
Virtual Network Embedding in
Software-Defined Networks

Leonardo Richter Bays, Luciano Paschoal Gaspary
Institute of Informatics – Federal University of Rio Grande do Sul (UFRGS)

{lrbays,paschoal}@inf.ufrgs.br
Reaz Ahmed, Raouf Boutaba

David R. Cheriton School of Computer Science – University of Waterloo
{r5ahmed,rboutaba}@uwaterloo.ca

Abstract—Research on network virtualization has been active
for a number of years, during which a number of virtual net-
work embedding (VNE) approaches have been proposed. These
approaches, however, neglect important operational requirements
imposed by the underlying virtualization platforms. In the case
of SDN/OpenFlow-based virtualization, a crucial example of an
operational requirement is the availability of enough memory
space for storing flow rules in OpenFlow devices. In this paper, we
advocate that VNE must be performed with some knowledge of
the underlying physical networks, otherwise the deployment may
suffer from unpredictable or even unsatisfactory performance.
Considering SDN/OpenFlow-based physical networks as an im-
portant virtualization scenario, we propose an approach based
on VNE and OpenFlow coordination for proper deployment
of virtual networks (VNs). The proposed approach unfolds in
the following main contributions: (i) a virtual infrastructure
abstraction that allows a service provider to represent the details
of his/her VN requirements in a comprehensive manner; (ii) a
privacy-aware compiler that is able to preprocess this detailed
VN request in order to obfuscate sensitive information and derive
computable operational requirements; and (iii) a model for em-
bedding requested VNs ensuring their feasibility at the physical
level. The results obtained through our evaluation demonstrate
that taking such operational requirements into account, as well as
accurately assessing them, is of paramount importance to ensure
the correct behavior of VNs hosted on top of the virtualization
platform.

I. INTRODUCTION

Research on network virtualization has been active for a
number of years. During this period, several approaches for
embedding VNs on top of physical infrastructures have been
proposed [1]–[6]. Most approaches consider a similar set of
VN requirements, such as CPU, memory, and bandwidth guar-
antees, as well as location constraints. Some approaches take
into account additional aspects such as virtual router image
transfer and instantiation overheads, network survivability, or
communication security. In contrast, relevant operational re-
quirements related to the instantiation of VNs on different vir-
tualization platforms are neglected. This simplification enables
the streamlining of the optimization models and heuristics used
in these approaches. Moreover, it renders them generic enough
to be applied to a number of different scenarios. However,
by not taking into account operational requirements of the
underlying virtualization platforms, the mappings produced by
these VNE approaches may (a) not be feasible in practice,
(b) be unable to properly fulfill SLA requirements, or (c) fail
to use infrastructure resources in an efficient manner. In this
work, we focus on ensuring the feasibility of VNE mappings
on a multi-tenant, SDN/OpenFlow-based network environment
so as not to put at risk satisfactory performance and/or network
predictability of embedded VNs.

Software-Defined Networking (SDN) offers a promising
platform for network virtualization. In addition to slicing phys-
ical resources among customers [7]–[12], SDN-based environ-
ments provide abstractions that allow different virtualization

functionality, including the instantiation of arbitrary virtual
topologies [8]–[12] and the use of overlapping address spaces
[10]–[12]. In the case of SDN/OpenFlow-based virtualization,
a crucial example of an operational requirement that may ren-
der VNE-provided mappings inadequate in real environments
is the unavailability of enough memory space for storing flow
rules in OpenFlow devices. If this critical issue is not taken
into account by the VNE algorithm, OpenFlow devices may
not be able to accommodate all flow rules required by the vir-
tual routers assigned to them. As a consequence, these devices
would need to frequently contact the controller in order to
handle incoming packets. High rates of controller intervention,
in turn, could hinder network performance predictability and
potentially render the multi-tenant environment unstable.

Figure 1 depicts an example of mappings that would be
considered valid by a standard VNE approach but could
ultimately lead to performance issues in practice. In this
example, three VN requests (VN1–3) are embedded on top of
a physical network. In this example, physical routers support
up to 4,000 flow rules each, while routers in each VN request
require either 2,000 or 3,000 flow rules to be installed on the
physical routers hosting them. Moreover, a number of flow
rules must also be installed on “auxiliary routers” – i.e., routers
that are not part of the VN request directly, but are necessary
in order to create physical paths to host virtual links between
such routers. As one can observe, the computed mappings
exceed the capacity of some of the physical routers – namely,
PR2 (which is hosting virtual routers B and D), PR4 (hosting
virtual router F and an auxiliary router in the path between
virtual routers B and C), and PR5 (hosting virtual routers E
and H).

Fig. 1. Example of mappings generated by a standard VNE approach that
exceed the flow table capacity of physical devices.

The example illustrated above not only underscores that
VNE must be performed with some knowledge of the under-
lying physical networks but also sheds light to the importance978-1-4799-0913-1/14/$31.00 c© 2014 IEEE

of going further in terms of expressing what a VN needs from
the physical network. Applications running on top of VNs
have distinct traffic patterns and are often subject to different
policies or network functions (e.g., load balancing, access
control, or deep packet inspection). The specification of the
expected behavior of a VN, translated into an estimate of flow
table usage and communicated to the infrastructure provider,
would potentially lead to both a more accurate orchestration
of VN embeddings and, ultimately, an overall better quality
of service.

