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Abstract—Cloud computing is a paradigm that harnesses
massive resource capacity of data centers to support applications
in a scalable, flexible, reliable and cost-effective manner. Despite
its recent success and rapid adoption in the IT industry, recent lit-
erature has shown that effective workload management in cloud
computing environments remains to be a difficult challenge. A
key reason behind this difficulty is that resources and workloads
in production environments are both heterogeneous and dynamic.
In particular, large cloud data centers often consist of machines
with heterogeneous capacities and performance characteristics.
At the same time, cloud workloads often show significant diversity
in terms of priority, resource requirements, arrival rate and
performance objectives. Consequently, it is difficult to devise
heterogeneity and dynamicity-aware management scheme that
satisfy diverse application performance objectives, while reducing
operational expenses such as energy consumption.

This work addresses several key challenges pertaining to
dynamic workload management in heterogenous Cloud envi-
ronments. Specifically, we first present a scheme that place
service application across geographically distributed data centers
to meet service demand while minimizing total resource usage
cost. Then, we design a heterogeneity-aware dynamic application
provisioning technique to minimize energy consumption while
satisfying performance objectives. Finally, we study the problem
of MapReduce scheduling and present a novel scheme that lever-
ages heterogenous run-time task usage characteristics. Through
experiments and simulations, we show our proposed solutions
can significantly reduce data center energy consumption, while
achieving better application performance in terms of service
response time and job completion time.

I. INTRODUCTION

The rapid development of Internet technologies in recent

years has enabled the delivery of rich services at an unprece-

dented scale. In this context, Cloud computing has emerged

as a model that harnesses massive capacities of data centers

to host services in a cost-effective manner. In a cloud com-

puting environment, the traditional role of service provider is

divided into two: cloud providers who owns the physical data

center and lease resources (e.g. virtual machines) to service

providers; and service providers who use resources leased

by cloud providers to execute applications. By leveraging

the economies-of-scale of data centers, Cloud computing can

provide significant reduction in operational expenditure. At the

same time, it also enables new applications such as big-data

analytics (e.g. MapReduce [1]) that process massive volumes

of data in a scalable and efficient manner.

However, as IT organizations continue to deploy and expand

their Cloud infrastructures and services, Cloud data centers are

also growing in scale and complexity, making them increas-

ingly more difficult to manage. For instance, recent work [2],

[3], [4], [5] suggests resource management in large production

data centers is an important yet difficult challenge, as these

data centers often consist of heterogeneous machines that

execute vast number of applications and jobs under dynamic

conditions. We summarize the types of heterogeneity and

dynamicity found in production data centers as follows:

Infrastructure heterogeneity and dynamicity: Production

data centers often comprise several types of machines with het-

erogenous hardware processor architecture, processor speed,

memory, disk size and energy consumption characteristics.

This is partly due to the fact that certain types of workload

can only be scheduled on particular types of machines. It

also stems from the fact that Cloud providers continue to

upgrade their data center capacities over time [2], [6]. Indeed,

as physical servers may become outdated, it is necessary to

purchase new machines over-time and keep old machines

while they are still functional. As a result, production data

centers often consist of multiple generations of machines with

heterogenous characteristics. Finally, cloud providers often

build across geographically distributed locations to reduce

network latency while improving service reliability. These data

centers often operate in dynamic conditions, as electricity price

and network conditions may vary over time [7].

Workload heterogeneity and dynamicity: Production data

centers typically run vast number of applications with diverse

characteristics [3], [4], [5]. In particular, an application can

be divided into one or more processes running in dedicated

containers such as Virtual Machines (VMs). Containers can

have different levels of priorities ranging from production

(highest priority) to best effort (lowest priority) [5]. Fur-

thermore, the resource requirement differs from container to

container. It has been reported that most containers are small

in terms of resource requirements, whereas a small fraction of

containers can be much larger than the others. The arrival rate

of resource requests also vary from time to time, depending

on the actual service demand [8]. It has been reported that

the arrival rate during busy hours can be several orders of

magnitude higher than during idle hours. Furthermore, the

life time of applications can vary significantly. Typically user-

facing services such as web servers can run for a long time,978-1-4799-0913-1/14/$31.00 c© 2014 IEEE



whereas batch jobs typically have short running time. Finally,

run-time resource consumption of processes (e.g. MapReduce

tasks) can fluctuate depending on the phases they are in [9].

