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Abstract—MapReduce has become a popular model for large-
scale data processing in recent years. However, existing MapRe-
duce schedulers still suffer from an issue known as partitioning
skew, where the output of map tasks is unevenly distributed
among reduce tasks. In this paper, we present DREAMS, a
framework that provides run-time partitioning skew mitigation.
Unlike previous approaches that try to balance the workload
of reducers by repartitioning the intermediate data assigned to
each reduce task, in DREAMS we cope with partitioning skew
by adjusting task run-time resource allocation. We show that
our approach allows DREAMS to eliminate the overhead of
data repartitioning. Through experiments using both real and
synthetic workloads running on a 11-node virtual virtualised
Hadoop cluster, we show that DREAMS can effectively mitigate
negative impact of partitioning skew, thereby improving job
performance by up to 20.3%.

I. INTRODUCTION

In recent years, the exponential growth of data in many
application domains such as e-commerce, social networking
and scientific computing, has generated tremendous needs for
large-scale data processing. In this context, MapReduce [1] as
a parallel computing framework has recently gained signifi-
cant popularity. In MapReduce, a job consists of two types
of tasks, namely Map and Reduce. Each map task takes a
block of input data and runs a user-specified map function
to generate intermediate key-value pairs. Subsequently, each
reduce task collects intermediate key-value pairs and applies
a user-specified reduce function to produce the final output.
Due to its remarkable advantages in simplicity, robustness, and
scalability, MapReduce has been widely used by companies
such as Amazon, Facebook, and Yahoo! to process large
volumes of data on a daily basis. Consequently, it has attracted
considerable attention from both industry and academia.

Despite its success, the current implementations of
MapReduce still suffer from several important limita-
tions. In particular, the most popular implementation of
MapReduce, Apache Hadoop MapReduce [2], uses a
hash function Hash (HashCode (intermediate key)
mod ReduceNumber) to partition the intermediate data
among the reduce tasks. While the goal of using the hash
function is to evenly distribute workload to each reduce tasks,
in reality this goal is rarely acheived [3]-[5]. For example,
Zacheilas et. al. [3] have demonstrated the existence of skew-
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ness in Youtube social graph based on real workloads. The
experiments showed that, the biggest size of partitions is larger
than the smallest by more than a factor of five.

The skewed distribution of reduce workload can have
severe consequences. First, data skewness may lead to a large
difference in the runtime between the fastest and slowest tasks.
As the completion time of a MapReduce job is determined by
the finishing time of the slowest reduce task, data skewness
can cause certain tasks to run much slower than others,
thereby severely delaying job completion. Second, Hadoop
MapReduce allocates fixed-size containers to reduce tasks.
However, due to data skewness, different reduce tasks may
have different run-time resource requirements. As a result,
machines that are running tasks with heavy workload may
experience resource contention, while machines with less data
to process may experience resource idleness.

There are several approaches recently proposed to handle
partitioning skew in MapReduce [4], [6]-[9]. Ibrahim et. al.
proposed LEEN [6], a framework that balances reduce work-
load by assigning intermediate keys to reducers based on their
record sizes. While this approach can mitigate the negative
impact of data skew, its benefit is limited since the sizes
of records corresponding to each key can still be unevenly
distributed. Furthermore, it does not perform well when distri-
bution of the records’ sizes is severely skewed. Subsequently,
Gufler et. al. [7] and Ramakrishnan et. al. [8] proposed
techniques to split each key with large record size into sub-keys
to allow for more even distribution of workload to reducers.
However, most of these solutions have to wait until all the
map tasks completed to gather the partition size information
before reduce tasks can be started. The authors of [5], [9]
demonstrate that by starting the shuffle phase after all map
tasks are completed, the overall job completion time will be
prolonged. While the progressive sampling [8] and adaptive
partitioning [4] can eliminate this waiting time, the former
approach requires an additional sampling phase to generate a
partitioning plan before the job can be executed, whereas the
latter approach incurs an additional run-time overhead (e.g. 30
seconds for certain jobs). In either case, the overhead due to
repartitioning can be quite large for small jobs that takes from
10 to 100 seconds to complete. These small jobs are quite
common in today’s production clusters [10].
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Fig. 1: MapReduce Programming Model