In this paper, we propose a VNE approach that is aware of
operational requirements related to the instantiation of VNs
on top of an SDN/OpenFlow environment. The central idea of
the proposed approach is the specification, by VN requesters,
of VN requests enriched with information about how (to be)
provisioned networks will be used (e.g., important application
flows, network functions/policies to which packets will be
subjected to, etc.). These VN specifications are then used to
derive operational requirements, still at the customer’s end.
The resulting specifications – reflecting requesters willingness
(or not) to disclose information about the VNs – are sent to
the InP, which will ultimately correctly embed the requested
VNs favoring incoming requests with well defined operational
requirements. We consider a number of pieces of information
that, if known in advance by the InP, can lead to improved allo-
cation of network resources and, in turn, to improved network
utilization. The main contributions of this paper are threefold:
(i) an abstraction model for expressing requirements related
to internal VN policies and traffic patterns; (ii) a strategy
for accurately deriving the number of flow rules needed to
instantiate VNs based on the aforementioned requirements;
and (iii) a VNE method that leverages this information in
order to correctly and efficiently allocate resources in an
SDN/OpenFlow-based virtualization environment.

The remainder of this paper is organized as follows. In
Section II we discuss existing VNE approaches. In Section
III we introduce our proposed solution and describe its main
elements. In Section IV we describe the evaluation we carried
out and present and discuss the obtained results. Last, in
Section V we present final remarks and perspectives for future
work.

II. RELATED WORK

In this section, we discuss previous work in the area
of virtual network embedding, focusing on the constraints
considered in each approach.

Yu et al. [1] present a heuristic-based VNE approach. The
algorithm embeds virtual routers and links in separate phases,
and prioritizes VNs with largest revenue. This approach takes
into account CPU and location constraints for routers, and
bandwidth constraints for links.

Chowdhury et al. [2] propose two optimization models, one
being a relaxed version of the other. Routers and links are
embedded in distinct phases; however, improved coordination
between these phases is achieved by preselecting router map-
pings taking into account their location constraints in order to
facilitate link mapping. Similarly to the work of Yu et al.,
CPU, location, and bandwidth requirements are considered
by the proposed optimization models. Moreover, link delay is
used to determine how far a virtual router may be embedded
from its preferred location.

Cheng et al. [3] introduce the concept of “node ranking”,
in which virtual and physical nodes are ranked according
to their own capacity and the capacities of their neighbors.
Two embedding algorithms are proposed, one mapping routers
and links in distinct stages while the other performs both
simultaneously. The algorithms take into account CPU and
bandwidth constraints but do not include location constraints.

Alkmim et al. [4] present two VNE approaches based
on optimization models. One employs a traditional Integer
Linear Programming (ILP) model, while the other employs
a relaxation technique in order to reduce running times. The
authors focus on constraints related to overheads incurred
when transferring and instantiating virtual router software
images. As such, in addition to CPU, location, bandwidth, and
link delay, the size of virtual router images (and the memory
needed to support them), the locations in which they are stored,
and the time needed to transfer and instantiate them are also
taken into account.

Bays et al. [5] propose both an optimization model and a
heuristic algorithm for virtual network embedding focusing
on privacy. Both approaches take into account throughput
capacity and location requirements of routers as well as
link bandwidth. Additionally, a number of security related
constraints are considered, namely which physical routers
are capable of supporting the necessary security protocols,
overheads associated with cryptographic operations, and which
VNs may not share physical resources.

Last, Demirci et al. [6] focus on embedding VNs on
top of an SDN substrate. More specifically, the issue of
controller placement is tackled in addition to virtual router
and link mapping. The authors devise two different embedding
strategies. The first one aims at balancing the load on physical
elements, while the other aims at minimizing communication
delay between virtual routers and controllers. The authors con-
sider bandwidth capacity constraints, in addition to controller
location requirements. Embedding is performed in an offline
manner, assuming all requests are known in advance.

As highlighted in this section, previous work in the area
of VNE does not take into account operational requirements
related to the instantiation of VNs on top of SDN/OpenFlow
substrates. Although the work of Demirci et al. [6] is more
closely aligned to the approach proposed in this paper, the
authors do not take into account hard capacity constraints of
SDN routers, only attempting to minimize overall resource
usage. As previously explained, this may lead these approaches
to generate mappings that are ultimately impossible to in-
stantiate in practice. Moreover, we are not aware of previous
attempts to enable customers to represent the needs of their
VNs in a level of detail they are comfortable with while
simultaneously allowing infrastructure providers to leverage a
“distilled” version of this information to ensure no operational
constraints are broken.

III. PROPOSED SOLUTION

Next, we present our proposed solution for coordinating
VNE and SDN infrastructures. First, we briefly explain the
characteristics of SDN environments considered in this paper
and provide an overview of our proposal. Right after, we detail
each of its main components.

A. Multi-tenant Infrastructure Model and Network Virtualiza-
tion Paradigm Considered

The approach proposed in this paper targets an
SDN/OpenFlow-based network environment in which a
number of customers (service providers) request and, if
possible, are granted virtual infrastructures. More specifically,
we focus on correctly provisioning the VNs that interconnect
the elements of these infrastructures.

An example of a multi-tenant network virtualization envi-
ronment is depicted in Figure 2. VN requests are received
by the infrastructure provider and processed by a VN embed-
der. Accepted VN requests are ultimately instantiated on top
of the physical infrastructure through a network hypervisor,
following the mappings produced by the VN embedder. The
controller associated with each VN (represented as black boxes

with the letter C in the figure), in turn, is hosted within a virtual
machine, and communication channels are established between
it and the network hypervisor. The hypervisor intermediates
flow rule instantiation and monitoring actions sent by VN
controllers in order to enforce properties such as isolation at
the physical level.

Fig. 2. Multi-tenant OpenFlow/SDN-based network virtualization model
considered in this paper.

In recent years, a number of architectures for enabling
network virtualization on top of OpenFlow-based SDNs have
been proposed. These architectures have evolved from simpler
hardware-based flow table slicing to more complex flow level
virtualization. While the former achieves better performance,
the latter allows a significantly higher degree of flexibility.
As an example of such flexibility, recent flow level virtualiza-
tion approaches [10]–[12] enable tenants to request arbitrary
topologies that are not restricted to a subset of the physical
network (topology virtualization) as well as to use overlapping
address spaces (address space virtualization).

