
1



This slide presents the brief outline of this presentation. At first, I will present the 

introduction and motivation, followed by the state of the art. Afterwards, I will present the 

main contribution of this paper, which we call SiMPLE. Then, I will present the evaluation 

results, and finally conclude this presentation.

2



Now I will present the introduction.

3



“Network Virtualization” is widely regarded as a key enabler for the future Internet, and it

has the Infrastructure as a Service (IaaS) model at the core. As shown in the figure, the IaaS 

business model decouples the role of the ISPs in to Infrastructure Providers (InPs) and 

Service Providers (SPs). An InP owns and maintains a substrate network (SN), and an SP 

offers services to its clients through virtual networks (VNs). Virtual Network Embedding 

(VNE) deals with a feasible embedding of the VNs on to the SNs, subject to the VN demand 

and SN capacity constraints. It is an NP hard problem as shown in the literature. 

4



In this example, for simplicity, we show how we can embed a small VN onto a small SN. We 

consider a VN of two nodes and one link, and an SN of seven nodes and ten links. Each 

substrate and virtual component is labeled with its capacity and demand, respectively. As 

we see, virtual nodes x and y are embedded to substrate nodes G and A, respectively. The 

virtual link xy has been embedded on to two link-disjoint paths – the red path denote 

primary, and the blue path denote backup. The rationale to selecting two paths is that if 

any link in the primary path fails, then the backup path can support the required demand of 

the virtual link.

5



Now we talk about the motivation of this paper.

6



A number of works studied the characteristics of link failures in both data center and ISP 

networks. To summarize, we can classify link failures into single and multiple failures. More 

than half of the link failures are single link failures, i.e., no other link failure is present at 

that time in the SN. Provisioning guaranteed VN survivability in these cases can be 

challenging, since it requires to balance a trade-off between the level of survivability and 

the amount of used resources. The multiple failure scenario is less frequent than single 

failure scenario, since it involves a failure with high MTTR, or router/switch failures. 

However, these failures can jeopardize the embedded VNs, and can cause Service License 

Agreements (SLA) violation. In addition, bandwidth is considered an expensive resource, 

and minimizing bandwidth consumption decreases the embedding cost significantly.

7



In this example, for simplicity, we show how we can embed a small VN onto a small SN 

such that it survives a single substrate link failure. We consider a VN of two nodes and one 

link, and an SN of seven nodes and ten links. Each substrate and virtual component is 

labeled with its capacity and demand, respectively. As we see, virtual nodes x and y are 

embedded to substrate nodes G and A, respectively. The virtual link xy has been embedded 

on to two link-disjoint paths – the red path denote primary, and the blue path denote 

backup. The rationale to selecting two paths is that if any link in the primary path fails, then 

the backup path can support the required demand of the virtual link.

8



A number of works studied the characteristics of link failures in both data center and ISP 

networks. To summarize, we can classify link failures into single and multiple failures. More 

than half of the link failures are single link failures, i.e., no other link failure is present at 

that time in the SN. Provisioning guaranteed VN survivability in these cases can be 

challenging, since it requires to balance a trade-off between the level of survivability and 

the amount of used resources. The multiple failure scenario is less frequent than single 

failure scenario, since it involves a failure with high MTTR. However, these failures can 

jeopardize the embedded VNs, and can cause Service License Agreements (SLA) violation. 

In addition, bandwidth is considered an expensive resource, and minimizing bandwidth 

consumption decreases the embedding cost significantly.

9



Now we present the state of the art.

10



In this example, for simplicity, we show how we can embed a small VN onto a small SN 

such that it survives a single substrate link failure. We consider a VN of two nodes and one 

link, and an SN of seven nodes and ten links. Each substrate and virtual component is 

labeled with its capacity and demand, respectively. As we see, virtual nodes x and y are 

embedded to substrate nodes G and A, respectively. The virtual link xy has been embedded 

on to two link-disjoint paths – the red path denote primary, and the blue path denote 

backup. The rationale to selecting two paths is that if any link in the primary path fails, then 

the backup path can support the required demand of the virtual link.