Motivated by the limitation of the existing solutions, in
this paper, we take a completely different approach to address
data skewness. Instead of subdividing keys into smaller sub-
keys to balance the reduce workload, our approach adjusts
run-time resource allocation of each reducer to match their
corresponding data size. Since no repartitioning is involved,
our approach completely eliminates the overhead due to repar-
titioning. To this end, we present DREAMS, a Dynamic
REsource Allocation technique for MapReduce with data
Skew. DREAMS leverages historical records to construct
profiles for each job type. This is reasonable because many
production jobs are executed repeatedly in today’s production
clusters [11]. At run-time, DREAMS can dynamically detect
data skewness and assign more resources to reducers with large
partitions to make them finish faster. In DREAMS, we first
develop an online prediction model which can estimate the
partition sizes of reduce tasks at runtime. We then establish a
performance model that correlates run-time resource allocation
with task completion time. Using this performance model, the
scheduler can make scheduling decisions that allocate the right
amount of resources to reduce tasks so as to equalize their run-
ning time. Through experiments using both real and synthetic
workloads running on a 11-node virtualized Hadoop cluster,
we show that DREAMS can effectively mitigate negative
impact of partition skew, thereby improving job performance
by up to 20.3%.

The rest of this paper is organized as follows. Section
IT provides the motivations of our work. We describe the
system architecture of DREAMS in Section IIl. Section IV
illustrates the design of DREAMS in detail. Section V provides
the results of experimental evaluation. Finally, we summarize
existing work related to DREAMS in Section VI, and draw
our conclusion in Section VII.

II. MOTIVATION

In this section we provide an overview of the partitioning
skew problem and discuss the resource allocation issues in
current MapReduce implementation therein motivating our
study.

In state of the art MapReduce systems, each map task
processes one split of input data, and generates a sequence
of key-value pairs which are called intermediate data, on
which hash partitioning function is performed. Since all map
tasks use the same hash partitioning function, the key-value

pairs with the same hash results are assigned to the same
reduce task. In the reduce stage, each reduce task takes one
partition (i.e. the intermediary key-value pairs received from
all map tasks) as input and performs the reduce function on
the partition to generate the final output. This is illustrated
in Figure 1. Typically, the default hash function can provide
load balancing if the key frequencies and the size of key-value
pairs are uniformly distributed. This may fail with skewed data.
For example in the InvertedIndex application, hash function
partitions the intermediate data based on the words appeared in
the file. Therefore, reduce tasks processing more popular words
will be assigned a larger amount of data. As shown in Figure 1,
partitions are unevenly distributed by the hash function. P1 is
larger than P2, which causes workload imbalance between R1
and R2. [6] presents the causes of partitioning skew:

o  skewed key frequencies: Some keys occur more fre-
quently in the intermediate data, causing those reduce
tasks that process these popular keys become over-
loaded.

o  skewed tuple sizes: In applications where the sizes of
values in the key-value pair vary significantly, uneven
workload distribution may arise.

o skewed execution times: Typical in scenarios where
processing a single, large key-value pair may require
more time than processing multiple small pairs. Even
if the overall number of tuples per reduce task is the
same, the execution times of reduce tasks may be
different.

Due to many weaknesses and inadequacies experienced
in the first version of Hadoop MapReduce (MRv1), the next
generation of Hadoop compute platform, YARN [2], has been
proposed. Nevertheless, in both Hadoop MRv1 and MRv2 (a.
k. a. YARN), the schedulers assume each reduce task has
uniform workload and resource consumption, and therefore
allocate identical resources to each reduce task. Specifically,
MRv1 adopts a slot-based allocation scheme, where each
machine is divided into identical “slots” that can be used
to execute tasks. However, MRv1 does not provide resource
isolation among co-located tasks, which may cause perfor-
mance degradation at run-time. On the other hand, YARN
uses a container-based allocation scheme, where each task
is scheduled in an isolated container with guaranteed CPU
ad memory resources that can be specified in the request.
But YARN still allocates containers of identical size to all
reduce tasks that belong to the same job. In the presence
of partitioning skew, this scheduling scheme can cause both
variation in task running time and degradation in resource
utilization. For instance, Kwon et. al. [4] demonstrated that
in CloudBurst Application, there is a factor of five difference
in runtime between the fastest and the slowest reduce tasks.
Since the job completion time depends on the slowest task,
the runtime variation of reduce tasks will prolong the job
execution. At the same time, the reducers with large partitions
run slowly because the resources allocated to them are limited
by the container size, whereas reducers with light workload
tend to under-utilize the resources allocated to the container.
In both cases, the resulting resource allocation is inefficient.

