University of

Waterloo

%ﬁ

Dynamic Workload Management in Heterogeneous
Cloud Computing Environments

Qi Zhang and Raouf Boutaba

University of Waterloo

IEEE/IFIP Network Operations and Management Symposium
Krakow, Poland
May 7, 2014

Outline

Introduction
Cloud Workload Management
Research Contributions

Conclusion

Introduction

Cloud computing is a model that advocates hosting online
services in data centers

@racispace. %# Drophox

e Bl

Google Docs o
& “.Dynami-:s CRM
4 m YouQuLL:

5a0ffice 365

Workload Management in Cloud Data Centers

— oy
- ~ o~

7’ ~
/7 \
/ \
\ /’
\
- ~ ~ 7’
,/, \\\ N v
N, A\ N~ =T /
/, \\ D N T —
\ /
\ /
\ /

L Scheduler App.
t Requests | |

R Service
rce .
‘ eso‘_J c Provider

Monitor

Mgmt. ﬂ
, l l Software &

Cloud Provider

Workload Management

Cloud workload management is difficult!

Service Provider Challenge

Dynamically provisioning sufficient server capacity to
satisfy service level objectives (SLO), while minimizing
operational cost

Cloud Provider Challenges

Performing resource management with consideration to
heterogeneous machine and workload characteristics

Thesis Contributions

Service Placement in Geo-Distributed Clouds

Heterogeneity-Aware Dynamic Capacity

Provisioning

Fine-Grained Resource-Aware Scheduling for

MapReduce

Service Placement in Geo-Distributed Clouds

Dynamic Service Placement Problem (DSPP):

Where should the service be placed to reduce resource cost while
satisfying service level objectives (SLOs)?

Service Placement in Geo-Distributed Clouds

Design Challenges

Service demand is dynamic and originates from multiple locations

Electricity prices are different from location to location and can
fluctuate over time

There is a cost associated with reconfiguration
Setting up the server (e.g.,, VM image distribution)

Tearing down the server (e.g., data / state transfer)

Limitations of existing work:

Early studies focus on static scenarios

Ignoring electricity cost and reconfiguration cost

DSPP Model

Resource cost Reconfiguration Cost Performance cost Capacity penalty

l_‘_\ f . | f . | f A |
K
min J = Z plxk + RTQ;;{Bu;;] +Pr(apxy — Dyg) + ?T{STK;,;}
(o, up_q} P
s.t. Xpi1 = X + Ug vk € IC,
xr € RYY Vk e K

The offline can be formulated as a discrete-time optimal control problem

Our solution: online algorithm on Model Predictive Control (MPC)
framework

Predict future demand over next K periods
Solve DSPP over the next K periods

Carry out the solution move for the next period

Results
Rocketfuel topology <=5 //\ -

3 data centers

2 4 6 83 W0 12 ¥4 16 18 2D 22 24
Time: MoUrs)

Electricity Price

a1|:1|:'
] Ll T L L | T T __H!gmi
E ——Reagion 2
ga- i ——Reglon 34
#
5
¥
¢
‘Eh
.
5
-

Web workload

Number of Servers

Results

X 10 %10
Ca acit‘; ProuisioneI'd in Mountlain View DCI: 0 2 ' ' L 1 I T — 10
Cagacity Provisioned in Atlanta DC Capacity Provisioned in Mountain View DC
Demand from Region 2 Capacity Provisioned in Atlanta DC
da Demand from Region 2
20F 8
o o
g 2
= =
= s
16 2 Z E_g’
8 g 151 16 p
= s 2
s ©° =
s 5 B ﬁ
E g 10 4 E
E = :
= E
2 =
ar 2
o "WJ‘M»»J-»A,«W-.MH ol ‘M"vﬁ“b‘lﬂhlwﬁﬁh#._ﬁ 7
12 17 22 27 32 37 42 47 0] nn. n ! L 0
Time (hours) 12 17 22 27 3z w 42 47

Time (hours)

Output of the Greedy Algorithm Output of the DSPP mechanism

Greedy algorithm can cause massive reconfigurations
Our DSPP algorithm is more adaptive

11

Outline

Introduction
Cloud Workload Management

Research Contributions

Service Placement in Geo-Distributed Clouds

{ Heterogeneity-Aware Dynamic Capacity Provisioning]

Fine-Grained Resource-Aware Scheduling for MapReduce

Conclusion

12

Heterogeneity-Aware Capacity Provisioning

Energy cost is an important concern in data centers

Accounts for 12% of operational cost [Gartner Report 2010]

Governments policies for building energy-efficient (i.e. “Green”)
computing platform

Dynamic Capacity Provisioning (DCP)
Minimize energy cost by turning off servers

An idle server consumes as much as 60% of its peak energy demand

Limitations of existing work:

Lack of consideration to both machine and workload heterogeneity

13

Heterogeneity-Aware DCP

I
|
I
Ay X11 :
4:—P I=
I
- : i g Machine Type 1
: |
| ¥
I
Al / :
—{—b Scheduler =10 i=
I
[
: : g Machine Type?_
. : |
| | -ea
| |
?\.N: Wit [b ~ e~ -~
NN 1 B ¥ 3 >
0 :"L A A P
I
| : N
: I | Machine Type N

Capture run-time workload composition

Perform DCP at aggregate level to minimize impact on scheduling

Solution Approach

Classify tasks based on their size and duration using k-
means clustering algorithm

Capture the run-time workload composition in terms of
arrival rate for each task class

Predict the arrival rate of each type of tasks

Define container as a logical allocation of resources to a
task that belongs to a task class

Use containers to reserve resources for each task class

Using task arrival rate to estimate the number of required
containers of each type of task

15

Problem Formulation

max
5:’!‘1 ?G.Iﬁ-ﬂ

- where

erf’-?‘f _ Z £ Z 7"

ne N me M

_E'_T = ZS—':J_ Lrtpf:'?‘_]r _ Et _ CrSw

(Performance objective)

Jnr nr

E, = Z —p; (z;ﬂEidIe,m + Z Z (81 'm'f?'n) T;nn) (Enel‘gy COSt)
me M reRneN c
G2 = 2 anldy| (Switching cost)

meM

- Subject to constraints

me L =TT
241 =2 T 0y

m;?iﬂl _ m;?m + G_;nm

2t < N[
Z C;I?H < 2.;71 cmr
neN

Yn e N,m e M,t € T (Machine state constraint)
vne N,me Mt €T (Workload state constraint)

vmeMteT (Total capacity constraint)
Yme M,r € R,t €T (Capacity constraint)

16

Solution Techniques

Optimal Capacity Provisioning is NP-hard to solve

We first solve the relaxation of the integer program,
then we devise two approaches

Container-Based Scheduling (CBS)

Statically allocate containers in physical machines
At run-time, schedule tasks in containers
Container-Based Provisioning (CBP)
Use the estimated number of containers to provision machines

At run-time, schedule tasks using existing VM scheduling
algorithms such as first-fit (FF)

17

Experiments

CDF

500 : : : T T
=—PowerEdge R210| ! ! ! ! -
PowerEdge R515|
Z 400==HP DL385 G7 e }“..-E 3[":"
st HP DL585 G7 Bl =
=R, =
E._a(_)(_}' L -~
et 2.2 200(
S 2000 et f =
-~ 3 E
2 ; ; ; ; i i i i i =
= o
: : : : ; ; -~
O r
0 01 02 03 04 05 06 07 08 09 1 At

CPU Usage (CPU unit)

=

Machine Configurations

e aatatatetet = 1
0.5, 0.8 7
0.6 - 0.6 7
a
0.4 ~ 0.4t 1
= Gratis(0—1) = Gratis(0—1)
0.2r I 0.2
Other (2—8) Other (2—8)
0 ——Production (9—11) 0 ——Production (9—11)
0 1000 2000 3000 4000 3000 0 1000 2000 3000 4000 5000

Average scheduling delay (second) Average scheduling delay (second)

Baseline CBP

CDF

Baseline CBP CBS

1 .
o_s; /]
ool |

0.4f 1
0ok == Gratis(0—1)
= Other (2—8)
0 ——Production (9—11)
0 1000 2000 3000 4000 5000

Average scheduling delay (second)

CBS

18

Outline

Introduction
Cloud Workload Management

Research Contributions

Service Placement in Geo-Distributed Clouds

Heterogeneity-Aware Dynamic Capacity Provisioning

{ Fine-Grained Resource-Aware Scheduling for MapReduce]

Conclusion

19

Resource-Aware MapReduce Scheduling

MapReduce a popular framework for data intensive
computations

Data sets are divided into blocks
Map tasks: processing individual blocks
Reduce tasks: aggregate Map outputs
Resource-Aware scheduling is important
The original MapReduce adopts a slot-based allocation scheme

Hadoop v2 (a. k. a.) YARN is a resource-aware scheduler

20

Motivation

Map Task 1 Reduce Task 1

N

- Legend
Reduce W

L] [:] Phase

Storage

] D Buffer
Reduce File

8 System

Map Task M Reduce Task R

Executing of a task can be divided into phases

Phases have different resource characteristics
Shulffle is (network and disk I/0) intensive

