
Elastic Virtual Network Function Placement
Milad Ghaznavi, Aimal Khan, Nashid Shahriar, Khalid Alsubhi, Reaz Ahmed, Raouf Boutaba

David R. Cheriton School of Computer Science, University of Waterloo, ON, Canada

{eghaznav | a273khan | nshahria | kaalsubhi | r5ahmed | rboutaba}@uwaterloo.ca

Abstract— Nowadays, many cloud providers offer Virtual
Network Function (VNF) services that are dynamically scaled
according to the workload. Enterprises enjoy these services
by only paying for the actual consumed resources. From a
cloud provider’s standpoint, the cost of these services must be
kept as low as possible, while QoS is maintained and service
downtime is minimized. In this paper, we introduce Elastic
Virtual Network Function Placement (EVNFP) problem and
present a model for minimizing operational costs in providing
VNF services. In this model, the elasticity overhead and the
trade-off between bandwidth and host resource consumption
are considered together, while the previous works ignored this
perspective of the problem. We propose a solution called Simple
Lazy Facility Location (SLFL) that optimizes the placement
of VNF instances in response to on-demand workload. Our
experiments suggest that SLFL can accept two times more
workload while incurring similar operational cost compared to
first-fit and random placements.

I. INTRODUCTION

Nowadays, many Cloud Providers (CPs) such as Amazon

AWS, Microsoft Azure and IBM Bluemix offer VNF as a

service (VNFaaS). An Enterprise Client (EC) can deploy all

or part of its Network Functions (NFs) to cloud and enjoy

the pay-per-use pricing model. Thus, an EC can eliminate the

cost of provisioning NFs for peak-load on its own premises

and only pay for the actually used resources in cloud. This can

greatly reduce an EC’s capital and operational expenditures.

From a CP standpoint, a core management problem to offer

VNFaaS is placing VNF instances in the cloud infrastructure,

and allocate resources to these instances elastically according

to VNF service requests and workloads. The gaol is to utilize

available bandwidth and host resources optimally without vio-

lating Service Level Agreements (SLAs). However, elastically

allocating and releasing resources incur costs [21]. A VNF

placement algorithm should consider these costs, as well as

the overall consumption of bandwidth and host resources.

Existing works in the VM placement are not suitable for

the placement of VNFs for the reasons described by Bouet et

al. [6]. Moreover, most of these works consider only a part of

the problem by optimizing either host or bandwidth resource

[4], [10]. Additionally, the elastic VNF placement area has

not been explored sufficiently, and the few recent works [6],

[8], [17] do not address the challenges that may arise due to

conflicting objectives and elasticity, as discussed below:

Conflicting Objectives: An optimal VNF placement algo-

rithm should minimize bandwidth and host resource consump-

tion. Host resource consumption can be minimized by serving

the VNF request using minimum number of VNF instances,

which may be many hops away from the source or target

of the request resulting into high bandwidth consumption.

Bandwidth consumption, on the other hand, can be minimized

by placing dedicated VNF instance at the source or target of

each request, but in this case host resource consumption will

be high. Therefore, the challenge is to find a trade-off between

host and bandwidth resources consumption.

Elasticity: Horizontal and vertical scaling are the promi-

nent mechanisms for achieving elasticity. Horizontal scaling

is installation/removal of VNF instances, whereas vertical

scaling is allocation/release of host and bandwidth resources

to/from a VNF instance. Further, live migration of VNF

instances [7] and reassignment of partial workload to another

VNF instance [13] can be employed to scale bandwidth and

host resources. The challenge is to determine which of these

elasticity mechanisms is the most appropriate for a given

workload.

To address the above challenges, we introduce Elastic

Virtual Network Function Placement (EVNFP) problem and

propose an efficient solution called Simple Lazy Facility Lo-

cation (SLFL). Our major contributions are as follows:

1) We formulate EVNFP considering the challenges of

conflicting objectives and elasticity.

2) We propose SLFL as a solution approach that optimizes

placement of VNF instances in response to new service

requests, and workload variation.

3) The effectiveness of our solution is examined through

realistic experiments. The results suggest that SLFL can

accept two times more workload with 5–8% less opera-

tional cost compared to first-fit and random placements.

