

Dynamic Workload Management in Heterogeneous Cloud Computing Environments

<u>Qi Zhang</u> and Raouf Boutaba

University of Waterloo

IEEE/IFIP Network Operations and Management Symposium

Krakow, Poland

May 7, 2014

Outline

- Introduction
- Cloud Workload Management
- Research Contributions
- Conclusion

Introduction

• **Cloud computing** is a model that advocates hosting online services in data centers

Workload Management in Cloud Data Centers

Workload Management

- Cloud workload management is difficult!
- Service Provider Challenge
 - **Dynamically** provisioning sufficient server capacity to satisfy service level objectives (SLO), while minimizing operational cost
- Cloud Provider Challenges
 - Performing resource management with consideration to *heterogeneous* machine and workload characteristics

Thesis Contributions

- Service Placement in Geo-Distributed Clouds
- Heterogeneity-Aware Dynamic Capacity
 Provisioning
- Fine-Grained Resource-Aware Scheduling for MapReduce

Service Placement in Geo-Distributed Clouds

- Dynamic Service Placement Problem (DSPP):
 - Where should the service be placed to reduce resource cost while satisfying service level objectives (SLOs)?

Service Placement in Geo-Distributed Clouds

• Design Challenges

- Service demand is dynamic and originates from multiple locations
- Electricity prices are different from location to location and can fluctuate over time
- There is a cost associated with reconfiguration
 - Setting up the server (e.g., VM image distribution)
 - Tearing down the server (e.g., data / state transfer)
- Limitations of existing work:
 - Early studies focus on static scenarios
 - Ignoring electricity cost and reconfiguration cost

DSPP Model

- The offline can be formulated as a discrete-time optimal control problem
- Our solution: online algorithm on Model Predictive Control (MPC) framework
 - Predict future demand over next K periods
 - Solve DSPP over the next K periods
 - Carry out the solution move for the next period

Results

Results

- Greedy algorithm can cause massive reconfigurations
- Our DSPP algorithm is more adaptive

Outline

- Introduction
- Cloud Workload Management
- Research Contributions
 - Service Placement in Geo-Distributed Clouds
 - Heterogeneity-Aware Dynamic Capacity Provisioning
 - Fine-Grained Resource-Aware Scheduling for MapReduce
- Conclusion

Heterogeneity-Aware Capacity Provisioning

• Energy cost is an important concern in data centers

- Accounts for 12% of operational cost [Gartner Report 2010]
- Governments policies for building energy-efficient (i.e. "Green") computing platform
- Dynamic Capacity Provisioning (DCP)
 - Minimize energy cost by turning off servers
 - An idle server consumes as much as 60% of its peak energy demand
- Limitations of existing work:
 - Lack of consideration to both machine and workload heterogeneity

Heterogeneity-Aware DCP

- Capture run-time workload composition
- Perform DCP at aggregate level to minimize impact on scheduling

Solution Approach

- Classify tasks based on their size and duration using kmeans clustering algorithm
- Capture the run-time workload composition in terms of arrival rate for each task class
 - Predict the arrival rate of each type of tasks
- Define *container* as a logical allocation of resources to a task that belongs to a task class
- Use containers to reserve resources for each task class
 - Using task arrival rate to estimate the number of required containers of each type of task

Problem Formulation

$$\max_{\substack{\delta_t^m, \sigma_t^{mn}}} \quad R_T = \sum_{t=1}^T U_t^{perf} - E_t - C_t^{sw}$$

• where

$$\begin{aligned} U_t^{perf} &= \sum_{n \in N} f^n (\sum_{m \in M} x_t^{mn}) & (\text{Performance objective}) \\ E_t &= \sum_{m \in M} -p_t \left(z_t^m E^{idle,m} + \sum_{r \in R} \sum_{n \in N} \frac{\alpha^{mr} c^{nr}}{c^{mr}} \cdot x_t^{mn} \right) & (\text{Energy cost}) \\ C_t^{sw} &= \sum_{m \in M} q_m |\delta_t^m| & (\text{Switching cost}) \end{aligned}$$

