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Abstract—Secure naming systems, or more narrowly public key
infrastructures (PKIs), form the basis of secure communications
over insecure networks. All security guarantees against active
attackers come from a trustworthy binding between user-facing
names, such as domain names, to cryptographic identities, such
as public keys.

By offering a secure, distributed ledger with highly decen-
tralized trust, blockchains such as Bitcoin show promise as the
root of trust for naming systems with no central trusted parties.
PKIs based upon blockchains, such as Namecoin and Blockstack,
have greatly improved security and resilience compared to tradi-
tional centralized PKIs. Yet blockchain PKIs tend to significantly
sacrifice scalability and flexibility in pursuit of decentralization,
hindering large-scale deployability on the Internet.

We propose Conifer, a novel PKI with a architecture based
upon CONIKS, a centralized transparency-based PKI, and
Catena, a blockchain-agnostic way of embedding a permissioned
log, but with a different lookup strategy. In doing so, Conifer
achieves decentralized trust with security at least as strong as
existing blockchain-based naming systems, yet without sacrificing
the flexibility and performance typically found in centralized
PKIs. We also present our reference implementation of Conifer,
demonstrating how it can easily be integrated into applications.
Finally, we use experiments to evaluate the performance of
Conifer compared with other naming systems, both centralized
and blockchain-based, demonstrating that it incurs only a modest
overhead compared to traditional centralized-trust systems, while
being far more scalable and performant than purely blockchain-
based solutions.

I. INTRODUCTION

Nowadays, cryptographic protocols such as TLS, which pro-
vide secure communications over insecure networks such as
the Internet, have gained extremely pervasive deployment. It
would not be an understatement to say that without these secure
channels, use of the Internet could not have expanded into
fields such as private communication and e-commerce. Yet
the security of these protocols rely ultimately on one thing: a
secure public key infrastructure. Application-level names must
be somehow bound to cryptographic identities, such as public
keys, in a trustworthy way; otherwise, security against active
man-in-the-middle attacks cannot be achieved.

Unfortunately, building a secure PKI has proved to be quite
difficult. Naming systems were once conjectured to be subject
to a tradeoff known as Zooko’s triangle [9], which suggests
that a naming system cannot simultaneously achieve the three
properties of human-meaningful (arbitrary names chosen by
users), decentralized (no single party can subvert the system),
and secure (does not trust the network). Traditionally, PKIs

such as those used in TLS and S/MIME achieve security and
human-meaningfulness by introducing trusted third parties —
certificate authorities (CAs) or key servers. Though compro-
mised or incompetent trusted parties have repeatedly damaged
security [6], [13], Zooko’s triangle seemed to imply that there
could be no better alternative.

Blockchains, public append-only ledgers that are unforge-
able yet fully decentralized, largely demonstrated that Zooko’s
triangle was after all not true. The first blockchain, Bitcoin
[12], was initially conceived only as a cryptocurrency for fi-
nancial purposes, but soon afterwards a derivative, Namecoin
[2], pioneered the idea of building a secure naming system
by encoding DNS records inside a blockchain. Namecoin’s
dedicated blockchain, in additioning to providing a Bitcoin-like
cryptocurrency (“namecoins”), also stores a global log of state
transitions to provide consensus on the mapping of names to
cryptographic identities without needing any trusted third party.
Several newer blockchain naming system designs, such as Cert-
coin [7], follow the same general design of embedding name
records directly in a special-purpose cryptocurrency blockchain.

However, Namecoin-like blockchain PKIs bring significant
improvements in the area of decentralizing trust, they also
face many new challenges. All nodes in the network must
synchronize and validate a local copy of the blockchain, so
anybody wishing to look up names in a secure fashion must face
large, linearly-increasing storage costs. Additionally, without
widespread adoption, proof-of-work blockchains such as those
of Bitcoin and Namecoin are vulnerable to attacks which nullify
their security guarantees. Namecoin, in fact, is known to be
subject to a 51% attack due to its small amount of miners [4],
an almost complete breakdown in the trust decentralization of
a blockchain. Finally, deploying new features to system using a
dedicated blockchain like Namecoin is difficult, as blockchain
nodes must all agree to run a newer version of the protocol
within a short period of time to maintain the distributed con-
sensus.