In this work, we consider an SDN virtualization platform
capable of providing the aforementioned features, such as
OpenVirteX [12]. However, it is worth mentioning that our
VNE/SDN coordination approach may be adapted to interface
with other virtualization platforms, even ones that do not fol-
low the flow-level virtualization model. Moreover, we focus on
VN embedding (i.e., not including host embedding), assuming
end hosts are located on the premises of the customer.

B. Overview of our Proposed VNE and SDN Coordination
Approach

As previously explained, VN mappings generated by stan-
dard VNE algorithms may violate operational requirements
when an infrastructure provider attempts to instantiate the
requested VNs on a real physical substrate. In order for the
VNE algorithm to take such requirements into account, they
would have to be part of the VN request provided by the
customer. However, we believe it is unreasonable to expect
customers to be aware of operational requirements that affect
the environment on a physical level. Moreover, customers may
be averse to disclosing too much information regarding the
internal behavior of their network. Therefore, the main goals
of our approach are to: (i) allow the customer to represent the
needs of his/her VN in a detailed manner; (ii) preprocess this
detailed representation, removing sensitive information and de-
riving data regarding the operational requirements associated
with this particular request; and (iii) embed the requested VNs
ensuring both feasibility and adequate performance by making
use of this “distilled” information.

Figure 3 depicts the components of our proposed approach.
The customer first creates a Tenant Infrastructure Graph (TIG),
which represents not only virtual routers and links (and their
capacity requirements) but also elements (such as hosts and
end users) connected to the network, the traffic patterns among
them, and the network functions that will be applied to each

traffic flow. As some of this information may be considered
sensitive by the customer, the TIG is preprocessed by a
Privacy-aware Compiler running on the customer’s premises.
This Privacy-aware Compiler allows customers to only reveal
as much information about their networks as they want,
while still generating an enhanced VN request that aids the
VNE process in order to ensure feasible, high-quality VN
deployments. The preprocessed request is then sent to the
InP, which makes use of our SDN/OpenFlow-aware Embedder
in order to properly embed and deploy (although the latter
is out of the scope of this paper) the customer’s network.
The main elements of our proposal – Tenant Infrastructure
Graphs, the Privacy-aware Compiler, and the SDN/OpenFlow-
aware Embedder – will be further explained in the following
subsections.

Fig. 3. Overview of our proposed approach, depicting its main elements and
the information flow between them.

C. Specification of Infrastructure Resources
We now proceed to a detailed explanation of the process

that is carried out on the customer’s end in order to request a
VN.

1) Tenant Infrastructure Graph (TIG) – A Detailed Abstrac-
tion of a Virtual Network and its Communication Patterns:
The TIG enables customers to represent the needs of their
requested VNs with a high level of detail. In addition to the
information contained in a standard VN request (e.g., network
topology and capacity and location requirements), a TIG
also represents: (i) elements such as end hosts (represented
as network prefixes or individual addresses) connected to
the network; (ii) the communication patterns among such
elements; and (iii) network functions/policies each commu-
nication pattern must be subjected to.

Figure 4 depicts an example of a TIG. Each cloud represents
a group of application servers executing a common task (e.g.,
within the same tier). Globes represent groups of external users
(e.g., network administrators or end users accessing applica-
tions running on the customer’s premises through the to be
deployed VN). Each of these elements has some information
associated to it – namely, the number of instances of each
group of application instances and the number of network
prefixes of each group of external users. Last, circles in the
graph represent virtual routers, and colored edges represent
communication patterns (i.e., traffic flows) among network
elements.

Each group of edges represented with the same color
and style in Figure 4 denotes a distinct traffic flow. As an
example, the solid edges represented in blue interconnect
end users to externally accessible applications running on the
customer’s premises (e.g., the front-end of a two-tier web
application), while the dotted green edges interconnect the
front-end to the application database back-end. Dashed red
edges interconnect databases running in different locations
for synchronization/replication purposes, while the dashed and
dotted yellow pattern provides an administrator access to all
applications.

In addition to forwarding packets, routers may need to
perform other functions specific to each traffic flow. Some
of these functions – Load Balancing (LB), Quality of Service
(QoS), and Access Control (AC) – are represented in Figure
4. In order to discriminate between different network flows

instances

instances # instances

instances

hosts
or netmasks

hosts
or netmasks

LB

10 Gbps
10

 G
bp

s

10 Gbps

5 Gbps
10 Gbps

5 Gbps10 Gbps

10 Gbps 5 Gbps

15 Gbps
Location B

20 Gbps
Location A

15 Gbps
Location C

LB, QoS(3)

AC

AC

LB, QoS(3)

AC

AC

Fig. 4. Tenant Infrastructure Graph representing elements connected to a VN
and the communication patterns among them.

and apply the appropriate functions to each, routers use a
number of packet header fields (or combinations of fields1).
In order to apply load balancing, for example, both the source
and destination of a packet should be taken into account. For
the purpose of QoS, in turn, the Differentiated Services Code
Point (DSCP) header field may be used. The TIG represents
these (combinations of) fields as sets of Traffic Discriminators
(TDs). Moreover, each TD contains a number of entries – i.e.,
the number of different values a given (combination of) header
field(s) may be set to. In the aforementioned QoS example, the
DSCP field may be set to a value between 0 and 63. Therefore,
the number of entries in a traffic discriminator that uses this
field may be anywhere between 2 (if only two different QoS
classes are used) and 64 (if all possible classes are used).

Through the information represented in this graph, it is pos-
sible to accurately derive the number of flow rules each router
in a VN will need in order to ensure its correct and optimal
operation. Moreover, as shown in Figure 4, standard VNE
constraints (router throughput, link bandwidth, and location
requirements) are also represented in a TIG.

