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Abstract—Distributed file systems such as Google File System
and Hadoop Distributed File System have been used to store
large volumes of data in Cloud data centers. These systems divide
data sets in blocks of fixed size and replicate them over multiple
machines to achieve both reliability and efficiency. Recent studies
have shown that data blocks tend to have a wide disparity in data
popularity. In this context, the naïve block replication schemes
used by these systems often cause an uneven load distribution
across machines, which reduces the overall I/O throughput of the
system. While many replication algorithms have been proposed,
existing solutions have not carefully studied the placement of data
blocks that balances the load across machines, while ensuring
node and rack-level reliability requirements are satisfied.

In this paper, we study the dynamic data replication problem
with the goal of balancing machine load while ensuring machine
and rack-level reliability requirements are met. We propose sev-
eral local search algorithms that provide constant approximation
guarantees, yet simple and practical for implementation. We
further present Aurora, a dynamic block placement mechanism
that implements these algorithms in the Hadoop Distributed
File System with minimal overhead. Through experiments using
workload traces from Yahoo! and Facebook, we show Aurora
reduces machine load imbalance by up to 26.9% compared to
existing solutions, while satisfying node and rack-level reliability
requirements.

I. INTRODUCTION

Large−scale Cloud applications often require significant stor−
age and I/O capacity. To provide scalable and fault−tolerant
storage for large volumes of data, distributed file systems
such as Google File System (GFS) [14], Hadoop Distributed
file system (HDFS) [1] have been recently developed. These
systems divide each individual file into multiple fixed−size
blocks, and replicate them across a large number of machines
in the cluster. Today, distributed file systems have been widely
used by Cloud companies such as Google, Amazon, Facebook
and Yahoo! to support a large variety of services and parallel
computing frameworks such as MapReduce [13], and Spark
[21]. Consequently, optimizing the performance of distributed
file systems has become a critical concern of today’s Cloud
service providers.

One of the key issues in the design of distributed file
systems is the placement of data blocks. On one hand, the
placement of blocks should be fault−tolerant. In other words,
the failure of a single node or a Top−of−Rack (ToR) switch
should not render a file inaccessable. On the other hand, the
placement of blocks should also achieve high I/O efficiency

and low replication overhead. By default, the current HDFS
replicates each data block 3 times across 2 racks, and the
locations of the machines and racks are randomly chosen1

[2]. While this replication scheme meets the fault−tolerance re−
quirement, it does not necessarily achieve high I/O efficiency.
In particular, it has been reported that files in production
data centers often have skewed distributions of popularity.
Furthermore, these file popularity distributions are subject to
change over time. In this context, a constant replication factor
of each block may cause the machines that own popular data
block to become the performance bottleneck of the cluster,
reducing the I/O throughput of the overall file system.

We use MapReduce [3] as an example to illustrate this
problem. In a MapReduce job, a map task takes as input a data
block stored in the distributed file system, and applies a user−
defined map function to produce its output. In this process,
if a map task is scheduled on a machine that owns a local
copy of the input block, the task is called a local task and its
execution involves only local disk access. Otherwise, the map
task is called a remote task because it must fetch the data block
from a remote machine. As network I/O is typically slower
than local disk access, it has been shown that on average
local tasks run 2× faster than remote tasks [20]. Therefore,
many recent scheduling algorithms have been proposed to
improve data locality [17], [20] so as to reduce the number
of remote tasks scheduled in the cluster. However, as file
popularity is unevenly distributed in production MapReduce
clusters, machines that own popular data blocks can easily
become the performance “hotspots” in the cluster, making
locality−aware scheduling a difficult challenge.

To address this issue, a technique called dynamic block
replication has been proposed in the literature [9], [10], whose
goal is to replicate data blocks dynamically according to their
popularity. By replicating popular blocks across large numbers
of machines, the chances of scheduling local tasks can be
significantly increased. However, while many block replication
heuristics have been proposed in the literature, existing solu−
tions have not carefully studied the placement of the replicas
in the cluster. The goal of the block placement problem
is to (1) achieve a good load balancing across machines

1If the block is written by a parallel computing task (e.g. a reduce task of
a MapReduce job), the first replica is placed on the local machine, and the
remaining replicas are placed on two random machines in a different rack.
Otherwise, all 3 replicas are placed on random machines across 2 racks.
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to eliminate performance “hotspots”, (2) ensure each block
remains available in the presence of node or switch failures. To
the best of our knowledge, finding effective block placement
algorithms that simultaneously satisfy both requirements is
still an unresolved challenge.

In this paper, we study the block placement problem that
jointly controls the number of block replicas and their place−
ment in the cluster, with the goal of balancing the load of
individual machines while satisfying fault−tolerance require−
ments. Specifically, we make the following two contributions:

• We analyze the optimal block placement problem from a
theoretical perspective. We first show that optimal block
placement problem is NP−hard, and then present several
constant−factor approximation algorithms for different
cases of this problem. Commonly used for solving NP−
hard problems, a ρ−approximation algorithm is a polyno−
mial time algorithm that produces a solution that is no
worse than ρ times the optimal solution. Our algorithms
are based on an optimization framework called local
search. Starting from an arbitrary initial block placement
configuration, our algorithms gradually improve the solu−
tion quality until it converges to a near−optimal solution.
Our algorithms are adaptive to dynamic conditions, and
provides a simple mechanism for balancing the trade−off
between solution optimality and reconfiguration cost.

