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Abstract—Recently, network infiltrations due to advanced 
persistent threats (APTs) have grown significantly, resulting in 
considerable losses to businesses and organizations. APTs are 
stealthy attacks with the primary objective of gaining unau-
thorized access to network assets. They often remain dormant 
for an extended period of time, which makes their detection 
challenging. In this paper, we leverage machine learning (ML) to 
detect hosts in a network that are targeted by an APT attack. We 
evaluate a number of M L classifiers to detect susceptible hosts 
in the Los Alamos National Lab dataset. We explore (i) graph- 
based features extracted from multiple data sources i.e., network 
flows and host authentication logs, (ii) feature engineering to 
reduce dimensionality, and (iii) balancing the training dataset 
using numerous over- and under-sampling techniques. Finally, 
we compare our model to the state-of-the-art approaches that 
leverage the same dataset, and show that our model outperforms 
them with respect to prediction performance and overhead.

Index Terms—Machine learning, advanced persistent threat, 
intrusion detection

I. In t r o d u c t io n

Cyber attacks have been growing in sophistication, resulting 
in considerable damage to businesses. They not only result 
in financial losses, but also impact customer trust and churn. 
There has been an increasing trend in cyber attacks in recent 
years. Typically, an attack initiates by compromising several 
hosts or user accounts within a network, and leaves backdoors 
to gain persistent access to internal assets. This type of attack 
is commonly known as an advanced persistent threat (APT). 
According to Kaspersky Lab, an APT campaign in 2019 
affected over a million users who installed the ASUS Live 
Update utility [1]. Similarly, a cryptocurrency exchange firm, 
DragonEx, announced in 2019 that it has suffered USD 7.09 
million in losses due to an APT attack [2]. Therefore, it is 
imperative to defend against APT-assisted network intrusions.

Lateral movement (LM) is a crucial phase in an APT attack, 
which follows after an attacker has gained persistent access 
to certain network resources (e.g., servers or end-hosts). The 
goal of LM is to infiltrate other resources and gain higher 
privileges inside the target network. This is typically achieved 
by performing credential stealing or vulnerability exploitation 
on already compromised hosts. Interestingly, 50%-90% of 
employees have access to data that they no longer need [3]. 
This is primarily due to poor security practises, such as the 
violation of the least privilege principle [4], which increases 
the likelihood of an attacker penetrating the crucial network 
assets via LM. Therefore, it is vital to detect LM at an early 
stage.

As opposed to the traditional detection of successful intru-
sions [5], an alternative is to pro-actively identify covert signs 
of LM. This can potentially generate alarms even before a 
successful intrusion has occurred, leading to LM detection 
during early exploration. After acquiring footprints of such 
behaviour, administrators can get insights into the attack 
strategy. They can also identify system vulnerabilities, which 
can help alleviate future attacks. However, unlike hosts that act 
as proxies during the attack, newly compromised or vulnerable 
hosts are fairly dormant and leave minimal footprint (e.g., 
events in authentication logs). Furthermore, in large enterprises 
with thousands of hosts, it is unlikely that an infiltration will 
compromise the majority of hosts. Typically, the number of 
compromised hosts will be minuscule in comparison to the 
network size, resulting in sparse malicious activities. These 
issues make early detection of LM challenging.

Early detection of LM can be addressed by (i) tagging the 
malicious host events, or (ii) tagging the target assets (TA). 
However, the stealthiness and sparseness of malicious events 
can make the first strategy a difficult endeavor. Though, crafting 
discriminative features for each event can achieve high recall, 
it comes at a high computational overhead. This makes the first 
strategy unscalable for very large networks. Furthermore, for 
complex network infrastructure with sporadic events, tagging 
individual events can also result in a high number of false 
positives. In comparison, tagging TAs reduce computational 
overhead. With carefully crafted features from sparse events, it 
is possible to achieve a high precision in detection performance 
(cf., Section IV). We focus on the second strategy for early 
detection of LM by leveraging host authentication logs.

Anomaly-based methods are widely used for intrusion 
detection. These methods first establish a baseline of normal 
system behavior and model a decision engine. The decision 
engine determines and alerts any divergence or statistical 
deviations from the norm as a threat. Machine learning (ML) 
[6], [7] is an ideal technique to automatically establish the 
normal behavior of a system. However, an important step 
prior to training a ML model is feature extraction. These 
features act as discriminators for learning and inference, and 
increase the accuracy of ML models. The most commonly 
employed features in intrusion detection are either network 
flow-based (e.g., number of packets, direction, packet size and 
inter-arrival statistics) or host event-based (e.g., authentication 
type, authentication frequency, and user names used during 
authentication). However, these features do not completely
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capture the host communication patterns that may expose 
additional aspects of malicious behavior. Graph-based features, 
derived from flow-level or event-level information to reflect 
the true behaviour of hosts, are an alternative that overcome 
this limitation.