2) Privacy-aware Compiler: While a TIG enables the
representation of operational constraints associated with the
instantiation of each VN on the physical infrastructure of an
InP, it also exposes information that the customer may consider
sensitive. Therefore, TIGs are expected to be preprocessed by
a Privacy-aware Compiler on the customer’s end before being
sent to an InP.

As previously mentioned, the TIG represents distinct com-
munication patterns within elements of the requested VN. A
number of flow rules will ultimately need to be installed on
each router in order to ensure the correct operation of each
traffic flow. The number of necessary flow rules depends on
a number of pieces of information, namely: (i) the number
of network applications and/or network prefixes of external
users associated with each flow; (ii) the number of traffic
discriminators associated with each router for handling each
network flow; and (iii) the number of entries of each traffic
discriminator.

The left side of Figure 5 shows an example TIG populated
with numerical values. The communication pattern represented
in solid blue interconnects a number of users (comprising 100
network masks) to a number of applications through the cus-
tomer’s VN hosted on the physical infrastructure of the InP (10
app instances connected to virtual router b and 10 connected
to router c). The dotted green patterns interconnect each group

1The source or destination of a packet, for example, may be composed of
a combination of the IP address, MAC address, network protocol, and port
fields.

of 10 application instances to a group of 5 database servers.
The dashed red pattern, in turn, interconnects both groups of
database (server) instances. Last, the dashed and dotted yellow
pattern interconnects all network services to a specific external
network mask (used by a network administrator to manage all
network services).

6210

62104060

Type 2 VN Request

Type 1 VN Request

Tenant Infrastructure Graph (TIG)
10 5

10

5

100

1 Src, Dst, 3

Src, Dst

Src, Dst

Src, Dst, 3

Src, Dst

Src, Dst

Src, Dst

a c

b

Src, DstSrc, Dst

Src, Dst

Fig. 5. Possible outputs of the Privacy-aware Compiler for a given TIG.

If no network functions need to be applied to a particular
communication pattern, its flow table requirements are cal-
culated by adding up the total number of source-destination
pairs (including all applications and network masks) that are
part of this traffic. The pattern represented in dashed and
dotted yellow on the TIG shown in Figure 5 interconnects a
single external user (or network mask) to all (30) applications
running within the network, adding up to a total of 60 source-
destination pairs (considering both directions of each possible
communication flow). Therefore, this flow requires a total of
60 rules on each router it traverses (a, b, and c). This is also
the case for the flow represented in solid blue when traversing
router a. This flow interconnects 100 external network prefixes
to 20 network applications, which – accounting for all possible
combinations in both directions – adds up to a total of 4,000
source-destination pairs (and, therefore, 4,000 rules to be
installed in a). If additional traffic discriminators are used,
they enter the calculation as multiplying factors – the number
of flow rules is multiplied by the number of entries in each
discriminator. As an example, if the DSCP field is used as
a discriminator with 3 possible QoS values (i.e., 3 different
traffic classes), the number of flow rules is multiplied by 3.
In the example shown in Figure 5, packets that belong to the
solid blue communication pattern traversing routers b and c
are subjected to this traffic discriminator. Therefore, the total
number of source-destination pairs (2,000) connected (directly
or indirectly) to each of these routers is multiplied by the
number of entries in the respective traffic discriminator (3),
adding up to a total of 6,000 flow rules to be installed on
routers b and c.

After being processed, the TIG is compiled into a VN
request which will be shared with the InP. This request
may contain more or less information according to what the
customer is willing to reveal. The right side of Figure 5 shows
the two different types of requests we consider. A “type 1”
request is equivalent to a standard VN request. A “type 2”
request, in contrast, includes the accurate number of flow
rules required by each router. While not represented in this
figure, standard VN requirements – namely, the throughput
capacity of routers, bandwidth capacity of links, and location
constraints – are also considered for both types. We envision
that a larger gradient of VN request types could be considered.
As an example, an intermediate level between our “type 1”
and “type 2” requests could contain estimates for flow table
requirements rather than exact values. We intend to further
explore this aspect in future work.

D. SDN/OpenFlow-aware Embedder

The SDN/OpenFlow-aware Embedder is run by the InP,
receiving VN requests that have been preprocessed by the
Privacy-aware Compiler and embedding them on a physical
substrate. It has been modeled as an Integer Linear Program
(ILP), and its formulation is presented next. Before presenting
our model, we introduce the syntax for our formulation.
Capital letters represent sets or variables, and superscripts
denote whether a given set or variable refers to physical (P) or
virtual (V) entities, or to routers (R) or links (L). Moreover,
subscript letters represent indices associated to variables or
paths.

Topologies: The topology of each VN request, as well as
that of the physical network, are represented as a directed
graph N = (R,L). Bidirectional links are represented by pairs
of edges in opposite directions. Each virtual router is mapped
to a single physical router, while virtual links may be mapped
to either a physical link or a substrate path.

Physical and Virtual Capacities: The capacity of physical
routers is measured in terms of throughput. The capacity of a
physical router i is expressed as TP

i . Likewise, TV
r,i denotes the

throughput required by virtual router i from VN r. Likewise,
the bandwidth capacity of a physical link (i, j) is represented
as BP

i,j , and the bandwidth requirement of a virtual link (k, l)
from VN r is represented as BV

r,k,l.
Locations: All physical routers are associated with a lo-

cation identifier – an integer number stored in set SP . This
enables customers to demand some of their virtual routers to
be instantiated in specific geographic locations. If a virtual
router has a location requirement, it is stored in set SV .