Newer blockchain-based PKIs do attempt to mitigate these
issues, most recently and successfully Blockstack [4]. However,
although Blockstack makes it easier to deploy new features
and reduces the amount of data that needs to be replicated
to all participants by moving most of the data away from the
underlying blockchain, it still fails to eliminate the requirement
for verifying large amounts of blockchain data, and continues
to be much less flexible in enforcing rules for namespaces



compared to centralized solutions.
These issues with existing blockchain-based distributed PKIs

motivate us to create a new system, Conifer, which builds upon
the existing work of CONIKS [11], a centralized transparency-
based PKI, and Catena [14], a data structure embedding a
permissioned, efficiently queriable log into a public blockchain.
Unlike the direct combination of Catena and CONIKS as pro-
posed by the authors of Catena, though, Conifer uses a different
lookup algorithm — with changes to CONIKS’s data structures
to support it — to provide fully proactive security similar to
usual blockchain-based naming system, eliminating the need
for monitoring a trusted central entity and fully decentralizing
trust. This allows us to ultimately anchor trust on a decen-
tralized blockchain, while retaining much of the properties of
traditional PKIs including low overhead, policy flexibility, and
performance. We believe that compared to existing systems,
Conifer makes it significantly more practical to deploy a PKI
with fully blockchain-backed security.

II. BACKGROUND AND RELATED WORK

In this section, we discuss the background to the development
of Conifer — in particular, our definition of a secure nam-
ing system and previous work on improving upon traditional
centralized-trust PKIs.

A. Secure naming systems

It is important to define what exactly we mean by a “secure
naming system”. Unfortunately, the security goals of different
PKIs are often vaguely described, causing confusion on exactly
what sort of guarantees a system attempts to give. Thus, in-
stead of referring simply to “security”, we discuss two quite
separate concepts in this paper: policy enforcement and identity
retention.

Policy enforcement refers to the enforcement of external
guarantees on bindings in the namespace. For example, in the
traditional PKI used in TLS, CAs checking for domain owner-
ship before issuing domain-validated certificates is an example
of policy enforcement: “domain ownership” is a concept defined
by DNS, a system external to the PKI. Another common exam-
ple is real-world identity certification, as in TLS’s extended val-
idation certificates, where having a name in the naming system
certifies claims about real-world facts like business registration.

Identity retention, on the other hand, is a purely internal, self-
consistency property. We use this term to refer to the following
two features:
• Everybody sees the same value bound to a given name

(also known as non-equivocation [11])
• Values bound to a name cannot be changed without au-

thorization from the name’s owner
Violations of identity retention tend to be far more devastating

to secure communications than violations of policy enforcement.
For example, man-in-the-middle attacks inherently require an
adversary to make unauthorized changes to the public key
bindings of a name, thus breaking identity retention. On the
other hand, failure of policy enforcement is rarely a disaster,

unless a system relies solely on policy enforcement to provide
its security guarantees, such as in TLS’s PKI.

B. Failure of centralized trust

In conventional PKIs, centralized trusted entities, such as
CAs, are in charge of enforcing the abovementioned security
properties. For example, in the CA-based PKI used in TLS,
CAs must check every request for a certificate to execute the
policy enforcement that CAs are required to do — if a CA
makes a mistake or is compromised, then the PKI’s security
guarantees immediately break down.

Unfortunately, such collapses of centralized PKI security are
not very uncommon. The most high-profile incident arguably
happened in 2011 when the DigiNotar certificate authority was
compromised [15]. This lead to vast amounts of malicious
certificates being issued, some of which were subsequently used
in man-in-the-middle attacks on Google services [3]. Other
breaches of CAs and other centrally-trusted authorities, such as
software update signing authorities, have continued to under-
mine PKI security [13], and even honest, uncompromised cen-
tral authorities often prove to be very lax in actually enforcing
their claimed security policies [6].

It seems clear that eliminating or reducing central points of
trust in a PKI would greatly help it achieve stronger security,
and doing so is indeed a key goal of most newer PKIs.