11



In this example, for simplicity, we show how we can embed a small VN onto a small SN 

such that it survives a single substrate link failure. We consider a VN of two nodes and one 

link, and an SN of seven nodes and ten links. Each substrate and virtual component is 

labeled with its capacity and demand, respectively. As we see, virtual nodes x and y are 

embedded to substrate nodes G and A, respectively. The virtual link xy has been embedded 

on to two link-disjoint paths – the red path denote primary, and the blue path denote 

backup. The rationale to selecting two paths is that if any link in the primary path fails, then 

the backup path can support the required demand of the virtual link.

12



We present a number of recent SVNE works in this slide, as presented by the left column of 

the table. The first VNE proposal, FBS, stands for Full Backup Scheme. FBS provisions two 

dedicated link disjoint paths for each virtual link, one primary and one backup, as we have 

seen in our earlier example. Ref [1] finds a backup path for each substrate link, and uses 

MCF to embed each virtual link. Ref [2] proposes the shared backup scheme (SBS), which 

finds the disjoint primary and backup paths, and the backup paths are shared among other 

virtual links. Ref [3] embeds each virtual link by splitting them into a number of paths by 

Simulated Annealing, and when one path fails, it redistributes the bandwidth among other 

paths. Ref [4] introduces path splitting in VNE context. Ref [5] presents a variant of SBS. In 

this work, when the VNE engine cannot embed any other VN, it reconfigures the idle 

backup resources to improve acceptance ratio. We see from this table that both path 

splitting and shared backup schemes are adopted by a number of papers. However, except 

for FBS, no other paper provides provable guarantees to survive a single link failure 

scenario. Some of the papers adopt proactive manner, that is, provide backups for virtual 

links before any failure occurs, whereas the others adopt the reactive strategy, that is, 

recover affected virtual links after failure occurs. The most popular VNE algorithms use 

MCF or shortest path strategy. Note that in MCF, any node can do the path splitting, which 

is not necessarily true for the shortest path embedding case.

13



14



A number of works studied the characteristics of link failures in both data center and ISP 

networks. To summarize, we can classify link failures into single and multiple failures. More 

than half of the link failures are single link failures, i.e., no other link failure is present at 

that time in the SN. Provisioning guaranteed VN survivability in these cases can be 

challenging, since it requires to balance a trade-off between the level of survivability and 

the amount of used resources. The multiple failure scenario is less frequent than single 

failure scenario, since it involves a failure with high MTTR, or router/switch failures. 

However, these failures can jeopardize the embedded VNs, and can cause Service License 

Agreements (SLA) violation. In addition, bandwidth is considered an expensive resource, 

and minimizing bandwidth consumption decreases the embedding cost significantly.

15



16



SiMPLE is formulated as an ILP. The objective function is to minimize the embedding cost, 

which has a number of components. The first component is the split and join cost, which is 

due to splitting and merging the each data stream at the ingress and egress switches. The 

second cost is the switching cost, which is due to forwarding the fragmented data stream 

between the source and destination substrate nodes. The third cost is the substrate link 

cost, which represents the amount of bandwidth used for embedding. The fourth cost is 

the accumulated delays along the substrate paths. This objective function minimizes the 

physical resource consumption and maximizes load balancing simultaneously. The 

constraints for the ILP formulation includes the SN capacity constraints, VN demand 

constraints, virtual node unsplittability constraint, link disjointness constraint, and finite 

number of splits per virtual link constraint.

17



We also propose two greedy algorithms for embedding – each representing one stage in 

SiMPLE embedding concept. SiMPLE-PR stands for SiMPLE proactive allocation, and it 

computes the first k shortest paths for k = 2, 3, 4, 5, and returns the embedding with 

lowest cost. SiMPLE-RE, on the other hand, stands for SiMPLE reactive recovery, and it 

recovers each virtual link affected by physical failures. For recovering purpose, it considers 

three options as described earlier – provisioning new path, fixed allocation, and variable 

allocation, and returns the embedding with lowest cost.

18



Now we present the evaluation results.