The rest of this paper is organized as follows. In Section II,

related works are studied. EVNFP model and our solution are

presented in Sections III and IV, respectively. The proposed

solution is evaluated in Section V. Finally, the paper is

concluded in Section VI.

II. RELATED WORKS

Many mechanisms [11] have been proposed to support

elasticity through horizontal scaling, vertical scaling, and

migration techniques.

Horizontal Scaling: Amazon Auto Scaling Group [9] offers

tenant controlled horizontal scaling based on tenant-defined

thresholds. Microsoft Azure [1] adapts the number of instances

based on time, history, or size of workload. Clayman et al.

[8] focus on dynamic VNF placement to satisfy increasing

demand by installing new virtual routers; however, no mecha-

nism to release resources is supported. Another related area is

elasticity in VNF service-chain embedding. Stratos [12] uses

a simple packing technique to elastically scale resources.

Vertical Scaling: CloudScale [22] and PRESS [15] scale by

releasing or allocating CPU resources while ignoring network

resources. Vertical mechanisms are limited to individual physi-

cal machines [20]. Furthermore, changing compute or memory

resources on-the-fly is not supported in most cases. Moreover,

Table I: Comparison of EVNFP to the Most Related Works

Paper Host Bandwidth Elasticity

EVNFP X X X

Elasticity in cloud [15], [21], [22] X 7 X

Dynamic VM Placement [21], [23] X 7 X

Network-Aware VM Placement [5], [18], [19] X X 7

vDPI Placement [6] X X 7

it requires rebooting the system causing SLA violations.

Therefore, CPs do not encourage vertical scaling mechanisms.

Migration: Migration is a popular technique to achieve

elastic VM placement and better server and network con-

solidation. pMapper [23] considers VM migration cost in

its greedy heuristics to solve the optimal VM placement

problem. Entropy [16] models the optimal VM placement as a

variant of the vector bin-packing. However, both pMapper and

Entropy ignore network requirement and locality in placement

decisions. Kingfisher [21] employs both vertical and horizon-

tal elasticity mechanisms by allocating more host resources,

installing and migrating VM instances. It optimizes host

resources from tenants standpoint while considering delay of

these mechanisms. Although, bandwidth resources are ignored.

MCRVMP [5] addresses the static VM placement problem

to satisfy the time-varying traffic demands of the VMs in

addition to CPU and memory requirements. TVMPP [19]

strives to reduce the aggregate traffic. However, it can lead

congested links by ignoring link capacity constraints. The

authors of NAVP [18] focus on consolidating as much traffic

demands as possible over the same set of network links in

order to reduce the total energy consumption.

Recently, Bouet et al. [6] studied the placement of virtual

DPI engines to optimize both the number of installed engines

and their network footprint. However, the formulated problem

is static and cannot handle elastic VNF placement.

Table I briefly compares the most related works mentioned

above. It is evident from the table that none of the existing

works consider all three aspects considered by EVNFP.

III. ELASTIC VIRTUAL NETWORK FUNCTION PLACEMENT

From a cloud provider perspective, a VNF request can be

modeled as follows: traffic (stream of packets) originating

from a source is routed to a VNF instance, where the packets

are processed and forwarded to a target. If the source or target

is outside the datacenter, we can assume a border router as the

source or target of the traffic. VNF instances reside at hosts

within datacenter.

We are interested in an optimal cost-aware elastic placement

of VNF instances involving (i) selecting an optimal set of hosts

on which VNF instances are placed (ii) optimally allocating

bandwidth resources to route service traffic, and (iii) applying

the most cost-effective elasticity mechanism.

When to elastically scale? Resources must be scaled in

response to two events: i) Demand arrival: when workload

increases or a new service request is received; and ii) Demand

departure: when one unit of service traffic drops. In addition,

for the sake of simplicity, we assume that each demand

consists of one unit of traffic transmitted from its source to a

VNF instance and delivered to its target, and requires a unit

of VNF resource to be served.