C. Transparency-based approaches

Conifer’s design is derived from centralized transparency-
based PKIs. This class of newer PKI design, instead of at-
tempting to completely remove any centralized trusted third
parties, aims to increase the public visibility of their operations,
generally by using some sort of auditable, hard-to-forge log
of everything the trusted party does. By making changes in
the naming system public, anybody can check for evidence of
malicious behavior by the trusted third party; the hope is that
the very high probability of eventual discovery would deter
potentially malicious trusted parties from carrying out attacks.
Certificate Transparency (CT) [10], an experimental IETF open
standard and extension to the traditional CA-based PKI, is
probably the most well-known transparency-based system; it
provides logs where CAs can transparently deposit certificates
for examination for suspiciousness.

The direct ancestor of Conifer, though, is CONIKS [11],
an entirely new secure naming system based on pairing trans-
parency with a trusted service rather than an extension to an ex-
isting PKI. Unlike CT, which relies on third-party monitors that
analyze every change in the PKI for suspiciousness, CONIKS
introduces the concept of self-monitoring, where each owner of
a name securely monitors log entries related only to his or her
own name for suspicious behavior, using novel data structures
that eliminate the need to monitor the entire log. In addition,
CONIKS supports optional strict users that sign their own
name binding changes, giving a measure of identity retention,
making it possible for monitors to produce definitive rather
than heuristic proof that the trusted service is either honest or
misbehaving. Third-party auditors communicating with each
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other, though, are still needed to check that logs do not violate
constraints such as being append-only and globally consistent.

Transparency-based schemes do significantly enhance PKI
security, reducing blind trust in central authorities by making it
easy to quickly produce evidence that a certain trusted authority
is misbehaving and distrust it, while keeping the authority in
full control of policy enforcement. However, in general the
following problems are apparent:

1) Reliance on altruistic third parties: Additional third par-
ties, such as monitors and auditors, must be introduced to keep
watch on the trusted authority, but there is little incentive for
third parties to contribute.

2) Need for secure “whistleblowing”: Malicious behavior by
the trusted service provider is not detected uniformly across all
participants: for example, in CONIKS, only the owner of a name
can detect suspicious changes by the service provider, while
other parties looking up the name would not see any evidence
of problems. Transparency-based systems thus typically assume
that evidence of malicious behavior can be globally broadcast
[11], [10] quickly enough that the reputation of the service
immediately drops and usage discontinues.

3) Reactive rather than proactive: Finally, transparency fun-
damentally facilitates damage control after a PKI’s security has
already collapsed, by severely tarnishing the reputations of cen-
tral providers who behave maliciously. Although this may deter
intentionally malicious providers who wish to covertly tamper
with name bindings, in practice centralized providers often
become the target of compromise by unrelated attackers, who
may simply wish to, for example, steal as much confidential data
as possible through man-in-the-middle attacks before discovery.

D. Blockchain-based PKI

Unlike PKIs that attempt to simply keep watch on centralized
trusted parties, naming systems based on embedding name in-
formation in a blockchain are fundamentally decentralized, with
no trusted parties at all. All participants in a blockchain network
form a peer-to-peer network that maintains an append-only,
growing log of transactions; without changing the consensus
of a majority of the network, past blocks cannot be rewritten.
Importantly, blockchains typically use economic incentives to
encourage selfish participants, or “miners”, to honestly con-
tribute large amounts of resources to maintaining and verifying
the append-only log, making it very difficult for attackers to
amass enough resources to hijack the network consensus.

Namecoin [2] is the first blockchain-based naming system,
and it is implemented as a separate cryptocurrency based on
the Bitcoin code [12], designed to function as an alternative
to the Domain Name System (DNS). As the first fork of the
Bitcoin software, Namecoin adds to the blockchain a name-
value store for mapping domain names to DNS records [8]. In a
blockchain-based PKI, identity retention of names is protected
as long as the honest nodes in the network reach a consensus,
as there is a single canonical log of events in the blockchain,
and all name updates are signed by the name owner.

