978-0-9883045-1-2/16 $31.00 © 2016 ITC

2016 28th International Teletraffic Congress - The First International Conference in Networking Science & Practice

Sector: TCAM Space Aware Routing on SDN

Sai Qian Zhang, Qi Zhang, Ali Tizghadam, Byungchul Park, Hadi Bannazadeh, Raouf Boutaba and Alberto
Leon-Garcia

Abstract—In Software Defined Networking (SDN), fine-grained
control over individual flow can be achieved by installing ap-
propriate forwarding rules in switches and routers. This allows
the network to realize a wide variety of functionalities and
objectives. But at the same time, this flexibility and versatility
come at the expense of (1) a huge burden on the limited Ternary
Content Addressable Memory (TCAM) space, and (2) limited
scalability due to the large number of forwarding rules handled
by the controller. To address these limitations, we present Sector,
a switch memory-aware routing scheme that reduces TCAM
space usage without introducing network congestion. We consider
static and dynamic versions and propose corresponding solution
algorithms. Experiments show our algorithms can reduce TCAM
space usage and network control traffic by 20% — 80% compared
with the benchmark algorithms on different network topologies.

[. INTRODUCTION

Software Defined Networking (SDN) is an architecture that
enables logically centralized control over distributed network
resources. In SDN, a centralized controller makes forwarding
decisions on behalf of the network forwarding elements (e.g.
switches and routers) using a set of policies. Based on given
high level design requirements, the source and the destination
node of each flow is dictated by the Endpoint Policy and
the flow path is decided by the Routing Policv [1]. For
example, the shortest-path routing policy asks the network to
forward packets along the shortest path between two nodes.
Other routing polices, such as the ones that improve resource
utilization, quality of service and energy usage have also been
proposed in the literature [2,3,4]. These features make SDN an
attractive approach for realizing a wide variety of networking
features and functionalities.

Despite its benefits, however, implementing routing policies
in SDN may require fine-grained control over flows, which can
place a huge burden on switch memory space. In particular,
the Ternary Content Addressable Memory (TCAM) is a special
type of high speed memory that can search the entire memory
space within a single clock cycle. However, it is also well
known to have limited capacity and high power consumption
[5]. The largest memory space on a TCAM chip is far less
than that of Binary Content Addressable Memory (CAM). For
example, HP ProCurve 5406z TCAM switch hardware can
support 1500 OpenFlow rules. As each host requires dozens of
OpenFlow rules on average, a 5406z1 switch can only support
at most 150 uscrs [6]. Morcover, TCAM is also encrgy-hungry.
It consumes 30 times as much as the consumed energy of
SRAM with the equal number of entries [7]. Given that the
amount of power consumption is proportional to the number of
used entries in TCAM, several research studies have focused
on reducing the TCAM space consumption [1,5,8] in order to
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improve scalability and reduce energy consumption.

Another scalability problem arise in the centralized SDN
controller. For every subtle change on the network topology or
routing policy, the controller must deliver the control message
to each network element that implements the policy. As the
average flow size in both wide-area and data center networks
is small (around 20 packets per flow [6]) and the inter-arrival
rate of the flows in the high-performance network is extremely
high (less than 30ms [6]), a huge workload is imposed on
the controller as the network size grows. Since each switch
typically has limited bandwidth on the path to the controller,
and moderate rule insertion time, the high workload received
by the controller often causes large rule installation overhead
and low flow set up rate. In the modern data center networks,
1ms additional latency for the delay-sensitive flow can be
intolerable [9]. Therefore, the limited flow set up rate can
dramatically hurt the overall performance and the quality of
service. It is important to reduce the interaction between
control plane and data plane in order to achieve better network
scalability and performance.

To address the issues of switch memory space limitation and
scalability, recent work proposed to control flows collectively
at an aggregated level. This allows the use of prefix aggregation
and wild card rules to minimize the number of stored entries
[1][8]. These works have focused on compressing the entries
of each individual switch, while preserving the routing policy
(i.e. without changing the forwarding paths) [5]. However,
we find that in large networks, typically multiple candidate
paths are available for routing each individual flow while still
satisfying performance and business constraints. Therefore, if
we can additionally control the flow forwarding paths, we
achieve substantial gain in term of TCAM space savings
and controller scalability. To this end, we present Sector, a
routing scheme that minimizes TCAM space consumption in
SDN networks without causing network congestion. Secfor
takes advantages of the large number of available forwarding
paths and routes traffic in a way that improves network
scalability and reliability. The main objectives of Sector are (1)
Minimizing the switch memory space utilization given the end
point connection request, and (2) Reducing control traffic by
decreasing the interaction between the controller and network.

In this paper, we first introduce the TCAM space minimiza-
tion problem and analyze its complexity. We then propose
heuristic algorithms for both static and dynamic versions of
the problem. Through experiments, we show our algorithms
can reduce the TCAM space usage and nelwork control traflic
by 20% — 80% compared with the benchmark algorithms.

The rest of paper is organized as follows. Section II surveys
related work. Section Il provides a motivating example of the
TCAM space minimization problem. Section IV presents the



problem overview. Section V and VI presents our solutions
for the static version of the problem. Section VII presents
our solution for the dynamic version of the problem. After
presenting experimental results and testbed implementation in
Section VIII and IX, we conclude the paper in Section X.