The heterogeneity and dynamicity of both machines and

workloads has profound implications on the design of Cloud

workload management schemes. From a service provider’s

perspective, given a variety of data center locations and time-

varying service demand from Internet users, it is challenging

to determine where resource requests should be submitted in

order to minimize total resource usage while satisfying server

level objectives (SLOs). From a Cloud provider’s perspective,

given heterogenous machine and workload characteristics, it

is a challenging to devise efficient scheduling schemes that

improves resource utilization, while minimizing operational

costs. In particular, energy is a major concern of cloud

providers as its accounts for 18% of total data center oper-

ational expenditures [10]. Driven by its importance and diffi-

culties, cloud workload management has attracted significant

attention from the research community, with many research

topics being actively pursued in recent years [3], [4], [5], [11].

This dissertation addresses several key challenges pertaining

to dynamic workload management in heterogeneous Cloud

environments. Specifically, we address the concerns of ser-

vice providers by presenting a control-theoretical approach to

dynamic service placement across geographically distributed

data centers, with the goal of satisfying service demand while

minimizing total resource usage cost. From the perspective

of cloud providers, we study the problem of heterogeneity-

aware capacity provisioning in data centers to minimize energy

consumption while achieving low application scheduling (i.e.

queuing) delay. Finally, we present a novel scheduling algo-

rithm that leverages the run-time resource usage variability of

MapReduce tasks to improve job running time and resource

utilization. Through experiments using real workload traces

including one from a production Google compute cluster [12],

we show our solutions can significantly reduce data center

operational costs, while achieving better performance in the

terms of service response time and job completion time.

The rest of this paper is organized as follows: Section II, III

and IV summarize the technical solutions for the 3 problems

addressed in the dissertation, namely, the dynamic service

placement in distributed clouds, heterogeneity-aware resource

provisioning and fine-grained phase-level resource scheduler

for MapReduce. We then conclude the paper in Section V.

II. SERVICE PLACEMENT IN GEO-DISTRIBUTED CLOUDS

Service providers have been increasingly relying on geo-

graphically distributed cloud infrastructures for service hosting

and delivery. In this context, a key challenge faced by service

providers is to determine where service applications should

be placed such that the hosting cost is minimized, while key

performance requirements (e.g. response time) are assured.

This involves solving two problems jointly: (1) deciding on the

number of servers placed in each data center, and (2) routing

each request to appropriate servers to minimize response time.

As cloud providers typically offer elastic (i.e., on-demand)

resource access, it is possible to adjust the number of servers

to match service demand in a dynamic way. However, the

cost of reconfiguration (i.e., the cost of adding and removing

servers) must be taken into account. The consideration of

reconfiguration cost is important for ensuring the system

stability and minimum management overhead and costs. In

particular, these operations have costs for setup (e.g., VM

image distribution) and tear-down (e.g., data fetching / state

transfer). For example, it has been reported that starting up

a VM in Amazon EC2 cloud can take between 20 seconds

to more than 13 minutes, depending on the VM size and

OS running in the VM [13]. Thus, the time it takes to scale

up the service needs to be considered when making scaling

decisions, as under-provisioning servers during the scaling up

process can cause revenue loss. Thus, it is in the interest

of service providers to reduce such reconfiguration cost. We

call this problem dynamic service placement problem (DSPP).

This problem shares many similarities with traditional replica

placement problem in [14], [15], [16]; however, the price

fluctuation and reconfiguration cost are often neglected.
In this section, we study DSPP using control theoretic

methods. Specifically, we model the network as a bipartite

graph G = (L ∪ V,E), where L denotes the set of data

centers, V denotes set of access networks to which customers

are connected. We define E ⊆ L×V the communication paths

between customers and data centers. We also assign constant

weights dlv to denote the network latency between a data

center l ∈ L and a client location v ∈ V . In our framework,

we consider a discrete-time model where time is divided into

multiple time intervals. We assume that there is an interval of

interest K = {0, 1, 2, ...,K} that consists of K + 1 periods.

Let N = {1, 2, ..., n} denote the set of service providers. We

assume that at time k ∈ K, each customer location v ∈ V
has demand Dv

k in terms of average arrival rate of requests

from location v at time k. For simplicity, we assume that

all the servers rented by each service provider have identical

size and functionality. We define the state variable xlk ∈ R+

as the number of servers owned by the service provider at

location l ∈ L at time k. To simplify the model, we assume

that xlk can take continuous values rather than discrete values.

