University of

Waterloo

%ﬁ

Dynamic Workload Management in Heterogeneous
Cloud Computing Environments

Qi Zhang and Raouf Boutaba

University of Waterloo

IEEE/IFIP Network Operations and Management Symposium
Krakow, Poland
May 7, 2014



Outline

Introduction
Cloud Workload Management
Research Contributions

Conclusion



Introduction

Cloud computing is a model that advocates hosting online
services in data centers

@racispace. %# Drophox

e Bl

Google Docs o
& “.Dynami-:s CRM
4 m YouQuLL:

5a0ffice 365



Workload Management in Cloud Data Centers
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Workload Management

Cloud workload management is difficult!

Service Provider Challenge

Dynamically provisioning sufficient server capacity to
satisfy service level objectives (SLO), while minimizing
operational cost

Cloud Provider Challenges

Performing resource management with consideration to
heterogeneous machine and workload characteristics



Thesis Contributions

Service Placement in Geo-Distributed Clouds

Heterogeneity-Aware Dynamic Capacity

Provisioning

Fine-Grained Resource-Aware Scheduling for

MapReduce



Service Placement in Geo-Distributed Clouds

Dynamic Service Placement Problem (DSPP):

Where should the service be placed to reduce resource cost while
satisfying service level objectives (SLOs)?



Service Placement in Geo-Distributed Clouds

Design Challenges

Service demand is dynamic and originates from multiple locations

Electricity prices are different from location to location and can
fluctuate over time

There is a cost associated with reconfiguration
Setting up the server (e.g.,, VM image distribution)

Tearing down the server (e.g., data / state transfer)

Limitations of existing work:

Early studies focus on static scenarios

Ignoring electricity cost and reconfiguration cost



DSPP Model

Resource cost Reconfiguration Cost  Performance cost Capacity penalty
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The offline can be formulated as a discrete-time optimal control problem

Our solution: online algorithm on Model Predictive Control (MPC)
framework

Predict future demand over next K periods
Solve DSPP over the next K periods

Carry out the solution move for the next period
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Greedy algorithm can cause massive reconfigurations
Our DSPP algorithm is more adaptive
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Heterogeneity-Aware Capacity Provisioning

Energy cost is an important concern in data centers

Accounts for 12% of operational cost [Gartner Report 2010]

Governments policies for building energy-efficient (i.e. “Green”)
computing platform

Dynamic Capacity Provisioning (DCP)
Minimize energy cost by turning off servers

An idle server consumes as much as 60% of its peak energy demand

Limitations of existing work:

Lack of consideration to both machine and workload heterogeneity

13



Heterogeneity-Aware DCP
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Solution Approach

Classify tasks based on their size and duration using k-
means clustering algorithm

Capture the run-time workload composition in terms of
arrival rate for each task class

Predict the arrival rate of each type of tasks

Define container as a logical allocation of resources to a
task that belongs to a task class

Use containers to reserve resources for each task class

Using task arrival rate to estimate the number of required
containers of each type of task

15



Problem Formulation
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Solution Techniques

Optimal Capacity Provisioning is NP-hard to solve

We first solve the relaxation of the integer program,
then we devise two approaches

Container-Based Scheduling (CBS)

Statically allocate containers in physical machines
At run-time, schedule tasks in containers
Container-Based Provisioning (CBP)
Use the estimated number of containers to provision machines

At run-time, schedule tasks using existing VM scheduling
algorithms such as first-fit (FF)

17



Experiments
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Resource-Aware MapReduce Scheduling

MapReduce a popular framework for data intensive
computations

Data sets are divided into blocks
Map tasks: processing individual blocks
Reduce tasks: aggregate Map outputs
Resource-Aware scheduling is important
The original MapReduce adopts a slot-based allocation scheme

Hadoop v2 (a. k. a.) YARN is a resource-aware scheduler

20



Motivation

Map Task 1 Reduce Task 1

N

- Legend
Reduce W

L] [:] Phase

Storage

] D Buffer
Reduce File

8 System

Map Task M Reduce Task R

Executing of a task can be divided into phases

Phases have different resource characteristics
Shulffle is (network and disk I/0) intensive

Map and Reduce can be more CPU intensive
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Motivation
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PRISM

PRISM is a fine-grained
MapReduce Scheduler

Users can specify phase-
level resource requirement
as input

At run-time, tasks request
permissions to execute
subsequent phases
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Design Issues

Design objectives

Improving resource utilization: Phase-level scheduling provides
more “bin-packing” opportunities for improving utilization

Avoiding resource contention: Prioritize phase scheduling to make
critical tasks run faster

Design Considerations

Fairness: Every job should be getting sufficient resources over time
to prevent starvation

Performance: Phases should not be delayed indefinitely to cause
stragglers

Jobs with different deadlines should have different tolerance for delays
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Scheduling Algorithm

Greedy algorithm that schedule phases according to
utilities

The utility of scheduling a phaseionnis

U(i,n) = Ufairness(i,n) + a - Uper (i, n)
where
Uyairness(i,1) is the gain in fairness
Uperf(i,n) denotes the gain in performance

If iis the starting phase of a task, U,., ¢(i,n) denotes the gain in
degree of parallelism

If iis the subsequent phase of a task, Up,e,f(i,7) is an increasing
function of the ratio between time paused and expected task
completion deadline

[f additional resources are available, the idle resource is
shared among tasks proportionally

25
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Conclusion

Resource management is a major challenge of
Cloud computing environment

This thesis makes contribution on 3 specific
challenges

Dynamic service placement in Geo-distributed Clouds

Heterogeneity-Aware Dynamic Capacity Provisioning in
data centers

Fine-grained Resource-Aware MapReduce Scheduling
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Service Placement Backup Slides



Why Model Predictive Control?