• We show our local search algorithms can be implemented
efficiently in distributed file systems such as HDFS. To
this end, we design Aurora, a framework for AUtomatic
Replication for distributed file StORAage. Aurora uses
file popularity information to decide the optimal number
of replicas for each block, and gradually update the place−
ment of replicas to achieve near−optimal load balancing
while respecting fault−tolerance constraints.

The rest of the paper is organized as follows. We first provide
an overview of HDFS in Section II. We then describe several
variants of block placement problem, and present a local
search approximation algorithm for each variant in Section
III. Section IV discusses how our algorithm can achieve trade−
offs between solution optimality and reconfiguration cost. We
then introduce the design of Aurora in Section V and describe
how it implements the proposed algorithms with minimal
overhead. Our evaluation using both trace−based simulation
and real implementation are presented in Section VI. Finally,
we summarize related work in Section VII, and conclude the
paper in Section VIII.

II. BACKGROUND AND RELATED WORK

Distributed file systems such as GFS and HDFS are de−
signed to store large volumes of data across a large number
of commodity machines. As an open source implementation
of GFS, HDFS is the de facto storage system for the Apache
Hadoop distributed computing framework, supporting a variety
of services such as MapReduce, HBase [4] and Spark [21]. In
HDFS, each file is partitioned into one or more blocks within
a maximum block size, which is set to 64MB by default. In
general, except the last block, every block in a file has the size
equal to the maximum block size. In practice, the number of

Figure 1. HDFS Architecture

blocks with size less than the maximum block size is usually
small. As HDFS is optimized for reading and writing blocks
with maximum block size, it is a common practice to minimize
the number of small blocks [5].

A HDFS cluster consists of a single namenode and multiple
datanodes running on multiple machines as depicted in Figure
1. The namenode maintains the metadata of the file system,
which stores the directory structure, file descriptions and a
block map which identifies the location of each block replica
in the cluster. Each datanode is responsible for storing the
actual data blocks on each machine, and handling incoming
read and write requests. Each datanode also periodically sends
a heartbeat message to the namenode to report machine and
block status. Each application creates a HDFS client to access
the file system. A read request can be handled by asking the
namenode to provide a machine that owns a replica, and then
reading the block from that machine. To handle a write request,
a HDFS client first asks the namenode to update the metadata.
The namenode responds with a write permission indicating
the machine on which the file should be written. The client
then writes the file onto the machine, and the datanode of the
machine will then request the namenode to provide additional
machines for replication. The write process is complete after
all replicas of the blocks have been written.

To cope with node and rack switch failures, HDFS replicates
each block across multiple nodes in different racks. By default,
HDFS replicates each block 3 times across 2 racks [2].
The replication process proceeds by first writing the block
to a preferred machine (e.g. local machine) selected by the
namenode, and then replicating the block in 2 machines in a
remote rack. By default, all the files stored in HDFS have the
same replication factor. This default block replication scheme
can perform well if block popularity is evenly distributed.
However, in practice, it has been observed data blocks tend
to have a wide disparity in data popularity. For instance,
Abed et. al. [9] shows that file popularity in one of Yahoo!’s
MapReduce cluster follows a long−tail distribution. As a result,
machines that own popularly data blocks can become the
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performance bottleneck of the cluster. Ananthanarayanan et.
al. [10] reports that one−sixth of the machines account for
half the locality contention in one of the clusters at Microsoft.
Therefore, it is desirable to replicate popular blocks and
carefully place them in the cluster so as to to balance the load
of each individual machine. Even though HDFS provides the
API for specifying the replication factor of each file, Currently
this must be done manually by the operator. Lastly, while
HDFS does provide a balancer tool, its purpose is to balance
disk usage rather than machine load.

III. APPROXIMATION ALGORITHMS FOR BLOCK

PLACEMENT PROBLEM

In this section, we provide a theoretical study of the optimal
block placement problem, whose goal is to place file blocks
across machines in cluster in order to balance the load of ech
individual machine, while meeting block reliability require−
ments. Specifically, we study block placement problem for
3 different cases, and provide a local−search approximation
algorithm for each case. While some of the cases are already
applicable for load balancing the current HDFS (e.g. Section
III.B), the main purpose of studying these cases is to grad−
ually introduce our technical results for the dynamic block
placement and replication algorithms.

In our model, at a given time there are B file blocks stored in
the file system. We assume each block i ∈ B has a popularity
score Pi that measures the number of jobs that needs access to
the content of block i over a fixed time period T . We further
assume block i is replicated ki times by the file system. The
value of ki can be determined by the reliability requirement
of the block [12]. We assume each replica of the block i is
identical and has popularity pi = Pi

ki
. In other words, the

popularity of block i is shared between its replicas. This means
that if we spread the replicas of block i across ki machines,
then the demand for block i can be divided among these ki
machines.

We assume there are M identical physical machines in the
cluster that are grouped in R racks. Let Mr ⊆M denote the
machines in rack R. Each machine has a fixed storage capacity.
In our model, we define the capacity Cm of a machine m as
the maximum number of blocks that can be stored in machine
m. As mentioned previously, since most of the blocks in
the file system have a size equal to a maximum block size
smax, having a capacity Cm for the number of blocks can
upperbound the total storage capacity used by the file system
on each machine.