II. BACKGROUND AND RELATED WORK

OpenFlow is the most popular implementation of SDN [10].
An OpenFlow table entry can be represented by a triplet
(M, P, A), where M is the matching field used to match the
packet, P is the matching precedence of the entry and A is the
action field which contains operations on the matched packet.
The matching field usually includes source and destination IP
addresses, MAC addresses and input port number. The action
field includes operations such as forwarding the packet to a
output port or modifying the packet header. Upon receiving a
packet, the switch searches for the rule with the highest priority
that matches the packel, then execules corresponding actions
defined by that rule. OpenFlow also supports wildcards in the
input port as well as subnet masks in IP and MAC addresses
[10], for instance, 01 * * in the address field stands for 0100,
0101, 0110 and 0111.

There are several studies on minimizing TCAM space using
subnet masks and wildcard rules. However, prior work has fo-
cused on compressing the entries of a single switch, while pre-
serving the routing policy [5]. One Big Switch [1] and Palette
[8] decompose network access policies into small pieces and
then distribute them using less TCAM space. Moshref et al.
[11] designs routing algorithms to distribute access policies
across intermediate switches with minimum switch memory
consumption in a datacenter network. Rami et al [24] studies
the effect of flow table size on the maximum number of flows
supported. CacheFlow [25] develops a algorithm for placing
rules in a TCAM with a limited space.

Scalability has been a key issue in SDN. DevoFlow [6]
proposes a scalable SDN framework by using wildcard en-
tries to reduce the control plane visibility on the microflows.
However, it does not offer any quantitative analysis on how
to use the wildcard to achieve optimal performance. DIFANE
and Kandoo [12,13] propose efficient and scalable SDN frame-
works which split the workload of the central controller to
distributed authorized components. However, they do not ad-
dress the problem of global visibility. In [14,15], the scalability
issue is solved by using multiple independent controllers to
consistently manage the network with minimal interaction, but
they do not mention how these controllers are coordinated and
the overhead brought by distributed control.

III. A MOTIVATING EXAMPLE

We provide a motivating example to demonstrate the benefit
of Sector. The topology and port numbers between nodes are
shown in Figure 1(a) and the end point policy is illustrated
in Figure 2(a). Two source hosts with the IP address 000
and 001 send traffic to two destination hosts 100 and 101
respectively. We call a group of source and destination address
a demand pair, therefore there are four demand pairs in this
example. The bandwidth consumption of each demand pair
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Fig. 2. Example of flow tables

equals 1 and the capacity of each link is 10. Traditional
traffic engineering (e.g. ECMP) spreads the flows evenly in
the network to balance network link utilization, which gives
one of the feasible solutions in Figure 1(b). The OpenFlow
table of each switch is shown in the Figure 2(b). A total of 11
entries is installed. To set up these new flows, 11 additional
control packets are sent from the controller, as at least one
initial packet in each new flow is processed by the controller.
In total 11 + 2 x 4 = 19 packets are transmitted between
controller and the switches. By comparison, Sector produces
the solution in Figure 1(c) and forwarding tables shown in
Figure 2(c). Instead of routing the traffic of each demand
pair respectively, Sector aggregates the flows and uses subnet
masks to reduce the number of entries in each table. The
maximum bandwidth consumption in the Sector solution is
also 2, and 8 additional entries are installed on nodes A — £,
which requires 8 control packets sent from controller. A total
8+ 2 x 4 = 16 packets are transmitted between controller
and switches. This reduces TCAM space and control traffic
by 27.2% and 15.8% respectively. From the above example,
we draw the following conclusions: (1) If fine-grained control
is not required on specific flows, TCAM space consumption
and control traffic can be reduced by using subnet masks on the
source and destination addresses to aggregate flow entries. (2)
As the network size increases, the number of control packets
to set up a flow is approximately equal to the number of entries
installed in the TCAM (ignoring the initial packet of the flow
send to the controller). So minimizing TCAM usage can also
save control traffic indirectly. (3) Besides finding a path which
minimizes TCAM consumption, the constraint on link capacity
must also be guaranteed. For example, the two solutions above
have the same maximum link utilization.

1V. PROBLEM OVERVIEW

The design objective of Sector is to minimize the total
number of OpenFlow entries installed in all the switches. To
keep the problem generic, we assign a weight w(v) to each



swilch v in the network, which is the cost of installing an
additional rule in the switch. For the choice of w(v), in the
simplest case, we can set w(v) = 1 to achieve the goal of
minimizing total number of forwarding entries in the switches.

Moreover, adjusting the value of w(v) allows us to model
other objectives. For instance, since power consumption of a
switch is linearly proportional to the TCAM space usage [5],
by setting w(v) to the average power consumption per rule
for switch v, we can model the problem of minimizing total
energy consumption in the network. The objective is therefore
to minimize the total weighted cost, given a set of demand
pairs and the constraint on link resource utilization. We call
this the TCAM Space Minimization Problem (TSMP).

TSMP is a rather complex problem to analyze and solve di-
rectly. To simplify our analysis, we divide TSMP into two sub
problems: Efficient Partitioning Problem (EPP) and Efficient
Routing Problem (ERP). The EPP focuses on partitioning all
the demand pairs into groups. We call these groups the routing
groups. The source addresses and destination addresses in the
same routing group have common prefixes. For example, the
four demand pairs [000, 100], [000, 101],[001, 100], [001, 101]
in the Figure 2(a) form a routing group with prefix 0 * % and
1 % *, where we use [s;,d] to represent the demand pair.
We can use the addresses with subnet mask s, = 0 * x
and d,, = 1 %% to represent all the source addresses and
destination addresses in the routing group u. When partitioning
is complete, for each routing group there will be a ERP, where
we route all demand pairs in that routing group to minimize
total TCAM space usage.

In the next two sections we first discuss our algorithm for
ERP, and then the solution for EPP, which relies on the solution
algorithm for ERP to make partitioning decisions.