Subject to constraints

$$\begin{aligned} z_{t+1}^{m} &= z_{t}^{m} + \delta_{t}^{m} & \forall n \in N, m \in M, t \in \mathcal{T} \quad \text{(Machine state constraint)} \\ x_{t+1}^{mn} &= x_{t}^{mn} + \sigma_{t}^{mn} & \forall n \in N, m \in M, t \in \mathcal{T} \quad \text{(Workload state constraint)} \\ z_{t}^{m} &\leq N_{t}^{m} & \forall m \in M, t \in \mathcal{T} \quad \text{(Total capacity constraint)} \\ \sum_{n \in N} c_{n}^{r} x_{t}^{mn} &\leq z_{t}^{m} C^{mr} & \forall m \in M, r \in R, t \in \mathcal{T} \quad \text{(Capacity constraint)} \end{aligned}$$

Solution Techniques

- Optimal Capacity Provisioning is *NP-hard* to solve
- We first solve the relaxation of the integer program, then we devise two approaches
 - Container-Based Scheduling (CBS)
 - Statically allocate containers in physical machines
 - At run-time, schedule tasks in containers
 - Container-Based Provisioning (CBP)
 - Use the estimated number of containers to provision machines
 - At run-time, schedule tasks using existing VM scheduling algorithms such as first-fit (FF)

Outline

- Introduction
- Cloud Workload Management
- Research Contributions
 - Service Placement in Geo-Distributed Clouds
 - Heterogeneity-Aware Dynamic Capacity Provisioning
 - Fine-Grained Resource-Aware Scheduling for MapReduce
- Conclusion

Resource-Aware MapReduce Scheduling

- MapReduce a popular framework for data intensive computations
 - Data sets are divided into blocks
 - Map tasks: processing individual blocks
 - Reduce tasks: aggregate Map outputs
- Resource-Aware scheduling is important
 - The original MapReduce adopts a slot-based allocation scheme
 - Hadoop v2 (a. k. a.) YARN is a resource-aware scheduler

Motivation

- Executing of a task can be divided into phases
- Phases have different resource characteristics
 - Shuffle is (network and disk I/O) intensive
 - Map and Reduce can be more CPU intensive

Motivation

• Observation: Phases have different Usage characteristics

PRISM

- PRISM is a fine-grained MapReduce Scheduler
 - Users can specify phaselevel resource requirement as input
- At run-time, tasks request permissions to execute subsequent phases

Design Issues

- Design objectives
 - *Improving resource utilization:* Phase-level scheduling provides more "bin-packing" opportunities for improving utilization
 - *Avoiding resource contention:* Prioritize phase scheduling to make critical tasks run faster
- Design Considerations
 - *Fairness*: Every job should be getting sufficient resources over time to prevent starvation
 - *Performance:* Phases should not be delayed indefinitely to cause stragglers
 - Jobs with different deadlines should have different tolerance for delays

Scheduling Algorithm

- Greedy algorithm that schedule phases according to utilities
- The utility of scheduling a phase *i* on *n* is

$$U(i,n) = U_{fairness}(i,n) + \alpha \cdot U_{perf}(i,n)$$

- where
 - $U_{fairness}(i, n)$ is the gain in fairness
 - $U_{perf}(i, n)$ denotes the gain in performance
 - If i is the starting phase of a task, $U_{perf}(i,n)$ denotes the gain in degree of parallelism
 - If i is the subsequent phase of a task, $U_{perf}(i,n)$ is an increasing function of the ratio between time paused and expected task completion deadline
- If additional resources are available, the idle resource is shared among tasks proportionally

Conclusion

- Resource management is a major challenge of Cloud computing environment
- This thesis makes contribution on 3 specific challenges
 - Dynamic service placement in Geo-distributed Clouds
 - Heterogeneity-Aware Dynamic Capacity Provisioning in data centers
 - Fine-grained Resource-Aware MapReduce Scheduling

Thank you!

Service Placement Backup Slides

Why Model Predictive Control?