A. Block Placement with Known Replication Factor and
Node-Level Fault-Tolerance

We first consider the simplest scenario where each block
i has a fixed node−level replication factor ki, and rack−level
fault−tolerance is not considered. Let xim ∈ {0, 1} as a
boolean variable representing whether a replica of block i is
placed on machine m. Let Lm =

∑
i∈B pixim denote the

load of machine m based on file popularity. The goal of the
replica placement problem is to minimize the maximum load

Algorithm 1 Local Search Algorithm for BP-Node
loop

m← argmaxl∈M Ll, n← argminl∈M Ll

if ∃ a Move(m, i, n) or a Swap(m, i, n, j) operation that
improves solution quality then

Perform the move
else return
end if

end loop

among all the machines in the cluster. It can be represent as
the following integer linear program (ILP):

minimize
xim

λ

subject to λ ≥
∑

i∈B

pixim ∀m ∈M

∑

i∈B

xim ≤ Cm ∀m ∈M

∑

m∈M

xim = ki ∀i ∈ B

xim ∈ {0, 1} ∀i ∈ B,m ∈M

(BP−Node)

We first prove the following complexity result:

Theorem 1. BP-Node is NP-hard.

Proof: We show that BP−Node can be reduced from the
parallel machine scheduling problem, which is NP−hard. In
the parallel machine scheduling problem, we are given M
identical machines and N tasks, each with running time ti for
1 ≤ i ≤ N . We wish to schedule each task on a machine. let
σm denote the tasks assigned to machine m. The objective of
the problem is find a schedule that minimizes the maximum
makespan

∑
i∈σm′

ti, where m′ = argmax1≤j≤M

∑
i∈σj

ti.
Given a parallel machine scheduling problem, we can

construct an instance of BP−Node as follows: We are given
M identical machines, and n file blocks. Each block has
popularity equal to ti. We also set the replication factor k

to 1 and Cj =
∑

1≤i≤n ti for each machine j. Clearly, the
optimal solution of this problem is exactly the solution of the
parallel machine scheduling problem. Since this problem is
NP−hard, our problem is NP−hard as well.

For BP−Node, we develop an iterative local−search approx−
imation algorithm as represented by Algorithm 1. Starting
with an arbitrary initial placement configuration where all ki
replicas of each block i are placed, the algorithm improves
the quality of the solution in an iterative fashion. Let Ll =∑

i∈B(m) pi denote the load of a machine l ∈ M . In each
iteration, the algorithm identifies the machine with the highest
load m = argmaxl∈M Ll, the machine with the lowest load
n = argminl∈M Ll, and a block i stored on m to execute one
of the following operations:

• Move(m, i, n): Move block i from m to n

• Swap(m, i, n, j): Find another block j stored on n, and
swap i and j.

Let SOL and OPT denote the value of λ produced by
Algorithm 1 and in the optimal solution, respectively. Let
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B(m) denote the blocks on a machine m ∈ M , and let
pmax = maxi∈B pi denote the popularity of the most popular
block in the entire HDFS file system. We can prove the
following technical result:

Theorem 2. SOL ≤ OPT + pmax.

Proof: Consider the machine pair (m,n) where m has
the highest load Lm and n has the lowest load Ln in the
cluster. Without loss of generality, we assume Lm > Ln. We
now consider the operations that either move a block from m

to n, or swap two blocks on m and n. Since at the end of
Algorithm 1 no operation can improve the solution quality,
We can divide the blocks in m into 2 groups:

1) R, which are the blocks owned by both m and n. In this
case, moving a block in R to n reduces its replication
factor by 1.

2) M, which are the blocks owned by m but not by
n. However, replicating them on n increase the total
solution cost.

Since blocks in R are owned by both m and n and each
machine is allowed to have only a single copy of each block,
the blocks in R are already load balanced, i.e. they contribute
the same load on each machine. Therefore, we shall focus
on the operations involving blocks in M. For the block i ∈
M with the highest popularity, (i.e. i ∈ argmaxl∈M pl), if
Move(m, i, n, ) is feasible but not performed, we must have

Lm ≤ Ln + pi. (1)

Otherwise, if Move(m, i, n) is not feasible, then n must have
reached its storage capacity (i.e., n is full). Since m and n both
have same capacity and Lm > Ln, there must exist blocks in
B(n)\B(m) that is owned only by n. To see this, suppose
this is false, i.e. m owns all the blocks n has. Since n is full,
m must be full as well and therefore Lm = Ln must hold.
Since this is not the case, we must have B(n)\B(m) �= {∅}.

Now we further argue that there is at least one block
j ∈ B(n)\B(m) such that pj ≤ pi. The reason that, suppose
all the blocks in B(n)\B(m) have popularity higher than pi.
Since n is full (i.e. contains at least the same number of blocks
as m) and i is the block in M that has the highest popularity
in m, we must have Ln ≥ Lm, which is a contradiction.
Therefore, there must be a block j ∈ B(n)\B(m) such that
pj ≤ pi. In this case, Swap(m, i, n, j) is feasible and reduces
Lm. Since it is not performed by Algorithm 1 after it ends, it
must be case that n becomes the machine with the high load
in the cluster, and it increases the solution cost. Therefore,

Lm ≤ Ln + pi − pj (2)

In either of these two cases (Equation (1) and (2)) we have
Lm ≤ Ln+pi. Since Ln is the machine with the lowest load,
we must have Ln ≤ OPT . Therefore,

SOL = Lm ≤ Ln + pi ≤ OPT + pmax

Since the block with popularity pmax is also scheduled in
a machine in OPT , we must have pmax ≤ OPT , therefore
we can establish the following result:

Algorithm 2 Local Search Algorithm for BP-Rack
loop

for r ∈ R do
mr ← argmaxl∈Mr Ll, nr ← argminl∈Mr Ll

end for
if ∃ a Move(mr, i, nr) or Swap(mr, i, nr, j) for a any rack
r ∈ R, or a RackMove(r,m, i, t, n) or RackSwap(r,m,
i, t, n, j) for any two racks {r, t} ∈ R that improves solution
quality then

Perform the move
else return
end if

end loop

Corollary 3. Algorithm 1 is a 2-approximation algorithm for
BP-Node.