Flow Table Usage: As previously explained, the flow table
requirements of VN requests are calculated by the Privacy-
aware Compiler based on a given TIG and added to the
generated request. The flow table capacity of a physical router
is divided in two – one part (the majority of the available
flow table space) will be used for requests with specific flow
table requirements (type 2), while the remaining capacity will
be used for type 1 requests. The flow table capacity of a
physical router i reserved for type 2 requests is represented
as FP

i , while the remaining capacity reserved for type 1
requests is represented as FP

i . As for virtual routers, those that
belong to type 2 VN requests have their flow table requirement
represented as FV

r,j , while the estimated flow table requirement
for type 1 requests is represented as FV

r,j .
Previous Mappings: As VN requests are handled in an on-

line manner, the mappings of previously embedded VNs must
be taken into account and preserved while processing new
incoming requests. Mappings of previously embedded routers
and links are stored in sets ER

i,r,j and EL
i,j,r,k,l, respectively.

The variables of the ILP model indicate the optimal place-
ment of routers and links on the substrate.

• AR
i,r,j ∈ {0, 1} – Router allocation, indicates whether

virtual router j from VN r is embedded on physical router
i.

• AL
i,j,r,k,l ∈ {0, 1} – Link allocation, indicates whether

virtual link (k, l) from VN r is embedded on physical
link (i, j)

Next, we present the objective function of our
SDN/OpenFlow-aware Embedder and its constraint sets
(C1–C9). The objective function aims at minimizing overall
flow table occupation – i.e., the aggregated number of flow
table entries needed to instantiate incoming VN requests. The
calculation of flow table usage will be presented in further
detail after all constraint sets are listed and explained.

Objective:

Minimize
∑

(i,j)∈LP ,r∈NV ,(k,l)∈LV

(min(FV
r,k

,FV
r,l

) +min(FV
r,k

,FV
r,l

))A
L
i,j,r,k,l(1−AR

i,r,k)

2

+
∑

i∈RP ,r∈NV ,k∈RV

(FV
r,k + FV

r,k)A
R
i,r,k

Subject to:∑
j∈RP ,r∈NV ,(k,l)∈LV

min(TV
r,k

,TV
r,l

) A
L
i,j,r,k,l(1−AR

i,r,k)

2

+
∑

r∈NV ,k∈RV

TV
r,kA

R
i,r,k ≤ TP

i

∀i ∈ RP (C1)∑
r∈NV ,(k,l)∈LV

BV
r,k,lA

L
i,j,r,k,l ≤ BP

i,j ∀(i, j) ∈ LP (C2)

∑
j∈RV

AR
i,r,j ≤ 1 ∀i ∈ RP , r ∈ NV (C3)

∑
j∈RP ,r∈NV ,(k,l)∈LV

min(FV
r,k

,FV
r,l

) A
L
i,j,r,k,l(1−AR

i,r,k)

2

+
∑

r∈NV ,k∈RV

FV
r,kA

R
i,r,k ≤ FP

i

∀i ∈ RP (C4)∑
j∈RP ,r∈NV ,(k,l)∈LV

min(FV
r,k

,FV
r,l

) A
L
i,j,r,k,l(1−AR

i,r,k)

2

+
∑

r∈NV ,k∈RV

FV
r,kA

R
i,r,k ≤ FP

i

∀i ∈ RP (C5)∑
i∈RP

AR
i,r,j = 1 ∀r ∈ NV , j ∈ RV (C6)

∑
j∈RP

AL
i,j,r,k,l −

∑
j∈RP

AL
j,i,r,k,l = AR

i,r,k −AR
i,r,l

∀r ∈ NV , (k, l) ∈ LV , i ∈ RP (C7)

jAR
i,r,k = lAR

i,r,k ∀(i, j) ∈ SP , r ∈ NV , (k, l) ∈ SV (C8)
AR

i,r,j = ER
i,r,j ∀(i, r, j) ∈ ER (C9)

AL
i,j,r,k,l = EL

i,j,r,k,l ∀(i, j, r, k, l) ∈ EL (C10)

Constraint sets C1 and C2 ensure, respectively, that the
throughput capacity of physical routers and that the band-
width capacity of physical links is not exceeded. C3 prevents
multiple virtual routers from a single VN request from being
mapped to the same physical router. C4 and C5 ensure that
the flow table capacity of physical routers is not exceeded.
Constraint set C4 deals with type 2 requests, while C5 handles
type 1 requests. C6 guarantees that all routers in an incoming
VN request are mapped to physical routers. C7 ensures that
each virtual link is mapped to a physical path whose end-points
match the physical routers hosting the end-points of this link.
C8 ensures all virtual routers with location requirements are
mapped to physical routers in the correct location. Last, con-
straint sets C9 and C10 preserve the mappings of previously
embedded VNs.

For the sake of clarity, our objective function, as well as
constraint sets C1, C4, and C5, are shown in non-linear form.
However, in practice, they are linearized by replacing the

multiplication AL
i,j,r,k,l(1 − AR

i,r,k) with an auxiliary variable
Zi,j,r,k,l ∈ {0, 1} and adding constraint sets C11, C12, and
C13 – shown below – to the model. Moreover, function
min (a, b) returns the lowest number between a and b and
can be defined as 1

2 (a+ b− |a− b|).

Zi,j,r,k,l <= AL
i,j,r,k,l ∀(i, j) ∈ LP , r ∈ NV , (k, l) ∈ LV (C11)

Zi,j,r,k,l <= (1−AR
i,r,k)

∀(i, j) ∈ LP , r ∈ NV , (k, l) ∈ LV

(C12)
Zi,j,r,k,l >= (1−AR

i,r,k) +AL
i,j,r,k,l − 1

∀(i, j) ∈ LP , r ∈ NV , (k, l) ∈ LV

(C13)

In order to properly account for flow table usage, the objective
function must not only consider explicit flow table require-
ments of virtual routers, but also the flow rules that must
be installed on auxiliary routers through which virtual links
traverse. The number of rules that must be installed on the
auxiliary routers used by a virtual link (k, l) corresponds to
the lowest number between the flow table requirements of
virtual routers k and l. In the objective function, the first
summation refers to the flow table constraints of auxiliary
routers, while the second one refers to that of physical routers
hosting virtual routers of each network. Constraint sets C1,
C4, and C5 employ the same strategy in order to compute the
throughput and flow table usage of auxiliary routers.