Unfortunately, blockchain-based systems do have significant
problems with scalability and deployability — having every

user of the PKI replicate an ever-growing blockchain is clearly
impractical. Although state-of-the-art blockchain PKIs such as
Blockstack [4] do mitigate this overhead somewhat, usage of
these systems on devices such as smartphones generally require
delegating the work of storing and querying the blockchain to
a trusted gateway, defeating the robustly decentralized trust of
blockchains.

E. Towards a better system

Both transparency-based and blockchain-based naming sys-
tems make large strides towards stronger security compared
to traditional, centralized-trust PKIs, yet important unsolved
problems remain. In particular, transparency-based systems
suffer from lingering security issues due to the still-trusted
central authority, while blockchain-based systems have severe
limitations in scalability and flexibility due to the need to
synchronize an unwieldy, permissionless blockchain across a
peer-to-peer network.

Catena [14] pioneered the idea of combining a transparency-
based system with a blockchain: in particular, the authors show
that by embedding part of the data structure of CONIKS into
the Bitcoin blockchain, the need for third-party auditors is
eliminated. Unfortunately, Catena’s variant of CONIKS still
partially retains the reactive security model of CONIKS, failing
to fully decentralize trust — self-monitoring and whistleblowing
is still required to detect malicious behavior by the provider.

It is clear that a newer strategy is needed. We want a PKI
that provides robust identity retention backed by a blockchain,
like Namecoin and Blockstack, but on the other hand the flexi-
ble policy enforcement and high performance of transparency-
based systems. By basing its architecture on that of Catena and
CONIKS, but making some crucial changes to CONIKS’s data
structure and verification algorithm, Conifer aims to achieve
exactly that.

III. OVERALL ARCHITECTURE

Conifer uses a client-server architecture, where providers
administer namespaces; clients then look up names in a cer-
tain namespace by querying a particular provider. Instead of
imposing a global infrastructure of providers, Conifer allows
developers to set up application-specific providers, similar to
how traditional PKIs may have application-specific root CAs
— thus, there is no such thing as a canonical “Conifer name”.

The general design of Conifer is based on that of CONIKS,
a state-of-the-art transparency-based naming system, combined
with that of Catena; this combination has already been sug-
gested by the Catena authors. However, Conifer aims to com-
pletely prevent violations of identity retention by the provider,
unlike the straightforward use of Catena and CONIKS, which
though eliminating the need for third-party auditors, still uses
reactive security based on whistleblowing by self-monitoring
name owners.

In order to achieve that goal, in addition to adopting Catena’s
use of a transaction chain [14] in a Bitcoin blockchain to
efficiently eliminate the need for third-party auditors, several im-
portant changes are made to the centralized portion of CONIKS.
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Fig. 1. Transaction chain

The CONIKS radix trees are replaced with an operation for-
est consisting of chronologically-ordered operation trees, each
containing updates and name registrations within a certain time
period, rather than a full snapshot as in CONIKS. This allows
clients to more efficiently scan through the entire history of a
name on every lookup — a change that eliminates monitoring
and gives Conifer fully decentralized trust and proactive security.
Furthermore, instead of a dichotomy between “strict” mode or
“nonstrict” mode, Conifer allows name owners to flexibly specify
permissions on a name binding, ranging from fully trusting the
provider to complex hierarchical key quorums, making it much
easier to adopt provider-distrusting key management policies.
As in Blockstack [4] and Catena [14], we choose the Bitcoin
blockchain for its much higher level of security compared to
other public blockchains, even though Conifer would be quite
easy to port to almost all cryptocurrency blockchains.

A. Transaction chain

The transaction chain of a provider is simply a Catena log
[14] stored in the Bitcoin blockchain. A Catena log provides
the abstraction of a public append-only list with the following
properties:
• Only the provider can append to the log
• Two clients’ views of the log are always identical, even

assuming a malicious provider
• Entries in the log can be quickly obtained and verified

using Bitcoin’s simple payment verification (SPV) [12]
algorithm, without compromising the above two properties

We can leverage the properties of Bitcoin (or in fact, any
cryptocurrency blockchain) to implement this abstraction. The
provider controls the private key corresponding to a single
Bitcoin address, a. Before the first transaction in the chain, the
genesis transaction t0 is broadcast, a should control a significant
amount of bitcoins. t0 would then take all this money as its
input, and have two outputs: the first one sending all the money
(less the transaction fee) back to a, and the second one sending
the zero bitcoins to an OP_RETURN metadata entry encoding an
arbitrary value e0.