B. Load Balancing with Known Replication Factor

The block placement problem studied in the previous ses−
sion does not consider rack−level fault−tolerance requirement.
In our second case of the block placement problem, we want to
ensure that each block i is replicated at least ki times across ρi
racks. Define yir as a boolean variable that indicates whether
block i has a replica in rack r ∈ R. This variant of the replica
placement problem can be represented as the following ILP:

min
xim,yir

λ

s. t. λ ≥
∑

i∈B

pixim ∀m ∈M

∑

i∈B

xim ≤ Cm ∀m ∈M

∑

m∈M

xim = ki ∀i ∈ B

yir ≥ xim ∀i ∈ B,m ∈Mr∑

r∈R

yir ≥ ρi ∀i ∈ B

xim, yir ∈ {0, 1} ∀i ∈ B,m ∈M

(BP−Rack)

It is easy to see that the problem generalizes the problem
studied in the previous section. To solve this problem, we
introduce two additional operations as follows:

• RackMove(r,m, i, t, n): Move a block i from a machine
m in a rack r to a machine n in a rack t

• RackSwap(r,m, i, t, n, j): Find a block i stored on
machine m in a rack r and a block j stored on n, and
swap these two blocks.

Let SOL and OPT denote the value of λ produced by
Algorithm 1 and in the optimal solution, respectively. We can
prove the following results:

Theorem 4. SOL ≤ OPT + 3pmax.

Proof: Let Rmax and Rmin denote the racks with max−
imum load and minimum load. When Algorithm 2 finishes,
since no Move(m, i, n) or Swap(m, i, n, j) can improve the
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solution cost, each rack must be load−balanced. Specifically,
let mmax denote the machine in Rmax having the highest load
Lmmax

By Theorem 1, we have Lmmax
≤ Lm+pmax for any

machine m ∈ Rmax. Similarly, let nmin denote the machine
in Rmin having the lowest load Lnmin

. By Theorem 1, we
have Ln ≤ Lnmin

+ pmax for any any machine n ∈ Rmin.
We now consider the blocks stored in racks Rmax and

Rmin. If both Rmax and Rmin have the same load, then
all the racks must have the same load, thus by Theorem
1, balancing machine in Rmax already achieves SOL =
Lmmax

≤ OPT + pmax. Therefore, we focus on the case
where rack Rmax has strictly higher load than Rmin, i.e.,∑

i∈Rmax
Li >

∑
i∈Rmin

Li. The blocks stored in rack Rmax

can be divided into 4 groups:

1) R, which are the blocks owned by machines in Rmax

and Rmin, however, each block i ∈ R is replicated in ρi
racks, and each rack Rmax and Rmin only owns a single
copy of the block. In this case, moving the blocks in R
to machines in Rmin reduces their rack−level replication
factors by 1.

2) L, which are the blocks owned by machines in Rmax

and Rmin, each block i ∈ R is replicated in ρi racks.
Machines in Rmax only owns a single copy of the block,
but machines in Rmin owns multiple copies of the block.
Similar to R, moving the blocks in L to machines in
Rmin reduces the rack−level replication factors by 1.

3) P , which are the remaining blocks owned by both Rmax

and Rmin. However, these blocks are freely moveable
from machine in Rmax to machines in Rmin without
reducing their rack−level replication factors.

4) M, which are the blocks owned only by machines in
Rmax but not by machines Rmin.

Since blocks in R are owned by both Rmax and Rmin, and
only a single copy is available in each rack, the blocks in R
are already load balanced across the two racks. Since blocks
in L are not moveable, We shall focus on moving blocks in
P∪M. We first argue that there is at least one block in P∪M.
The reason is that if P ∪ M = {∅}, since blocks in R is
already load balanced, and blocks in L has more copies in rack
Rmin, then Rmin must have higher load than Rmax, which is a
contradiction. Now, let i ∈ argmaxl∈P∪M pl denote the block
with the highest popularity in P ∪M. Let m ∈ Rmax denote
a machine that owns block i. Suppose there exists a machine
n ∈ Rmin that is not full. Since at equilibrium, Move(m, i, n)
is feasible but not performed, we must have

Lm ≤ Ln + pi. (3)

Otherwise, it must be the case that all the machines in Rmin

are full. Let
⋃

j∈R B(j) denote the blocks owned by machines
in rack R. In this case, since

∑
i∈Rmax

Li >
∑

i∈Rmin
Li,

there must exist blocks in
⋃

j∈Rmax
B(j)\

⋃
j∈Rmin

B(j))
that is owned only by machines in rack Rmin. To see this,
suppose this is false, i.e. Rmax owns all the blocks Rmin owns.
Since Rmin is full, Rmax must be full as well and therefore∑

j∈Rmax
Lj =

∑
j∈Rmin

Lj must hold. Since this is not the
case, we must have

⋃
j∈Rmax

B(j)\
⋃

j∈Rmin
B(j)) �= {∅}.