IV. EVALUATION

We now proceed to a performance evaluation of our pro-
posed VNE and SDN coordination approach. Experiments
were performed on a machine with an Intel Core i5 4278U
CPU, 8 GB of RAM and Operating System Mac OS X 10.10.5.
The previously introduced ILP model was implemented and
run using the IBM ILOG CPLEX Interactive Optimizer 12.4.

A. Workloads
In order to evaluate our proposal, we developed a simulator

that creates virtual topologies according to a series of param-
eters. Each virtual topology is then converted to a VN request
in the format required by our ILP model. The simulator is
run for 500 rounds, generating a new request on each one2. If
accepted, VNs remain embedded for 25 rounds before being
removed.

Fixed parameters: In all experiments, physical and virtual
topologies are generated with BRITE using the Barabási-
Albert model [13]. Generated physical networks contain 100
routers. Physical routers have a throughput capacity of 150
Gbps, while physical links have a bandwidth capacity of 30
Gbps. The flow table of each device is capable of storing up to
16,000 rules. Physical routers are uniformly distributed among
16 geographic locations.

Each generated VN request contains 5 routers. Virtual router
throughput and link bandwidth requirements are, respectively,
50 Gbps and 10 Gbps. Each VN has two edge routers
with randomly generated location requirements. 50% of the
generated VNs are type 1 requests, while the remaining 50%
are type 2 requests. Flow table requirements of type 2 requests
are set to 3,000 rules per router, while those of type 1 requests
(which are not known) are treated in different ways according
to the experiment being performed.

Variable parameters: We performed a number of differ-
ent experiments with variations regarding flow table space
reserved for type 2 requests as well as how flow table
requirements are considered. The first three experiments –
henceforth referred to as “Flow-70/30”, “Flow-80/20”, and

2On average, each request was optimally mapped in less than 5 seconds.

“Flow90/10” – reserve 70%, 80%, and 90% of each physical
router flow table space for type 2 requests. The remaining
flow table space is reserved to accommodate type 1 requests.
As we do not know their requirements, a minimal set of 1,500
rules is reserved for each router from these networks. The idea
here is to deliberately allocate little table space to these virtual
routers3.

In the fourth experiment, all flow table space is used to
embed type 2 requests, while accepted type 1 requests are
supported on a “best effort” manner. More specifically, type
1 requests are embedded as long as their other capacity
requirements (throughput and bandwidth) can be fulfilled, with
no flow table space guarantees. This experiment is referred
to as “Flow-100/0’. In the last experiment, no flow table
requirements are considered by the embedding model. This
experiment behaves similarly to an environment running a
traditional VNE algorithm and is carried out to assess the
impact of our proposed approach. This experiment is referred
to as “NoFlow”.

B. Results
We first analyze the overall acceptance rate in all exper-

iments, shown in Figure 6. The acceptance rates achieved
throughout experiments Flow-70/30, Flow-80/20, and Flow-
90/10 were, respectively, 70.2%, 64.2%, and 55.8%. As the
residual flow table space for type 1 requests decreases, more
VNs of this type (which require less resources and represent
half of all generated requests) are rejected, leading to lower
acceptance rates. Although the overall acceptance rate is lower,
this, in turn, favors the acceptance of a higher amount of type
2 requests. This is a desirable outcome for the InP in order
to prevent under- or overestimation of resources (as type 2
requests contain precise flow table occupation requirements),
potentially leading to improved resource usage (in the case of
overestimation) and/or lower rates of controller intervention (if
flow table requirements are underestimated). The acceptance
rates of individual types of requests and their effect on the
rate of controller interventions will be further analyzed in the
remainder of this section.

The acceptance rates observed in experiments Flow-100/0
and NoFlow were higher than those of other experiments
– 72.6% and 73%, respectively. This is due to the former
not reserving any flow table space for type 1 requests and
the latter disregarding flow table requirements entirely. While
seemingly a positive result at first glance, this is likely to result
in severe underestimation of resources needed to adequately
support the embedded VNs, potentially leading to high rates
of controller intervention. We emphasize that both Flow-100/0
and NoFlow are used as baseline scenarios, i.e., the best results
one would achieve in terms of accepted requests at the cost
of compromising network predictability and, in extreme cases,
its technical feasibility.

Next, Figure 7 depicts the acceptance rate of each type
of request in all evaluation scenarios. In experiments Flow-
70/30, Flow-80/20, and Flow-90/10, the acceptance rates of
type 1 requests were, respectively, 73.7%, 57.7%, and 30.83%.
Acceptance rates of type 2 requests observed for the same
experiments were of 67.18%, 69.77%, and 82.04%, respec-
tively. These increasing acceptance rates of type 2 requests are
a desirable outcome for InPs, as they would likely desire to
prioritize the embedding of this type of request. This happens
as a result of the fine-tuning of the amount of flow entries
reserved for each type of request, leading to an acceptance rate
of over 80% for type 2 requests in the most extreme scenario
(Flow-90/10). InPs may fine-tune these reservations as desired

3The amount of flow table space reserved for each router in type 1 requests
may be fine-tuned as desired by the InP.

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

P
er

ce
n

ta
g

e
o

f
A

cc
ep

te
d
 R

eq
u
es

ts

Rounds

Flow−70/30
Flow−80/20

Flow−90/10
Flow−100/0

NoFlow

Fig. 6. Overall acceptance rate in all experiments.

in order to allow more or less of each type of request to be
embedded and potentially minimize issues caused by type 1
requests (as a result of under- or overestimation of operational
requirements). Moreover, all scenarios exhibit variations in
acceptance rates within the first 250 rounds. In scenario Flow-
70/30, the acceptance rate of type 1 requests is initially higher
than that of type 2 requests. In scenarios Flow-80/20 and Flow-
90/10, in turn, acceptance rates for both types of requests
either increase or decrease during the first 250 rounds. This
can be attributed to the fact that the substrate is completely
empty at the beginning of the experiment, requiring some time
for acceptance rates to stabilize. In all cases, acceptance rates
become stable towards the last 250 rounds.