Map and Reduce can be more CPU intensive

21

Motivation

Percentage
"k
=

20t 1
1
065 4 6 8 1012 14 16

Map Merge

, CPU -
il \ Memory ——-
| I

|f\|
|
.l||||I|I|||II II|'| ||| III| I
i Hllllllllllp'l Lllllil\lll”ll'lll“".\l
i |

Time (scconds)

Map CPU/Mem Usage

: Map Merge , Shufle Sort Reduce
: . L CPU - |
16 HLocal Disk 1/O | 07| Memory -
14} HDFSLO-- - 60 1 N
zi2| gof [}]
[aa] E Lelials ! |
M| Bsof | |1 @ bl
= 6 - | ! | '}-!-;J.n-}l":‘ﬂsﬂ;qdawl
4l J 201 | B T
2} I | - *
U B __.-::I b 4 .I.s LA .$'E') ﬂ e . I __1'_.______. :i |
0 2 4 6 & 10 12 14 1€ 200 40 60 80 100 |7{J

Time {seconds)

Map I/0 Usage

Time (seconds)

Reduce CPU/Mem Usage

) Shuffle Som Reduce

Local Disk 140 i
60 HDFS 140 ===~ i
Metwork Shuffle it
50 S
"._:.f‘ H A
o b i
= | o
30} | .
= ¥ £ fi
=20} il
H [o
z [1)

Iﬂ d EE. ' "r m "H

oLt g E Er%ﬂ

0 20 40
Time (seconds)

Reduce 1/0 Usage

Phase-Level Usage Characteristics of the InvertedIndex Job

Observation: Phases have different Usage characteristics

22

60 80 100 120

PRISM

PRISM is a fine-grained
MapReduce Scheduler

Users can specify phase-
level resource requirement
as input

At run-time, tasks request
permissions to execute
subsequent phases

Resource Manager

lob Request
{With phase-
level resource
requirement)

sobt [[[[T IIIIIITT]
sob2 [[LTI

Job Progress Monitor

I

Resource-Aware Scheduler ‘

‘_,-‘V

(

s

Ve

Node Manager

Node Manager Node Manager

<

_

.

A

—» Task/Phase Scheduling Decisions -eeeeeee----p Task Stats

-:I Task Progression in each phase

7'y \
A
N\

23

Design Issues

Design objectives

Improving resource utilization: Phase-level scheduling provides
more “bin-packing” opportunities for improving utilization

Avoiding resource contention: Prioritize phase scheduling to make
critical tasks run faster

Design Considerations

Fairness: Every job should be getting sufficient resources over time
to prevent starvation

Performance: Phases should not be delayed indefinitely to cause
stragglers

Jobs with different deadlines should have different tolerance for delays

24

Scheduling Algorithm

Greedy algorithm that schedule phases according to
utilities

The utility of scheduling a phaseionnis

U(i,n) = Ufairness(i,n) + a - Uper (i, n)
where
Uyairness(i,1) is the gain in fairness
Uperf(i,n) denotes the gain in performance

If iis the starting phase of a task, U,., ¢(i,n) denotes the gain in
degree of parallelism

If iis the subsequent phase of a task, Up,e,f(i,7) is an increasing
function of the ratio between time paused and expected task
completion deadline

[f additional resources are available, the idle resource is
shared among tasks proportionally

25

Benchmark
FEunning Time (sec)

Experiments

350

300
50 ¢
200
150

100

50

[—':Ilir S-:h::.luk‘r II:I I I
Yarn C—

PRISM 3 _l_ o]

[}

18 24 W
Mumber of Jobs

Job Running Time
(PUMA)

o
o

o
o

o
w

o
[

o
-

[=]

s ——— ' .
Yam ——1
0| RIZM /3 }

é 0 b -]- -1-_ 1
EE h
L .
EE

Z |

st H‘H
0
6 12 1§ b1 E)]
Numier of Jobs
Job Running Time
(Gridmix2)
Il Fair Scheduler M
COPRISM —
[IYarn

i

30
Number of jobs

(a) Unfairness using PUMA

Lithznrion

Unfairness

.
=

4

1o

_..
s
o

ol
it 1
i o A0 I
f 12 18 M i 1]
Number of Jobs
Utilization
(Yarn)
= EFair Scheduler
0.6} EEPRISM _ M
[JYarn M
0.5
04
03

(=]
(]

[=]

"

(b) Unfairness using Gridmix

Unfairness Result

i

Number of jobs

30

100

P ==

[MEM ——

5K /=

T — f

o 10l 1hl 1ﬂ i

6

12 18 M L]
Numier of Jobs

Utilization
(PRISM)

26

Conclusion

Resource management is a major challenge of
Cloud computing environment

This thesis makes contribution on 3 specific
challenges

Dynamic service placement in Geo-distributed Clouds

Heterogeneity-Aware Dynamic Capacity Provisioning in
data centers

Fine-grained Resource-Aware MapReduce Scheduling

27

Thank you!

i

Service Placement Backup Slides

Why Model Predictive Control?

