
Dynamic Workload Management in Heterogeneous

Cloud Computing Environments

Qi Zhang and Raouf Boutaba

University of Waterloo

IEEE/IFIP Network Operations and Management Symposium

Krakow, Poland

May 7, 2014

1

Outline

• Introduction

• Cloud Workload Management

• Research Contributions

• Conclusion

2

Introduction

Internet

3

• Cloud computing is a model that advocates hosting online
services in data centers

Workload Management in Cloud Data Centers

Scheduler

Resource

Monitor

Service

Provider

4

Mgmt.

Software

Cloud Provider

Workload Management

• Cloud workload management is difficult!

• Service Provider Challenge

• Dynamically provisioning sufficient server capacity to
satisfy service level objectives (SLO), while minimizing
operational cost

• Cloud Provider Challenges

• Performing resource management with consideration to
heterogeneous machine and workload characteristics

5

Thesis Contributions

• Service Placement in Geo-Distributed Clouds

• Heterogeneity-Aware Dynamic Capacity

Provisioning

• Fine-Grained Resource-Aware Scheduling for

MapReduce

6

Service Placement in Geo-Distributed Clouds

7

• Dynamic Service Placement Problem (DSPP):

• Where should the service be placed to reduce resource cost while
satisfying service level objectives (SLOs)?

Service Placement in Geo-Distributed Clouds

• Design Challenges

• Service demand is dynamic and originates from multiple locations

• Electricity prices are different from location to location and can
fluctuate over time

• There is a cost associated with reconfiguration

• Setting up the server (e.g., VM image distribution)

• Tearing down the server (e.g., data / state transfer)

• Limitations of existing work:

• Early studies focus on static scenarios

• Ignoring electricity cost and reconfiguration cost

8

DSPP Model

• The offline can be formulated as a discrete-time optimal control problem

• Our solution: online algorithm on Model Predictive Control (MPC)
framework

• Predict future demand over next K periods

• Solve DSPP over the next K periods

• Carry out the solution move for the next period
9

Resource cost Reconfiguration Cost Performance cost Capacity penalty

Results

• Rocketfuel topology

• 3 data centers

10

Electricity Price

Web workload

Results

• Greedy algorithm can cause massive reconfigurations

• Our DSPP algorithm is more adaptive

11

Output of the Greedy Algorithm Output of the DSPP mechanism

Outline

• Introduction

• Cloud Workload Management

• Research Contributions

• Service Placement in Geo-Distributed Clouds

• Heterogeneity-Aware Dynamic Capacity Provisioning

• Fine-Grained Resource-Aware Scheduling for MapReduce

• Conclusion

12

Heterogeneity-Aware Capacity Provisioning

• Energy cost is an important concern in data centers

• Accounts for 12% of operational cost [Gartner Report 2010]

• Governments policies for building energy-efficient (i.e. “Green”)
computing platform

• Dynamic Capacity Provisioning (DCP)

• Minimize energy cost by turning off servers

• An idle server consumes as much as 60% of its peak energy demand

• Limitations of existing work:

• Lack of consideration to both machine and workload heterogeneity

13

Heterogeneity-Aware DCP

• Capture run-time workload composition

• Perform DCP at aggregate level to minimize impact on scheduling

14

Solution Approach

• Classify tasks based on their size and duration using k-

means clustering algorithm

• Capture the run-time workload composition in terms of
arrival rate for each task class

• Predict the arrival rate of each type of tasks

• Define container as a logical allocation of resources to a
task that belongs to a task class

• Use containers to reserve resources for each task class

• Using task arrival rate to estimate the number of required
containers of each type of task

15

Problem Formulation

16

• where

• Subject to constraints

(Performance objective)

(Energy cost)

(Switching cost)

(Total capacity constraint)

(Capacity constraint)

(Workload state constraint)

(Machine state constraint)

Solution Techniques

• Optimal Capacity Provisioning is NP-hard to solve

• We first solve the relaxation of the integer program,
then we devise two approaches

• Container-Based Scheduling (CBS)

• Statically allocate containers in physical machines

• At run-time, schedule tasks in containers

• Container-Based Provisioning (CBP)

• Use the estimated number of containers to provision machines

• At run-time, schedule tasks using existing VM scheduling
algorithms such as first-fit (FF)