V. EFFICIENT ROUTING PROBLEM

The goal of ERP is to connect each demand pair for a
given routing group that consume minimum weighted sum
of switch memory space while satisfy the load balancing on
links. Formally, we model the network as a graph G = (V, ),
where each node v € V represents an OpenFlow switch and
each switch v is assigned a cost w(v) on per rule inserted.
Without loss of generality, we assume each flow entry in the
flow table can be represented by a 4-tuple (s,%,d,7), where
s,1,d constitute the matching field: s, d represent the source
and destination address information such as source/destination
IP/MAC address, ¢ is the input port number of the switch
where the packet comes in. j is the output port number of
the switch where the packet is directed to, which constitutes
the action field of the OpenFlow entry. We neglect rule priority
temporarily and consider it later.

Let U denote the set of routing groups and K, (u € U)
denote the set of demand pairs in w. Let s; and dj denote
the source and destination addresses of demand pair k. We
use a 4-tuple (sy,%,d,,j) to represent the OpenFlow rule
installed for the routing group v € U, where s, and d,, are
the source and destination addresses with the subnet masks
respectively. Table I provides a quick glossary of definitions.
Let m(v) be the set of port numbers of switch v, we make
the port number equals to the label of the links that the

218

TABLE I DEFINITIONS OF PARAMETERS

Z
d

Description

A network topology G = (V, E)

Set of nodes in G

Set of links in G

Set of addresses of source hosts

Set of addresses of destination hosts

denote the set of routing groups

Set of demand pairs

w Set of demand pairs in the routing group v € U

G Number of bits in the source address and destination address
size(u) The number of demand pairs in routing group u

L Maximum number of demand pairs in each routing group

NN RE <o

Sk the source address of demand pair k&

dy the destination address of demand pair &

Su The source address of routing group « with the subnet mask
dy The destination addr. of routing group « with the subnet mask
a(v) Number of OpenFlow rules installed on switch v

w(v) Cost of inserting a single OpenFlow rule in switch v

Ty The TCAM space capacity of switch v

w(v) Set of port numbers associated with switch v

p(v) Set of port numher pairs of switch »

B Threshold of link utilization rate

By The bandwidth consumption of & € K

Ce C the capacity of each link ¢ C F

Tk A binary variable, ws;, = 1 if an 4-tuple (s, 4, dy, J) is installed
to direct traffic of demand pair & from port 4 to port §, 235, = O

otherwise
Yij A binary variable, y;; = 1 if a 4-tuple (s, %, dy, J) is installed to
direct the flow of s,, € S from port ¢ to port § and y;; = O otherwise
lok A binary variable, I, = 1 denotes edge e € E is used to direct the

flow of demand pair k&

Switch | Src | Dst | Inport Action

sl 00 10 I output:4
00 1 output:3
01 10 output:5
01 11 output:f

191 —

Fig. 3. Labelling port example Fig. 4. Flow Table of sl

port connects to (Figure 3). Then denote p(v) = {(z,y) :
x € w(v),y € w(v)} as the set of port pairs of switch
v. For example 7(A) in Figure 3 is {1,2,4} and p(A) =
{(1,2),(2,1), (1,4),(4,1),(2,4), (4,2), (1, 1), (2,2), (4, 4)}.
Let y;; € {0,1} represent whether a 4-tuple is installed (o
direct the flow of routing group w from input port ¢ to output
port j. Let x5, € {0,1} denote whether a 4-tuple entry is
installed to directed traffic of a demand pair & € K, from
input port ¢ to output port j. Let a(v) denote the total number
of rules installed on switch v. Our goal is to minimize the total
weighted sum of rules installed in the switches:

w(v)a(v) )]

veV

minimize

ijk,Yi5 €{0,1}
where a(v) represents the number of 4-tuples (sy,1,d,,J)
installed in v. 1o compute a(v), note that for the same switch
v and same routing groups, three conditions may happen:
1. No 4-tuple (sy,4,d,,7) needs to be installed on v. That is,
> jen(v) M icn(v) ¥ij) = 0 and therefore a(v) = 0. Where
1 18 the step function, pu(z) = 0 if z < 0 and p(z) = 1 if
z > 0.
2. All the flows installed on v are forwarded to one output port,
ie., Zjew v) M(Zieﬂ'(v) yiﬂ) =1 .One entry (Su7 *7du7j) is
enough to direct the flows of K, with s,, and d,, in the address
field and wildcard in the input port field. therefore a(v) = 1.



3. All the flows installed on v are forwarded to more than one
output port. That is, Zje,r(v) M(Zi@r(@) yi;) > 1, therefore,
the source and destination fields must be fully specified to
differentiate each flow and so that the flows can be directed
to corresponding output ports. Hence the total number of
entries installed is 3 ;) 2-jer(o) 2okek, Fijk> Whichis the
number of demand pairs whose flows traverse through v. This
can be illustrated by the following example: Assume a set of
rules {(00,1,10,4),(01,2,10,5),(00,1,11,3),(01,2,11,6)}
is installed on sl1. The flow table of sl shown in Figure 4.
As the table shows, the source and destination address must
be fully specified so that each flow can be identified by the
intermediate switch to direct to its corresponding output port.
Combining these 3 cases, a(v) can be defined as follows:

0 it > pl X 4i)=0

jen(v) ien(v)

a(w) = L it > pl > yy)=1

- jem(v) ’ié‘n’('u) ‘
> 2wk it X0 pl X yy)>1
icw(v) jer(v) keKy, jen(v) iem(v)