Most of the existing approaches [4], [6]-[9] tackle the
partitioning skew problem by making the workload assign-
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Fig. 2: Architecture of DREAMS

ment uniform among reduce tasks, thereby mitigating the
inefficiencies in both performance and utilization. However,
achieving this goal requires (sometimes heavy) modification
to the current Hadoop implementation, and often requires
additional overhead in terms of sampling and adaptive parti-
tioning. Therefore, in this work we seek an alternative solution,
consisting in adjusting container size based on partitioning
skew. This approach not only requires minimal modification
to the existing Hadoop implementation, but at the same time
can effectively mitigate the negative impact of data skew.

III. SYSTEM ARCHITECTURE

This section describes the design of our proposed resource
allocation framework called DREAMS. The architecture of
DREAMS is shown in Figure 2. Specifically, each Partition
Size Monitor records the statistics of intermediate data that
each map task generates at run-time and sends them to the
ApplicationMaster though heartbeat messages. Partition Size
Predictor collects the partition size reports from NodeMan-
agers and predicts the partition sizes for this job at runtime.
The Task Duration Estimator constructs statistical estimation
model of reduce task performance as a function of its partition
size and resource allocation. The Resource Allocator deter-
mines the amount of resources to be allocated to each reduce
task based on the performance estimation. Lastly, the Fine-
grained Container Scheduler is responsible for scheduling
task requests from ApplicationMasters according to scheduling
policies such as Fair scheduling [12] and Dominant Resource
Fairness (DRF) [13].

The workflow of resource allocation mechanism used by
DREAMS consists of 5 steps: (1) After the ApplicationMaster
is launched, it schedules all the map tasks first and then ramps
up the reduce task requests slowly according to the slowstart
setting. During their execution, each Partition Size Monitor
records the size of intermediate data produced by each reduce
task. It then sends the statistics to the ApplicationMaster

through the RPC protocol used to monitor the status of
task in Hadoop. (2) Upon receiving the partition size reports
from the Partition Size Monitors, the Partition Size Predictor
performs size prediction using our proposed prediction model
(see Section IV-A). The task Duration Estimator, which uses
the job profiles (Section IV-B), predicts the task duration of
each reduce task with specified amount of resources. Based on
that, Resource Allocator determines the amount of resources
for each reduce task according to our proposed resource
allocation algorithm (Section IV-C) to equalize the execution
time of all reduce tasks. (3) After that, the ResourceManager
receives ApplicationMaster’s resource requests through the
heartbeat messages, and schedule free containers in the cluster
to ApplicationMaster. (4) Once the ApplicationMaster obtains
new containers from ResourceManager, it assigns the corre-
sponding container to its pending task, and finally launches
the task.

IV. DREAMS DESIGN

There are two main challenges that need to be addressed
in DREAMS. First, to identify partition skew, it is necessary
to develop a run-time forecasting algorithm that predicts the
partition size of each reducer. Second, in order to determine
the right container size for each reduce task, it is necessary to
develop a task performance model that correlates task running
time with resource allocation. In the following sections, we
shall describe our technical solutions for each of the chal-
lenges.

A. Predicting Partition Size

As mentioned previously, the scheduler needs to know
the partition size of each reduce task in order to compute
the correct container size for that reduce task. Since current
Hadoop schedulers allow reduce tasks to be launched soon
after a fraction (e.g. 5%) of map tasks are finished', it is
necessary to predict the partition size before the completion
of all map tasks.

To predict the partition size of each reduce task ¢ to
be scheduled, at run-time the ApplicationMaster collects two

metrics (Fj7 57 ), where F7 is the percentage of map tasks
that have been processed, (j € [1,m] and m refers to the
number of collected tuples (F7, S7)) and S7 is the size of
the partition generated by the completed map tasks for reduce
task ¢. In our implementation, we have modified the reporting
mechanism so that each map task reports this information to
the ApplicationMaster upon completion. With these metrics,
we use linear regression to determine the following equation
for each reduce task i € [1, N]:

al+b-Fi=8  j=1,2---m (1)

We introduce an outer factor, §, which is the threshold to
control our prediction model to stop the process of learning,
and finalize the prediction. In practice, § can be the map
completion percentage at which reduce tasks may be started to
schedule (e.g. 5%). Every time a new map task has finished, a

'To improve job running time, existing Hadoop schedulers overlap the
execution of map tasks and reduce tasks by allowing reduce tasks to be
launched before the completion of all map tasks
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Fig. 4: Relationship between task duration and CPU allocation

new training data is created. When the fraction of map tasks
reaches 9, we calculate the scaling factors (a1, b;) and predict
the size of partition for each reduce task 7 of the whole data
set, even though not all of the map tasks are completed.