Notice that L also belongs to this group.

Now we further argue that there is at least one
block j owned by a machine in Rack Rmin such that
pj ≤ pi. The reason that, suppose all the block replicas
in

⋃
j∈Rmin

B(j)\
⋃

j∈Rmax
B(j)) have popularity strictly

higher than pi. Since all the machines in Rmin is full (i.e.
contains least the same number of blocks as m) and i is
the block in P ∪ M that has the highest popularity in
m, and rack Rmin has more copies of block in L than
Rmax, we must have

∑
i∈Rmax

Li ≤
∑

i∈Rmin
Li, which

is a contradiction. Therefore, there must exist a block j ∈⋃
j∈Rmin

B(j)\
⋃

j∈Rmax
B(j)) such that pj ≤ pi. In this

case, RackSwap(Rmax,m, i, Rmin, n, j) is feasible and re−
duces Lm. Since it is not performed by Algorithm 2 after it
ends, it must be case that n becomes the node with the high
load in the cluster, and it increases the solution cost. Therefore,

Lm ≤ Ln + pi − pj (4)

In either case (Equation (3) and (4)) we have Lm ≤ Ln + pi.
Since Lnmin

is the machine with the lowest load in rack Rmin,
we must have Lnmin

≤ OPT and therefore

Lmmax
≤ Lm + pmax ≤ Ln + pi + pmax

≤ Lnmin
+ pmax + pi + pmax

≤ Lnmin
+ 3pmax.

Similar to the previous case, since the block with popularity
pmax is also scheduled in a machine in OPT , we must have
pmax ≤ OPT . Therefore we have the following result:

Corollary 5. Algorithm 2 is a 4-approximation algorithm for
the BP-Rack.

C. Replication Factor Aware-Scheduling

In the third case of the block placement problem, we allow
the file system to choose the number of replicas for each block,
as long as the minimum machine−level and rack−level fault−
tolerance requirements for each block are satisfied. Similar
to [10], we assume there is a total replication budget β that
represents that maximum storage capacity for storing and
replication blocks in B, the optimization problem becomes

min
xim,yir

λ

s. t. λ ≥
∑

i∈B

Pi

ki
xim ∀m ∈M

∑

i∈B

xim ≤ Cm ∀m ∈M

∑

m∈M

xim ≥ ki ∀i ∈ B

yir ≥ xim ∀i ∈ B,m ∈Mr∑

r∈R

yir = ρ ∀i ∈ B

ki ≥ klow ∀i ∈ B
∑

i∈B

ki ≤ β

xim, yir ∈ {0, 1} ∀i ∈ B,m ∈M

(BP−Replicate)

To solve BP−Replicate, we first prove the following result:
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Theorem 6. Suppose we replicate each block i ki times, where
ki,i ∈ B is the solution of the following optimization problem:

minimize
ki

ω

subject to ω ≥
Pi

ki
∀i ∈ B

|M | ≥ ki ≥ k̄i ∀i ∈ B
∑

i∈B

ki ≤ β

(Rep−Factor)

The resulting placement after running Algorithm 2 is a 4-
approximation of BP-Replicate.

Proof: Let {k1, k2, ..., k|B|} denote the optimal solution
of the above problem, and let ω denote the cost of the optimal
solution. Furthermore, let k∗i denote the optimal replication
factor of i. It is easy to see that {k∗1 , k

∗
2 , ..., k

∗
|B|} is also a

feasible solution of the optimization problem above. Let ω∗

denote the cost of this solution. Clearly, since ω is the optimal
solution, we must have ω ≤ ω∗. It is clear ω∗ ≤ OPT since
the optimal solution must contain the block with popularity
ω∗. Now consider the solution of Algorithm 2 after setting
replication factor to {k1, k2, ..., k|B|}. Theorem 3 states that

Lmmax
≤ Lnmin

+ 3ω. (5)

Observe that Lnmin
≤ OPT . This is because the total load in

the cluster is precisely
∑

i∈B Pi in both optimal solution and
the solution produced by Algorithm 2. By definition, we must
have OPT ≥ 1

|M |

∑
i∈B Pi and Lnmin

≤ 1
|M |

∑
i∈B Pi since

nmin is the node with the lowest load in the cluster. Combining
these equations, we have Lnmin

≤ OPT . Substituting ω ≤
OPT , we have SOL = Lmmax

≤ OPT + 3OPT = 4OPT .

Now we are left with the problem of solving Rep−Factor.
Algorithm 3 is our solution algorithm. At every iteration, it se−
lects the block with the highest per−replica popularity and tries
to increase its replication factor by 1. If doing so exceeds the
replication budget β, we try to find a block whose replication
factor can be reduced without violating machine−level fault−
tolerance requirement, and reduce the block replication factor
by 1. This algorithms terminates when the maximum per−
block popularity can no longer be reduced without violating
the replication budget. The following results establish its
optimality:

Lemma 7. For any solution to the optimization problem where
constraint

∑
i∈B ki < β is not tight, there exists an equivalent

solution with no higher cost for which
∑

i∈B ki = β.

Proof: If
∑

i∈B ki < β in the optimal solution, we can
replicate any blocks until

∑
i∈B ki = β. Clearly, the cost

of this solution is no greater than the cost of the optimal
solution.

