
Dynamic Security Orchestration for CDN
Edge-Servers

Elaheh Jalalpour∗, Milad Ghaznavi∗, Daniel Migault†,
Stere Preda†, Makan Pourzandi†, Raouf Boutaba∗

∗University of Waterloo, Waterloo, ON, Canada †Ericsson Research, Montreal, QC, Canada
∗{ejalalpo | eghaznav | rboutaba}@uwaterloo.ca,

†{daniel.migault | stere.preda | makan.pourzandi}@ericsson.com

Abstract—Content Delivery Networks (CDNs) aim to provide
high Quality of Service (QoS) in serving digital content. To
achieve high QoS, CDNs employ edge-servers that cache content
in the vicinity of end-users. Edge-servers are vulnerable to
attacks that degrade the QoS of end-users. Protecting edge-
servers against these threats is vital and complex. The attack
mitigation must be immediate, and its overhead should have the
least impact on the QoS of legitimate end-users.

In this paper, we demonstrate a software-based security system
that can be programmed to automatically react to threats by
deploying and managing security function chains. Using high-
level security policies, a network operator can program a desired
system behavior. We demonstrate how our system automatically
deploys security function chains to handle real-world threats.

I. INTRODUCTION

Content Delivery Networks (CDNs) are crucial in delivering

digital content to end-users. To provide high Quality of Service

(QoS), CDNs cache content in edge-servers placed at points

of presence in the vicinity of end-users. Attacks against

edge-servers disrupt content delivery services and cause QoS

degradation which may result in revenue and reputation loss

for CDN providers.

To lessen possible attack damages, security services must

react fast. Because of their processing overhead, security

services might adversely affect the QoS of legitimate end-

users. In reacting to threats, security services must be deployed

dynamically and automatically to process suspicious traffic

flows and without negatively affecting legitimate end-users.

Furthermore, attacks are becoming more sophisticated, and

new attacks are launched on a daily basis, thus protection

systems should be adaptive in their ability to handle new

threats and integrate new security services.

Traditional security mechanisms do not satisfy all the above

requirements. Defense using hardware security functions are

constrained to the resources and functionality embedded in

hardware. Redirecting traffic to scrubbing-centers for inspec-

tion adds latency and affects QoS. By leveraging software

defined networking, network function virtualization, and ser-

vice function chaining, virtualized security functions can be

dynamically instantiated, modified, scaled, and released on-

demand. Such flexibility in security orchestration facilitates

the development of protection system that effectively secure

Security Chains

SF
SF

Function

Virtual
Infrastructure

Manager

Security
Monitoring
Analytics
System

Orchestrator

Security
Policies

SF
SF

Function

Fig. 1: Architecture from [9]

edge-servers. However, current security solutions leveraging

softwarization are not tailored to the security requirements of

a CDN’s edge-servers. Some solutions (e.g., VFence [8], Bo-

hatei [7], and Holistic DDoS defense [5]) focus on only DDoS

attacks and provide static DDoS mitigation mechanisms, i.e.,

they require a network operator to manually configure and

provision mitigation mechanisms. Other solutions require sub-

stantial changes in existing infrastructures [13], [10].

In this paper, we demonstrate a security system [9] that auto-

matically and dynamically deploys security function chains in

response to threats. The operator specifies high-level security

policies translated by our system into mitigation actions by

creating, modifying, or deleting security functions chains.

We present our system in Section II and demonstrate its

capabilities in Section III.

II. SYSTEM DESIGN AND IMPLEMENTATION

Our system protects a virtual edge-server composed of a

number of physical or virtual servers. It instantiates and re-

configures security chains in response to threats and a virtual

edge-server’s dynamicity. This reactive behavior is governed

by security policies specified by the operator. As shown in

Figure 1, our system is composed of three components:

1) Orchestrator: Governed by security policies, the orches-

trator interacts with other system components to receive secu-

rity alerts and to deploy security chains. We adapt Lactive [6],

a language following event-condition-action paradigm, for the

specification of security policies. A security policy specifies if

a specific event happens, and if particular conditions hold, the978-1-5386-4633-5/18/$31.00 © 2018 IEEE

system must execute a certain sequence of actions. Essentially,

the enforcement of these policies translate into the deployment,

modification, and removal of security chains.

2) Virtual Infrastructure Manager (VIM): This component

manages security function chains and the virtual edge-server’s

resources. It provides a northbound API to create and delete

a chain, insert and delete a function to and from a chain, and

query information about deployed chains. We leverage Docker

[11], network service header [12], and open virtual switch [2]

in the VIM implementation.

3) Security Monitoring Analytics System (SMAS): This

component collects data about security chains using the VIM’s

API and monitors a virtual edge-server’s resources. SMAS

analyzes these data and sends alerts to the orchestrator which

may trigger security actions. In our current implementation,

SMAS monitors and analyzes network-bandwidth, storage,

memory, and processing resources.