Conventional feedback control (e.g. PID

controller)
Disturbances
Do not handle general constraints (Only |
constraints on manipulated variables) APEN 2 ER 2 E

Unable to optimize the system if the

. ?)f'm
overall system is non-square

Measurements

Does not consider variable interactions in

multi-variable (e.g. MIMO) systems A feedback control system

MPC was introduced to address these
limitations in the late 70’s

Under mild conditions, MPC is guaranteed
to achieve stability

30

Service Reconfiguration Cost

Reconfiguration cost
Assumption: Assuming VM images are already uploaded to the proper DCs

VM Start up time (time between launch and first successful ssh login) is dependent
on data center, VM image size, operating system

Starting services may take longer

Table: VM startup Time (small instance: 1 core, 1.7GB memory)*

Cloud OS Average VM startup time
EC2 Linux 96.9 seconds
EC2 Windows 810.2 seconds
Azure WebRole 374.8 seconds
Azure WorkerRole 406.2 seconds
Azure VMRole 356.6 seconds
Rackspace Linux 44 .2 seconds
Rackspace Windows 429.2 seconds

O Shutting down VM may incur extra (bookkeeping) cost
* M. Mao and M. Humphrey, “A performance study on the VM Startup time in the Cloud” IEEE CLOUD, 2012 5,

Service Reconfiguration Cost

Data storage model

Assume database servers are already running or
the images are installed

Reconfiguration cost is mainly start-up time

Database servers may synchronize periodically

Future work

32

Related Work

Replica placement
Most of the work studies on static problem where demand is not changing

Heuristic algorithm (e.g. local search) for dynamic cases

Service placement
Energy and carbon footprint-aware placement (e.g. FORTE!, Rao? and Liu?)

To be best of our knowledge, reconfiguration cost was not studied before
our work

1X. Gao, A. Curtis, B. Wong, and S. Keshav. "It's not easy being green."” ACM SIGCOMM, 2012

’L. Rao, X. Liu, and W. Liu. “Minimizing electricity cost: Optimization of distributed internet data
centers in a multi-electricity-market environment”, IEEE INFOCOM, 2010

3Z. Liu, M. Lin, A. Wierman, S. Low, and L. Andrew. Greening geographical load balancing. ACM

SIGMETRICS, 2011 .

Service Placement Model (Single

Manitoring H

Analysis and
Frediction Module [

Reszource
Controller

[
1

k Request
Rouler 1

Requast
Router 2

.
D k Rexquest

Routarv 5

v
D
" Request |
Router

Service Placement Model

-
-'/

e
i
- @O Servers

Data Center 1

Diata Center [

;N .
G.s.-,r“"f’ Ty, Servers
\

T ——
I £

Diata Center L

Minimize x
J = Z Hy + G+ P + C,

=0
Where
H, = Z Z i ph (Resource cost)
IeL veV
G = Z d (Z ul)t —c ff(z ul (Reconfiguration Cost)
leL vel veV
J— ; Performance cost
Pe=3"h> 2 - pp) ()
veV leL
Cp = Z Z - Z 2tv — ¢yt (Capacity cost)
) leL reR veV
Subject to

il =2+l Vie LveV,0< k<K (Stateequation)

2">0 VMleLveV,0<k<K

34

Service Placement Model (N-Tier

Request
Router 1

“ Application Z ok
Server P@E.L

Database
Server

Appltcanon a;.

Front-end

Request
Router 2

Front-end

Server iIT\
Ny 6 v,
Tier 0 Tier 1 Tier 2 Tier 3
K
MWWRJ;Q_m+&+H+@
L 0
Where Z Z Z 2t (Resource cost)
n= 1 leL peP
nl - . (Reconfiguration Cost
G Yl (3t (Reconte |
n=1 €L, peP(n.l) peP(n,l)

pnl

=330 Y :;n[— D) (Performance cost)

velV neN leL peP(0,0)UP(n,l)

Cr=>Y a"(s"> > > - (Capacity cost)

reR n=11€L peP(n,l)
Subject to g;ifl = g;i’”l +u p”l Vie L,veV,0 <k < K + 1(State equation)
P”>0 VieLoveV,0<k<K

35

Handling Unexpected Spikes

Underestimation of future demand (e.g., unexpected
demand spikes) can lead to under-provisioning of server
resources.

There are several possible ways to deal with this limitation.