We noticed that prediction schemes such as progressive
sampling [8] can also be used by DREAMS for partition
size prediction. However, the repartitioning mechanism used
in [8] is based on a partitioning plan, and as result, it requires
progressive sampling to be executed each time before the
job starts. In our case, since we do not need to modify the
implementation of partitioning, our partition size prediction
can be done entirely online. Thus, we found our current
prediction scheme is simple yet sufficient to produce high
quality prediction results.

B. Reduce Phase Performance Model

In this section, we design a task performance model that
correlates the completion time of individual reduce tasks with
their partition size and resource allocation. As Hadoop YARN
only allows the CPU and memory size of container to be
specified, in our implementation we focus on capturing the
impact of CPU and memory allocation on task performance.

In order to identify the relationship between task
running time, partition size and resource allocation,
we run a set of benchmarks in our Testbed cluster
by varying resource allocation. More specifically, each
benchmark is generated by varying CPU allocation
Alloc?™ = {1wCore, 2vCores, --- , 8vCores}, memory
allocation Alloc**™ = {1GB,2GB,---,8GB}, and
input dataset D,; = {10GB, 20GB, 30GB, 50 GB} for
different jobs. We run each benchmark 10 times, and collect
the average result over the runs for each benchmark.

30
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Fig. 5: Relationship between task duration and mem. allocation

In the first set of experiments, we fix the CPU and memory
allocation of each reduce task and focus on identifying the
relationship between partition size and task running time. To
illustrate, Figure 3a shows the result of running the Inverte-
dIndex job using 10GB input. It is evident that there is a
linear relationship between partition size and running time.
Furthermore, Figure 3b shows the result when the input size
of the job is changed from 10GB to 20GB. Again, the running
time is linearly correlated with partition size. However, at the
same time, we also found that the size of total intermediate data
denoted as D (the sum of all partitions) has an impact on task
duration while varying the input dataset. Similar observation
is also made in [14], where Zhang et. al. show the duration
of the shuffle phase can be approximated with a piece-wise
linear function when the intermediate data per reduce task is
larger that 3.2 GB in their Hadoop Cluster. This is consistent
with the phenomenon we observed.

In the next set of experiments, we fix the input size and
vary either the CPU or memory allocation of each reduce task.
Figure 4 shows the typical results for Sort and InvertedIndex
job by varying the CPU allocation (memory allocation is fixed
to 1 GB). We found that task running time is inversely propor-
tional to CPU allocation. In particular, the task running time
is approximately halved when the CPU allocation is increased
from 1 vCore to 2 vCores. While this relationship is accurate
when the number of vCores is small, we also found this model
is no longer accurate when a large amount of CPU resource is
allocated to a task. In these cases, the resource bottleneck may
switch from CPU to other resource dimensions like disk I/0,
in which case the benefits of increasing CPU allocation would
decrease. Thus, we can expect that the duration of reduce tasks
might be approximated with a different inversely proportional
function when CPU allocation exceeds a threshold ¢. This
threshold could be related to Job characteristics and cluster
configuration. However, for a different Job and Hadoop cluster,
@ can be easily determined by comparing the change in task
duration while increasing CPU allocation.”

We then repeat the same experiment for memory;we vary
the memory allocation from 1 to 7 GB while the CPU is
fixed to 1 vCore. We found the same relationship does not
apply to memory. Figure 5 shows the task running time as

2We use the following policy in this paper: we increase the CPU allo-
cation from 1 vCore to 8 vCores, and caluate the speedup of task running
time between current and previous CPU allcoations denoted as Speedup;
(G € [1,7]). The first CPU allocation where Speedup; < 0.5 -
Speedup;_1 is considered as the threshold ¢.
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a function of memory allocation. We found that even though
memory allocation is increased, no improvement can be found.
We believe the reason is that memory is not the bottleneck
resource for this task. In this case, the memory allocation will
not affect task duration as long as it is sufficient for this task.