We also have to make sure that the number of rules installed
in each switch does not exceed its TCAM space capacity, let
7, be the capacity of switch v, we then have:

a() <r, Yo eV 2

Next, we relate x5, to y;;. Equation (3) ensures that 4-tuple
rule (sy,4,d,,7) is installed if any flow of demand pair k is
sent from input port ¢ to output port j:

> i <yy Yi,5) €plv),veV 3)
ke K.,

Next we build the path between each source host to the
destination host. Let I, € {0,1} denote if edge e € £ is
used to direct the flow of demand pair k. Define @, — {Qy C
Vs, € Qr,di & Qr} (Yk € K) and define #(Q)) the set
of edges in the cut defined by (). that is the set of edges in
G which have ingress node in the set (). Then we have:

Yo =1 VhkeK, €y
ereem(Qr)

By max-flow/min-cut theorem, equation (4) ensures there exists
at least one path between s; and dj [16]. Next the following
equations make sure OpenFlow entries are installed to direct
the flow to each used link:

lel«SZ Z

vEV i:(4,e)ep(v)
lek S Z Z
veV j:(e,j)ep(v)

> wpp <l VhkeEK,veV (7

(&.9)ep(v)

Tier <1 VYee B ke K, 5

zop <1 Vee B k€K, (6)

Lquations (5)(6)(7) ensure that if link e is used to direct the
flow for k, then there exists exact one flow entry in the ingress
switch of e to direct the flow of k to e and there exists one
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flow entry in the egress switch of e to accept the flow of £
from link e. Finally, we have the performance guarantee on
maximum bandwidth utilization rate for all the links. Define
By, the bandwidth consumption for the demand pair k, C, the
capacity of each link e € [/, and define 8 the threshold on
link utilization rate. we have:

> Bilex <BC. ec ki ®)
kkeK

The goal of ERP is to minimize objective function (1), subject
to equations (2) — (8).

Next we analyze the complexity of ERP, Theorem 1 shows
the NP-completeness and inapproximability of the £ RP. The-
orem 2 shows that even without the load balancing guarantee
(8), or with some other performance guarantee rather than (8),
the ERP is still NP-hard and (1 — €)In|V| inapproximable
for any € > 0.

Theorem 1. ERP is NP-complete and inapproximable.

Proof: The proof is based on reduction from the 3-
partition problem!. Consider the part of hierarchical tree topol-
ogy in modern datacenter in Figure 5(a). Four source hosts
inject packets to A, B, C, D, and the bandwidth consumption
By, of the traffic injected on A, B,C, D are by, by, b3, by
respectively. The maximum usage on bandwidth SC, of link
(K, H).(G,H) and (F,H) equal 5(by + by + by + by). To
satisfy (8), the flows from the four source nodes must be
partitioned into three subsets with the same total amount of
bandwidth %(bl +by+bs+by). Therefore by knowing whether
the problem is feasible or not, we know whether the set of
numbers {b1, by, b3, by} can be partitioned into three subsets
with the equal sum of elements. Since the decision version
of 3-partition problem is NP-complete, hence any polynomial-
time approximation algorithm for this problem would solve the
3-partition problem in polynomial time, which is not possible
unless P — N P. ]

Following the same arguments, we can also show that

TSM P is also NP-complete and inapproximable.
Theorem 2. Even without the link capacity constraints (i.e.,
equation (8)), ERP defined by (1) — (7) is NP-hard, and there
is no (1 — ¢€) In|V|-approximation algorithm for any ¢ > 0,
where |V| is the number of nodes in G.

Proof: 'The proof is based on a reduction from the
set cover problem®. Consider a multi-root hierarchical tree
topology in Figure 5(b), each node on layer 3 does not fully
connect to every node on layer 2 due to link failure. 4 source
hosts forms a routing group, each connects with the switches
A, B, C, D and send traffic to the core switch H. Assume r, is
large and the weight of all the switches on layer 3 and layer 1
is small, the objective functions (1) is equivalent to minimize
the number of entries inserted on layer 2 switches.

Since each additional switch used on layer 2 to direct the
flow from A — D corresponds to an additional flow entry

IThe partition problem is the task of deciding whether a set of positive
integers can be partitioned into three subsets X, Y and Z such that the sums
of the numbers in X, Y, 7 are equal

2Given a set of elements {1,2,..m}, and a set A of n sets whose union
equals the element set. The set cover problem is to find the smallest subset
of A whose union contains every single element
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inserted on that switch, minimizing number of entries on layer
2 switches is equivalent to minimizing the number of switches
used on layer 2. Define the universal set U = {4, B,C, D}
which consists of all the layer 3 switches and assign a subset
of U to each switch on layer 2, the subset for each switch
on layer 2 consists of the switches on layer 3 that switch
connects with. For example, the subset for £ = {A,C} and
the subset for ¥ — {B, D}. In order to make sure there is a
path from A — D to destination H, we need to ensure each
switch on layer 3 connects to at least one switch on layer 2.
Therefore, minimizing the number of additional flows inserted
on layer 2 switches is equivalent to minimizing the number of
layer 2 switches used to direct the flow, which is equivalent to
minimizing the number of subsets used to cover the universal
set U/, which is the definition of set cover problem. Since the
set cover problem is NP-hard and cannot be approximated with
in a factor of (1 — ¢)lnn for any ¢ > 0 (where n is the
size of the set). The ERP is also NP-hard and (1 — ¢)In|V/|
inapproximable for any ¢ > 0. |