This assumption is reasonable for large-scale services that

require tens or hundreds of servers, where the weight of each

individual server in the overall solution is small. In this case,

we can always obtain a feasible solution by rounding up the

continuous values to the nearest integer values. Based on this

assumption, we can further decouple xlk by defining xlvk ∈ R+

as the number of servers at location l serving demand from

v ∈ V , and define xlk =
∑

v∈V x
lv
k for all l ∈ L, 0 ≤ k ≤ K.

Let ulvk ∈ R denote the change in xlvk at time k, we then have:

xlvk+1 = xlvk + ulvk , ∀l ∈ L, v ∈ V, 0 ≤ k ≤ K. (1)

To model the cost of server allocation, we assume that there

is a price plk for running a server at data center l ∈ L at time

k. The total resource cost Rk for service hosting at time k is

Rk =
∑

l∈L

xlkp
l
k ∀0 ≤ k ≤ K (2)



We also assume that there is a convex function g : R → R+

that computes the cost of reconfiguration. A possible recon-

figuration cost function is

Gk =
∑

l∈L

clon(
∑

v∈V

ulk)
+ − cloff (

∑

v∈V

ulk)
−, (3)

where clon and cloff are the average monetary costs for adding

an additional VM and removing a VM, respectively. For

example, the clon can measure the performance penalty during

the startup time of a server. Our framework can also support

other reconfiguration cost functions as well.

In addition, there is a SLA performance requirement that

specifies a desired average delay d̄ that the service should

achieve. In our model, we define σlv
k as the demand arrival

rate from v assigned to data center l at time k, such that
∑

l∈L σ
lv
k = Dv

k for all v ∈ V and 0 ≤ k ≤ K. We assume

there is a load balancer placed in each data center l ∈ L
such that demand σl

k =
∑

v∈V σ
lv
k arriving from location v

is equally split among the local servers xlk. Assuming each

server has mean service time µ, the utilization of a server

can be defined as ρlk =
σl
k

xl
k
µ

. We assume the queuing delay

of a server is a convex function f(·) of the server utilization

ρlk, i.e. qlk = f(ρlk). This is true for most of the queuing

systems. For example, if each server can be modeled as a

G/G/1 queue, then the queueing delay can be approximated

by [17] as qlk =
(

ρl
k

1−ρl
k

)(

c2a+c2s
2

)

· 1
µ

where ca and cs are

the coefficient of variation of arrival rate (i.e.
σl
k

xl
k

) and service

time, respectively. It is clearly convex in ρlk.

Our goal is ensure that for any (v, l) ∈ E with σlv
k > 0,

the average delay (i.e., the sum of propagation and queuing

delay) is less than d̄, i.e. dlv + qlk ≤ d̄ for 0 ≤ k ≤ K. In

our framework, we can model the performance objective as

a SLA penalty function. Assume there is a convex penalty

function h(·) that measures revenue loss due to exceeding the

delay requirement. By defining alv = 1
f−1(d̄−dlv)µ

The total

performance penalty can be expressed as:

Pk =
∑

v∈V

h(
∑

l∈L

xlvk
alv

−Dv
k) 0 ≤ k ≤ K (4)

We also assume each data center possesses R types of re-

sources, let sr denote the size of a server for a resource type

r ∈ R, and Clr is the capacity of data center l for resource

type r, we can use a convex function πr(·) to represent the

penalty due to violation of capacity constraint.

Ck = πr((srxlk − Cr)+) ∀l ∈ L, 0 ≤ k ≤ K, r ∈ R (5)

In practice, this penalty can be measured as scheduling delay

as we shall elaborate in the next section. Finally, the goal of

DSPP is to minimize the following objective function:

J =

K
∑

k=0

Rk +Gk + Pk + Ck

subjects to constraints (1) and xvlk ≥ 0∀ l ∈ L, k ∈ K.