How to elastically scale? Due to the inflexibility in vertical

scaling, we opt for horizontal scaling. We also assume one

VNF instance-type. A small instance-type is lightweight, can

be easily distributed over the network and instantiated on-

demand. Moreover, having multiple instance-types unneces-

sary complicates management tasks. In summary, we consider

following elasticity mechanisms: Installing a new VNF in-

stance, Removing an existing VNF instance, Migrating a VNF

instance, and Reassigning a demand to another VNF instance.

Fig. 1 depicts the above elasticity mechanisms. Initially in

Fig. 1a, traffic from 3 requests is served by a single VNF

instance v. After sometime the traffic of the first request

increases. To accommodate this new workload, a new VNF

v∗ is instantiated and the first request is reassigned to v∗

(Fig. 1b). Then, traffic of the second request terminates, and

allocated resources for this request are released. Because, v

is still serving the third request, it is migrated to a more

optimal location to reduce bandwidth usage (Fig. 1c). Next,

third request terminates, and VNF instance v is removed to

save host resources (Fig. 1d).

A. Notation

1) Data Center Network: The data center network is de-

noted as a graph G = (N,A), where N is a set of switches

and hosts, while A is a set of links (arcs). We identify host

nodes by NH . Capacity of host n ∈ NH is denoted by the

maximum number of VNF instances that can be installed on

n. Let cn(t) denote the available capacity of n ∈ NH at time

t. Let wmn and cmn(t) represent weight and capacity at time

t of arc (m,n) ∈ A, respectively.

2) Demand: D(t) is the set of demands at time t. A demand

d ∈ D(t) is identified by its two endpoints, source md ∈ N

and target nd ∈ N . Let demand nodes refer to sources and

targets. A demand needs a unit of traffic b and a unit VNF

resource to be served.

3) VNF Instance: V (t) is the set of installed VNF instances

at time t. cv(t) denotes the number of demands that VNF

instance v can serve at time t. As we use one instance-type, we

assume the maximum capacity is C. To show assignments of

demands to VNF instances, we use two maps at time t: Dv(t)
denoting a set of demands assigned to v and vd(t) representing

the VNF instance to which demand d is assigned.

B. Simplified Model

We refine the above model from two aspects in order to

simplify our formulation. First, host and VNF instance con-

straints are transformed to arc bandwidth capacity constraints;

second, demands are simplified:

1) Constraints Transformation: For each host n ∈ NH ,

cn(0) nodes are added, and we assume that VNF instances

are installed on these nodes. These nodes are called VNF

nodes. Imagine a VNF instance v is installed on n at time

t, and n still has capacity of cn(t) = 2. As shown in Fig.

2a, three nodes are added. Fn(t) denotes these nodes, and

F (t) =
⋃

n∈NH
(Fn(t)). Each m ∈ Fn(t) is connected to n

via arc (m,n). The capacity of arcs initially are set to 2×b×C,

!

"#$%

&#'%

!"#$%&'()&*+

,-./*+-0'+/1%*+$ (/)00%*$(

2)/3+(-0'+/1%*+$ (/)00%*$(

,+/1%*+$(/)00%*$%&*/+)'+

,+/1%*+$(/)00%*$4+*/+)'+

!

"#$%

"#$&

"#$'

(#)%

(#)&

(#)'

(a) Initial Placement

!

"#$%

"#$&

"#$'

(#)%

(#)&

(#)'

!*

(b) v∗ Install. & Reassign.

!

"#$%

"#$&

'#(%

'#(&

!)

!

(c) Migration of v

!"#$ %"&$'(

(d) Removing v

Figure 1: Elasticity Mechanisms

!

"#

$#

%#

!"#$"%&'$()*+$,$!"#$-./*,.0'

1%230'$%4$&

5,36'*$%4$&

7,.,*$%4$&

' #3''$!"#$"%&'

!

"

"

"! "

#$%&'

!"#$ (!"#$ (

(a) VNF Nodes

!

"#

$#

!

"#

$#

(b) Traffic Flow Direction

!

"#

$#

!