Since ERP is both NP-complete and inapproximable, we
propose a simple and efficient heuristic to solve ERP. Without
loss of generality, given an undirected topology G = (V, E)
the graph can be made directed by replacing each undirected
link e by two directed links ¢’ with opposite directions, mark
both directed links e’ evolved from e. We define a new directed
graph G’ = (V/, 1), and in(¢’)(¢/ € L) as the ingress switch
(head) of ¢/ and out(e’)(e’ € L) as the egress swirch (tail) of
€', an directed link €’ is a link from its egress switch (tail) to
its ingress switch (head). Define C./(¢/ € ) the capacity of
the link €', which equals that of C,, where e is the undirected
link from which ¢’ is created. We relate the cost of inserting
rules on switches to the weight of the directed links of the
switches. First, we provide the following dcfinition:
Definition 1. Link ¢’ is ready for routing group w if: 1.
out(c’) contains a 4-tuple (sy,¢,d,,c'),7 € w(out(c)) or
(Su, *,du,€). 2. in(e’) contains a 4-tuple (sy, €', dy,7),7 €
ﬂ-(in(e/)) or (SUJ * du7.])

That is, a link is ready for w if there already exists an entry
on its ingress switch and egress switch to forward the flow onto
this link. Next we calculate the cost of activating the links ¢’
on switch out(e’). Let £(v)(v € V') be the number of demand
pairs of u that v carries after the ¢ is activated. Define % the
number of egress links of v used to direct the traffic of demand
pairs of u before ¢’ is added. Then the cost of activating this
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Fig. 6. Example on cost of link

Algorithm 1 Incremental Routing Algorithm (IRA)

1: for each demand pair & € K,, do
for each link ¢’ € I7/ do
if ¢’ is ready for k then
Set the cost of link e’ to 0, cost(e’) =0
if ¢’ is not ready for k then
Update the link cost cost(e’) according to (x)
if 8Cer < By, or a(out(e’)) > Tout(e') then
Set the cost of link ¢’ to infinity, cost(e’) = co
Find shortest path between s and dj, if there are more than one
shortest paths, randomly select one. Install the 4-tuple rules along the
path. Update a(v).
10: Set 5C, — BC. — Dy

D A

link €', cost(e’) is shown below:

cost(e!) — w(jout(e/)) if ()gut(e,) =0 o.r ngt(e,) >1

(t(out(e)) — Dw(out(e)) if Ooueery = 1 (%)
For each newly activated link ¢, the corresponding Open-
Flow rule has to be installed to the out(e’) to direct the
traffic. If initially no other link of out(e’) is used, one
OpenFlow entry (s,,, %, d,,n(e’)) will be installed on out(e’),
so cost(€') = w(out(e’)). However, if previously one egress
link is activated on switch out(e’), that is, initially all the
flows are forwarded to single output port. To activate a new
link with a new output port, we require the all the flows
that the switches carries to be fully specified so that they
can be directed to the corresponding output ports. Hence
cost(e') = (t(v) — 1)w(out(e')). Finally, if previously more
than one link is activated on switch out(e’), for each new
activated egress link, a new entry (s, i, dg, n(e¢'))(k € K,,) is
installed to direct the flow.

An example is given in Figure 6(a): assume initially switch
s1 carries two demand pairs [00,10] and [01,11] of w that
have the same output port 4 (6% = 1), therefore one entry is
installed to route the flows as shown in Figure 6(b). Assume
one more demand pair [00, 10] is added and another egress link
is used to direct this flow (output port is 5), then number of
entries in the routing table increases by {(v) —1=3—-1=2.
Thercfore the cost to activate this new link is 2w(v), the new
flow table is shown in Figure 6(c). Algorithm 1 reuses the
links which are ready by setting the weights of these links to
0. The weights of other links are updated according to (). If
the bandwidth consumption on ¢’ exceeds the maximum limit
BC., the cost of €' is set to be infinity, cost(e’) = co. Finally
the path can be set up by finding the shortest path between the
source and the destination hosts.

We now analyze the complexity of TRA. The for loop
between line 3 to 8 in JRA determines the cost for each
edge e € K. In line 9, the shortest path is calculated
between each sy to dy. Therefore, the overall complexity is



Algorithm 2 Detailed Search Algorithm (DSA)

1: Set the source and destination address to the address with fully wildcard
bit, set tprev = Ucurr = 0, set Is = lg = .

2: while K #  do

3 Set prev = co and curr =0

4 while curr < prev or size(tcurr) > L do

5 Set [us0, avgeost(uso)] = FindCost(sre, s, 0)

6:

7

8

9

Set [us1, avgcost(ust)] = FindCost(src,ls, 1)

Set [uq0, avgeost(ugg)] = FindCost{dst,l,,0)

Set [ug1, avgeost(ugy )] = FindCost{dst,l,,1)

Select Ucurr equals to u € {us0,us1, %40, uqy ; With the min-
imum avgcost(w), if more than one such w exist or all the
avgcost(u) equals infinity, randomly pick one.

10: Set curr = avgeost(Ucurr)

11: if (curr > prev or Iy — 4 = 0) then

12: Remove all the demand pairs in upre, from K, building the
path for each demand pair in gy by using TR A.

13: Set the source and destination address to full wildcard bits. Set
Uprev = Ucurr — @, ls = ld =m

14: break

15: Set the binary digit on leading bit according to wcuyrr, Update the

leading bit by decreasing I or Iy by 1 according to wesrr, Set
Prev = curr, Uprey = Ucurr
16: Function FindCost (type, 1, d)
17: if (type == src and I; # O) then
18: Set the binary digit on leading bit [ of source address to d, while keeps
destination address the same. Denote the routing group formed .
19:  if (0 < size(u) < L) then

20: Reset the binary digit on the leading bit [ of the source address to
wildcard bit.