Algorithm 1 MPC Algorithm for DSPP

1: Provide initial state x0, k ← 0
2: while true do
3: At beginning of control period k:
4: Predict Dv

k+i|k for horizons i = 1, · · · ,K

5: Solve DSPP to obtain ulv
k+t|k for t = 0, · · · ,W − 1

6: Change the resource allocation according to ulv
k|k

7: k ← k + 1

The offline version of DSPP is a convex optimization

problem that can be solved optimally using standard methods

[18]. However, the resource controller must solve this problem

online where the future demand is unknown. In this case, we

use the Model Predictive Control (MPC) framework that is

widely used for solving online control problems. Algorithm 1

is our online MPC algorithm that can be described as follows.

At time k, the system forecasts the future demand Dv
k for

a time horizon [k + 1, ..., k + W ]. Let Dv
k+t|k denote the

demand predicted for time k+ t at time k. The controller then

solves the optimization problem for the horizon [k, ..., k+W ],
starting with the initial state xlvk|k = xlvk . Even though the

solution of the optimization problem will contain a set of

values ulvk|k, ..., u
lv
k+W−1|k, the controller will only execute the

first step in sequence ulvk|k. When the next control period k+1
starts, the same procedure is performed again by the controller.

Results: We have implemented and evaluated our solution

using a real Internet topology graph from the Rocketfuel

project [19]. In our experiment, we have created 3 large data

centers located in Mountain View, CA, Houston, and TX,

Atlanta, GA. To generate realistic service requests, we used

the Worldcup 98 dataset [20] which contains HTTP requests

for a total duration of 92 days. We use the request regions

provided in the dataset to approximate the source of requests.

To demonstrate the benefit of our approach, we present the

result for a simple scenario involving one access network and

two data centers, as shown in Figure 1. It can be seen that the

servers are provisioned according to service demand. Finally,

we demonstrate the importance of reconfiguration cost. We

also compared the result with a greedy algorithm [14] that

ignores reconfiguration cost. The output of the algorithm is

shown in Figure 2. Indeed, greedy algorithm causes massive

migrations when resource price fluctuates. It is evident that

reconfiguration cost plays a crucial role in avoiding massive

migrations in this scenario.

III. HETEROGENEITY-AWARE DYNAMIC CAPACITY

PROVISIONING

Reducing energy consumption has become a major concern

of cloud providers, as energy cost accounts for a significant

portion of data center operational expenditures. One promis-

ing technique for reducing energy consumption is Dynamic

Capacity Provisioning (DCP), whose goal is to dynamically

adjust the number of active machines in a data center to save

energy while meeting workload performance objectives. In the

context of workload scheduling in data centers, a metric of

particular importance is scheduling delay [4], [3], [2], [21],



which is the time a request waits in the scheduling queue

before it is scheduled on a machine. However, while DCP has

been studied extensively in the literature, the heterogeneity

aspect of both infrastructure and workload has been largely

overlooked, resulting in a number of serious deficiencies. For

instance, given a rise of workload requests, a heterogeneous-

oblivious DCP scheme can turn on wrong types of machines

which are not capable of handling these requests (e.g., due to

insufficient capacity), resulting in both resource wastage and

high scheduling delays. Furthermore, as frequently switching

a machine on and off reduce its lifetime [22], it is necessary

to consider switching costs while making DCP decisions.

In this section, we present Harmony, a Heterogeneity-

Aware Resource MONitoring and management sYstem that

addresses the aforementioned challenges. We first characterize

the workload by dividing tasks into task classes using the K-

means algorithm. Once the workload characterization has been

obtained, we introduce a monitoring mechanism that allows

Harmony to capture the run-time workload composition in

terms of arrival rate for each task class. To make provisioning

decisions, we define a container as a logical allocation of

resources to a task that belongs to a task class. In our approach,

the task containers serve as resource reservations that help the

controller to make machine allocation decisions. we call this

approach container-based provisioning (CBP).

In our model, we assume time is divided into intervals of

equal duration. Let zmt ∈ R
+ denote the number of type m

machines that are active at time t, and δmt ∈ R the change in

δmt at the end of time t. Similarly, define xmk
t ∈ R

+ as the

number of type k containers assigned to machines of type m
and σmk

t ∈ R
+ as the change in xmk

t at time t. We now have:

zmt+1 = zmt + δmt (6)

xmk
t+1 = xmk

t + σmn
t (7)