"#

$#

%#

(c) Simplifying Demands

Figure 2: Simplified Model

as at most, traffic of C number of demands enters and leaves

m. These arcs force that no traffic can enter a VNF instance

node; however, this does not change the problem, because

we can assume that the demand traffic is sent to a demand

source from the VNF instance node, instead of the opposite

direction (Fig. 2b). Let AF
n (t) represent the arcs connecting

VNF nodes to the node n, and AF (t) =
⋃

n∈NH
(AF

n (t)).
Finally, let nv(t) ∈ F (t) be the VNF instance node hosting

VNF instance v at time t, and NV (t) =
⋃

v∈V (t){nv(t)}.
2) Simplifying Demands: By previous transformation, we

assume that VNF instances send the traffic to demand nodes.

We add a node qd called Qanat to the graph for each demand

d ∈ D(t). Traffic is now received in qd instead of md and nd

(Fig. 2c). Let Q(t) =
⋃

d∈D(t){qd} denotes all Qanat nodes

at time t. A qd is connected to md and nd via arcs (md, qd)
and (nd, qd). The capacity of these arcs initially are set to b,

and their weights are set to 0. These two arcs ensure that if

traffic reaches qd, it has met md and nd earlier.

C. Mathematical Model

A discrete-time system is considered to model the problem

in which time is divided into equal slots 0 ≤ t ≤ T .

1) Decision Variables: xd
mn(t) ∈ R is the amount of traffic

for demand d on arc (m,n) ∈ A at time t. We derive

two variables ydn(t) and zn(t) from xd
mn(t). ydn(t) denotes

if demand d gets traffic from VNF instance node n. zn(t)
represents if a VNF instance is installed in node n. They are

defined as follows.

∀(n,m) ∈ AF (t) : y
d
n(t) =

{

1 if xd
nm(t) > 0

0 otherwise

∀n ∈ F (t) : zn(t) =

{

1 if
∑

d∈D(t) y
d
n(t) > 0

0 otherwise

2) Capacity Constraint: Eq. 1 ensures that arcs capacities

are not violated.

0 ≤
∑

d∈D(t)

xd
mn(t) ≤ cmn(t) for ∀(m,n) ∈ A (1)

3) Flow Conservation Constraint: For each node n ∈ N ,

Eq. 2 guarantees that the amount of traffic entering and leaving

n are equal, where n is not a VNF node or a Qanat.

∑

(m,n)∈A

xd
mn(t)−

∑

(n,m)∈A

xd
nm(t) =











−2bydn(t) if n ∈ F (t)

2b if n ∈ Q(t)

0 otherwise

(2)

4) Pair Connectivity Constraint: Eq. 3 ensures that a Qanat

receives traffic from a VNF instance, so both source and target

of a demand are connected to the same VNF instance.

∀d ∈ D(t) :
∑

n∈F (t)

ydn(t) = 1 (3)

5) Installations Cost (Cins(t)): The cost of installed VNF

instances at time t is defined by Eq. 4. f is the cost of host

resources consumed by a VNF instance for each time slot.

Cins(t) = f
∑

n∈F (t)

zn(t) (4)

6) Transportation Cost (Ctr(t)): The cost of delivering

demands traffic at time t is denoted by Eq. 5. g is the cost of

a unit of bandwidth usage for each time slot.

Ctr(t) = g
∑

d∈D(t)

∑

(m,n)∈A

xd
mn(t)wmn (5)

7) Reassignment Cost (Cre(t)): Eq. 6 is the cost of reas-

signing a set of demands at time t. In this equation, hd(t) is

the penalty of reassigning demand d. Here, |ydn(t−1) 6= ydn(t)|
is 1 if ydn(t− 1) 6= ydn(t) otherwise is 0.

Cre(t) =
∑

n∈F (t)∩F (t−1)

∑

d∈D(t)∩D(t−1)

(

hd(t)

|ydn(t− 1) 6= ydn(t)|
)

(6)

8) Migration Cost (Cmig(t)): This is the cost of migrating

a set of VNF instances at time t. In Eq. 7, kv(t) is the penalty

of migrating VNF instance v. Here, |zn(t − 1) 6= zn(t)| is 1

if zn(t− 1) 6= zn(t), otherwise is 0.