- Conventional feedback control (e.g. PID controller)
 - Do not handle *general constraints* (Only constraints on manipulated variables)
 - Unable to optimize the system if the overall system is non-square
 - Does not consider variable interactions in multi-variable (e.g. MIMO) systems
- MPC was introduced to address these limitations in the late 70's
 - Under mild conditions, MPC is guaranteed to achieve stability

A feedback control system

Service Reconfiguration Cost

- Reconfiguration cost
 - **Assumption**: Assuming VM images are already uploaded to the proper DCs
 - VM Start up time (time between launch and first successful ssh login) is dependent on data center, VM image size, operating system
 - Starting services may take longer

Cloud	OS	Average VM startup time
EC2	Linux	96.9 seconds
EC2	Windows	810.2 seconds
Azure	WebRole	374.8 seconds
Azure	WorkerRole	406.2 seconds
Azure	VMRole	356.6 seconds
Rackspace	Linux	44.2 seconds
Rackspace	Windows	429.2 seconds

Table: VM startup Time (small instance: 1 core, 1.7GB memory)*

Shutting down VM may incur extra (bookkeeping) cost

* M. Mao and M. Humphrey, "A performance study on the VM Startup time in the Cloud" IEEE CLOUD, 2012 $_{
m 31}$

Service Reconfiguration Cost

- Data storage model
 - Assume database servers are already running or the images are installed
 - Reconfiguration cost is mainly start-up time
 - Database servers may synchronize periodically
 - Future work

Related Work

- Replica placement
 - Most of the work studies on static problem where demand is not changing
 - Heuristic algorithm (e.g. local search) for dynamic cases
- Service placement
 - Energy and carbon footprint-aware placement (e.g. FORTE¹, Rao² and Liu³)
- To be best of our knowledge, reconfiguration cost was not studied before our work

¹X. Gao, A. Curtis, B. Wong, and S. Keshav. "It's not easy being green." ACM SIGCOMM, 2012
 ²L. Rao, X. Liu, and W. Liu. "Minimizing electricity cost: Optimization of distributed internet data centers in a multi-electricity-market environment", IEEE INFOCOM, 2010
 ³Z. Liu, M. Lin, A. Wierman, S. Low, and L. Andrew. Greening geographical load balancing. ACM SIGMETRICS, 2011

Service Placement Model (Single Tier, Single Provider)

Service Placement Model (N-Tier service, Single Provider)

35

Handling Unexpected Spikes

- Underestimation of future demand (e.g., unexpected demand spikes) can lead to under-provisioning of server resources.
- There are several possible ways to deal with this limitation.
 - Using an overprovisioning factor
 - Padding to handle risks
 - Faster reconfiguration rate
 - Reasonable since reconfiguration cost is considered

Analysis

- Price of Stability (PoS) = Best outcome / optimal outcome
- Price of Anarchy (PoA) =Worst outcome / optimal outcome
- Theorem 1: Assume that the prediction horizon of each SP *i* is the same, then the price of stability (PoS) is 1
 - Proof idea: Optimal outcome with a given prediction horizon is a stable outcome for all SPs
- Theorem 2: Assume that the prediction horizon of each SP *i* is the same, then the price of anarchy (PoA) is infinity
 - Proof idea: Hard capacity constraint and high performance penalty can make the solution arbitrarily worse

Mechanism

- Using a price-driven mechanism using dual-decomposition
 - Each SP uses the current price to control service using MPC:

 Based on resource demand, Cloud provider computes a congestion price

$$\min_{\mathbf{u}_{k+t|k}^{i}} \sum_{t=0}^{n} \sum_{v \in V} (\mathbf{e}_{k+t|k}^{\top} \mathbf{s}^{i} + \lambda_{k+t|k} \mathbf{s}^{i}) \mathbf{x}_{k+t|k}^{iv} + \mathbf{R}^{i\top} g_{k}^{i} (\mathbf{u}_{k+t|k}^{i}) + P_{k}^{i} (\mathbf{a}_{k+t}^{i} \mathbf{x}_{k+t|k}^{i} - \mathbf{D}_{k+t|k}^{i})$$