We also need to ensure that each type of containers can only be

assigned to machines that are capable of hosting them. This is

achieved by introducing a constant ψmk ∈ {0, 1} that indicates

whether a type n container can be scheduled on a type m
machine. Let ckr and Cmr denote the capacity of a type k
container and a type m machine for each resource r ∈ R
respectively, we have the following schedulability constraint:

ckrxmn
t ≤ zmt ψ

mkCmr ∀m ∈M,k ∈ K, r ∈ R, t ∈ T (8)

As total energy usage of a physical machine can be estimated

by a linear function of resource utilization [23], let pt denote

the energy price at time t, the energy consumption of all the

active machines at time t can be computed as:

Et = pt

(

zmt E
idle,m +

∑

r∈R

∑

k∈K

αmrckr

cmr
· xmk

t

)

(9)

where Eidle,m ∈ R
+ is the energy consumption of a type m

machine when it is idle, and αmr ∈ R
+ is the slope of the

energy consumption function.

To model task scheduling delay, since it is not possible

for all containers to be scheduled when demand exceeds data

center capacity, we assume there is a utility function fk(·) that

models the monetary gain for scheduling containers. fk(·) is

assumed to be a concave function that can be derived from

SLO objectives. For example, fk(ak) can model the gain in

monetary cost when ak containers are scheduled for task class

k. The total revenue can now be written as:

Uperf
t =

∑

k∈K

fk(
∑

m∈M

∑

i∈Nm
t

aikt ) (10)

The machine switching cost can be described by:

Csw
t =

∑

m∈M

qon,m(δmt )+ + qoff,m(δmt )− (11)

where qon,m ∈ R
+ and qoff,m ∈ R

+ denotes the cost for

switching on and off of a single type m machine, respectively.

Finally, equation (12) ensures that provisioned containers

should not exceed the provisioned machine capacity:
∑

n∈N

crnx
mn
t ≤ zmt C

mr ∀m ∈M, r ∈ R, t ∈ T (12)

The heterogenity-aware DCP problem can now be stated as:

max
δmt ,σmk

t

T
∑

t=0

Uperf
t − Csw

t − Et,

subject to zmt ≤ Nm
t for all m ∈ M, t ∈ T along

with constraints (6), (7), (8) and (12). This problem is a

convex optimization problem that can be solved using standard

methods [18]. Again, we apply the MPC framework to solve

the problem online. At a given time t, we predict the future

values for electricity price and arrival rate and solve the

problem. Once the problem is solved, we simply round up the

fractional values of (xmk
t , zmt ) to obtain an integer solution for

DCP, which gives the number of machines to be provisioned

(i.e., ⌈zmt ⌉) and the number of type n tasks that should be

scheduled on type m machines (i.e.,
⌈

xmk
t

⌉

). However, at

run time, the scheduler needs to ensure that the number of

type n tasks assigned to type m machines must respect the

provisioned capacity
⌈

xmk
t

⌉

. A simple strategy is to ensure

the number of type k tasks assigned to m (denoted by

Assignmk
t ) is proportional to the number of containers, i.e.

Assignmk
t =

xmk
t∑

j∈M
x
jk
t

This can be achieved easily by using

a weighted round-robin scheduling policy. Furthermore, it can

be easily integrated with existing scheduling algorithms. For

example, variants of first-fit and best-fit algorithms (which are

used in Microsoft [24], Google [3] and Eucalyptus [25]) can

adopt this mechanism by changing the scheduling policy to

weighted round-robin first-fit and best-fit, respectively.

A key drawback of the above rounding scheme is that it

often under-estimates the required capacity. The reason is that

the fractional solution assumes that each container can be

arbitrarily divided and placed on multiple machines, which is

not realizable in practice. To account for the under-estimation

of machine capacities, we define an over-provisioning factor

ωk ∈ R
+ that captures how much extra resource is required to



fully pack a given set of type n containers. To account for ωk,

it suffices to replace equation (8) by the following equation:
∑

k∈K

ωkckrxmk
t ≤ zmt C

mr ∀m ∈M, r ∈ R, t ∈ T .(13)

The value of ωn can be obtained through experiments. We

found setting ωk = 1.2 to be a reasonable value in practice.

Results: We have evaluated the performance of our al-

gorithm using Google workload traces [26]. For the pur-

pose of comparison, we have also implemented a baseline

(heterogeneity-oblivious) algorithm that greedily switches on

and off machines based on energy efficiency. We use an over-

provisioning factor of 1.2 to demonstrate the behavior of our

algorithms. The number of active servers provisioned by the

baseline algorithm and CBP are shown in Figure 3 and Figure

4 respectively. It can be seen that CBP uses fewer machines

compared to baseline algorithm. Furthermore, the CDF of

task scheduling delays are shown in Figure 5, 6 respectively.