21: Return [u, H%S?ZC;’(SJ(“)]

22:  if (size(u) > L) then

23: Return [u, o]

24: if (type == dst and 1y # 0) then
25: Set the binary digit on the leading bit [ of the destination address to
d, while keeps the source address the same. Denote the routing group

formed w.
26: il (0 < size(u) < L) then
27: Reset the binary digit on the leading bit [ of the destination address
to wildcard bit.
28: Return [u, IZ'?ZC;’(S;(“)]
29:  if (size(u) > L) then
30: Return [u, o]

31: Return [0, oo]
32: EndFunction

O( K[|V ] + [£] log | ).

V1. EFFICIENT PARTITIONING PROBLEM

After solving ERP f[or each rouling group, we are lell
with the problem of partitioning K demand pairs into routing
groups. In this case all demand pairs can be visualized using
2™ x 2™ square, where m is the number of bits in the source
and destination address. For example, Suppose there are 6 de-
mand pairs [10,00], [11,00], [00, 01], [00, 11],[01, 11], [01, 10],
the corresponding square is shown in Figure 7(a). The
squares representing the 6 demand pairs are coloured in
blue. One of the possible partitions is shown in Figure
7(b), where the routing group G1 covers the demand pairs
[01,10],[01,11],[00, 11], G2 covers [10,00],[11,00] and G3
covers [00, 01].

The goal of EPP is to find the routing groups so each
group can be routed with the lowest cost as defined in (1). We
represent each routing group by a pair of source-destination
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Fig. 8. Example of DSA

addresses with subnet mask. For example, G2 in Figure 7(b)
can be represented by [1x, 00]. A drawback of aggregating flow
entries is that we lose visibility into fine-grained flow charac-
teristics, which makes elephant flow detection and rerouting
harder to achieve [6]. In Sector, we use maximum routing
group size L to limit the maximum flow aggregation level,
which allows the Sector to make a trade-off between flow
visibility and TCAM space savings.

Our solution algorithm, called Detailed Search Algorithm
(DSA), starts from the entire square that covers all source-
destination pairs. In each iteration, it reduces the size of the
routing rectangle by replacing the wildcard bit in the address
with a binary digit. The output of each iteration is the routing
group with the lowest average cost per demand pair in the
group. Define the leading bit of an address as the leftmost
wildcard bit in the address. For example, the leading bit of
address 00 = * is the third bit. If there is no wildcard bit in the
address, set the leading bit to 0. Denote size(w) the number
of demand pairs in routing group g. Define [, and [ as the
leading bit of source and destination address. The pseudo code
of Detailed Search Algorithm is described in algorithm 2. The
function JRAcost(u) returns the minimum cost generated by
ITRA to route all the demand pairs in u. The DSA algorithm
works by searching the routing group v with size(vw') < L
with the lowest average cost in a greedy fashion, and building
the paths for that group with minimum cost. Afterwards, the
demand pair is removed from K. The algorithm (erminales
when all the demand pairs in K have been routed.

Figure 8 provides an example to illustrate DS A. Let L equal
3. Initially there are 6 demand pairs. The routing group is
the region circled by the red dash line, which is the whole
square shown in Figure 8(a). Assume we found the routing
group with minimum average cost is [1x,#x], by setting the
leading bit of source address to 1, the corresponding routing
group is shown in Figure 8(b). Repeat these steps until we
found the routing group [1x, 00] shown in Figure 8(c) and 8(d).
Note that further dividing this routing group will increase the
average routing cost per demand pair. Then the two demand
pairs in the routing group [1x, 00] will be routed by using /R A.
DS A then removes this routing group, and repeat the process
until all the demand pairs are routed. We now analyze the



complexity of DS A. The inner while loop between line 4 — 15
runs at most 27n times, since in each iteration of the inner while
loop the leading bit of source address or destination address
decreases by 1, the iteration will stop when all the wildcard
bit in source address and destination address are filled with
binary digits. For each inner while loop, the /RA is called 4
times (line 5 — 8). Finally, the outer wile loop (line 2 — 15)
runs at most | K| times. Therefore the complexity of DSA is
O8m|K|*(JV|+ |E|log|£])). It is possible that two routing
groups may overlap with each other. For the example shown
in Figure 7(c), two routing groups G1 and G2 both cover
the yellow square [11,00]. Assume the switch s1 carries the
traffic of both routing groups, the flow of [11,00] will satisfy
the predicates for both entries, which is shown in Figure 7(d).
Therefore each entry in the switch must be assigned with a
priority level. Upon receiving a packet, the switch finds the
entries with a matching predicates and the highest priority
level, then performs its action. One simple way to assign
priorities in DS A is based on the order the routing group
is generated by DS A. For example, if G1 is generated before
(G2, then the entry of G'1 has a higher priority than that of G2
(shown in Figure 7(d)).

VII. DYNAMIC SCHEDULING OF DEMAND PAIRS

The algorithms presented in the previous sections have been
focused on the static version of the problem. While they are
useful for networks that have constant network demand, in
reality, the demand pairs may join/leave the network dynam-
ically. In this section we propose the dynamic algorithms to
deal with this scenario.

A. Dynamic demand pairs entering

We first consider the case where a new demand pair k enters
the network. Let sy and dj, denote the source and destination
address of k. We first make the following definition:
Definition 2. Let f be a full address without wildcard bits,
we say the address f/ covers f if f/ and f have the same bit
length and all the non-wildcard bits of f/ are the same as f.