Based on the above observations, we now derive our task
performance model. For each reduce task 7 among N reduce
tasks, let T; denote the execution time of reduce task 7, P;
denote the size of partition for reduce task ¢, D denote the
size of the intermediate data for the job, and Alloc;" denote
as the CPU allocation for reduce task ¢, the performance model
can be stated as:

When Alloc;™" <=,

¢ nk; §D
T;= P D 7 7
o BEAAD o Ao T Ao o
When Alloc;™" > o,
C/ n/P] é’/D

T; =o' +B'P;++'D
i=a+fhity +Allocfpu_|—Allocfpu+Allocfpu

where «, 8,7,(,n,a’,8,7,¢ and 1’ are the coefficient
factors to be solved using nonlinear regression [15]. In prac-
tice, we may leverage historical records of job execution to
provide input to the regression algorithm. This is reasonable in
production environments as many jobs are executed routinely
in today’s production data centers. Specifically, we capture a
triple (7}, P;, Alloc;?") for each reduce task ¢ of the job.
Using the triples for all reduce tasks as training data, we can
easily learn the coefficient factors in the performance model
for each job. In the end, we produce one performance model
M for each job j that can be used as input for scheduling.

Finally, we would like to mention that while our perfor-
mance model focuses on CPU allocation, we believe our model
can be extended to handle the case where other resources
becomes the performance bottleneck by having additional
terms (e.g. similar to the second and third term in equation
2) in our performance model.

C. Scheduling Algorithm

Once the performance model has been trained and the
partition size has been predicted, the scheduler can now decide
how much resource to be allocated to each task. In order to
mitigate the impact of data skew, we adopt a simple strategy
which is to make all reduce tasks have similar running time.
Algorithm 1 describes our resource allocation policy. After
reaching the threshold J, the partition size of each reduce task
can be predicted with the prediction model. As to memory
allocation, it does not affect task duration as long as it is
sufficient for this task, which is discussed in Section IV-B.
We adjust the memory allocation to [Um%-‘ - Ungt™e™,
where Unit™*™ is the minimum allocation of memory. With
respect to CPU allocation, we obtain the amount of resources
according to performance model M, as described from line
5 to line 12. First, we calculate the execution time 7,,;4 ,
which represents the time it takes to complete the task with
the median partition size Fy;q, by performance model M;.
After that, we set T,,;4 as target for each reduce task, and
calculate the amount of resources Alloc;’" that each reduce

)

Algorithm 1 Resource allocation algorithm

Input: 6 - Threshold of stopping training the Partition Size Prediction
Model; M; - Reduce Phase Performance Model of Job j; ¢ -
Maximum allocation of CPU;

Output: C' - Set of resource allocations for each reduce task
(AllocsP", Alloci™™)

1: Collect S; and F', when a success completion event of map tasks

is received by ApplicationMaster

2: When threshold § is reached:

3: Stop training and finalize Partition Size Prediction Model

4: Predict Set < P; > while F' = 100%

5: Calculate the median value P,,;q in Set < P; >

6: Calculate T}y, When P = Py, Alloc™P" = lvcore using M
7: for each reduce task i € [1, N] do

8 Alloc™ = [t

9:  Solve the Equation 2 for Alloc
10:  if Alloc;”" > ¢ then

1 Unitmem
cpu
i

11 Alloc?" = ¢

12: end if

13: C = CU{(Alloc;™™, Alloci*™)}
14: end for

15: return C

task needs. Because nodes have finite resource capacities,
Alloc;”" should be less than the capacities. Besides, from our
experience, after CPU allocation to a task reaches a threshold,
increasing allocation will not improve the execution time, but
instead results in wasting CPU resource as shown in Section
IV-B. We consider Alloc;”™ should be less than threshold ¢,
which is also an input to our algorithm.

V. EVALUATION

We perform our experiments on 11 virtual machines (VMs)
in the SAVI Testbed [16], which contains a large cluster with
many server machines. Each VM has four 2 GHz cores, 8
GB RAM and 80 GB hard disk. We deploy Hadoop YARN
2.4.0 with one VM as Resource Manager and Name Node,
and remaining 10 VMs as workers. Each worker is configured
with 8 virtual cores and 7GB RAM (leaving 1GB for other
processes). The minimum CPU and memory allocations to a
container are 1 vCore and 1 GB respectively. The HDFS block
size is set to 128MB, and the replication level is set to 3.

We chose two jobs to evaluate DREAMS: (1) Sort, which is
included in a MapReduce benchmark in Hadoop distribution.
It takes sequence files which are generated by RandomWriter
as input, and outputs the sorted data, and (2) Invertedindex,
which comes from PUMA benchmarks [17]. It takes a list of
documents as input and generates an inverted index for these
documents. We use Wikipedia data [17] for this application.