In the remaining experiments (Flow-100/0 and NoFlow),
acceptance rates of type 1 requests were, respectively, 73.4%
and 70.4%. Acceptance rates of type 2 requests, in turn, were
of 72.1% and 75.49%, respectively. As previously explained,
the former does not reserve any flow table space for type
1 requests while the latter completely disregards flow table
requirements. Therefore, the main causes of rejection are likely
related to topological factors or throughput/bandwidth resource
scarcity, leading to similar acceptance rates for both types of
requests on both experiments.

Last, we analyze the potential impacts of accurately or
inaccurately estimating operational requirements. To this end,
we consider that VN requests in each scenario have been
embedded and deployed, and we calculate the number of flow
rules each router would need to have installed in order to
support the embedded VNs. We first assume the 1,500 rules
reserved for each router of type 1 requests were sufficient.
Afterwards, we assume this lower bound was not adequate
and that type 1 requests would actually require 3,000 flow
rules per router. These scenarios represent extreme cases –
assuming either that a minimal set of flow rules was sufficient
or that actual requirements exceed this lower bound by a factor
of 2. Our goal is to determine in which cases the number of
necessary flow rules would exceed the capacity of physical
routers. As previously mentioned, if physical devices are not
able to accommodate all necessary flow rules, they would need
to frequently contact the controller in order to handle incoming
packets. This, in turn, would likely degrade the performance of
physical devices, hindering the quality of service experienced
by customers.

Figure 8 depicts the average number of flow rules that would
exceed the capacity of physical routers in each experiment,
considering the scenarios just described. Assuming the flow
table usage of type 1 requests fits within the minimal pro-
vided flow table space, no exceeding rules were observed
in scenarios Flow-70/30, Flow-80/20, and Flow-90/10. The
ILP model used in these experiments takes into account flow
table constraints for both types of requests, ensuring that the
capacity of physical devices will not be exceeded as long as
the reserved flow table space is sufficient. In experiment Flow-

100/0, in turn, the average number of exceeding flow rules
was 10,732, all belonging to type 1 requests. This is due to
this experiment disregarding flow table requirements for this
type of request, embedding them in a “best effort” manner. In
experiment NoFlow, which mirrors the behavior of a standard
VNE algorithm without flow-related constraints, the average
number of exceeding flow rules was significantly higher,
with both types of VN requests contributing to flow table
saturation. More specifically, an average of 27,593 exceeding
rules were observed (2,331 incurred by type 1 requests and
25,262 incurred by type 2 requests). The substantial numbers
of exceeding flow rules observed in scenarios Flow-100/0
and NoFlow highlight the importance of considering this
operational constraint in the embedding process.

Last, assuming the flow table usage of type 1 requests
exceeds the minimal provided flow table space (a likely sce-
nario in practice), all experiments exhibit flow table saturation.
In experiments Flow-70/30, Flow-80/20, and Flow-90/10, the
average numbers of exceeding flow rules were, respectively,
2,731, 19,783, and 18,130. Although these experiments took
into account flow-related constraints, assuming flow table
usage exceeds the established lower bounds led to significant
saturation – particularly in scenarios Flow-80/20 and Flow-
90/10, in which less resources were reserved for this type
of request. The highest numbers of exceeding flow rules
were observed in experiments Flow-100/0 and NoFlow –
which, as previously explained, either do not reserve flow
table space for type 1 requests or disregard flow constraints
entirely. The average amount of exceeding flow rules observed
in experiment Flow-100/0 was of 57,970 – all incurred by
type 1 requests. In experiment NoFlow, an average of 22,886
exceeding flow rules were incurred by type 1 requests and
25,262 by type 2 requests, adding up to a total of 48,148.
These results evidence that, in addition to the aforementioned
importance of considering operational constraints, accurately
determining flow table requirements plays a crucial role in
ensuring the feasibility of supporting the embedded VNs.
Regarding the former, it is important to note that, with the
exception of scenario NoFlow, all rules of type 2 requests were
properly installed in physical routers. Therefore, these VNs
will be able to operate with minimal controller interventions,
minimizing potential negative impacts on quality of service (as
controller intervention may increase latency by up to twice the
round-trip time between the switch and the controller [14]).

V. CONCLUSIONS

Although a substantial body of work exists in the area
of virtual network embedding, existing approaches do not
take into account relevant operational constraints related to
the instantiation of VNs on different embedding platforms.
In the case of Software-Defined Networking, which offers a
promising platform for network virtualization, memory space
for storing flow rules is often limited, becoming a crucial
operational constraint that may render VNE-provided map-
pings unsuitable for real environments due to unpredictable
or even unsatisfactory VN performance. At the same time,
demanding information regarding such operational constraints
from customers may be unrealistic as they may be either
not aware of how their VN affects the InP’s substrate at the
physical level or unwilling to share detailed information about
the inner working of their VNs.