Using an overprovisioning factor

Padding to handle risks

Faster reconfiguration rate

Reasonable since reconfiguration cost is considered

36

Analysis

Price of Stability (PoS) = Best outcome / optimal outcome
Price of Anarchy (PoA) =Worst outcome / optimal outcome

Theorem 1: Assume that the prediction horizon of each SP i
is the same, then the price of stability (PoS) is 1

Proof idea: Optimal outcome with a given prediction horizon is a

stable outcome for all SPs

Theorem 2: Assume that the prediction horizon of each SP i

is the same, then the price of anarchy (PoA) is infinity

Proof 1dea: Hard capacity constraint and high performance penalty
can make the solution arbitrarily worse

37

Mechanism

Using a price-driven mechanism using dual-decomposition

Each SP uses the current price to control service using MPC:

Based on resource demand, Cloud provider computes a congestion
price
W
min Z Zf{‘k“ kS A’ g + R gr (g) + Pﬁ:'-rﬁi-_:xjc_zu- — Diyupi)

2
Wattlle (—0 peV

And update pri('a for fntiira narindc inr‘rnmpnfally
W

min_ E T(Vistpe) — Akre(Viser)

~BV
Vit SR f—0

Aepefk = (Apren + f-‘tfz Z 5f-‘*¢i-+t k— Vi))+

e velV 38

Experiments

¥ 10
'5 T T T T T T T T L
E ——Reglon 1
£ — Reglon 2
w9 i — Reglon 3]
a —— Reqlon 4
¢ | |
5 4t .
£ |
[+
2
B
g "
= g e : ! e s, : ual
3] 1000 2000 2000 4000 2 5DO0 G000 7ODD 800D GOOO 10000

Time {minutes)

Figure 3.5: HTTP requests in the Worldeup 95 dataset

0.0127 T T T T T T T T T ‘U‘: 4 I REE]. Déﬂlﬂﬂd —
L = Predicted Demand --------- i
0.0126 | Y : =
Z A e g |
= E
00125 iy . E i
-\"'Hr h-.h*_*_r;*'—#’ E
Dﬂlzd_ 1 1 1 1 1 1 1 1 1 -U 1 1
0 2 4 &6 B 10 12 14 16 18 20 12 144 216 288 360 432 504

Mumber of lags Timme (hour)

Figure 3.6: Prediction Accuracy vs. number Figure 3.7: Actual vs. Predicted demand for
of lags used region 2

Experiments

it

Muriber af Sarvers

Demand

Capacity Provisionad

Murnber of Sarvics Requests

Time {hours}

e

Humbar of Se ivice Reques s

l:II]' 2 4 B o l"{,

&
Time fhours)

Figure 3.8: Response to Demand Fluctua- Figure 3.9 Effect of prediction window size

tion

on the number of servers

——Mountan WVew, CAl
—— Housion, TX
—— Atiacta, GA

El

&

Ertoe (SMAT)
[

1ol L L L L L L L L L L
2 4 B g i 1z 14 e 18 0 I M
Time (hours)

Figure 3.10: Effect of prediction horizon on Figure 3.11: Prices of electricity used in ex-

the solution cost

periments 40

Experiments

5 T T T T T !11uu‘ N glan‘
—— Capacity Provisionsd In Mounsin View DG = T T T T I T T
— Capacity Prosisioned In Adianta DT — Capacity Provisioned in Mountain Vizw DC|
aal —— Demand from Region 2 s —Mmﬂmgmm
] 1]
H g
: : : :
g 3 £ &
i H & H
£ : ' i
2 £ £, =
2 z i
) Z
Time ihowrs) o . . . : J)
12 hra = I iz w 42 AT
- i I3 - . Time (Fors)
Figure 3.12: Impact of Price on Solition
quality Figure 3.13: Output of the greedy algorithm
= . . : . i
— Capactty Provtsioned In Mountain View
— Capacity Provisioned In Adania DO
' —— Demand from Region 2
=r !]
'
; 1=k d= {
1NENY :
1o) I 44 B
Z
_ ik
s e \ 4z
=1 . .-f.
T % = =@ = w2 &l
Time (hours)

Figure 3.14: Output with no reconfiguration
cost and long window size

Multi-Player Results

S0 [—— Cutoome without coordination
——— Frice sontnoled O
—— Coprial i

w-

Coat (Dolara)
] -]
A
H
H—
N urriber of B rafions

‘Dutcome of the uncoordinated game: aZ T T T
Qufcome produced by dynamic pricing mechanim

T T T T T
1 —_— e of the uncoordinated game

1

— Jutcome produced by dynamic pricing mechanism

L
Mk of [Bembens
n =
———

—

a T "3
i o
= I :
= F 1 1 1 1 1 1
E: 4] g 0 (7] [Tl L - — . ! : L L L—— =
* Misrier of EPs = oo 1=0 200 =0 300 =0 400 450 SO0 =S50 P a1) Ba W00 120 120 160 180 200 220 M0
Capacity of the Bofleneck Data Center