III. DEMONSTRATION

CDNs commonly use rate-limiting in response to network

and application layer attacks [3], [4]. There are different rate-

limiting mechanisms, for example rate-limiting in different

layers of the protocol stack and per content, end-user, server,

and geography. In the following two demonstration scenarios,

we present how our system mitigates network layer and

application layer threats using rate-limiting.

A. Network Layer Rate Limiting

Context. Network flooding attacks (e.g., TCP flooding and

SYN flooding attacks) exhaust the resources of an edge-server

and make the service unavailable to legitimate end-users. In

a multi-stage scenario, we program our system to rate-limit

traffic per-IP which is a common rate-limiting mechanism to

mitigate TCP flooding attacks.

Environment Setup. We employ a cluster of machines each

of which equipped with 16 GB RAM, 8-cores 3.30 GHz Xeon

CPU, and 10 Gbps NIC. As the device under test, a server

hosts security chains and an active daemon of our system. One

to four servers generate traffic load using iperf client,

and a server running iperf server acts as the traffic sink.

Overview. Figure 2a illustrates the experimental setup of

this demo. We use Traffic Gen. 1 to send legitimate traffic

and Traffic Gen. 2 to 4 to generate flooding traffic. Our system

is programmed using security policies1 presented in Figure 3

to setup the mitigation security chain shown in Figure 2b.

Table I explains the details of the stages of this demonstration

scenario.

Details. The demo begins with sending only legitimate

traffic from Traffic Gen. 1 (stage 1). We incrementally increase

flooding traffic using Traffic Gen. 2 to 4 that results in a

throughput drop of the legitimate traffic (stages 2 to 4). If

the number of connections surpasses a predefined threshold,

too_many_con alert is raised to the orchestrator. As shown

in Figure 3, upon receiving the too_many_con alert, the

1For more details about the policies, we refer readers to our paper [9].

Traffic

Gen. 4

Traffic

Gen. 3

Traffic

Gen. 2

Traffic

Gen. 1

Virtual

Edge

Server

(a) Demo Setup

Bridgeeth0

Rate-Lim.

Traffic

Sink

eth0 eth1

eth0

Virtual Edge

Server

SMAS

1

3 4

2

(b) Mitigation

Fig. 2: Network Layer Rate Limiting

TABLE I: The Stages of Responsiveness Experiment

Stage Flooding traffic share Active traffic generators

1 0% Traffic Gen. 1

2 50% Traffic Gen. 1 and 2

3 66.6% Traffic Gen. 1, 2, and 3

4 75% Traffic Gen. 1, 2, 3, and 4

5 Limited to 1 Gpbs Traffic Gen. 1, 2, 3, and 4

orchestrator is instructed by Policies 1-3 to deploy chain r

containing a Rate-limit, if no rate-limiting service exists. As

shown in Figure 2b, this chain applies per-IP rate-limiting on

traffic coming from Traffic Gen. 2 to 4, while the legitimate

traffic coming from Traffic Gen. 1 is exempted and directly

served. In this way, the flooding traffic is rate-limited, and the

throughput of the legitimate traffic is immediately recovered

(stage 5).

too_many_con initiates create_chain(r:

<“not src net 129.97.124.0/24”, 1, 2>,

{f :Rate-Lim.})

if not chain(r) (1)

lim after create_chain(r)

if true (2)

lim initiates run(f, “rate_limit.sh”)

if true (3)

Fig. 3: Network Layer Rate Limiting Policies

B. Application Layer Rate Limiting

Context. An important CDN application is Video on De-

mand (VoD) streaming. CDNs use HTTP-based media stream-

ing, such as HTTP Live Streaming (HLS) and HTTP Smooth

Streaming (HSS) to provide VoD services. These protocols

enable end-users to request different media qualities in near-

real-time. An original media is encoded and segmented into

multiple chunks with different bit-rates and formats. These

chunks are listed in a manifest file. A common VoD session

starts with an end-user acquiring a manifest file and then

issuing subsequent requests of individual chunks. Abusive end-

users attempt application-layer attacks by requesting video

chunks repeatedly. In response, CDNs need to mitigate such

threats by rejecting requests with abnormal rates. In this demo,

we present how our system can mitigate these threats.

Environment Setup. We use the same cluster of servers

employed in the first demo. A server runs an Apache based

streaming engine and an active daemon of our system. This

server maintains video chunks and their corresponding man-

ifest files and uses the HLS protocol to serve VoD requests.

End-users use VLC to request the manifest files. To implement

a legitimate behavior, we use VLC to issue requests for video

chunks automatically. On the other hand, an abusive behavior

is implemented by issuing frequent requests for one or several

video chunks. We use curl to request chunk URLs according

to the manifest files and retrieve the video chunks more

frequently compared to VLC.