Cmig(t) =
∑

n∈F (t)∩F (t−1)

(

kv(t)|zn(t− 1) 6= zn(t)|
)

(7)

9) Objective Function: The objective is to minimize Eq. 8.

lim
T→∞

1

T

T
∑

t=0

(

Cins(t) + Ctr(t) + Cre(t) + Cmig(t)
)

(8)

The static version of EVNFP generalizes to the NP-Hard

location routing problem (LRP) [3]. An optimal solution needs

solving a dynamic version of LRP for each time slot. Due to

its intractability, it is not possible to solve the problem for

large datacenters. Thus, we break down the problem and solve

it independently for each demand arrival or departure. Let T̂

be a time system, and at each t ∈ T̂ , an arrival or departure

occurs. We rewrite the objective function as Eq. 9. Here, λt is

a weight factor to balance the transportation and installation

costs with the migration and reassignment costs.

min
(

∑

t∈T̂

(Cins(t) + Ctr(t)) +
∑

t∈T̂

λt(Cre(t) + Cmig(t))
)

(9)

Although, this problem is easier than the original one, the static

version still generalizes to LRP. Hence, we propose a heuristic

algorithm for solving this problem in the next section.

IV. SIMPLE LAZY FACILITY LOCATION

In this section, we describe our solution, Simple Lazy

Facility Location (SLFL), including two novel heuristics to

handle arrival and departure events. For simplicity, we omit

time variable t. Also, we assume function flow(n,D∗, R∗)
that finds the optimal routing of traffic between node n and

demands D∗, and stores the routes in R∗. This function finds

R∗ in polynomial time by solving the single-commodity min-

cost flow problem [14].

A. Demand Arrival

Upon new demand d arrival, a combination of installation,

migrations and reassignments can be applied to optimize the

placement. Since in most cases the arrival affects its locality,

SLFL locally optimizes the placement. Three possible actions

are considered: (i) assignment to an existing VNF instance, (ii)

migration and (iii) installing a new VNF instance followed

by a set of reassignments. The first action assigns d to an

existing VNF instance with the minimum transportation cost.

For the two other actions, migration potential and installation

potential metrics are defined as follows:

Migration potential is the difference between current trans-

portation cost of Dv and transportation cost of Dv ∪{d} after

possible migration of v to node n. Function potmig , defined

in algorithm 1, finds this potential and stores routes in R∗.

Installation potential is the difference between the opera-

tional cost before and after installing a VNF instance in node

Algorithm 1 Migration Potential

1: function potmig(v, n,R∗)
2: C ← Transportation cost of Dv;
3: C∗ ← g × flow(n,Dv ∪ {d}, R

∗) + λ× kv;
4: return (C − C∗) if (C∗ is not ∞), otherwise −∞;
5: end function

n. We consider a set of reassignments during installation.

Function potins, as defined in Algorithm 2, computes the

installation potential for a node n, finds candidate demands

D∗ for reassignment, and stores routes in R∗.

Algorithm 2 Installation Potential

1: function potins(n,R∗)
2: e∗ ← −g × flow(n, {d}, R∗); D∗ ← ∅;
3: for j = 1 to C − 1 do
4: d∗ ← Find best next demand to reassign;
5: e← C − (g × flow(n,D∗ ∪ {d, d∗},R) + λ× hd∗);
6: break if (e ≤ 0 or e ≤ e∗);
7: e∗ ← e; D∗ ← D∗ ∪ {d∗}; R∗ ← R;
8: end for
9: return (e∗ − f , D∗);

10: end function

Alg. 3 shows how SLFL handles a demand arrival. The

cost of the best assignment is found (lines 3-4). The best

migration and installation potential are computed (lines 4-8). If

the best installation potential is greater than the best migration

potential, a new VNF v is instantiated and demands Dre are

reassigned to v (lines 9-14). Otherwise, VNF instance vmig is

migrated to nmig (lines 14-17). Finally, in the lack of potential

to change, d is assigned to VNF instance vasn.