Figure 3.15:
versus the mumber of players

Comparing the cost of NEs

gence rate

T T T T T T
Outcome of e uncoordinaied game
— Cuicome produced by dyramic pridng mechanism

Figure 3.158:

2 3 el 5 & T B -] 1
Prediction window sz

Prediction horizon length vs.

convergence rate

Figure 3.16: Number of players vs. conver-

MNumber of Flayers

Figure 3.17: Capacity of the Bottleneck DC
VS. CONVergence rate

2
——
—
_
—_—
—

3

schiflan ot
‘E"
—

T B B 0 Ll
Predicon window size

Figure 3.19: Impact of prediction horizon 42
length on the cost

Harmony

43

Trace Analysis

Workload traces collected from a production compute
cluster in Google over 29 days

~ 12,000 machines
~2,012,242 jobs
25,462,157 tasks

Applications are represented by jobs
User-facing jobs: e.g., 3-tier web applications
Batch jobs: e.g.,, MapReduce jobs

Each job consists of one or more tasks

There are 12 priorities that are divided into three
priority groups: gratis(0-1), other(2-8), production(9-
11)

44

Trace Analysis: Total Resource

CPU

8800
Demand 7800 Demand
8400
8000 7200
7600 | - 6600 i |
6800 - ’ I | " 1] EJ 5400 ‘ ‘ AL
6400 ? w g R R |
4800 | l LN I fit
6000 H i mu | “
5600 4200 I m 1 ||M|
5200 3600 '
0 4 § 12 16 20 24 28 0o 4 § 12 16 20 24 28
Time (day) Time (day)
CPU Demand Memory Demand
over 30 days over 30 days

Figure: Total resource demand in Google’s Cluster Data Set

45

Machine Heterogeneity

?Gﬂﬂ T T T T T T T T T T
(CPU: 0.5, Memx 0.5, PFID- 1) C———
(CPU: 0.5, Mem: 0.25 PFID: 1) =====
6000 (CPU: 0.5, Mem: 0.75, PFID: 1)
o (CPU- 1, Mem: 1, PFID- 3)
(CPU: 0.25, Mem: 0.25, PFID: 2)
E 5000 (CPU: 0.5, Mem: 0.13. PFID: 1)
) (CPU- 0.5, Mem: 0.03, PFID- 1) ————1
S (CPU: 0.5, Mem: 1, PFID: 1) ———2
£4000 r — (CPU- 1, Mem- 0.5, PFID- 3)]|
= (CPU: 0.5, Mem: 0.06, PFID: 1) ————
53000 .
E
S 2000 ¢ .
e
1000 [1
ﬂ 1 1 1 1

155456?8911}

Machine type
10 types of machines, some (e.g type 2 and 4) have high CPU
capacity, others have high memory (e.g type 3 and 8) capacity

Memory size

—

o
w@

Memory size
o
[

(a) Gratis (0-1)

=
o

; o

05 0 01 02 03

CPU size
(b) Other

0.4

Memory size

Trace Analysis: Task Size

—

o
w@

(=]
(=]

=2
[N

o
i

CPU size
(c) Production

Tasks are either CPU intensive or Memory intensive

Little correlation between CPU size and Memory size

47

Task Priority and Running Time

CDF

08 F = 7/ |
06 / _
/ Priority group
04 F/ gratis (0-1) i
; other (2-8) -----omooeel
/ production (9-11)

0.2 r :
0 _Ijlll_lllll{:l}lll]l-Illzllll‘?;lllzi-”q
10710 " 107 10" 107 10" 10" 107

Task scheduling delay (minutes)

CDF

04 [

0.2 r

Priority group
gratis (0-1)
other (2-8)
production (9-11)

107

10° 100 10

Task duration (hours)

210

3

48

Summary

Machines have different resource capacities

Some have more CPU capacities, while others have
more memory capacities

Tasks belong to different jobs have different
resource requirements, running time and
priorities

Heterogeneity-awareness is important

Different machines are likely to have different
energy characteristics

Not every task can be scheduled on every machine

49

Handling Unexpected Spikes

Underestimation of future demand (e.g., unexpected
demand spikes) can lead to under-provisioning of server
resources.

There are several possible ways to deal with this limitation.

Using an overprovisioning factor

Padding to handle risks

Faster reconfiguration rate

Reasonable since reconfiguration cost is considered

50

Reconfiguration Costs

Wear-and-Tear cost is 0.5 cents per power-cycle
Reason

wear-and-tear effect mainly affects disk reliability

The typical MTBEF for disk is around 40000 on/off
cycles.