17

Experiments

18

Machine Configurations

Baseline CBP CBS

Outline

• Introduction

• Cloud Workload Management

• Research Contributions

• Service Placement in Geo-Distributed Clouds

• Heterogeneity-Aware Dynamic Capacity Provisioning

• Fine-Grained Resource-Aware Scheduling for MapReduce

• Conclusion

19

Resource-Aware MapReduce Scheduling

• MapReduce a popular framework for data intensive
computations

• Data sets are divided into blocks

• Map tasks: processing individual blocks

• Reduce tasks: aggregate Map outputs

• Resource-Aware scheduling is important

• The original MapReduce adopts a slot-based allocation scheme

• Hadoop v2 (a. k. a.) YARN is a resource-aware scheduler

20

Motivation

• Executing of a task can be divided into phases

• Phases have different resource characteristics

• Shuffle is (network and disk I/O) intensive

• Map and Reduce can be more CPU intensive

21

Motivation

• Observation: Phases have different Usage characteristics

22

Map CPU/Mem Usage Map I/O Usage Reduce CPU/Mem Usage Reduce I/O Usage

Phase-Level Usage Characteristics of the InvertedIndex Job

PRISM

• PRISM is a fine-grained
MapReduce Scheduler

• Users can specify phase-
level resource requirement
as input

• At run-time, tasks request
permissions to execute
subsequent phases

23

Design Issues

• Design objectives

• Improving resource utilization: Phase-level scheduling provides
more “bin-packing” opportunities for improving utilization

• Avoiding resource contention: Prioritize phase scheduling to make
critical tasks run faster

• Design Considerations

• Fairness: Every job should be getting sufficient resources over time
to prevent starvation

• Performance: Phases should not be delayed indefinitely to cause
stragglers

• Jobs with different deadlines should have different tolerance for delays

24

Scheduling Algorithm
• Greedy algorithm that schedule phases according to

utilities

• The utility of scheduling a phase i on n is

• where

• is the gain in fairness

• denotes the gain in performance

• If i is the starting phase of a task, denotes the gain in
degree of parallelism

• If i is the subsequent phase of a task, is an increasing
function of the ratio between time paused and expected task
completion deadline

• If additional resources are available, the idle resource is
shared among tasks proportionally

25

Experiments

26

Job Running Time

(PUMA)

Job Running Time

(Gridmix2)

Utilization

(Yarn)

Utilization

(PRISM)

Unfairness Result

Conclusion

• Resource management is a major challenge of
Cloud computing environment

• This thesis makes contribution on 3 specific
challenges

• Dynamic service placement in Geo-distributed Clouds

• Heterogeneity-Aware Dynamic Capacity Provisioning in
data centers

• Fine-grained Resource-Aware MapReduce Scheduling

27

Thank you!

28

Service Placement Backup Slides

29

Why Model Predictive Control?

• Conventional feedback control (e.g. PID
controller)

• Do not handle general constraints (Only
constraints on manipulated variables)

• Unable to optimize the system if the
overall system is non-square

• Does not consider variable interactions in
multi-variable (e.g. MIMO) systems

• MPC was introduced to address these
limitations in the late 70’s

• Under mild conditions, MPC is guaranteed
to achieve stability

30

A feedback control system

Service Reconfiguration Cost

• Reconfiguration cost

• Assumption: Assuming VM images are already uploaded to the proper DCs

• VM Start up time (time between launch and first successful ssh login) is dependent
on data center, VM image size, operating system

• Starting services may take longer

Table: VM startup Time (small instance: 1 core, 1.7GB memory)*

� Shutting down VM may incur extra (bookkeeping) cost

* M. Mao and M. Humphrey, “A performance study on the VM Startup time in the Cloud” IEEE CLOUD, 2012 31

Service Reconfiguration Cost

• Data storage model

• Assume database servers are already running or
the images are installed

• Reconfiguration cost is mainly start-up time

• Database servers may synchronize periodically

• Future work

32

Related Work

• Replica placement

• Most of the work studies on static problem where demand is not changing

• Heuristic algorithm (e.g. local search) for dynamic cases

• Service placement

• Energy and carbon footprint-aware placement (e.g. FORTE1, Rao2 and Liu3)

• To be best of our knowledge, reconfiguration cost was not studied before
our work