Theorem 8. Algorithm 3 solves Rep-Factor optimally.

Proof: Let i = maxj∈B{
Pj

kj
} produced by Algorithm 3.

Let ki denote the replication factor if i in our solution. In this
case, our solution cost produced by Algorithm 3 is precisely

Algorithm 3 Algorithm for Computing Replication Factor
while done = false do

Find a block i = maxj∈B{
Pj

kj
}

if
∑

j∈B kj < β then
ki ← ki + 1

else if ∃ a block l �= i s. t. kl > klowi and Pl

kl−1 ≤
Pi

ki

then
kl ← kl − 1, ki ← ki + 1

else
done← true

end if
end while

Pi

ki
. Let k∗i denote the replication factor of i in the optimal

solution where
∑

i∈B ki = β. According to Lemma 4, this
solution always exists. Clearly, if k∗i ≤ ki, then Pi

ki
≤ Pi

k∗

i

and
our solution must be optimal. Thus, we concentrate on the
case where k∗i > ki. Since

∑
i∈B ki = β is satisfied, there

must exist another block j such that k∗j < kj . Now, consider
the operation where we increase ki by 1 and decrease j by 1.
This is clearly a feasible move. Since Algorithm 3 does not
perform this move, it must be the case that the solution cost
is increased and therefore Pi

ki
≤ Pj

kj−1 . Using k∗j < kj , we

must have Pi

ki
≤ Pj

kj−1 ≤
Pj

k∗

j

≤ OPT , which implies that our
solution must be the optimal solution.

Combine Theorem 6 and 8, we can see that first solving
Rep−Factor by Algorithm 3 followed by running Algorithm 2
yields a 4−approximation solution for BP−Replicate.

IV. TRADING SOLUTION OPTIMALITY FOR

RECONFIGURATION COST

So far our analysis has been focusing on solution quality.
In practice, moving and swapping blocks can incur a block
movement overhead in terms of bandwidth consumption and
replica availability. To handle this issue, we take advantage of
the fact the local search algorithms allow us to trade solution
optimality for migration cost. Specifically, given a real value
ε > 0, we define a local search operation to be admissible if
it reduces solution cost by at least ε · SOL, where SOL is
the cost of the current solution. In other words, a local search
operation is performed only if it can substantially reduce the
cost the solution. Follow the standard approach (e.g. [16]), We
can show these algorithms terminate in polynomial time and
deliver constant approximation factors:

Theorem 9. If only admissible move or swap operations are
performed in Algorithm 2 and 3, then each of the algorithms
terminates in O( 1

log(1−ε) log
SOL
OPT

) iterations, where SOL and
OPT denote the cost of the initial solution and the optimal
solution respectively. In this case, Algorithm 2 and 3 achieve
approximation factors of 2 + ε and 4 + 3ε respectively.

Proof: The approximation factors of these algorithms can
be proven by adding ε to the right side of equation (1), (2), (3)
and (4). For running time of the algorithms, notice that after
each operation the solution cost is reduced by a factor of 1−ε.
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Figure 2. Architecture of AURORA (To be updated)

Therefore, the number of local search operations performed is
at most log1−ε

SOL
OPT

= 1
log(1−ε) log(

SOL
OPT

).
Thus, we can control the value of ε to achieve a tradeoff

between solution quality and replication overhead. We quantify
this tradeoff experimentally in Section VI.

V. AURORA: A DYNAMIC BLOCK PLACEMENT AND

REPLICATION FRAMEWORK FOR HDFS

While we have proposed algorithms that provide theoretical
performance guarantee for block placement problem, these
algorithms are not directly applicable to dynamic block place−
ment. This is because our algorithms are designed for static
instances of the problem, whereas in reality the blocks can be
created, accessed and deleted over time. Block popularities can
also change dynamically. Therefore, it is necessary to design
a system that can adapt block placement according to system
dynamics, while incurring minimum reconfiguration overhead.

To this end, we designed Aurora, a system for dynamic
block placement in distributed file systems. The design goal
of Aurora is to leverage existing HDFS mechanisms as much
as possible for block placement and replication. The architec−
ture of Aurora is shown in Figure 2. The usage monitor is
responsible for collecting usage statistics of individual blocks.
The block placement controller is responsible for handling
block placements. Periodically, the placement optimizer uses
the statistics information collected by the usage monitor to
optimize the placement of blocks through block migration and
replication.

Similar to existing work [9], [10], the usage monitor in
Aurora determines block popularity by recording the number
of accesses of a block within a sliding time window W (i.e.
the number of recent accesses in W hours). The exact value of
W can be controlled by the operator. While many algorithms
(e.g. ARIMA [11]) may be used to predict file popularity in
future time periods, we found using the historical value is

Algorithm 4 Algorithm for Initial Block Placement
if block i is written by a task then

replicate i on local machine
else

replicate i on machine with lowest load in the rack with the
lowest total load

end if
for j = 2 to ρi do

replicate i on machine with lowest load in the jth rack with the
lowest total load

end for
for j = ρi + 1 to k do

replicate i on the jth machine with lowest load among the top
ρi racks with the lowest total load

end for

Algorithm 5 Algorithm for Optimizing Block Replication
At beginning of a time period t:
l← K
while ∃ a replication move for under replicated block i identified
by Algorithm 3 between machine m and n and l > 0 do

copy block i from m to n, l← l − 1
end while
while ∃ an admissible Move(mr, i, nr) or Swap(mr, i, nr, j) for
a rack r ∈ R, or a RackMove(r,m, i, t, n) or RackSwap(r,m,
i, t, n, j) for two racks {r, t} ∈ R do

Perform the move
end while

sufficient to produce high quality solutions for the dynamic
block placement problem.