A. Accuracy of prediction of partition size

In this set of experiments, we wanted to validate the
accuracy of the partition size prediction model. To this end, we
execute MapReduce jobs on different datasets with different
thresholds §, and compute the average relative error (ARE) of
all partitions in each scenario. The ARE is defined as follows.

pred measrd
P, — P

1 N
ARE = o3, 3)

measrd
Pi
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TABLE I: Average relative error of partition size prediction

Anplication Input Data Input Data ARE ARE ARE ARE ARE ARE
pplicatio Type Size(GB) | 6 =0.05 | §=0.06 | 6 =0.07 | §=0.08 | §=10.09 | § =0.10
Sort Synthetic 10 2.28% 2.09% 1.94% 1.81% 1.71% 1.71%
Sort Synthetic 20 1.60% 143% 132% 1.26% T17% 1.13%
Sort Synthetic 50 1% 1.01% 0.94% 0.90% 0.84% 0.78%
InvertedIndex Wikipedia 9.01 8.2% 7.63% 7.05% 7.05% 6.43% 5.87%
Tnvertedindex | Wikipedia 21.02 5.62% 5.25% 5.08% 479% 4.53% 4.38%
Tnvertedindex | Wikipedia 49.04 473% 443% 421% 4.07% 3.90% 3.70%
. . .. d
where N is the number of reduce tasks in this job, PP .
measrd - J i TABLE II: Average relative errors of reduce task performance
and P} are the predicted value and measured value of .|
partition size of reduce task ¢ respectively. Table I summarizes
the average relative errors in each scenario. We run 10 experi- Application ‘ I"p;t ]zata IS?Z“J(GDE? Test-on-training | Test-on-unknown
ments for each scenario and adopt the average. It can be seen b
. . . 1 (v
that the ARE is less than 8.2% in all cases. Furthermore, with Sort Synthetic 10 >44% 9.36%
) o L Sort Synthetic 20 7.91% 10.62%
threshold § increases, the prediction accuracy is improved. Sort Synthetic 30 12.28% 16.38%
Sort Synthetic 50 11.09% 19.57%
InvertedIndex | Wikipedia 9.01 11.67% 13.97%
B. Accuracy of reduce phase performance model TnvertedIndex | Wikipedia 21.02 12.89% 13.31%
. InvertedIndex Wikipedia 31.03 14.67% 16.44%
In order to formally evaluate the accuracy and workload in- Tvertedindex | Wikipedia 004 156% T 06%
dependency of the generated performance model, we compute
the prediction error for Sort and InvertedIndex with different
input workloads. We perform two validations as follow: & 1200 & 1400
e  Test-on-training - evaluate the accuracy of prefor- ] DREAMS & 1000 REAMS
mance model based on the training dataset. That is, g % 2 w0
. . = -
we compute the predicted reduce task duration for g &0 5 600
each tuple (P;, Alloc{"™)? by using the performance g o g
model which is learned from this training dataset, then 8 200 8 200
. . Qo Qo
compute a prediction error; 5 S
10 20 30 50 9.01 21.02 31.03 49.04
Size of Input Dataset (GB Size of Input Dataset (GB
e  Test-on-unknown - evaluate the accuracy of perfor- i2e ofInput Dataset (GB) e ofnput Dataset (G8)

mance model using unknown dataset. That is, we
compute the predicted reduce task duration for each
tuple (P;, Alloc;?™) by using the performance model
which is learned from 10 G workload (This derived
model is considered as a profile), then compute a
prediction error.

For both validations, we leverage the ARE to evaluate the
accuracy using following equation:

Tp'red

measrd
T

ARE = %zfﬂ @)

T‘lmeasrd
where k is the number of tuples (P;, Alloc;”") for a input
dataset. Table II summarizes the average relative error of
reduce task performance model for Sort and InvertedIndex.
More specifically, with regard to Test-on-training validation,
the prediction error for Sort and InvertedIndex with all of the
workloads is less than 15%. For the Test-on-unknown group,
the prediction error is slightly higher than the corresponding
value in the Test-on-training, still less than 20%. These results
confirm the accuracy of our performance model.