For example, let f = 00  » and f = 0001, then f’ covers

f because all the non-wildcard bits of f’ (the first two bits)
are the same as f, which is 00. Next we extend the definition
of ready for each new demand pair £:
Definition 3. In a directed graph G' = (V/ '), link ¢ is
ready for the new demand pair k if: 1. out(¢’) contains a 4-
tuple (s,4,d,n(€e')),: € wlout(e)) or (s, *,d,n(e')). 2. in(e’)
contains a 4-tuple (s,n(€’),d,4),7 € w(in(e')) or (s,%,d,5),
where s covers s, and d covers dy,.

Algorithm 3 (DAN A) builds the paths for each new de-
mand pair. The intuition behind DAN A is reusing existing
rules in the network. For the example shown in Figure 1(c),
the routing tables are shown in Figure 2(c). Assume that
there exists a new demand pair with source address/destination
address 010/101 and ingress/egress switches are A and K.
l‘urther assume that the every link has enough remaining
capacity to carry the flow of this demand pair such that (8) is
obeyed, cvery switch has the same weight and cnough TCAM
space. One of the possible solutions is routing through the path
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Algorithm 3 Dynamic Algorithm for New Arrivals (DANA)

1: for each new demand pair & do

2 for each link ¢’ € £’ do

3 il ¢’ is ready for & then

4: Set the cost of link ¢’ to 0, cost(e’) =0

5: if ¢’ is not ready for k& then

6: Set the link cost cost(e’) = w(out(e’))

7 if 5C. < By, or a(out(e/)) > Tout(e!) then

8 Set the cost of link ¢’ (o infinily, cost(e’) = o

9 Find shortest path between s, and dy,, if there are more than one short-
est paths, randomly select one. Install the 4-tuple rules (s, %, dy,7)
along the path. Update a(v).

10: Set BCE/ = BCE/ — Bk

Node[Sre|DsiinporfAction]

ol nlw|>

o w101 2

<
ww s oo 2
=1

Fig. 9.

Example of Flow Tables

A, B, I (the black route in Figure 9(a)), and the new routing
table is shown in Figure 9(b). Three entries are added on the
switch A,B and F. DAN A will generate the red route shown
in Figure 9(a) and the routing table shown in Figure 9(c). By
comparison, only one entry is installed on switch /), and the
entries in switch A, D are reused so that no additional entry
is installed.

B. Dynamic demand pairs leaving

In case of a demand pair leaving the network, if the
leaving renders the rule to be obsolete, this rule can be safely
deleted either by the controller or idle timeout [10]. However,
depending on the network traffic pattern, some unused rules
can be kept for a longer time for routing future traffic flows.
Details of this problem is out of the scope of the paper [17].

VIII.
A. Network Settings

SIMULATIONS

We evaluated DS A on 4 different network topologies, one is
a real WAN model generated by G1-I1M [18], which simulates
WANSs using Transit-Stub topologies. This network has 100
nodes and 127 undirected links. The other network topologies
includes the Abilene (11 nodes, 13 undirected links), Far Tree
(4 pods, 4 core switch, 52 nodes and 64 undirected links) and
Sprint (52 nodes, 168 undirected links). The traffic distribution
for Abilene and Sprint are available in [19]. We use two models
proposed in [19]: Lognormal distribution (p = 15.45,6 =
0.885), and Weibull distribution (¢ = 1.87 x 10°, b = 0.69) to
model the traffic distribution in the Sprint Network. And we
use the Lognormal distribution (p = 16.6, — 1.04) to model
the traffic distribution in the Abilene Network. For the GT-
ITM and Fat Tree, we usc the Bimodal distribution (gencrated
by mixture of two Gaussian Distributions) proposed in [20].



The Bimodal distribution is proposed based on the observalion
that only a small fraction of Source-Destination pairs has large
flows. Assume each switch has a capacity between 300 — 500
entries. We use the method proposed in [21] to model the
link capacity, which claims that the link capacity distribution
follows the Zipf’s Law, and the links whose end nodes with
higher degree tend to have larger link capacity. For the purpose
of simulation, we set the link capacity to 39813.12M bps (the
transmission rate of optical carrier OC768) if the degrees of
both endpoints of that link are larger than 3, set the link
capacity to 9953.28 M bps (OC'192) if one endpoint has degree
larger than 3 and degree of the other end point is less or equal
3, set the link capacity to 2488.32M bps (OC48) if the degree
of both endpoints is less or equal than 3.

We randomly generate demand pairs, each corresponds to
a source machine and destination machine in the network.
Each machine has been assigned a random type B IP address
and they are connected to a switch in the network. The
bandwidth consumption of the flows follows the distribution
described above. Since TCAM space aware routing has not
been investigated before, and there is no such a similar routing
algorithm which aims to reduce the routing table size, we
compare DSA with two benchmark routing schemes: ECMP
and Valiant Load Balancing (VLB) which are widely used to
achieve load balancing on link resources. FCMP is a routing
strategy which works by equally splitting the traffic over the
multiple paths with the same length (number of hops) [22]. In
VLB, the flows of the same demand pair are first sent to some
intermediate nodes, then forwarded to the destination [23].
After the paths are calculated by the two benchmark routing
schemes, the corresponding rules (sg,i,dy, J) are installed to
direct the flows. All the rules contain fully specified addresses
sp and dj so that they can not be reused by the other flows.
We run each algorithm 100 times and take the average results.
For the evaluation, we set the weight of each switch in (1)
to 1, therefore the total cost generated by (1) equals the total
number of entries installed. We compare performance of the
algorithm using a metric called Traffic Saving Ratio. Assume
the total amount of TCAM space consumed by DSA is 1,
and total amount of TCAM space consumed by the benchmark
algorithm is 1} , then Traffic Saving Ratio (TSP) is defined as:

TSP = (1, —1,)/T, ©)