After that, each ti would spend the first output of ti−1,
sending most of it back to a in its first output and recording
ei as its second output.

Fig. 1 illustrates the structure of the transaction chain. It is
clear that we have the desired properties listed previously:
• Only the provider, who controls the private key correspond-

ing to a, can append to the chain

• Bitcoin’s double-spending prevention means that given the
location of the genesis transaction in the blockchain, there
is unambiguously a single transaction chain that follows

• All the relevant entries in the log can easily be obtained
by querying for transactions involving a; SPV ensures
that the transactions indeed form the unambiguous chain
accepted in the blockchain.

B. Operation forest

The operation forest, on the other hand, is a data structure
that exists in the provider’s database, and is not stored in the
blockchain. It is a chronologically-ordered collection of key-
value dictionaries called operation trees; each tree corresponds
to a fixed period of time known as an epoch, and is a dictionary
mapping names in the namespace to changes that happened
to the names. Thus, the operation forest as a whole stores the
entire history of every name in the namespace; it is analogous
to the snapshot trees of CONIKS, though instead of storing a
snapshot of the namespace at each epoch, it stores only the
changes to the bindings.

1) Operation tree structure: An operation tree is a data
structure used by the provider to store changes to the namespace
happening over a given epoch. Unlike the binary radix tree
used in CONIKS, it is implemented using a perfectly balanced
Merkle binary search tree. Each node is either empty, or stores:
• An index derived from name in the namespace
• All the changes done to the name over the time period

covered by the tree
• A hash of the left child of the node
• A hash of the right child of the node
As in CONIKS, a verifiable unpredictable function (VUF)

that only the provider can compute is used to map names
to their respective indexes to increase the difficulty of name
enumeration, which can be a privacy risk [11]. Fig. 2 is an
illustration of the structure with 5 names, omitting the values
associated with the names or the VUF.

We choose a perfectly balanced BST instead of a Merkle
binary radix tree as in CONIKS in order to guarantee that the
height of the tree is logarithmic in the number of changes in
an epoch; as we will later see minimizing the height of the
operation trees is crucial to reducing lookup overhead.

2) Proving existence and nonexistence: An important prop-
erty of operation trees that it shares with CONIKS’s Merkle
radix trees is that given the hash of the root node, we can
efficiently produce a proof that a certain name exists in the
tree with a certain value associated with it, or a proof that it
does not exist. We illustrate this by using the tree in Fig. 2.

For example, the collection of nodes nroot, n1, n11 is a proof
that “fred” exists in the tree, with a certain value associated with
it (not drawn in the tree). As long as we have a trustworthy hash
of nroot, this proof cannot be forged. We can also prove, for in-
stance, that “aaron” does not exist in the tree, by nroot, n0, n00,
since if “aaron” does exist, n00 would not lack children.

In general, the structure of the tree guarantees that there can
be only one valid entry for each name in the tree — there cannot
be two different bindings N : V and N : V ′, both with valid
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nroot "david" H(n0) H(n1)

n0 "bob" H(n00) H(n01) n1 "emily" H("") H(n11)

n00 "alice" H("") H("") n01 "carol" H("") H("") n11 "fred" H("") H("")

Fig. 2. Example of an operation tree
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Fig. 3. Conifer overview

proofs of existence. This result can be shown easily. Consider
validating the proof consisting of the nodes p1, p2, . . . , pn, given
as a result for a query for the name N . For every pi,

• If N = pi.name, then the proof should stop at pi.
• If N < pi.name, and if pi has a left child, then H(pi+1)

must be pi.lefthash.

– In case pi has no left child, this is a proof of non-
existence, and should stop at pi.

• (The case of N > pi.name is the same, except with left
and right reversed)

It is clear that given any node in the proof, we can perfectly
predict either the next node in the proof, or that the proof ends.
Thus, given that the root of the tree p1 and the name queried
N are both known, there can only be one valid proof of (non)-
existence p1, . . . , pn and one binding V = pn.value. Nobody
with knowledge of the tree root could be fooled into accepting
any other value V ′.