• And update price for future periods incrementally $\min_{\mathbf{v}_{k+t|k} \in \mathbb{R}^{V}} \sum_{t=0}^{W} \pi(\mathbf{v}_{k+t|k}) - \lambda_{k+t|k}(\mathbf{v}_{k+t|k})$

$$\lambda_{k+t|k} := (\lambda_{k+t|k} + \alpha(\sum_{i \in \mathcal{N}} \sum_{v \in V} \mathbf{s}^i \mathbf{x}^i_{k+t|k} - \mathbf{v}_{k+t|k}))_+$$

Figure 3.5: HTTP requests in the Worldcup 98 dataset

Real Demand Predicted Demand Demand (x10⁴) 3 2 1 0 5 288 Time (hour) 72 144 216 360 432 504

of lags used

Figure 3.6: Prediction Accuracy vs. number Figure 3.7: Actual vs. Predicted demand for region 2

tion

Figure 3.8: Response to Demand Fluctua- Figure 3.9: Effect of prediction window size on the number of servers

Figure 3.10: Effect of prediction horizon on Figure 3.11: Prices of electricity used in exthe solution cost periments

Figure 3.12: Impact of Price on Solution quality

Figure 3.13: Output of the greedy algorithm

Figure 3.14: Output with no reconfiguration cost and long window size

Multi-Player Results

Comparing the cost of NEs Figure 3.15: versus the number of players

gence rate

Figure 3.16: Number of players vs. conver- Figure 3.17: Capacity of the Bottleneck DC vs. convergence rate

convergence rate

Figure 3.18: Prediction horizon length vs. Figure 3.19: Impact of prediction horizon length on the cost

Harmony

Trace Analysis

- Workload traces collected from a production compute cluster in Google over 29 days
 - ~ 12,000 machines
 - ~2,012,242 jobs
 - 25,462,157 tasks
- Applications are represented by jobs
 - User-facing jobs: e.g., 3-tier web applications
 - Batch jobs: e.g., MapReduce jobs
- Each job consists of one or more tasks
- There are 12 priorities that are divided into three priority groups: gratis(0-1), other(2-8), production(9-11)

Trace Analysis: Total Resource

Figure: Total resource demand in Google's Cluster Data Set

Machine Heterogeneity

• 10 types of machines, some (e.g type 2 and 4) have high CPU capacity, others have high memory (e.g type 3 and 8) capacity

Trace Analysis: Task Size

- Tasks are either CPU intensive or Memory intensive
- Little correlation between CPU size and Memory size

Task Priority and Running Time

Summary

- Machines have different resource capacities
 - Some have more CPU capacities, while others have more memory capacities
- Tasks belong to different jobs have different resource requirements, running time and priorities
- Heterogeneity-awareness is important
 - Different machines are likely to have different energy characteristics
 - Not every task can be scheduled on every machine

Handling Unexpected Spikes

- Underestimation of future demand (e.g., unexpected demand spikes) can lead to under-provisioning of server resources.
- There are several possible ways to deal with this limitation.
 - Using an overprovisioning factor
 - Padding to handle risks
 - Faster reconfiguration rate
 - Reasonable since reconfiguration cost is considered

Reconfiguration Costs

- Wear-and-Tear cost is 0.5 cents per power-cycle
- Reason
 - wear-and-tear effect mainly affects disk reliability
 - The typical MTBF for disk is around 40000 on/off cycles.
 - Therefore, assuming a disk failure costs around \$200 (including labor fee), then the cost for an on-off cycle is roughly \$200/40000 = 0.5 cents, as suggested by

[1] Managing **[ary 2]** nergy and Operational Costs in Hosting Centers, SIGMETRICS 2005 [2] A Case For Adaptive Datacenters To Conserve Energy and Improve Reliability, UC Berkeley Technical Report, 2008