CBP clearly achieves substantial reduction in scheduling delay

compared to the baseline algorithm. Finally, our work can be

extended in the future to address the problem of data center

capacity planning and upgrade.

IV. FINE-GRAINED RESOURCE-AWARE SCHEDULING FOR

MAPREDUCE

MapReduce [1] is a popular programming model for large-

scale, data-intensive computation. In MapReduce, a job is a

collection of Map and Reduce tasks that can be scheduled

concurrently on multiple machines, resulting in significant re-

duction in job running time. However, traditional MapReduce

systems (e.g. Hadoop MapReduce Version 1) use simple slot-

based resource allocation scheme, where physical resources

on each machine are captured by the number of identical

slots that can be assigned to tasks. In practice, this simple

scheme is often inefficient as run-time resource consumption

varies from task to task and from job to job. Motivated by this

observation, several recent proposals, such as Resource-Aware

Adaptive Scheduling (RAS) [27] and Hadoop MapReduce

Version 2 (also known as Hadoop NextGen and Hadoop Yarn)

[28], have introduced resource-aware job schedulers to the

MapReduce framework. These schedulers specify a fixed size

for each task in terms of required resources (e. g. CPU and

memory), thus assuming the run-time resource consumption

of the task is static over its life time. However, this is not true

for many MapReduce jobs. In particular, it has been reported

that the execution of each MapReduce task can be divided into

multiple phases of data transfer, processing and storage [9]. A

phase is a sub-procedure in the task that has a distinct purpose

and can be characterized by the uniform resource consumption

over its duration. This phase-level scheduling has the potential

to further improve job performance and resource utilization.

In this section, we present PRISM, a Phase and Resource

Information-aware Scheduler for MapReduce clusters that

performs resource-aware scheduling at the level of phases. In

PRISM, when a phase that belongs to a task needs to be exe-

cuted, the task sends a request to the local task tracker which

Algorithm 2 Phase-Level Scheduling Algorithm

1: Upon receiving a status message from machine n
2: Compute the resource utilization of machine n
3: PhaseSelected← {∅}
4: CandidatePhases← {∅}
5: for each job j in the system do
6: for each scheduable phase i ∈ j do
7: CandidatePhases← CandidatePhases ∪ {i}
8: while CandidatePhases 6= ∅ do
9: for i ∈ CandidatePhases do

10: if i is not schedulable on n given current utilization then
11: CandidatePhases← CandidatePhases\{i}
12: continue;
13: Compute the utility U(i, n) as in equation (14)
14: if U(i, n) ≤ 0 then
15: CandidatePhases← CandidatePhases\{i}
16: if CandidatePhases 6= ∅ then
17: i← task with highest U(i, n) in the CandidatePhases
18: PhaseSelected← PhaseSelected ∪ {i}
19: CandidatePhases← CandidatePhases\{i}
20: Update the resource utilization of machine n
21: return PhaseSelected

forwards received requests to the job scheduler periodically.

The job scheduler then decides whether the phase is allowed

to proceed, in which case the response is first sent back to the

task tracker and then forwarded to the task process.

In order to perform phase-level scheduling, PRISM re-

quires phase-level resource information for each job. Existing

state-of-the-art resource profilers, such as Starfish [9], can

already provide accurate phase-level resource information for

PRISM. This profile-driven scheduling approach has been

widely adopted by many MapReduce systems [29], [30], [27].

In the absence of phase-level resource information, PRISM

can fall back to use task-level resource information for Hadoop

Yarn to schedule phases without introducing deficiencies.

We now describe the scheduling algorithm used by PRISM.

When deciding which phase should be scheduled on a ma-

chine, the schedule needs to make a trade-off between fairness

and performance. Performance is important as we want to take

advantage of phase-level scheduling to make jobs run faster.

Fairness is also important as we want to allocate sufficient

resources to each job so that no job will be severely delayed.

