount of energy

� Energy costs accounts for 12%-20% of the costs of 

running a data center (Gartner 2011)

� A well-known technique for reducing  data center 

energy consumption is Dynamic Capacity Provisioning 

(DCP)

� Turning unused servers to save energy
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Dynamic Capacity Provisioning (DCP)

� Dynamically adjusting resource capacities by turning 
machines on and off
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Dynamic Capacity Provisioning (DCP)
� Objectives

� Cloud user: Low scheduling (e. g. queuing) delay

� Cloud provider: High resource utilization

� Adjusting the number of servers according to demand 
fluctuation

� Too many servers causes low utilization

� Too few servers causes high scheduling delay

� Need to consider cost of turning on and off machines

� Wear-and-tear effect
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Challenges
� Dynamic Capacity Provisioning has been studied extensively

� Adjusting the number of server replicas to handle demand 
fluctuations

� Assuming servers and  resource requests are homogenous

� In many production data centers, both servers and application 
requests are heterogeneous
� Multiple types of servers (with different capacities and energy 

efficiencies) coexist in a single data center
� Resource demand, running-time and priorities vary significantly 

across applications
� Not every server can schedule every application process

� How to adjust the number of each type of servers to achieve 
low scheduling delay and high utilization over time?
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Harmony: A Heterogeneity-Aware DCP 

Framework

� Using clustering to divide workload into distinct types 

of tasks (e.g. VMs)

� At run-time, monitor the arrival of each type of tasks

� Run a control algorithm to dynamically adjust 

number of servers of each type
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Agenda
� Introduction

� Trace Analysis

� Harmony

� Evaluation

� Conclusion
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Machine and Workload Analysis
� Workload traces collected from a production compute cluster 

in Google over 29 days
� ~ 12,000 machines

� ~2,012,242 jobs

� 25,462,157 tasks

� Applications are represented by jobs
� User-facing jobs: e.g., 3-tier web applications

� Batch jobs: e.g., MapReduce jobs

� Each job consists of one or more tasks

� There are 12 priorities that are divided into three priority 
groups: gratis(0-1), other(2-8), production(9-11)
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Trace Analysis: Total Resource

CPU Demand 
over 30 days

Memory Demand 
over 30 days

Figure: Total resource demand in Google’s Cluster Data Set
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Trace Analysis: Machine Heterogeneity

� 10 types of machines, some (e.g type 2 and 4) have high CPU 
capacity, others (e.g type 3 and 8) have high memory capacity
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Trace Analysis: Task Size

� Tasks are either CPU intensive or Memory intensive
� Little correlation between CPU size and Memory size
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Trace Analysis: Task Priority and 

Running Time

� Different groups have different scheduling delays
� Running-time across groups can differ significantly

12



Summary
� Machines have different resource capacities

� Some have more CPU capacities, while others have more 
memory capacities

� Tasks belong to different jobs have different resource 
requirements, running time and priorities

� Heterogeneity-awareness is important
� Different machines are likely to have different energy 

characteristics
� Scheduling CPU-intensive tasks on high memory machines 

can lead to inefficient schedule
� Not every task can be scheduled on every machine
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Agenda
� Introduction

� Trace Analysis

� Harmony

� Evaluation

� Conclusion
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System Architecture of Harmony
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Task Classification

� Classify tasks based on their size and duration using k-means

clustering algorithm
� First divide tasks according to priority group and running time
� Run k-means for each group of tasks

� Capture the run-time workload composition in terms of arrival 
rate for each task class
� First classify according task resource requirements
� Update classification over-time

� Define container as a logical allocation of resources to a task that 
belongs to a task class
� Use containers to reserve resources for each task class

16



DCP formulation

• where

• Subject  to constraints 

(Performance objective)

(Energy cost)

(Switching cost)

(Num. Machine constraint)

(Capacity constraint)
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(Workload state constraint)

(Machine state constraint)



Solutions
� Container-Based Provisioning (CBP)

� Round up the number of machines to the nearest integer 
value

� At run-time, schedule tasks using existing VM scheduling 
algorithms such as first-fit
� Must respect the reservations computed by the algorithm

� Container-Based Scheduling (CBS)
� Statically allocate containers in physical machines
� At run-time, schedule tasks in containers

� Overprovisioning factor can be used to handle 
underestimation of resource requirements
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Experiments
� Task classification

� Classify tasks based on task 
size

Class size (gratis) Task duration (gratis)

Number of tasks (gratis)
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Experiments

Aggregated task arrival rates Number of containers

Machine Configurations
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Experiments

� 3 types of schedulers
� Baseline: always pick the most energy-efficient machine first

� Container-based Provisioning

� Container-based Scheduling
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Experiments: Machine Utilization

� 3 types of schedulers
� Baseline: always pick the most energy-efficient machine first
� Container-based Provisioning
� Container-based Scheduling
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Experiments: Scheduling Delay

Baseline Contain-based Provisioning Contain-based Scheduling
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� 3 types of schedulers
� Baseline: always pick the most energy-efficient machine first
� Container-based Provisioning
� Container-based Scheduling



Conclusion
� We present Harmony, a heterogeneity-aware dynamic 

capacity provisioning framework
� Dynamically adjust number of machines according to run-

time task composition

� Experiments achieves much better scheduling delay and 
resource utilization than heterogeneity oblivious solutions

� Future work
� Better clustering algorithms

� Handling task placement constraints

� Consider heterogeneous machine performances
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Thank you!
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