Conventional feedback control (e.g. PID

controller)
Disturbances
Do not handle general constraints (Only |
constraints on manipulated variables) APEN 2 ER 2 E

Unable to optimize the system if the

. ?)f'm
overall system is non-square

Measurements

Does not consider variable interactions in

multi-variable (e.g. MIMO) systems A feedback control system

MPC was introduced to address these
limitations in the late 70’s

Under mild conditions, MPC is guaranteed
to achieve stability
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Service Reconfiguration Cost

Reconfiguration cost
Assumption: Assuming VM images are already uploaded to the proper DCs

VM Start up time (time between launch and first successful ssh login) is dependent
on data center, VM image size, operating system

Starting services may take longer

Table: VM startup Time (small instance: 1 core, 1.7GB memory)*

Cloud OS Average VM startup time
EC2 Linux 96.9 seconds
EC2 Windows 810.2 seconds
Azure WebRole 374.8 seconds
Azure WorkerRole 406.2 seconds
Azure VMRole 356.6 seconds
Rackspace Linux 44 .2 seconds
Rackspace Windows 429.2 seconds

O Shutting down VM may incur extra (bookkeeping) cost
* M. Mao and M. Humphrey, “A performance study on the VM Startup time in the Cloud” IEEE CLOUD, 2012 5,



Service Reconfiguration Cost

Data storage model

Assume database servers are already running or
the images are installed

Reconfiguration cost is mainly start-up time

Database servers may synchronize periodically

Future work
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Related Work

Replica placement
Most of the work studies on static problem where demand is not changing

Heuristic algorithm (e.g. local search) for dynamic cases

Service placement
Energy and carbon footprint-aware placement (e.g. FORTE!, Rao? and Liu?)

To be best of our knowledge, reconfiguration cost was not studied before
our work

1X. Gao, A. Curtis, B. Wong, and S. Keshav. "It's not easy being green."” ACM SIGCOMM, 2012

’L. Rao, X. Liu, and W. Liu. “Minimizing electricity cost: Optimization of distributed internet data
centers in a multi-electricity-market environment”, IEEE INFOCOM, 2010

3Z. Liu, M. Lin, A. Wierman, S. Low, and L. Andrew. Greening geographical load balancing. ACM

SIGMETRICS, 2011 .
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Service Placement Model (N-Tier
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Handling Unexpected Spikes

Underestimation of future demand (e.g., unexpected
demand spikes) can lead to under-provisioning of server
resources.

There are several possible ways to deal with this limitation.

Using an overprovisioning factor

Padding to handle risks

Faster reconfiguration rate

Reasonable since reconfiguration cost is considered

36



Analysis

Price of Stability (PoS) = Best outcome / optimal outcome
Price of Anarchy (PoA) =Worst outcome / optimal outcome

Theorem 1: Assume that the prediction horizon of each SP i
is the same, then the price of stability (PoS) is 1

Proof idea: Optimal outcome with a given prediction horizon is a

stable outcome for all SPs

Theorem 2: Assume that the prediction horizon of each SP i

is the same, then the price of anarchy (PoA) is infinity

Proof 1dea: Hard capacity constraint and high performance penalty
can make the solution arbitrarily worse
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Mechanism

Using a price-driven mechanism using dual-decomposition

Each SP uses the current price to control service using MPC:

Based on resource demand, Cloud provider computes a congestion
price
W
min Z Zf{‘k“ kS A’ g + R gr (g ) + Pﬁ:'-rﬁi-_:xjc_zu- — Diyupi)

2
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Experiments
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Experiments
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Multi-Player Results
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Trace Analysis

Workload traces collected from a production compute
cluster in Google over 29 days

~ 12,000 machines
~2,012,242 jobs
25,462,157 tasks

Applications are represented by jobs
User-facing jobs: e.g., 3-tier web applications
Batch jobs: e.g.,, MapReduce jobs

Each job consists of one or more tasks

There are 12 priorities that are divided into three
priority groups: gratis(0-1), other(2-8), production(9-
11)
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Trace Analysis: Total Resource
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Machine Heterogeneity
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Memory size
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Task Priority and Running Time
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Summary

Machines have different resource capacities

Some have more CPU capacities, while others have
more memory capacities

Tasks belong to different jobs have different
resource requirements, running time and
priorities

Heterogeneity-awareness is important

Different machines are likely to have different
energy characteristics

Not every task can be scheduled on every machine
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Handling Unexpected Spikes

Underestimation of future demand (e.g., unexpected
demand spikes) can lead to under-provisioning of server
resources.