Finally, since the tree is perfectly balanced, the length of a
proof is bounded by the height of the tree, which is proportional
to log δ, where δ is the number of names in the operation tree
(i.e. the amount of name bindings that have changed since the
last operation tree).

C. Securing the operation forest with a transaction chain

Using the properties of the operation forest, we see that we
can securely verify the history of any name, given that we have:

• Trusted hashes of the roots of all the operation trees in
the forest

• For each tree in the forest, a valid proof that the operations
done to the name within the tree interval exist in the tree
or, if no operations were created for the name, a valid
proof that no binding to the name exists in the tree (the
proofs do not need to come from a trusted source)

To store the trusted hashes, we use the “transaction chain”
mentioned earlier the same way the Catena authors applied it to
plain CONIKS — every ei stored in the chain is a cryptographic
hash of the ith tree’s root. By the properties we already know
hold for a transaction chain, we then know that assuming the
security of the underlying blockchain, everybody will obtain
the same, unforgeably append-only list of tree root hashes, and
thus, also the same unforgeably append-only history of a name.

Of course, simply having an append-only history of a name
only gives us a measure of transparency on the behavior of the
provider, and not the full identity retention desired. To achieve
that, cryptographically secured operation logs are needed.
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D. Operation logs and identity retention
The operation forest, combined with the transaction chain,

gives us a way of securely obtaining an append-only history
of any name, which only the provider can append to — the
operation log, consisting of many individual operations. Similar
to CONIKS’s “strict mode”, each operation in the operation
log must be signed by a cryptographic identity declared in the
previous operation, preventing any changes to a name’s binding
unauthorized by the owner of the name.

1) Structure of an operation: Each operation contains the
following fields:
• An identity script representing the cryptographic identity

authorized to make changes to the data bound to the name
• A collection of cryptographic signatures, valid with respect

to the identity script declared in the previous operation
• Data associated with name
2) Identity scripts and signatures: Identity scripts are the

entities representing cryptographic identities in Conifer. The ith
operation oi in an operation log is only valid if the signatures
on oi are valid with respect to the owner identity script declared
in oi−1. Each identity script represents a tree structure of key
quorums; every identity represented by a script is either:
• An Ed25519 [5] public key, or
• n out of m identities
Fig. 4 depicts a hypothetical identity of a user in a chat

application, where the PKI manages important public profile
details, such as name and application-level public key. Our
example user has enabled two-factor authentication for his or her
account, so changing important data must require authorization
using both the password and a device; the Conifer identity itself
elegantly encodes this requirement.

We use a simple stack-based scripting language, inspired by
payment scripts in Bitcoin [12], to represent these trees.

E. Looking up and registering names
We have now described a way of organizing a name database

in the provider, with identity retention protected by the Bitcoin
blockchain and an operation signing system. A client can then
securely look up names in the PKI following the steps below:

Obtain transaction chain: The client starts with the hash of
the genesis transaction in the transaction chain hardcoded into
the software. A protocol like Stratum is used to obtain every
transaction in the chain from an untrusted Bitcoin node, and
SPV is used to verify that all the transactions are indeed in
the real Bitcoin blockchain. We now have e1, . . . , en, all the
entries in the transaction chain.

Fig. 4. Example of an identity script

Query name history: We now query the provider for the
history of the name N . For each time period ti ∈ t1, . . . , tn
and its corresponding operation tree:
• If any operations were done during ti, the provider sends

us the operations, together with a proof that the operations
exist in the operation tree.

• If no operations were done during ti, the provider sends
us a proof that nothing is bound to N in the tree.

Finally, we validate the ith proof to make sure it indeed is
a valid proof starting from a tree root that hashes to ei from
the transaction chain.

Registering names is actually not defined by the Conifer
system itself: individual provider operators may define their
own ways in which new operations are submitted to and vetted
by the provider before publication. For example, an provider
operated by a secure messaging service may require the user to
complete a registration form in an app before any operations
are published.