As represented by Algorithm 4, the block placement con−
troller handles the initial block placement using a greedy
approach. Given a block i with node−level replication factor
ki and rack−level replication factor ρi, if the block is written
by a task, then first replica is written to the local machine
that runs the task. Otherwise, it is written to the machine with
lowest load in the rack with the lowest total load. The next
ρi−1 replicas are written to machines in the next ρi−1 racks
with the lowest total load. The remaining replicas are written
among the machines in the ρi− 1 racks in ascending order of
machine load.

The placement optimizer is responsible for optimizing the
placement of blocks periodically. As described by Algorithm
5, at a beginning of a period, the optimizer examines the
block popularity provided by the usage monitor. Based on
this information, the placement optimizer replicates blocks
according to Algorithm 3, and attempt to balance the load
across the machines. To reduce the replication overhead, we
can limit the maximum number of iterations in Algorithm 3
to a constant K, which is a tunable parameter. The replication
overhead can be further reduced using techniques such as
compression [10], or use remote map tasks to facilitate block
replication by writing remote blocks to local machine once
they are read [9].

Lastly, deletion of local block replicas is done lazily when
disk space is needed. This reduces the disk overhead while
allowing Aurora to reclaim the block if the replication factor
needs to be increased again.

In summary, Aurora dynamically adjusts block replication
factor based block access statistics. When a block needs to be
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Figure 3. Evaluation for Case 1 of the Block Placement Problem
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Figure 4. Evaluation for Case 2 of the Block Placement Problem
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Figure 5. Evaluation for Case 3 of the Block Placement Problem

written to HDFS, Aurora minimizes the initial block place−
ment cost. It also optimizes the block placement periodically.
Finally, it is evident that if the block usage pattern become
stable, over time Aurora will eventually converge to a near
optimal solution, as indicated by Theorem 9.

VI. EXPERIMENTS

We have evaluated the performance of Aurora using both
trace−based simulations and real deployment in a 10−node
Hadoop testbed. Trace−based simulations allow us to study the
effectiveness of Aurora at production scale, whereas testbed
deployment allows us to evaluate the performance of Aurora
in terms of job completion time and overhead associated
with dynamic block movements (i.e. block migration and
replication).

A. Trace-based Simulations

We performed traced−based simulation using workload
traces provided by Yahoo! [6]. We simulated a cluster of 845
machines distributed over 13 racks. Each rack is identical and
contains 65 machines. In our experiment, the mean number of
blocks per file is set to 8, and each block is replicated 3 times.
In our simulations, each machine has sufficient resources for
scheduling 14 tasks simultaneously. For our simulations, we
have implemented the random placement algorithm used by
the current HDFS, as well as Aurora described in Section V.
In our experiments, we set the reconfiguration period to 1
hour, K = 20000 and W = 2. For comparison purpose, we
have also implemented Scarlett [10], which is one of the most
well−known block replication schemes found in the literature.
The main difference between Scarlett and Aurora is that
Scarlett is only designed for block replication, and does not
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Figure 6. Result of the Testbed Experiment

consider initial block placement and dynamic load balancing.
Furthermore, it proposes two heuristics, priority and round
robin, for computing block replication factors. We compare
Aurora with priority, which achieves better performance than
round robin in experiments.

We first evaluated the performance of our algorithms for all
3 cases studied in Section III. In the first two cases where no
replication is involved, we compare Aurora with the random
block placement policy in HDFS using different values of ε. In
the last case, we compare Aurora with Scarlett using different
values of ε. The results for the first two cases are shown in
Figure 3 and 4 respectively. In the first case where replication
factor is set to 3 and rack−level reliability is not considered,
we found Aurora can reduce the number of remote tasks by up
to 12.5% when ε = 0.1, as shown in Figure 3(a). The benefit
mainly comes from the even distribution of machine load, as
shown in Figure 3(b). Figure 3(c) shows the average number
of block movements in the cluster. It is evident that ε provides
a means to balance the trade−off between load balancing and
block movement overhead. Clearly, Aurora achieves a good
load balancing when ε ≤ 0.6, at the cost of high block
movement overhead. We can reduce the block movement
overhead by increasing ε to 0.8. However, in this case the
gain in load balancing drops significantly. Such high block
movement overhead is also reported in [10], which shows that
the block movement overhead can increase network traffic by
up to 24%. However, using appropriate compression schemes
can reduce the network traffic due to block movement by 27×,
making the overhead acceptable. Similarly, if compression
scheme is used, the amount of network traffic generated by
block movement can drop to 0.6 block per machine per hour,
which becomes reasonable.

We repeated the same experiment for the second case where
rack−level reliability is considered. Our evaluation results are
shown in Figure 4. Similar to the first case, we found setting
ε = 0.7 provides a decent tradeoff between load balancing and
block movement overhead. In this case, Aurora improves data
locality by 8%, while achieving a block movement overhead
of 0.5 block per machine per hour if compression is used.