1X. Gao, A. Curtis, B. Wong, and S. Keshav. "It's not easy being green." ACM SIGCOMM, 2012
2L. Rao, X. Liu, and W. Liu. “Minimizing electricity cost: Optimization of distributed internet data
centers in a multi-electricity-market environment”, IEEE INFOCOM, 2010
3Z. Liu, M. Lin, A. Wierman, S. Low, and L. Andrew. Greening geographical load balancing. ACM
SIGMETRICS, 2011

33

Service Placement Model (Single

Tier, Single Provider)

Service Placement Model

Where

Minimize

Subject to

(Resource cost)

(Reconfiguration Cost)

(Performance cost)

(Capacity cost)

(State equation)

34

Service Placement Model (N-Tier

service, Single Provider)

Where

Minimize

Subject to

(Resource cost)

(Reconfiguration Cost)

(Performance cost)

(Capacity cost)

(State equation)
35

Handling Unexpected Spikes

• Underestimation of future demand (e.g., unexpected
demand spikes) can lead to under-provisioning of server
resources.

• There are several possible ways to deal with this limitation.

• Using an overprovisioning factor

• Padding to handle risks

• Faster reconfiguration rate

• Reasonable since reconfiguration cost is considered

36

• Price of Stability (PoS) = Best outcome / optimal outcome

• Price of Anarchy (PoA) =Worst outcome / optimal outcome

• Theorem 1: Assume that the prediction horizon of each SP i
is the same, then the price of stability (PoS) is 1

• Proof idea: Optimal outcome with a given prediction horizon is a
stable outcome for all SPs

• Theorem 2: Assume that the prediction horizon of each SP i
is the same, then the price of anarchy (PoA) is infinity

• Proof idea: Hard capacity constraint and high performance penalty
can make the solution arbitrarily worse

Analysis

37

Mechanism

• Using a price-driven mechanism using dual-decomposition

• Each SP uses the current price to control service using MPC:

• Based on resource demand, Cloud provider computes a congestion
price

• And update price for future periods incrementally

38

Experiments

39

Experiments

40

Experiments

41

Multi-Player Results

42

Harmony

43

Trace Analysis
• Workload traces collected from a production compute

cluster in Google over 29 days

• ~ 12,000 machines

• ~2,012,242 jobs

• 25,462,157 tasks

• Applications are represented by jobs

• User-facing jobs: e.g., 3-tier web applications

• Batch jobs: e.g., MapReduce jobs

• Each job consists of one or more tasks

• There are 12 priorities that are divided into three
priority groups: gratis(0-1), other(2-8), production(9-
11)

44

Trace Analysis: Total Resource

CPU Demand
over 30 days

Memory Demand
over 30 days

Figure: Total resource demand in Google’s Cluster Data Set

45

Machine Heterogeneity

• 10 types of machines, some (e.g type 2 and 4) have high CPU
capacity, others have high memory (e.g type 3 and 8) capacity

46

Trace Analysis: Task Size

• Tasks are either CPU intensive or Memory intensive

• Little correlation between CPU size and Memory size

47

Task Priority and Running Time

48

Summary

• Machines have different resource capacities

• Some have more CPU capacities, while others have
more memory capacities

• Tasks belong to different jobs have different
resource requirements, running time and
priorities

• Heterogeneity-awareness is important

• Different machines are likely to have different
energy characteristics

• Not every task can be scheduled on every machine

49

Handling Unexpected Spikes

• Underestimation of future demand (e.g., unexpected
demand spikes) can lead to under-provisioning of server
resources.

• There are several possible ways to deal with this limitation.

• Using an overprovisioning factor

• Padding to handle risks

• Faster reconfiguration rate

• Reasonable since reconfiguration cost is considered

50

Reconfiguration Costs

• Wear-and-Tear cost is 0.5 cents per power-cycle

• Reason

• wear-and-tear effect mainly affects disk reliability

• The typical MTBF for disk is around 40000 on/off
cycles.