Validate operation log: All the operations from the previous
step are organized in chronological order, and the signatures on
each operation are checked with respect to the identity script
declared in the previous operation.

F. Summary

In this section we presented an architectural overview of
Conifer. Our basic design is similar to the blockchain-enhanced
CONIKS proposed by the Catena authors, with two data struc-
tures, the transaction chain, which roots the consistency of
name bindings to the Bitcoin blockchain, and the operation
forest, which enables efficient and secure lookups against
an untrusted database, underpinning Conifer’s design. Unlike
CONIKS, Conifer eliminates the need for monitoring by moving
the responsibility of validating a name’s history from name
owners to everybody who looks up the name; the use of a
different data structure prevents this from being prohibitively
expensive. This allows Conifer to achieve strong, proactive
identity retention comparable to traditional blockchain PKIs,
eliminating the lingering centralized trust of CONIKS. Fig. 3
is an overview of the data structures involved in Conifer.

IV. EVALUATION

In this section, we evaluate Conifer against existing naming
systems by qualitatively measuring their performance using
experiments.

A. Lookup performance

In our first quantitative experiment, we evaluate the per-
formance of doing lookups in Conifer. As a comparison, we
also evaluate the performance of secure client-server lookups
in Blockstack, the current state-of-the-art in blockchain-based
PKIs. Unlike other blockchain-based naming systems, Block-
stack has a secure thin-client lookup system — SNV — with
at least some decentralized trust, allowing a contest between
two systems with comparable secure.

Both a Blockstack full node and a Conifer provider are
installed on a server, and a client with around 50 ms of network
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Fig. 5. Lookup performance of Blockstack SNV against Conifer

latency to the server is used to benchmark the two systems. We
query our Conifer provider with 300 random dummy names
previously placed in the namespace, with various cutoffs to the
tree audit depth to simulate names of differing cache staleness
or expiry times (see ??), while for Blockstack we use SNV
to verify 300 random existing name records in the operational
Blockstack network. Total latency and bytes transferred are then
measured by tracing network packets using Wireshark, avoiding
inaccurate measurements due to application startup latency.
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Fig. 6. Conifer lookup latency, compared with centralized-trust systems

We can plainly see the drastically different performance
characteristics of the two systems in Fig. 5 summarizing the
results of this experiment. Blockstack’s transfer overhead grows
significantly as we query names registered in older and older
blockchain blocks, while latency is extremely high — ranging
from 5 to 80 seconds — and proportional to bytes transferred.
This is expected, as SNV needs to verify more blocks the
further back the name is in history; it is also implemented as an
interactive protocol where every bit of data must be separately
requested.

Conifer, on the other hand, shows obvious linear growth of
lookup overhead and slow, roughly linear growth of lookup
latency in proportion to audit depth. In particular, latency is
bound by the network round-trip time for short audit depths and
is extremely low in comparison to Blockstack — around 200

ms for short audit depths and 700 ms for year-long audit depths.
This is due to the lookup protocol, which was carefully designed
so that the client can obtain all the (non)existence proofs for a
name within a single network round-trip. On the other hand, for
very long audit depths, the amount of data transferred can reach
several hundred KB, exceeding that of a typical Blockstack
query, though in practice most lookups would be for partially
cached names with short audit depths and involve far less data
transfer.

Not only is Conifer’s lookup procedure much more per-
formant than the state-of-the-art blockchain-based secure thin
client, it offers acceptable speed even compared to systems
with centralized trust. Fig. 6 compares lookup latency between
Conifer and three systems lacking distributed trust: unsecured
DNS, DNSSEC-secured DNS with all signature validation done
by the client, and Blockstack’s default server-trusting mode. For
DNS, we look up a list of US government DNSSEC-enabled
domains [1] using the dig tool and its +sigchase option, while
for Conifer and Blockstack we use the same set of random
names from the first experiment. We see that though DNS is
very fast due to its aggressive caching, compared with client-
verified DNSSEC and server-trusting Blockstack, both of which
are less amenable to caching by the ISP, Conifer offers quite
usable performance, even though it has fully-verifying clients
and distributed trust.