Specifically, each job j in the system consists of two types of

tasks: map tasks M and reduce task R. Let τ(t) ∈ {M,R}
denote the type of a task t. Given a phase i belonging to a

task t that can be scheduled on a machine n, we define the

utility of assigning a phase i to machine n as:

U(i, n) = Ufairness(i, n) + α · Uperf (i, n) (14)

where Ufairness and Uperf represent the utilities for improv-

ing fairness and job performance, respectively, and α is an

adjustable weight factor. If we set α to a value close to zero,

then the algorithm will greedily schedule phases according to

the improvement in fairness. Specifically, we define

Ufairness(i, n) = U before
fairness(i, n)− Uafter

fairness(i, n) (15)

where U before
fairness(i, n) and Uafter

fairness(i, n) denotes the fairness
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measure of the user before and after scheduling i on n,

respectively, according to fairness metrics such as Dominant

Resource Fairness (DRF) [31]. On the other hand, Uperf (i, n)
is more difficult to compute. As mentioned previously, if i is

the first phase of a map (or reduce) task t, then Uperf (i, n)
measures the gain in parallelism in terms of the number of

running map tasks (or reduce tasks). Otherwise, if i is a

subsequent phase of task t, then Uperf (i, n) measures the gain

in shortening the running time of task t. Formally, we define

Uperf (i, n) =

{

Utask(i, n) i is the first phase of a task

Uphase(i, n) Otherwise

Even though PRISM does not restrict the function for com-

puting the utility of a phase, in our current implementation,

we have chosen Utask(i, n) to be

Utask(i, n) =
Nremaining

max{Ncurrent, ǫ}
−

Nremaining

Ncurrent + 1
(16)

where Nremaining denotes the number of remaining tasks of

type τ(t), and Ncurrent denotes the number of running tasks

of type τ(t). The variable ǫ is used to prevent dividing by 0.
On the other hand, let T t

wait denote the number of seconds

that task t has been paused due to phase-based scheduling.

The utility for scheduling a non-leading phase i of task t can

be expressed as a function p(·) of T t
wait:

Uphase(i, n) = p(T t
wait) (17)

There are many possible choices for p(·). In our imple-

mentation, we have chosen p(·) to be a quadratic function

p(T t
wait) = a · p(T t

wait)
2 + b. The intuition is to increase the

urgency for scheduling i more rapidly if i has been paused

for a long time. However, PRISM can adopt any type of

utility function p(·) as long as it is a monotonically increasing

function. Finally, the scheduling algorithm used by PRISM is

represented by Algorithm 2.
Results: We have implemented PRISM and compared it with

Hadoop Yarn 2.0.4 and Hadoop 0.20.2 with fair scheduler.

Hadoop Yarn 2.0.4 is a recent version of Hadoop NextGen

that allows the users to specify both CPU requirement (i.e.

number of virtual cores) and memory requirement (i.e. GB

of RAM) of each task. Hadoop 0.20.2 with fair scheduler

serves as the baseline for comparison. For analysis purposes,

we have implemented a simple job profiler that captures the

CPU, memory and I/O usage of both map and reduce tasks at

phase-level. For each of the schedulers, we run both the PUMA

[32] and Gridmix 2 [33] benchmarks. For each benchmark, we

varied the number of jobs 2×−10× to create batch workload

of different sizes. We found PRISM can achieve up to 24%
reduction in job running time as shown in Figure 7 and 8,

while achieving slightly higher utilization compared to Yarn.

V. CONCLUSION

Cloud computing is a model that harnesses massive resource

capacity of data centers to support Internet services and

applications in a scalable, flexible, reliable and cost-efficient

manner. However, despite its recent success, devising efficient

workload management schemes for cloud data centers still

remains a major challenge, as it requires carefully taking

into consideration the heterogeneous characteristics of both

data centers and workloads. This dissertation tackles three

key challenges pertaining to resource management in cloud

computing environments, namely, dynamic service placement

in geographically distributed data centers, heterogeneity-aware

dynamic capacity provisioning and fine-grained resource-

aware MapReduce scheduling. Through experiments, we show

our solutions can bring significant benefits in terms of im-

proved application performance and reduced operational cost.

VI. FINAL REMARK

This dissertation can be downloaded from http://uwspace.

uwaterloo.ca/bitstream/10012/7992/1/ZhangQi.pdf. The work

conducted during the course of the dissertation research has

been published in [4], [23], [34], [35], [36], [37], [38], [39],

[40], [41], [42], [43].
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