19



We ran simulations on both data center networks and ISP networks, as represented by fat 

tree and synthetically generated topologies, respectively. To demonstrate the scalability of 

SiMPLE, we ran small scale simulations on embedding performance, and large scale 

simulations on VN survivability. We compared SiMPLE with two existing approaches – FBS 

and SBS. We also implemented the optimal solution for SiMPLE, SiMPLE-OP, by GNU Linear 

Programming Toolkit (GLPK). The table mentioned in this slide represents the different 

parameters of these simulations. We also compared with SiMPLE-OP only for small scale 

simulations, since it is not possible to compute the optimal solution for the large scale 

scenario.

20



In this slide, we demonstrate the performance of SiMPLE-PR with respect to FBS, SBS, and 

SiMPLE-OP, as indicated by the legends in the graphs. These experiments were run for 

different alpha, which is defined as the percentage of an VN demand compared to the SN 

capacity. In the first graph, we show profit, which is defined as the VN lifetime multiplied by 

VN demand. Simulation results show that profit generated by all four approaches are same 

for small alpha, but as alpha increases, the profit falls for FBS and SBS, and SiMPLE achieves 

50 – 100% higher profit. In the second graph, we show the percentage of backup 

bandwidth used for backup for different alpha. Here, SiMPLE consumes 40 – 50% less 

backup than FBS and performs almost identical to SBS. Since SBS uses the same backup for 

different VNs, the average backup bandwidth is very small, but unlike SiMPLE, it provides 

no guarantee for substrate failures. We also run simulations to demonstrate that SiMPLE 

achieves a higher acceptance ratio. SiMPLE’s working principle – path splitting, contributes 

to these results. However, unlike FBS and SBS, SiMPLE incurs a higher path splitting 

overhead. With the built in path splitting capacity, the modern switches are expected to 

mitigate this overhead.

21



In the survivability experiments, we vary gamma – the ratio of failure arrival rate to VN 

arrival rate. Both of these graphs are plotted for gamma = 5. In the first graph, we show the 

CDF of simultaneous VN failures, and it is clear that SiMPLE-PR incurs only 10 simultaneous 

failures compared to 20 in FBS and SBS. The second graph demonstrates the CDF of nine 

availability – the number of nines in the uptime probability of a VN. This CDF shows that 

less VN has less nine availability in SiMPLE, e.g., the number of VNs with 0.5 nines (68% 

availability) in FBS and SBS is roughly four times than that in SiMPLE-PR. Other simulations 

show that SiMPLE incurs less number of total VN failures, and a higher bandwidth in virtual 

links affected by physical failures. The justification of these results is again the working 

principle of SiMPLE – path splitting – which increases VN survivability.

22



In the survivability experiments, we vary gamma – the ratio of failure arrival rate to VN 

arrival rate. Both of these graphs are plotted for gamma = 5. In the first graph, we show the 

CDF of simultaneous VN failures, and it is clear that SiMPLE-PR incurs only 10 simultaneous 

failures compared to 20 in FBS and SBS. The second graph demonstrates the CDF of nine 

availability – the number of nines in the uptime probability of a VN. This CDF shows that 

less VN has less nine availability in SiMPLE, e.g., the number of VNs with 0.5 nines (68% 

availability) in FBS and SBS is roughly four times than that in SiMPLE-PR. Other simulations 

show that SiMPLE incurs less number of total VN failures, and a higher bandwidth in virtual 

links affected by physical failures. The justification of these results is again the working 

principle of SiMPLE – path splitting – which increases VN survivability.

23



Now we present the conclusion and future works.

24



25



Software Defined Networking (SDN) is a research area that decouples the data plane from 

the control plane, and facilitates easier network management. SDN can be used to 

implement a prototype for SiMPLE.

Currently, SiMPLE assumes that the node mapping has been done. We can coordinate node 

mapping with link mapping, and obtain a potentially better VN embedding result.

Multiple layers of VNs can be embedded on the same SN, where the first layer of VNs act as 

the SN for the second layer of VNs, and so on. This is called nested NV, and this involves 

cross layer optimization. We can extend SiMPLE in these environments.

26



27