Thus, we conclude that the price Conifer pays in lookup per-
formance to achieve much stronger security is quite small, and
should not be problematic for the vast majority of applications.

B. Bootstrapping data
To achieve identity retention as strong as that of Conifer, pre-

vious blockchain-based systems must use full nodes rather than
thin clients like Blockstack’s SNV, but blockchain full nodes are
notorious for requiring very large and linearly-growing amounts
of bootstrapping data. Classically, all full nodes must down-
load the entire blockchain on first connection and continually
synchronize it to local storage, causing large delays in joining
the network. Even if optimizations such as pruning [12] and
“fastsync” , commonly deployed on Blockstack nodes [4], obvi-
ate the need to actually store all the blocks seen and speed up
initial download, new blocks must still be constantly replicated
across all nodes, using up significant amounts of bandwidth.
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Conifer also has two pieces of bootstrapping data — the
transaction chain and Bitcoin blockchain headers — which just
like a blockchain grow linearly and must be synchronized by
every Conifer client. How does the cost of keeping up with
this data compare to downloading and and keeping up with a
blockchain?

TABLE I
GROWTH RATES OF BOOTSTRAPPING DATA

System Mean monthly growth Cumulative size

Bitcoin (Blockstack) 1.20 GB 155.6 GB
Ethereum 3.37 GB 337.6 GB
Namecoin 67.6 MB 5.26 GB

Conifer 370.2 KB 40.7 MB †

To answer this question, we use Table I, which shows how fast
bootstrapping data grows for various blockchains and Conifer
— blockchain data is gathered from existing historical records,
while Conifer data comes from measuring an actual Conifer
client’s disk usage over a period of time. Note that Blockstack
full nodes also need to catch up with the Bitcoin network like
a Bitcoin full node, and thus the Bitcoin numbers also apply
to Blockstack.

It is clear that the rate at which blockchains typically grow
is quite high, and even simply catching up continually could
deplete the available bandwidth of, say, smartphones on limited
data plans. In addition, even blockchains with very low activity,
such as Namecoin, still eventually accumulate gigabytes of
blocks, placing a barrier to newly-bootstrapping full nodes. On
the other hand, although Conifer does have linearly-growing
bootstrapping data, the growth rate is minuscule compared to
blockchains and would not be a problem for all but the most
tightly constrained embedded environments.

V. FUTURE WORK

In this section, we discuss our future plans for deploying and
further improving Conifer.

A. Real-world deployment in chat application

We are currently developing a open-source secure instant
messaging / VoIP application, Aether, that uses Conifer as its
underlying PKI. We hope to use it not only to evaluate how
Conifer performs in a realistic scenario, but also as a demon-
stration of how Conifer allows blockchain-backed security to
be easily integrated in a user-friendly application. In particular,
we intend Aether to show how Conifer’s flexible identity script
system can be used to build a key management system with
a user experience similar to existing password-based and two-
factor authentication, enabling strong identity retention without
reducing usability.

B. Reducing lookup overhead

Although tricks such as caching do significantly reduce
average-case lookup overhead, in the worst case, a client looking
up a name may need to download a proof of (non)existence
for every day since the provider began operating. For some

applications, this may cause unacceptable overhead, while in
many cases name expiry and similar solutions that weaken
identity retention may not be secure enough. Strategies that
can significantly reduce the worst-case lookup overhead of
Conifer without compromising security would be helpful in
allowing Conifer to be used in extremely resource-constrained
environments, such as embedded systems or IoT devices with
very slow network links, and it is thus a potentially fruitful
future research area.

VI. CONCLUSION

We presented Conifer, a scalable naming system with cen-
tralized control yet blockchain-backed trust. Conifer uses a
new architecture informed by the successes and shortcomings
of transparency-based PKIs such as CONIKS and blockchain-
based systems such as Blockstack, ensuring that the central
administrator cannot violate identity retention without break-
ing the security guarantees of the underlying cryptocurrency
blockchain. Experimental results show that Conifer performs
markedly better than existing blockchain-based systems, with
faster lookup than thin clients and dramatically reduced storage
overhead compared to full nodes, while demonstrating that its
performance penalty compared to traditional centralized PKIs
is fairly small.
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