B. Evaluation of the TSP

First we evaluate the relation between the number of demand
pairs and T'S P. We do not limit the maximum routing group
size. Table II shows the relations between the number of
flows and TSP with different networks and different traffic
distributions. TS’ P; is the T'S P of the ECMP and T'S P, is the
TSP of the VLB. The DSA can achieve 20% — 80% saving on
the TCAM space with different network topologies and traffic
distributions. The saving also grows with the number of flows.
This is because as the number of flows increases, more flows
can be aggregated for saving TCAM space. Moreover, if we
neglect the first packet of each flow which is forwarded to
the controller, the TCAM space saving almost equals to the
saving in the number of control traffic between the controller
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TABLE IL EVALUATE ON ALL THE NETWORK TOPOLOGIES
Network Number of Flow 60 70 80 90 100
bl y o1 | TSPy [ 04264 06331 | 07176 | 0.7518 | 0.7851

tiene || Lognornal | mop, | 04051 | 0.6318 | 0.7015 | 0.7427 | 0.7881
Network Number of Flow 80 120 160 200 240
Weiball | LS P | 02570 | 0.3740 | 0.5252 | 0.5805 | 0.6659

Sorint TSP, | 0.2551 | 0.4553 | 05038 | 0.6519 | 0.7718
prn Lognormal | TSP | 0:2041 | 0.2860 | 0.5437 | 0.5809 | 0.6003

& TSP, | 0.2473 | 03933 | 05154 | 0.6715 | 0.7258

Network Number of Flow 200 300 400 500 600
) TSPy | 04253 | 04353 | 05766 | 0.6107 | 0.6611

GT-ITM || Bimodal | 7gp | 04542 | 0.4604 | 05599 | 0.6034 | 0.7912
Network Number of Flow 100 150 200 250 300
vt tree || Bimodal | LSFL | 01981 | 0:2986 | 04334 [0.6008 | 0.6745
TSP, | 0.2158 | 0.2974 | 04298 | 0.6177 | 0.7208

TABLE III.  PERFORMANCE AND RUNNING TIME COMPARISON
Performance [ Node [ Abilene [ Sprint [ Tree [ GI-ITM |

[ TSP | 05979 | 05435 | 04894 | 04001 |

GTIIM |

| Running Time | Network | Abilene | Sprint | Tree
|

DSA [ 0.19ms [ 029ms [ 0.32ms | 0.37ms |

and the OpenFlow switches. This is because each entry in the
switches requires a control packet for installation. Figure 10
to 13 show the relations between the number of flows and
the actwal maximum link ullization ol dilferent algorithms
over different traffic distributions. When calculating the link
utilization of DSA, the threshold on link utilization rate, 5 is
set to 0.9. The maximum link utilization rate of DSA is on
average 10 — 17 percent higher than that of ECMP and VLB.
Despite the higher link utilization rate of DSA, considering
the huge savings on the TCAM space, we believe this is a fair
trade-off.

As mentioned before, we can tune the value of L to balance
the trade-off between TCAM space saving and maximum link
utilization. We evaluate on the GT-ITM network with 500 de-
mand pairs. As shown in Figure 14 and 15, when [ decreases
from 95 to 5, the T'SP decreases from 0.6107 to 0.04665,
meaning less demand pairs are aggregated. At the same time,
the maximum link utilization rate also decreases slightly from
0.79 to 0.752. This is because small routing group leads to fine-
grained routes which in turn reduces maximum link utilization.

C. Evaluation of the DANA

We generate some demand pairs which attach to some
random nodes in the network. Each demand pair has a random
type B source and destination IP address, and all the demand
pairs are connected by installing the rules generated by DSA.
To emulate the dynamic entering of new demand pairs, we
generate 50 new demand pairs and run the DANA to add the
flows. We compare the performance of DANA with shorrest
path algorithm (SPA), which routes traffic along shortest paths.
All the rules installed for SPA are fully specified addresses.
TSP is defined in a similar manner as (9), with 1} and 1},
means the total number of rules generated by SPA and DANA
to direct the new flows. Table III shows the performance and
running time of the two algorithms. As the tables shows,
DANA can achieve 40% — 60% saving on TCAM space.
The running time of DANA increases moderately with the
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network size. But overall running time of the algorithm is still
reasonable.

IX. TESTBED DEPLOYMENT

We evaluated the functionality and implementability of
the DSA in a real testbed. We built the overlay network
that follows Abilene network topology by using software
switch (OpenVswitch) running on virtual machines. The Open-
Vswitches communicate with each other by using the Virtual
Extensible LAN. The centralized controller (Ryu) can con-
figure the entries in the switches to build the routing paths.
We built three source VMs and three destination VMs (three
demand pairs), each VM is assigned with an IP address.
The routing module on top of the Ryu controller takes the
connection demands as the input and sends the results of
DSA to the implementing module which installs the relative
OpenFlow rules on the switches (Figure 16). For comparison,
we also used the shortest path algorithm (Dijkstra’s Algorithm)
to connect the demands pairs. For DSA, total 14 entries are
installed on the switches, and the total time taken for building
the path is 0.028s. For Dijkstra’s Algorithm, total 30 entries
are installed on the switches with the total time 0.061s. Hence,
DSA clearly saves TCAM space and path set up time.

X. CONCLUSIONS

In this paper, we propose Sector, a routing scheme to
achieve savings on TCAM space in SDN without causing
network congestions. We provide algorithms for this problem
for both the static and dynamic scenarios. Experiments show
that Sector can achieve 20% — 80% saving on TCAM space
with 10% — 17% increase in maximum link utilization.
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