Therefore, assuming a disk failure costs around $200
(including labor fee), then the cost for an on-off cycle
is roughly $200/40000 = 0.5 cents, as suggested by

[1] Managing E&r}EZﬂnergy and Operational Costs in Hosting Centers, SIGMETRICS 2005
[2] A Case For Adaptive Datacenters To Conserve Energy and Improve Reliability, UC
Berkeley Technical Report, 2008

51

CBS Scheduling Details

The scheduling algorithm essentially
schedules each task in the first available
slot that has sufficient capacity to run it,
other [T pa S v+ s oY orver<omy<e@

meMF JEN jeEN . ?
scheGuuz yucuc | witat uisuive 15 1t)
Theorem 4. Assume each task s* in each class k is independently and identically dis-
tributed with mean p*" and standard deviation o*" for each resource type r. Also, let M*
denote the minimum number of machines on which a type k task can be scheduled. We can 1t
set container size of task type k to

52

Experiments (Clustering)

'IRICPU demand

[EMemory demand

MNormalized value

1

ql | |
0 M) ||
23 45 6

7 8 9 101112

355

Class size (gratis)

i
o

[ERICPU demand
[EMemory demand

e
)

=
N

Normalized value

T

=
[

[

1 23 435 67 8 9101112
Class ID

5

Class size (Other)

Druration { second)

5x10 10*
109
PR E P
g :
h R
5 1 g
= £
B T 2
Bos T 10
ol 10° -
1 2 3 45 67 8 9 1011 12 23 456 7 89101112
Class ID Class D

Duration (gratis) Number of tasks (gratis)

Gl 10*
p
o
=
15 f
E
1 ’
-
0.5 |
0 -
1 2 3 45 6 7 & 01011 12 5 & 78 9101112
Class ID Class ID

Duration (Other) Number of tasks (Other)

03
8
w 0.6
o
E
E 04
L]
02
] =
1 23 45 6 7 8 2101112
Class ID
Container size (gratis)
1 T
[ECPU
M emory
0.8 + Max CPU
i ¢ Max Memory
706
2
E04 :
8 !
02
25 T = il
0

1 2 345 67T 8% 9101112
Class ID

Container size (Other)

53

Momalized value

Experiments (Clustering)

e
)

e
)

[ECPU demand
[EMemory demand

e
I

bt
=]

Ihalualhsoii

12345678 910111213141516
Class ID

55

Class size (Production)

. * 1 ——
5 5x10 1o ECPU
Memory
g 03 + Max CPU
s n < * Max Memory|
LA S 2
£ E =
21 E Eo4
2 z 2 i
7 ..
05 - 02]
° 12345678 910111213141516 12345678 9210111213141516 : 12345678 910111213141518
Class Class ID Class ID

Duration (Production) Number of tasks (Production)

Container size (Production)

54

Experiments

Arrival Rate (Tasks/Second)

500

£
=
[
=
(=]

===HP DL385 G7

—PowerEdge R210]
---Powerlidge R515|

200F--

Power Consumption (W

1005t

BOOL s T

0() 0.1 02 03 04 05 06 0.7 08 09 1
CPU Usage (CPU unit)

Machine configurations

15 : — : 10000 - — :
—Gratis(0-1) —Gratis(0—1)
===ther (2—8) < | . |===Other (2—8) |

.': ==—Production (9—11) k- 8000 ! |==Production (9—11)

10} i - = -

| g 6000} .

41 O .

a3 et nl
5 e = 4000r e 1
S5r: = 3 : ; ~

ol = N : :

: Z 2000p: (& i Y T I =
: I Sl , ; e —— i
GCI 4 5] 8 10 12 Dﬂ 4 O 8 10 12

Time (hour)

Aggregated task arrival rates

Time (hour)

Number of required containers

55

Experiments

% 8000 —PO\I’\'erEdge IRZ]O W 3000 —PowerEdge B210
= = ==PowerEdge R515 = ---PowerEdge B515
= ——HP DL385 G7 = 2500/ ——mp DL3ES &7
E 6000 --HP DL585 G7 2 |- HP DL585 G7 .
S E 2000f r'i".
= =
2 4000) = 1500} FII | -4
[= . et I|I '
o = |
5 < 1000F " '
2 2000f | b E , I |
= - S00F : '
z - I =, 1 |
od oo 7] | — ¥
0 4 6 3 10 12 0 6 g 10 17
Time (hour) Time (hour) =
Baseline CBP/CBS
1 T T i e —— 1
08 _.o---e-- PETT E 08 !-" 1 0.8 !
- / /
0.6 ... 061 1 o 0.6
=]]
04t ~ o4l o4
- == Gratis(0—1) - ==Gratis((—1) AL ==(ratis((—1)
0.2 - «=Other (2-8) 0.2 =+ Other (2-8) 0.2 - +=Other (2-8)
0 . . [=—Production (9-11) 0 . . |==Production (9-11) 0 . - |==Production (9—11)
0 1000 2000 3000 4000 3000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Average scheduling delay (second)