From the first two experiments, it seems that achieving good
load balancing in Aurora incurs a high overhead. However, this
is no longer the case when dynamic replication is used. In our
last experiment, we compare the performance of Aurora with

Scarlett. We set our replication budget β to 70000 additional
blocks. The results are shown in Figure 5. Comparing Figure
5(a) and 4(a), we first notice that Scarlett already delivers
substantial improvement (12600 remote tasks versus 6500
remote tasks per hour) in terms of reducing the number of
remote tasks. At the same time, Aurora still performs better
than Scarlett. In all cases, Aurora can further reduce the
number of remote tasks by 26.9%, as shown in Figure 5(a).
Figure 5(b) shows that Aurora achieves almost perfect load
balancing. In terms of block movements, we find that we can
find a good trade−off set ε to values close to 1, which incurs a
block movement overhead of 0.41 block per machine per hour
if compression is used.

B. Testbed Evaluation

We have also implemented Aurora in Hadoop 2.5.2 and
deployed it in our Hadoop Cluster that consists of 10 nodes,
each with 4 virtual CPUs, 8 GB RAM and 320 GB disk space.
The implementation of Aurora in HDFS is straightforward.
The current HDFS already provides the API to control the
number of replicas of each block at run−time. Thus, our main
goal was to implement a load−aware block placement policy.
We modified the BlockMap in HDFS so that it records the
popularity of individual blocks. Based on that, the namenode
determines the load of each machine, and use this information
to replicate blocks. Finally, we implemented the load balancing
module based on the existing balancer provided by Hadoop.
Different from our load balancer, the existing load balancer
only moves blocks to balance the disk usage across machines.
Therefore, our load balancer is more powerful than the existing
load balancer because we are able to consider both disk usage
and block popularity through the use of move and swap
operations.

The workload we used for our evaluation is generated using
the Statistical Workload Injector for MapReduce (SWIM) [7].
The SWIM Workload repository contains workload traces
from Facebook for a 600−node MapReduce cluster. In our
experiment, we used SWIM to scale−down the workload so
it runs in our testbed. We evaluated the performance of all
3 systems: Default HDFS, Scarlett and Aurora. We used the
capacity scheduler for Hadoop Yarn MapReduce [8] for all
three systems. In our experiment, we set ε = 0.8 as suggested
by our simulations. Figure 6(a) shows the percentage of local
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tasks achieved with each system. It is evident that Aurora
achieves higher task locality compared to both HDFS and
Scarlett. Figure 6(b) shows the speedup improvement com−
pared to Scarlett. For each job in the workload, the speedup
improvement is determined as the ratio between the reduction
in running time and job running time using Scarlett. We
find Aurora achieves an average speedup factor of 15% and
outperforms Scarlett by up to 8%. We believe this gain will
be higher if larger clusters are used, as data locality tends
to decrease as the number of machines increases. Figure 6(c)
shows the average block movement duration as reported by
HDFS. We observe that most of block movements take less
than 10 seconds to complete, which is small considering
reconfiguration is performed once every hour. Finally, the
average number of replication performed is 96 blocks per hour
and the number of block movement involved is 10 blocks per
hour, which is acceptable even when compression is not used.

VII. RELATED WORK

To cope with skewed distribution of file popularity, many
techniques have been proposed in the literature. For instance,
CDRM [19] is a system that computes block availability
and block probability and use this information to guide the
placement of blocks. DARE [9] replicates popular blocks
with a probably p after each read access. Unpopular blocks
are evicted according to a least−recently used (LRU) policy.
However, DARE does not consider the placement of blocks
in the system. Scarlett [10] is a system that replicates blocks
dynamically based on load distribution. Compare to Scarlett,
our algorithms require less input parameters, yet computes
the optimal replication factors for each block. While Scarlett
provides a simple heuristic for block placement, it is designed
primarily for block replication, whereas in our work we design
placement algorithms for all common usage scenarios.

Many recent studies have also applied coding theory to
achieve high file availability [15]. While these techniques can
achieve high storage efficiency and fault−tolerance, they are
mainly used for long−term storage, and are often inefficient
for parallel processing due to the overhead of decoding files.
Finally, file placement problems have also been studied in
area of Grid computing (e.g. [18]). However, the problem
context they considered is different. For instance, rack−level
fault tolerance is not considered in these studies.

VIII. CONCLUSION

With the rising popularity of big−data analytics in recent
years, designing high performance yet fault−tolerant file stor−
age have become a critical challenge. In particular, the naïve
block replication schemes implemented in existing systems
have not taken data popularity into consideration, which often
leads to uneven load distribution across machines. While many
heuristics have been proposed for this problem, these heuristics
have not studied the placement of blocks in the cluster in order
to balance the load across machines, while satisfying machine−
level and rack−level reliability requirements.

In this paper, we study the dynamic block replication
problem with the goal of balancing the load of individual

machines while ensuring machine and rack−level reliability
requirements are met. Since the optimal block placement
problem is NP−hard, we proposed several constant−factor
local search approximation algorithms that are adaptive to
dynamic conditions, yet simple for implementation. To this
end, We present Aurora, a dynamic block distribution mecha−
nism that implements these algorithms in Hadoop Distributed
File System with minimal overhead. Through experiments
using real workload traces from Yahoo! and Facebook, we
show our approach outperforms existing solutions in terms
of load distribution, while ensuring reliability requirements
are satisfied. In the future, we are interested in implementing
techniques such as replication on read [9] and compression
[10] for dynamic block replication.
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