Algorithm 3 SLFL-Demand Arrival

1: function DEMANDARRIVAL(d)
2: D ← D ∪ {d};
3: vasn ← argminv∈V {flow(nv, {d}, ∅)}
4: pasn ← g × flow(nvasg , {d}, R

∗

asg);
5: (vmig, nmig)← argmaxv∈V :n∈F {potmig(v, n, ∅)};
6: emig ← potmig(vmig, R

∗

mig);
7: nins ← argmaxn∈F/NV

{potins(n, ∅)};
8: (eins, Dre)← potins(nins, R

∗

ins);
9: if (eins > −pasn) and (eins ≥ emig) then

10: u← install a facility at nins;
11: Reassign ∀d ∈ Dre and assign d to u;
12: Route related traffic based on R∗

ins;
13: V ← V ∪ {u};
14: else if emig > −pasn then
15: Migrate vmig to node nmig;
16: Assign d to vmig;
17: Route traffic based on R∗

mig;
18: else
19: Assign d to vasn;
20: Route traffic based on R∗

asg;
21: end if
22: end function

B. Demand Departure

Similar to an arrival event, SLFL locally optimizes the

placement of VNF instances upon departure of demand d.

Assume that d was assigned to VNF instance v. Two actions

are considered: (i) migration of v, and (ii) removal of v. We

define emigration potential and removal potential metrics for

migration and removal of v as follows:

Emigration potential defined in Alg. 4 is the difference in

transportation cost of Dv before and after migration of v to

node n.

Algorithm 4 Emigration Potential

1: function potemg(v, n,R∗)
2: C ← Transportation cost of Dv;
3: C∗ ← g × flow(n,Dv, R

∗) + λ× kv;
4: return (C − C∗) if C∗ is not ∞, otherwise −∞;
5: end function

Removal potential is the difference in operational-cost be-

fore and after the removal of v. Similar to installation potential,

a set of reassignments are considered. Function potrmv , de-

fined in Alg. 5, computes the removal potential of v, finds

candidate VNF instances Vre for reassignment of Dv , and

stores routes in R∗.

Algorithm 5 Removing Potential

1: function potrmv(v,R∗)
2: {Dre, Vre} ← {∅, ∅}; e

∗ ← f ;
3: C ← Transportation cost of Dv;
4: C∗ ← 0; U ← V/{v};
5: for all dv ∈ Dv do
6: vre ← best VNF instance for reassignment of dv;
7: C∗ ← C∗ + g × flow(nvre , {i}, R

∗

re) + λ× hdv ;
8: if C∗ is ∞ then
9: e∗ ← 0; {Dre, Vre} ← {∅, ∅};

10: break;
11: end if
12: {Vre, Dre} ← {Vre ∪ vre, Dre ∪ d};
13: R∗ ← R∗ ∪R∗

re;
14: end for
15: return

(

e∗ + (C − C∗), {Dre, Vre}
)

;
16: end function

Finally, algorithm 6 defines how SLFL handles a demand

departure. First, v’s resources assigned to d are released (line

2). Then, the best node to migrate and emigration potential

are computed (lines 3-4). The removal potential and possible

reassignments are determined (line 5). If removal potential is

positive and greater than emigration potential, v is removed

and its demands are reassigned to other VNF instances (lines

6-12). Otherwise, if emigration potential is positive, v is

migrated to a more optimal node (lines 13-16).

V. EVALUATION

A. Experimental Setup

We have implemented SLFL1 and evaluated its performance

by simulations on a data center topology with 99 nodes (45

switches and 54 hosts). We used a 6-ary Fat-tree topology

[2] providing full bisection bandwidth. Each host has 8 CPU

cores, 8GB of memory, and contains a 1Gbps network adapter.

A host CPU consumes 140W of power at electricity cost of

1https://github.com/miladghaznavi/Elastic-VNF-Placement

Algorithm 6 SLFL-Demand Departure

1: function DEMANDDEPARTURE(d, v)
2: Release v’s resources assigned to d;
3: nemg ← argmaxn∈F/NV

{potemg(v, n, ∅)};
4: eemg ← potemg(v, nemg, R

∗

emg);
5: (ermv, {Dre, Vre})← potrmv(v,R

∗

rmv);
6: if (ermv > 0) and (ermv > eemg) then
7: V ← V/{v};
8: Remove facility v;
9: for all {dre, vre} ∈ {Dre, Vre} do