Baseline

CBS

Average scheduling delay (zecond)

Average scheduling delay (second)

CBP

56

Experiments

PU Utilization

C

[—cBP
=-==CBS
|==—=Baseline

g
el
'

2 4 6 8 10 12
Time (hour)

CPU Utilization

Memory Utilization

o

[—cBP
2f ---CBS
=—Baseline

% 2 4 & 8 10 12
Time (hour)

Memory Utilization

Comparing CBS and CBP

800 - — . 800 - =
—Gratis(0-1) 3, —Gratis(0-1)
. Other (2—-8) = Other (2—8)
e00f, |- Production (9—11)j -2 600} ~=Production (9—11)j

(]

Average scheduling delay (s)
e
o

0 : ' : 0 : , ——====a
200 220 240 260 280 200 220 240 260 280
Total energy consumption (kw) Total energy consumption (kw)

CBP CBS

Trade-off curve obtained by varying the over provisioning factor (1-2)

CBS generally performs better than CBP especially for production
priority, due to guaranteed slots

However, when underestimation occurs (very low overprovisioning
factor), CBS performs worse. 58

PRISM

Theoretical Background

Scheduling is studied under the field of scheduling
theory

MapReduce scheduling is similar to Job-shop
scheduling

Tasks may or may not have sequential dependencies

Online version with multiple machines is NP-hard

List scheduling is a well known competitive scheduling algorithm for
job-shop scheduling

Differences between MapReduce scheduling and Job-
shop scheduling

Multiple types of resources with heterogeneous resource
capacities

Bin-packing algorithms are more appropriate

60

Related Work

Hadoop v2 (a.k.a. Yarn)

Specifying resource requirement at task-level

Resource Aware Scheduler (RAS)

Profile driven, but not phase-level

MROrchstrator

Reconcile run-time resource contention

Overlapping shuffle and reduce phases

considered the different resource consumption
characteristics of each phase at run-time are not
considered

61

Fairness metrics

Running-time fairness (Fair scheduler and Quincy)

. P RN A [R,
Equalize the i 1 o

of each job

Dominant Resource Fairness (Supported in Yarn)

Equalize the share of each job/user’s most demanded

re<niircecg

max Cr | _ max o\ max CIr
rerR | O, rer | C. rell C'.

62

Generating Profiles

We vary the number of slots in the fair scheduler

Map Running Time (sec)

First vary the number of Map slots to find optimal map stage
running time

Once num. of map slots are fixed, vary the number of reduce
slots find optimal job running time

100 ¢ 2 300
80 2 250
_ -
60 oD 200
40 E 150 M
o
20 9 100
=
0 &‘5 50
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of Map Slots Number of Reduce Slots

Profiling for the Sort job 63

Other Issues

PRISM is implemented based Hadoop Fair scheduler;
thus it inherits many properties from Fair Scheduler

Scalability:
The execution of the algorithm takes <50ms
Sensitivity:

We found the profiles to be stable, as confirmed in the
previous work (ARIA)*

Failures:
Greedy algorithm naturally supports fault tolerance
Speculative re-execution

Supports speculative re-execution just like fair
scheduler

*ARIA: Automatic Resource Inference and Allocation for MapReduce Environments, ICAC 2011 64

Other Issues

Tuning the various parameters for the utility function
and make trade-offs between fairness/stragglers and
concurrency.

Based on experience (future work)
What about general purpose workloads, data skew, etc?

Data locality can be considered by profiling local and non-
local tasks

Missing details/ unstated assumptions for job profiling,
would be good to add to the technical content.

Can use general profilers that profile at phase-level.
Designing of the profiler is beyond the scope of this work

65

Other Issues

phase-level scheduling for fault tolerance or
speculative execution.

Can support speculative re-execution (to be added)

would have appreciated a discussion of how this
additional information could be easily
estimated and provided to PRISM.

Benchmarks of small job performance and
scalability of the JT would have been useful.

Indeed, we are looking for hierarchical scheduling
algorithms (future work)

66

Other Issues

The experimental results appear to use
"average job completion time" as the main
metric. I find this unsatisfactory as a metric.
The CDF is really important. Is there
starvation? Do the proposed strategies really
improve some jobs (e.g., small ones) at the cost
of few others (e.g., large jobs)?

Variation of job running time is reported using
unfairness metric

Did the experiments turn speculative execution
on?

Yes, it is turned on.