C. Performance Evaluation

We have implemented DREAMS on Hadoop YARN 2.4.0
as an additional feature. Implementing this approach requires

3For example, there are N reduce tasks of a job, for each reduce task i, there
are one value of P; and 8 values of Alloc;”" € {1,2,---,8}. Therefore,
there are 8NV tuples for this workload.
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TABLE III: Workloads characteristics

Application Input Data | Input Data CV of #Map and
PP Type Size(GB) Partition Sizes | Reduce tasks
Sort Synthetic 10 46.24% 80,64
Sort Synthetic 20 46.24% 160,64
Sort Synthetic 30 46.24% 240,64
Sort Synthetic 50 46.24% 400,64
InvertedIndex Wikipedia 9.01 17.44% 73,80
InvertedIndex Wikipedia 21.02 19.12% 169,80
InvertedIndex | Wikipedia 31.03 22.13% 252,80
InvertedIndex Wikipedia 49.04 24.95% 396,80

minimal change to the existing Hadoop architecture. In this
section, we compare the performance of DREAMS against
native Hadoop YARN 2.4.0 (called Native in this paper). The
slowstart threshold is set to 10%, and the CgroupsLCERe-
sourcesHandler is enabled. We first evaluated DREAMS using
individual Job (either Sort or InvertedIndex) with several input
data sizes from 10 GB to 50 GB. Table III gives an overview
of these workloads. Note that tuning the number of reduce
tasks for each workload can improve job completion time
[18]. To isolate this effect, we fix the number of reduce tasks
for each job. The CV (coefficient of variation) of partition
sizes represents the skewness of the reduce input distribution.
We can see from the table that the CV values of all the
workloads are less than 50%"*. The experiment results are
shown in Figure 6. We can see from the figure that DREAMS
outperforms Native for all cases. In particular, DREAMS
improves job completion time by 20.3% when sorting 50 GB
data. To understand the reason behind the performance gain,
we plotted the timeline and cluster CPU and memory usage of
executing 10G Sort for Native and DREAMS in Figure 7 and
Figure 8. We found that DREAMS equalizes the durations
among reduce tasks, and achieves higher CPU and Memory
utilization than Native in reduce stage. More specifically, the
utilization between DREAMS and Native during map stage
is similar; after map stage completes (around 150 seconds
mark), both CPU and memory utilization of DREAMS become
higher than Native. Furthermore, we have found that DREAMS
generally achieves higher reduction in job completion time for
Sort rather than InvertedIndex. That is because DREAMS only
improves the resource allocation in reduce stage, but leaving
map stage unchanged. And Sort is reduce intensive, where
reduce stage takes longer time than map stage. As a result,
DREAMS is able to provide higher gain for the job running
time of reduce-intensive jobs.

We now present our evaluation results using multiple jobs
in parallel. According to the cumulative distribution function
of job running times from a production workload trace at
Facebook [19], the job completion times follow a long-tail dis-
tribution. More specifically, most of the jobs (more than 50%)
are less than 100 seconds long, and the distribution of inter-
arrival times for this workload trace is roughly exponential
with a mean of 14 seconds. Therefore, in this evaluation, we
vary the number of jobs of 5G Sort and 5G InvertedIndex from
x1to x 16 to create batch workloads, and submit the jobs with
an inter-arrival time following exponential distribution with
a mean of 14 seconds. We run each of the batch workloads
5 times using Native and DREAMS. The results of average

4The CV of each workload for Sort is the same, because these workloads
are generated by the same RandomWriter.

job completion time are shown in Figure 9a. It can be seen
that DREAMS outperforms Native Hadoop in all scenarios.
Admittedly, the gain of DREAMS in experiments with multiple
jobs is less than the gain in single job experiments. It is because
reduce tasks of small jobs only last dozens of seconds, which
means the difference between the longest and shortest task is
only dozens of seconds. When the number of jobs is increasing,
many short tasks are scheduled one after the other. As a result,
there is a chance that these short tasks can fit into resource
vacancy that skewed tasks generate. Therefore, in some cases
DREAMS can obtain only dozens of seconds gain for these
small jobs (Note that dozens of seconds constitute a big gain
in single job scenario). In the future, we intend to evaluate
DREAMS using multiple large jobs. Figure 9b and 9c show
the resource utilization of the cluster during the execution of
each batch for Native and DREAMS respectively. It can be
seen from the diagrams that DREAMS achieves slightly higher
CPU utilization than the Native Hadoop, and the memory
utilizations of both methods are similar. That is because the
biggest partition size of all the reduce tasks in this workload
is less than the minimal memory allocation, DREAMS does
not adjust the memory. But with respect to CPU allocation,
DREAMS makes an adjustment for different reduce tasks,
thereby achieving higher CPU utilization.