Overview. Figure 4a depicts the setup of this demo. We

use End-user 1 to send legitimate requests, and End-user 2

and 3 to generate abusive requests. Figure 4b illustrates the

mitigation setup, and Figure 5 presents the policies that are

used to program the orchestrator.

Details. This demonstration scenario begins with 3 end-

users requesting for a video stream. End-user 1, the legitimate

end-user, streams the HLS formatted video by acquiring the

manifest file and issuing the corresponding chunk requests.

Once the manifest file is received, End-user 2, an abusive

end-user, starts issuing frequent requests for the same video

chunk during short time intervals. End-user 3, another abusive

end-user, requests a group of video chunks repeatedly. An

abnormal rate of manifest file or chunk requests from one

or several end-users raises a suspicious_ip alert. Such an alert

triggers Policy 4 in the orchestrator. As shown in Figure 4b,

the orchestrator deploys a chain composed of two security

functions: (1) a TLS termination which terminates TLS ses-

sions, and (2) a ModSecurity Web Application Firewall (WAF)

[1] programmed with rate-limiting policies in the application

layer. These rules instruct the WAF to limit VoD requests per-

IP. According to these rules a Web Server cannot deliver (to

an identical IP):

• a video chunk more than 2 times per 10 seconds

• a group of 4 video chunks more than once per 5 seconds

The parameters (i.e., the permitted rate of identical requests

per-IP) in the rate-limiting rules can be configured on a per-

media basis. For instance, chunks with a higher bit-rate could

be allowed to be requested less frequently (e.g., n chunks

downloadable every n×d time interval, where d is the average

length of chunks calculated from the manifest file), whereas

chunks with lower bitrates could be allowed to be downloaded

more frequently (n chunks every 0.5 n× d).

IV. CONCLUSION

This paper described the demonstration of a configurable

security system developed to protect edge-servers. This system

behavior is governed by high-level policies the enforcement of

End-user

3

End-user

2

End-user

1

Virtual

Edge

Server

(a) Demo Setup

Bridge

eth0

Web

Server
eth0

Virtual Edge

ServerTLS-Term

SMAS

eth0 eth1

WAF

eth0 eth1

4 5 6

21

3

(b) Mitigation

Fig. 4: Application Layer Rate Limiting

suspicious_ip initiates create_chain(l:

“not src net 99.231.0.0/16”, 1, 2,

{t : TLS-Term,w : WAF})

if not chain(l) (4)

Fig. 5: Application Layer Rate Limiting Policies

which results in the deployment of security function chains.

This deployment is achieved dynamically and automatically.

We illustrated the system architecture and demonstrated how

our system can be flexibly programmed to mitigate two real-

world threats. In the first demonstration, our system mitigates a

network layer flooding attack by deploying a chain consisting

of a rate-limiting function. We show how our system immedi-

ately recovered the degraded throughput of legitimate traffic.

In the second demonstration scenario, an application layer

abusive behavior is immediately rate-limited by deploying a

security chain including a TLS termination and a WAF that is

configured to rate-limit or block abusive requests.

REFERENCES

[1] Modsecurity, an open source, cross-platform web application firewall
(waf). https://www.modsecurity.org.

[2] Open vswitch. http://openvswitch.org.
[3] Cloudflare rate limiting. https://goo.gl/PovNvK, 2017.
[4] What is rate limiting? https://goo.gl/HxWRC9, 2017.
[5] T. Alharbi, A. Aljuhani, and H. Liu. Holistic ddos mitigation using nfv.

In 2017 IEEE CCWC, 2017.
[6] C. Baral, J. Lobo, and G. Trajcevski. Formal characterizations of active

databases: Part II, pages 247–264. Springer Berlin Heidelberg, 1997.
[7] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bohatei: Flexible and

elastic ddos defense. In USENIX Conference on Security Symposium.
USENIX Association, 2015.

[8] A. H. M. Jakaria, W. Yang, B. Rashidi, C. Fung, and M. A. Rahman.
Vfence: A defense against distributed denial of service attacks using
network function virtualization. In 2016 IEEE 40th Annual Computer

Software and Applications Conference (COMPSAC), 2016.
[9] E. Jalalpour, M. Ghaznavi, D. Migault, S. Preda, M. Pourzandi, and

R. Boutaba. A security orchestration system for cdn edge servers. In
2018 IEEE Conference on Network Softwarization (NetSoft), June 2018.

[10] J. Li, S. Berg, M. Zhang, P. Reiher, and T. Wei. Drawbridge: Software-
defined ddos-resistant traffic engineering. In ACM. ACM, 2014.

[11] D. Merkel. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal, page 2, 2014.

[12] P. Quinn, U. Elzur, and C. Pignataro. Network Service Header (NSH).
Internet-Draft draft-ietf-sfc-nsh-28, IETF, 2017. Work in Progress.

[13] M. Yu, Y. Zhang, J. Mirkovic, and A. Alwabel. Senss: Software defined
security service. In ONS, Santa Clara, CA, 2014. USENIX.