Based on this reasoning, we proposed an abstraction model
for expressing requirements related to internal VN policies and
traffic patterns. This model – the Tenant Infrastructure Graph
– is built in a way that is familiar to customers in a network
virtualization environment. Moreover, it is preprocessed on
the customer’s end by a Privacy-aware Compiler in order
to derive information that is valuable to the InP and, at the

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

P
er

ce
n
ta

g
e

o
f

A
cc

ep
te

d
 R

eq
u
es

ts

Rounds

Type 1 Type 2

(a) Flow-70/30

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

P
er

ce
n
ta

g
e

o
f

A
cc

ep
te

d
 R

eq
u
es

ts

Rounds

Type 1 Type 2

(b) Flow-80/20

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

P
er

ce
n
ta

g
e

o
f

A
cc

ep
te

d
 R

eq
u
es

ts

Rounds

Type 1 Type 2

(c) Flow-90/10

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

P
er

ce
n
ta

g
e

o
f

A
cc

ep
te

d
 R

eq
u
es

ts

Rounds

Type 1 Type 2

(d) Flow-100/0

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

P
er

ce
n
ta

g
e

o
f

A
cc

ep
te

d
 R

eq
u
es

ts

Rounds

Type 1 Type 2

(e) NoFlow

Fig. 7. Acceptance rate of requests per TIG type in all experiments.

 0

 10000

 20000

 30000

 40000

 50000

 60000

Flow
−70/30

Flow
−80/20

Flow
−90/10

Flow
−100/0

N
oFlow

E
x
ce

ed
in

g
 F

lo
w

 R
u
le

s

Type 1
Type 2

(a) Assuming flow table space allocated for
type 1 requests was sufficient.

 0

 10000

 20000

 30000

 40000

 50000

 60000

Flow
−70/30

Flow
−80/20

Flow
−90/10

Flow
−100/0

N
oFlow

E
x
ce

ed
in

g
 F

lo
w

 R
u
le

s

Type 1
Type 2

(b) Assuming flow table space allocated for
type 1 requests was insufficient.

Fig. 8. Number of flow rules exceeding the capacity of physical routers.

same time, remove sensitive data that the customer may not
be willing to disclose. The output of this compiler is then
forwarded to the InP, which can employ the SDN/OpenFlow-
aware Embedder to ensure embedded VNs do not break any
operational constraints of its network virtualization platform.

Through a comprehensive evaluation, we demonstrated that
taking the aforementioned operational constraints into account
is of paramount importance to maintain a desired level of
quality of service. Neglecting such constraints may render
the environment unable to cope with a substantial number
of flow rules that are crucial to ensure correct VN behavior.
As physical devices become unable to store all necessary
flow rules internally, they need to frequently contact the
controller in order to route incoming packets, which, in turn,
may lead to significant performance degradation for VNs
hosted on such devices. In our experiments, assuming the flow
table space reserved for requests with unknown requirements
was sufficient, the proposed approach was able to eliminate
controller intervention due to flow table saturation. Addi-
tionally, assuming the actual requirements of such requests
exceeded the allocated space by a factor of 2, the number of
exceeding flow rules was still reduced by 40.8% on average

(compared to a traditional VNE approach). Moreover, the
reduction of acceptance rates due to the added constraints
was limited to, on average, 9.6%. Our proposed approach
enables InPs to accurately assess operational constraints and
correctly embed incoming requests without violating these
constraints. Moreover, by adjusting the ratio of flow table
space dedicated to different types of incoming requests, the
InP may choose to which degree requests that include all the
necessary information are favored in detriment of requests that
do not (and that, therefore, rely on estimation of necessary re-
sources in order to be embedded). Perspectives for future work
include: (i) taking into account other SDN/OpenFlow-related
operational constraints; (ii) considering a larger gradient of
VN request types with varying amounts of information; and
(iii) including a negotiation phase between the customer and
the InP, providing alternatives for cases in which available
resources are not sufficient to embed requested VNs.

ACKNOWLEDGMENTS

This work has been supported by the Brazilian Na-
tional Council for Scientific and Technological Development
(CNPq).

REFERENCES

[1] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” SIG-
COMM Computer Communication Review, vol. 38, no. 2, pp. 17–29,
Mar. 2008.

[2] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp. 206–219,
Feb. 2012.

[3] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
SIGCOMM Computer Communication Review, vol. 41, no. 2, pp. 38–47,
Apr. 2011.

[4] G. P. Alkmim, D. M. Batista, and N. L. S. Fonseca, “Mapping virtual
networks onto substrate networks,” Journal of Internet Services and
Applications, vol. 3, no. 4, pp. 1–15, 2013.

[5] L. R. Bays, R. R. Oliveira, L. Buriol, M. P. Barcellos, and L. Gaspary,
“A heuristic-based algorithm for privacy-oriented virtual network em-
bedding,” in IEEE Network Operations and Management Symposium
(NOMS), May 2014, pp. 1–8.

[6] M. Demirci and M. Ammar, “Design and analysis of techniques for map-
ping virtual networks to software-defined network substrates,” Computer
Communications, vol. 45, pp. 1 – 10, 2014.

[7] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Technical Report, 2009.

[8] Z. Bozakov and P. Papadimitriou, “Autoslice: automated and scalable
slicing for software-defined networks,” in ACM Conference on Emerging
Networking Experiments and Technologies. ACM, 2012, pp. 3–4.

[9] R. Doriguzzi Corin, M. Gerola, R. Riggio, F. De Pellegrini, and
E. Salvadori, “Vertigo: network virtualization and beyond,” in European
Workshop on Software Defined Networking. IEEE, 2012, pp. 24–29.

[10] E. Salvadori, R. D. Corin, A. Broglio, and M. Gerola, “Generalizing
virtual network topologies in openflow-based networks,” in IEEE Global
Telecommunications Conference. IEEE, 2011, pp. 1–6.

[11] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” IEEE Internet Computing, vol. 17, no. 2,
pp. 20–27, 2013.

[12] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “Openvirtex: make your virtual sdns pro-
grammable,” in Workshop on Hot topics in Software Defined Networking.
ACM, 2014, pp. 25–30.

[13] R. Albert and A.-L. Barabási, “Topology of evolving networks: Local
events and universality,” Physical Review Letters, vol. 85, pp. 5234–
5237, Dec 2000.

[14] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” SIGCOMM Computer Communication Review, vol. 41, pp.
254–265, 2011.