VI. RELATED WORK

The data skew problem in MapReduce has been extensively
investigated recently. Kwon et.al. [20] present five types of
skews in MapReduce applications which are caused by the
characteristics of the algorithm and dataset, and propose best
practices to mitigate skew. On mitigating the impact of skewed
data, several approaches have been proposed. The authors, in
[7] and [6], define a cost model for scheduling Reduce keys
to reduce tasks so as to balance the load among reduce tasks.
However, both approaches have to wait until all the map tasks
have completed. As shown in [5], this would increase the job
completion time. In order to equally distribute the load to
worker machines while overlapping the map and reduce phase,
the proposal in [9] applies a Greedy-Balance approach of
assigning unassigned keys to the machine with the least load.
This solution is based on the assumption that the size of each
key-value pair is identical, which is not true in real workloads.
Even though the results in this paper show a reduction of
maximum load compared to default solution, shuffle finishing
time is worse than the default solution. Also this paper provides
no evaluation about whether the job completion time can be
shortened. Unlike those later shuffling approaches, Ramakr-
ishnan et.al. [8] propose a progressive sampler to estimate the
intermediate data distribution and then partition the data to
balance the load across all reduce tasks. However, this solution
needs an additional sampling phase before jobs start, which can
be time-consuming. Instead of chopping the large partitions
to balance the load, SkewTune [4] repartitions heavily skewed
partitions to achieve this goal. However, it imposes an overhead
while repartitioning data and concatenating original output.
Compared to SkewTune, our solution dynamically allocates
the right amount of resources to tasks to equalize the tasks’
completion time, which is simpler and incurs no overhead.
Finally, Zacheilas et al. propose DynamicShare [3], which aims
at scheduling MapReduce jobs in heterogeneous systems to
meet their real-time response requirements, and achieving an
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even distribution of the partitions by assigning the partitions
in such a way that puts more work on powerful nodes.
Similar to SkewTune, it imposes an overhead for the partitions’
assignment procedure. Besides, DynamicShare cannot start
partitions assignment until all map tasks have completed.

Resource-aware scheduling has received considerable at-
tention in recent years. The original Hadoop MapReduce
implements a slot-based resource allocation scheme, which
does not take run-time task resource consumption into con-
sideration. To address this limitation, Hadoop YARN [2] rep-
resents a major endeavor towards resource-aware scheduling
in MapReduce clusters. It offers the ability to specify the
size of container in terms of requirements for each type of
resources. However, YARN assumes the resource consumption
for each Map (or Reduce) task in a job is identical, which is not
true for data skewed MapReduce jobs. Sharma et. al. propose
MROrchestrator [21], a MapReduce resource framework that
can identify the resource deficit based on resource profiling,
and dynamically adjusts the resource allocation. Compared
with our solution, MROrchestrator cannot identify stragglers
of workload imbalance before tasks launch, and it cannot
judiciously place tasks that need more resource on the ma-
chines with more free resources. In other words, if all CPU-
intensive tasks are launched in a machine, no matter how
MROrchestrator adjusts the allocation, resource deficit cannot
be mitigated. There are several other proposals that fall in
another category of resource scheduling policies such as [11],
[13], [22], [23]. The main focus of these approaches is on
adjusting the resource allocation in terms of the number of
Map and Reduce slots for the jobs in order to achieve fairness,
maximize resource utilization or meet job deadline. These
however do not address the data skew problem.

VII. CONCLUSION

MapReduce has become a predominant model for large-
scale data processing in recent years. However, existing
MapReduce schedulers still use a simple hash function to as-
sign map outputs to reduce tasks. This simple data assignment
scheme may result in a phenomenon known as partitioning
skew, where the output of map tasks is unevenly distributed
among reduce tasks. While many approaches have been pro-
posed to address this issue, existing solutions often incur an
additional overhead for run-time partition size prediction and

data repartitioning. Motivated by this limitation, in this paper
we present DREAMS, a framework for run-time partitioning
skew mitigation. Unlike previous approaches that try to balance
the reduce workload by repartitioning the workload assigned to
each reduce task, in DREAMS we cope with partitioning skew
by adjusting task run-time resource allocation. To do so, we
first develop an on-line partition size prediction model which
can estimate the partition sizes of reduce tasks at run-time.
Our experiments results show that the average relative error
is less than 8.2% in all cases. Second, we design a reduce
task performance model that correlates task duration with
run-time resource allocation and input size of reduce tasks.
The validation results show that the worse prediction error
is 19.57%. Third, we demonstrate the benefit of leveraging
resource-awareness for run-time skew mitigation. Through
experiments using real and synthetic workloads, we show
that DREAMS can effectively mitigate the negative impact of
partitioning skew while incurring negligible overhead, thereby
improving job running time by up to 20.3%.
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