10: Reassign dre to vre;
11: end for
12: Route traffic based to R∗

rmv;
13: else if eemg > 0 then
14: Migrate v to the node nemg;
15: Route traffic based to R∗

emg;
16: end if
17: end function

¢11 per kWh2. We select Bro IDS 3 as a representative VNF

providing a capacity of 80 Mbps. We assume that Bro can

be installed on a VM which requires 1 vCPU and, 1GB of

memory. In regards to bandwidth, we set the cost of using a

unit of bandwidth for a link to 20% of the power consumption

cost. Regrading the migration penalty kv(t), the full memory

(1GB) of VNF instance v is transported from original VNF

node nv(t − 1) to new VNF node nv(t). The reassignment

penalty hd(t) involves transporting a fraction of memory of

VNF instance vd(t − 1) to new VNF instance vd(t). This

fraction is relative to the VNF instance’s maximum capacity.

We model demand arrival using Poisson distribution with

an average rate of 1 demand per second. The lifetime of a

demand follows an exponential distribution with an average

of 1800 seconds. Demand nodes are uniformly distributed in

the data-center network. We set b = 20Mbps and λ = 1.

We compare SLFL with Random and First-Fit placements.

Upon a demand arrival, Random placement randomly selects

a VNF instance with the sufficient residual capacity and

bandwidth. Otherwise, a VNF instance is installed in a random

not-saturated host with enough bandwidth. First-Fit selects

the first not-saturated VNF instance with adequate residual

bandwidth. If not, a VNF instance is installed in the first

not-saturated host with adequate available bandwidth. Upon

demand departure, both algorithms remove a VNF instance if

this instance has no assigned demand.

B. Acceptance and Utilization

Fig. 3 depicts workload acceptance and resources utiliza-

tion. As shown in Fig. 3a, SLFL accepts 97% of work-

load whereas Random and First-Fit accept 48% and 45% of

workload, respectively. Bandwidth, host, and VNF resource

utilization are depicted in Fig. 3b, Fig. 3c and Fig. 3d,

respectively. Random and First-Fit quickly exhaust bandwidth

resources (utilization of 94% and 92%, respectively) causing

low host resource utilization (45% and 44%, respectively).

2Electric Power Monthly, www.eia.gov/electricity/monthly/pdf/epm.pdf.
3The Bro Network Security Monitor, www.bro.org

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

Time (s)

0

20

40

60

80

100

Random

SLFL

FirstFit

(a) Workload Acceptance

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

Time (s)

0

20

40

60

80

100

Random

SLFL

FirstFit

(b) Bandwidth Res. Utilization

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

Time (s)

0

20

40

60

80

100

Random

SLFL

FirstFit

(c) Host Res. Utilization

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

Time (s)

0

20

40

60

80

100

Random

SLFL

FirstFit

(d) VNF Res. Utilization

Figure 3: Workload Acceptance and Resource Utilization

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

Time (s)

0

20

40

60

80

100

120

140

C
o
st

(¢
p

e
r

2
0

0
se

c.
) Random

SLFL

FirstFit

(a) Total Operational Cost

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

Time (s)

0

20

40

60

80

100

120

140

C
o
st

(¢
p

e
r

2
0

0
se

c.
) Random

SLFL

FirstFit

(b) Transportation Cost

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

Time (s)

0

20

40

60

80

100

120

140

C
o
st

(¢
p

e
r

2
0

0
se

c.
) Random

SLFL

FirstFit

(c) Installation Cost

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

10−5

10−4

10
−3

10−2

10
−1

100

101

¢
p

e
r

2
0

0
s
e
c.

Reassignment

Migration

(d) Overhead

Figure 4: Operational Costs

Moreover, these placements utilize 88% and 87% of VNF

resources, respectively. SLFL achieves bandwidth, host and

VNF resource utilization of 82%, 91% and 98%, respectively.

C. Operational Cost

Operational costs are reported in Fig. 4. Compared to Ran-

dom and First-Fit, SLFL incurs 9% and 4% less operational

cost (Fig. 4a), and pays 22% and 19% less bandwidth cost

(Fig. 4b), respectively. However, SLFL incurs two times more

installation cost (Fig. 4c) compared to the Random and First-

Fit. The reason is that SLFL accepts two times more workload

than the other approaches. Finally, Fig. 4d shows the overhead

of SLFL. SLFL does reassignments more frequently than

migrations. The reason is that a reassignment requires moving

of a part of VNF instance state, whereas a migration requires

moving of the entire memory of the VNF instance.