There are several possible ways to deal with this limitation.

Using an overprovisioning factor

Padding to handle risks

Faster reconfiguration rate

Reasonable since reconfiguration cost is considered
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Reconfiguration Costs

Wear-and-Tear cost is 0.5 cents per power-cycle
Reason

wear-and-tear effect mainly affects disk reliability

The typical MTBEF for disk is around 40000 on/off
cycles.

Therefore, assuming a disk failure costs around $200
(including labor fee), then the cost for an on-off cycle
is roughly $200/40000 = 0.5 cents, as suggested by

[1] Managing E&r}EZﬂnergy and Operational Costs in Hosting Centers, SIGMETRICS 2005
[2] A Case For Adaptive Datacenters To Conserve Energy and Improve Reliability, UC
Berkeley Technical Report, 2008
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CBS Scheduling Details

The scheduling algorithm essentially
schedules each task in the first available
slot that has sufficient capacity to run it,
other [T pa S v+ s oY orver<omy<e@

meMF JEN jeEN . ?
scheGuuz yucuc | witat uisuive 15 1t )
Theorem 4. Assume each task s* in each class k is independently and identically dis-
tributed with mean p*" and standard deviation o*" for each resource type r. Also, let M*
denote the minimum number of machines on which a type k task can be scheduled. We can 1t
set container size of task type k to
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Experiments (Clustering)
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Momalized value

Experiments (Clustering)
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Experiments
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Experiments
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Comparing CBS and CBP
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Trade-off curve obtained by varying the over provisioning factor (1-2)

CBS generally performs better than CBP especially for production
priority, due to guaranteed slots

However, when underestimation occurs (very low overprovisioning
factor), CBS performs worse. 58



PRISM



Theoretical Background

Scheduling is studied under the field of scheduling
theory

MapReduce scheduling is similar to Job-shop
scheduling

Tasks may or may not have sequential dependencies

Online version with multiple machines is NP-hard

List scheduling is a well known competitive scheduling algorithm for
job-shop scheduling

Differences between MapReduce scheduling and Job-
shop scheduling

Multiple types of resources with heterogeneous resource
capacities

Bin-packing algorithms are more appropriate
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Related Work

Hadoop v2 (a.k.a. Yarn)

Specifying resource requirement at task-level

Resource Aware Scheduler (RAS)

Profile driven, but not phase-level

MROrchstrator

Reconcile run-time resource contention

Overlapping shuffle and reduce phases

considered the different resource consumption
characteristics of each phase at run-time are not
considered
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Fairness metrics

Running-time fairness (Fair scheduler and Quincy)

. P RN A [ R,
Equalize the i 1 o

of each job

Dominant Resource Fairness (Supported in Yarn)

Equalize the share of each job/user’s most demanded

re<niircecg

max Cr | _ max o\ max CIr
rerR | O, rer | C. rell C'.
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Generating Profiles

We vary the number of slots in the fair scheduler

Map Running Time (sec)

First vary the number of Map slots to find optimal map stage
running time

Once num. of map slots are fixed, vary the number of reduce
slots find optimal job running time

100 ¢ 2 300
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=
0 &‘5 50
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Profiling for the Sort job 63



Other Issues

PRISM is implemented based Hadoop Fair scheduler;
thus it inherits many properties from Fair Scheduler

Scalability:
The execution of the algorithm takes <50ms
Sensitivity:

We found the profiles to be stable, as confirmed in the
previous work (ARIA)*

Failures:
Greedy algorithm naturally supports fault tolerance
Speculative re-execution

Supports speculative re-execution just like fair
scheduler

*ARIA: Automatic Resource Inference and Allocation for MapReduce Environments, ICAC 2011 64



Other Issues

Tuning the various parameters for the utility function
and make trade-offs between fairness/stragglers and
concurrency.

Based on experience (future work)
What about general purpose workloads, data skew, etc?

Data locality can be considered by profiling local and non-
local tasks

Missing details/ unstated assumptions for job profiling,
would be good to add to the technical content.

Can use general profilers that profile at phase-level.
Designing of the profiler is beyond the scope of this work
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Other Issues

phase-level scheduling for fault tolerance or
speculative execution.

Can support speculative re-execution (to be added)

would have appreciated a discussion of how this
additional information could be easily
estimated and provided to PRISM.

Benchmarks of small job performance and
scalability of the JT would have been useful.

Indeed, we are looking for hierarchical scheduling
algorithms (future work)
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Other Issues

The experimental results appear to use
"average job completion time" as the main
metric. I find this unsatisfactory as a metric.
The CDF is really important. Is there
starvation? Do the proposed strategies really
improve some jobs (e.g., small ones) at the cost
of few others (e.g., large jobs)?

Variation of job running time is reported using
unfairness metric

Did the experiments turn speculative execution
on?

Yes, it is turned on.