CBS Scheduling Details

The scheduling algorithm essentially schedules each task in the first available slot that has sufficient capacity to run it, othel ∏ Pr(∃r : ∑_{j∈N} s^{jr} + s^{ir} > C^{mr}|∑_{j∈N} c^{jr} + c^{ir} ≤ C^{mr}) ≤ ε e scheduling uncur uncur uncur uncur uncur is it?) Theorem 4. Assume each task s^{kr} in each class k is independently and identically distributed with mean μ^{kr} and standard deviation σ^{kr} for each resource type r. Also, let M^k denote the minimum number of machines on which a type k task can be scheduled. We can it set container size of task type k to

$$c^{kr} = \mu^{kr} + \sqrt{\frac{|R| - \epsilon^{\frac{1}{M^k}}}{\epsilon^{\frac{1}{M^k}}}} \sigma^{kr}$$

Experiments (Clustering)

Experiments (Clustering)

55

Comparing CBS and CBP

Trade-off curve obtained by varying the over provisioning factor (1-2)

- CBS generally performs better than CBP especially for production priority, due to guaranteed slots
- However, when underestimation occurs (very low overprovisioning factor), CBS performs worse.

PRISM

Theoretical Background

- Scheduling is studied under the field of *scheduling theory*
 - MapReduce scheduling is similar to *Job-shop* scheduling
 - Tasks may or may not have sequential dependencies
 - Online version with multiple machines is NP-hard
 - List scheduling is a well known competitive scheduling algorithm for job-shop scheduling
 - Differences between MapReduce scheduling and Jobshop scheduling
 - Multiple types of resources with heterogeneous resource capacities
 - Bin-packing algorithms are more appropriate

Related Work

- Hadoop v2 (a.k.a. Yarn)
 - Specifying resource requirement at task-level
- Resource Aware Scheduler (RAS)
 - Profile driven, but not phase-level
- MROrchstrator
 - Reconcile run-time resource contention
- Overlapping shuffle and reduce phases
 - considered the different resource consumption characteristics of each phase at run-time are not considered

Fairness metrics

Running-time fairness (Fair scheduler and Quincy)

• Equalize the
$$\frac{\overline{n_1}}{N_1} = \frac{\overline{n_2}}{N_2} = \dots = \frac{\overline{n_J}}{N_J}$$
 of each job

- Dominant Resource Fairness (Supported in Yarn)
 - Equalize the share of each job/user's most demanded resources

$$\max_{r \in R} \left\{ \frac{c_{1r}}{C_r} \right\} = \max_{r \in R} \left\{ \frac{c_{2r}}{C_r} \right\} = \dots = \max_{r \in R} \left\{ \frac{c_{Jr}}{C_r} \right\}$$

Generating Profiles

- We vary the number of slots in the fair scheduler
 - First vary the number of Map slots to find optimal map stage running time
 - Once num. of map slots are fixed, vary the number of reduce slots find optimal job running time

Profiling for the Sort job

- PRISM is implemented based Hadoop Fair scheduler, thus it inherits many properties from Fair Scheduler
- Scalability:
 - The execution of the algorithm takes <50ms
- Sensitivity:
 - We found the profiles to be stable, as confirmed in the previous work (ARIA)*
- Failures:
 - Greedy algorithm naturally supports fault tolerance
- Speculative re-execution
 - Supports speculative re-execution just like fair scheduler

- Tuning the various parameters for the utility function and make trade-offs between fairness/stragglers and concurrency.
 - Based on experience (future work)
- What about general purpose workloads, data skew, etc?
 - Data locality can be considered by profiling local and nonlocal tasks
- Missing details/ unstated assumptions for job profiling, would be good to add to the technical content.
 - Can use general profilers that profile at phase-level. Designing of the profiler is beyond the scope of this work

- phase-level scheduling for fault tolerance or speculative execution.
 - Can support speculative re-execution (to be added)
- would have appreciated a discussion of how this additional information could be easily estimated and provided to PRISM.
- Benchmarks of small job performance and scalability of the JT would have been useful.
 - Indeed, we are looking for hierarchical scheduling algorithms (future work)

- The experimental results appear to use "average job completion time" as the main metric. I find this unsatisfactory as a metric. The CDF is really important. Is there starvation? Do the proposed strategies really improve some jobs (e.g., small ones) at the cost of few others (e.g., large jobs)?
 - Variation of job running time is reported using unfairness metric
- Did the experiments turn speculative execution on?
 - Yes, it is turned on.