• Therefore, assuming a disk failure costs around $200
(including labor fee), then the cost for an on-off cycle
is roughly $200/40000 = 0.5 cents, as suggested by
[1][2][1] Managing Server Energy and Operational Costs in Hosting Centers, SIGMETRICS 2005

[2] A Case For Adaptive Datacenters To Conserve Energy and Improve Reliability, UC
Berkeley Technical Report, 2008

51

• The scheduling algorithm essentially
schedules each task in the first available
slot that has sufficient capacity to run it,
otherwise it will be maintained in the
scheduling queue (what discipline is it?)

• We want to minimize the probability that
this occurs:

CBS Scheduling Details

52

Experiments (Clustering)

53

Class size (gratis) Duration (gratis) Number of tasks (gratis) Container size (gratis)

Class size (Other) Duration (Other) Number of tasks (Other) Container size (Other)

Experiments (Clustering)

54

Class size (Production) Duration (Production) Number of tasks (Production) Container size (Production)

Experiments

Aggregated task arrival rates Number of required containers

Machine configurations

55

Experiments

Baseline CBP/CBS

56
Baseline CBS CBP

Experiments

CPU Utilization Memory Utilization

Comparing CBS and CBP

• CBS generally performs better than CBP especially for production
priority, due to guaranteed slots

• However, when underestimation occurs (very low overprovisioning
factor), CBS performs worse. 58

CBP CBS

Trade-off curve obtained by varying the over provisioning factor (1-2)

PRISM

59

Theoretical Background
• Scheduling is studied under the field of scheduling

theory

• MapReduce scheduling is similar to Job-shop
scheduling

• Tasks may or may not have sequential dependencies

• Online version with multiple machines is NP-hard

• List scheduling is a well known competitive scheduling algorithm for
job-shop scheduling

• Differences between MapReduce scheduling and Job-
shop scheduling

• Multiple types of resources with heterogeneous resource
capacities

• Bin-packing algorithms are more appropriate

60

Related Work

• Hadoop v2 (a.k.a. Yarn)

• Specifying resource requirement at task-level

• Resource Aware Scheduler (RAS)

• Profile driven, but not phase-level

• MROrchstrator

• Reconcile run-time resource contention

• Overlapping shuffle and reduce phases

• considered the different resource consumption
characteristics of each phase at run-time are not
considered

61

Fairness metrics

• Running-time fairness (Fair scheduler and Quincy)

• Equalize the speed up / slow down of each job

• Dominant Resource Fairness (Supported in Yarn)

• Equalize the share of each job/user’s most demanded
resources

62

Generating Profiles

• We vary the number of slots in the fair scheduler

• First vary the number of Map slots to find optimal map stage
running time

• Once num. of map slots are fixed, vary the number of reduce
slots find optimal job running time

Profiling for the Sort job 63

Other Issues

• PRISM is implemented based Hadoop Fair scheduler,
thus it inherits many properties from Fair Scheduler

• Scalability:

• The execution of the algorithm takes <50ms

• Sensitivity:

• We found the profiles to be stable, as confirmed in the
previous work (ARIA)*

• Failures:

• Greedy algorithm naturally supports fault tolerance

• Speculative re-execution

• Supports speculative re-execution just like fair
scheduler

*ARIA: Automatic Resource Inference and Allocation for MapReduce Environments, ICAC 2011 64

Other Issues
• Tuning the various parameters for the utility function

and make trade-offs between fairness/stragglers and
concurrency.

• Based on experience (future work)

• What about general purpose workloads, data skew, etc?

• Data locality can be considered by profiling local and non-
local tasks

• Missing details/ unstated assumptions for job profiling,
would be good to add to the technical content.

• Can use general profilers that profile at phase-level.
Designing of the profiler is beyond the scope of this work

65

Other Issues

• phase-level scheduling for fault tolerance or
speculative execution.

• Can support speculative re-execution (to be added)

• would have appreciated a discussion of how this
additional information could be easily
estimated and provided to PRISM.

• Benchmarks of small job performance and
scalability of the JT would have been useful.

• Indeed, we are looking for hierarchical scheduling
algorithms (future work)

66

Other Issues

• The experimental results appear to use
"average job completion time" as the main
metric. I find this unsatisfactory as a metric.
The CDF is really important. Is there
starvation? Do the proposed strategies really
improve some jobs (e.g., small ones) at the cost
of few others (e.g., large jobs)?

• Variation of job running time is reported using
unfairness metric

• Did the experiments turn speculative execution
on?

• Yes, it is turned on.

67