VI. CONCLUSION

We introduced Elastic Virtual Network Function Placement

(EVNFP) problem presenting a model to minimize operational

costs in providing VNF as a service. This model considered the

elasticity overhead and the trade-off between bandwidth and

host resource consumption. We developed and evaluated an

algorithm, named SLFL, to solve this problem in polynomial

time. Our experiments suggest that by taking both bandwidth

and host resources into consideration, and by carefully select-

ing the right elasticity mechanism, SLFL accepts ∼ 2× more

workload in comparison to first-fit and random placements.

Additionally, SLFL incurs 5–8% less operational cost.

VII. ACKNOWLEDGEMENT

This work was supported by the Natural Science and

Engineering Council of Canada (NSERC) under the Smart

Applications on Virtual Infrastructure (SAVI) Research Net-

work.

REFERENCES

[1] Microsoft azure. http://www.microsoft.com/azure/default.mspx.
[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data

Center Network Architecture. In ACM SIGCOMM 2008.

[3] M. Albareda-Sambola, J. A. Dıaz, and E. Fernández. A compact model
and tight bounds for a combined location-routing problem. Computers

& Operations Research, 32(3):407–428, 2005.
[4] A. Beloglazov et al. A taxonomy and survey of energy-efficient data

centers and cloud computing systems. Academic Press, 2011.
[5] O. Biran et al. A stable network-aware vm placement for cloud systems.

In CCGRID, pages 498–506, 2012.
[6] M. Bouet, J. Leguay, and V. Conan. Cost-based placement of vdpi

functions in nfv infrastructures. In NetSoft, 2015.
[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,

and A. Warfield. Live migration of virtual machines. In NSDI, 2005.
[8] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca. The

dynamic placement of virtual network functions. In IEEE NOMS, 2014.
[9] Amazon EC2. http://aws.amazon.com/ec2/.

[10] W Ahmad et. al. A survey on virtual machine migration and server
consolidation frameworks for cloud data centers. Journal of Network

and Computer Applications, 52(0):11 – 25, 2015.
[11] Guilherme Galante et al. A survey on cloud computing elasticity. UCC

2012, pages 263–270. IEEE Computer Society, 2012.
[12] A. Gember, R. Grandl, A. Anand, T. Benson, and A. Akella. Stratos:

Virtual middleboxes as first-class entities. UW-Madison TR1771, 2012.
[13] A. Gember-Jacobson et al. Opennf: Enabling innovation in network

function control. In ACM SIGCOMM, 2014.
[14] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations

by canceling negative cycles. JACM, 36(4):873–886, 1989.
[15] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive elastic resource scaling

for cloud systems. In IEEE CNSM, 2010.
[16] F. Hermenier, X. Lorca, J. M. Menaud, G. Muller, and J. Lawall. En-

tropy: A consolidation manager for clusters. In ACM SIGPLAN/SIGOPS.
[17] M. A. Lopez and O. Duarte. Providing elasticity to intrusion detection

systems in virtualized software defined networks.
[18] V. Mann, A. Kumar, P. Dutta, and S. Kalyanaraman. Vmflow: Leverag-

ing vm mobility to reduce network power costs in data centers. In IFIP

NETWORKING, 2011.
[19] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data

center networks with traffic-aware virtual machine placement. In IEEE

INFOCOM, 2010.
[20] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth. A virtual

machine re-packing approach to the horizontal vs. vertical elasticity
trade-off for cloud autoscaling. In ACM CAC, 2013.

[21] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware elasticity
provisioning system for the cloud. In IEEE ICDCS 2011.

[22] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: Elastic resource
scaling for multi-tenant cloud systems. In ACM SoCC, 2011.

[23] A. Verma, P. Ahuja, and A. Neogi. pmapper: Power and migra-
tion cost aware application placement in virtualized systems. In
ACM/IFIP/USENIX Middleware, 2008.