The distribution of the dataset can also severely influence 
ML performance. For example, in the case of an imbalanced 
dataset (e.g., sparse malicious host events versus benign events), 
the ML techniques are more likely to classify new data to the 
majority class. Though, balancing the dataset can alleviate this 
issue, it may sabotage ML performance by impacting graph- 
based features (cf, Section IV). In this paper, we propose a 
novel approach for anomaly-based early detection of LM. Our 
main contributions are:
« We leverage ML for identifying TAs to facilitate early 

detection of LM. In this respect, we evaluate numerous 
supervised ML techniques and their ensemble, and compare 
them in classification performance and overhead.

« We employ graph-based features using real datasets from the 
Los Alamos National Lab (LANL) [8]. We explore features 
that are extracted from multiple data sources i.e., network 
flows as well as host authentication logs, and employ feature 
engineering to reduce dimensionality.

« Due to the highly imbalanced nature of the LANL dataset, 
we evaluate various over- and under-sampling techniques, 
and explore their impact on ML performance.

« We compare our approach to state-of-the-art approaches that 
leverage the LANL dataset for detecting LM. We show that 
our approach outperforms the other approaches with respect 
to detection performance and overhead.
The rest of the paper is organized as follows. Section II high­

lights the recent related works on LM detection. In Section III, 
we discuss the characteristics of the LANL dataset, delineate 
the explored sampling algorithms, expose feature extraction and 
selection, and present the ML techniques and evaluation metrics 
employed for TA detection. The results of our evaluation and 
comparison to the state-of-the-art approaches for LM detection 
are discussed in Section IV. We conclude in Section V with 
an outline of future research directions.

II. Re l a t e d  W o r k s

ML has been extensively used for LM detection. Chen et 
al. [9] leverage features from multiple data sources to identify 
LM. They utilize rudimentary graph-based features based on 
host communication, while employing autoencoder to improve 
feature extraction. To address imbalance in the LANL dataset, 
the authors propose a custom under-sampling technique. They 
employ fc-nearest neighbors (fc-NN) and achieve an average of 
91.3% precision in LM detection. However, their evaluation is 
limited to fc-NN.

Bohara et al. [10] propose an unsupervised approach to 
detect malicious LM. They employ the LANL dataset and 
inject artificial attacks into the original dataset, instead of 
using redteam events. However, these simulated attacks may not 
depict behavior of real attacks in enterprise networks. Their LM 
activity simulation follows the susceptible-infected-susceptible

virus spread model [11]. The authors extract features from host 
communication graphs, while principal component analysis 
(PCA) is used to correlate different features. For detection, they 
propose a combination of two different detectors to enhance 
performance. The first detector uses PCA and fc-means, while 
the second one employs PCA and extreme value analysis. This 
combination achieves an 88.7% true positive rate.

Tuor et al. [12] and Brown et al. [13] propose recurrent 
neural network (RNN) for log level anomaly detection. Tuor 
et al. introduce a language modeling framework for generic 
log anomaly detection, while Brown et al. extend a previous 
framework and focus on developing RNN models with attention 
mechanism. These efforts do not employ feature engineering, 
but rather the models directly leverage tokenized log lines. They 
achieve an area under the receiver operating characteristics 
(AUC) of 0.98 and 0.99, respectively. However, AUC is 
impacted when the dataset is highly imbalanced. In contrast, our 
approach operates on the host level, whereas the aforementioned 
approaches detect at the log level.

Several other works [14]-[16] propose hybrid IDSs. Kim 
et al. [14] propose a hierarchical approach that decomposes 
normal training data into smaller subsets using decision tree 
(DT) and leverage one-class support vector machine (SVM) 
for each subset. Chitrakar et al. [15] propose a similar 
approach, where the training data is split into different clusters 
using fc-medoids, followed by naive bayes for further attack 
classification. Agarwal et al. [16] normalize entropy of network 
features using a custom algorithm and leverage SVM for attack 
classification. All of the aforementioned approaches combine 
multiple techniques for classification, but none of them leverage 
data from different sources. In contrast, we explore features 
extracted from multiple data sources to improve classification 
performance.

Our work is inspired by Kaiafas et al. [17]. They construct a 
bipartite graph to extract graph-based features and employ an 
ensemble of ML models to improve classification performance. 
However, the authors only perform fc-fold cross-validation and 
do not evaluate the robustness of their ML models to unseen 
data. This is crucial to ensure the detection of zero-day APTs. 
We highlight this limitation in Section IV.

III. Me t h o d o l o g y

A. Dataset
1) Characteristics: The LANL dataset contain logs from 

multiple data sources, including authentication log, flow log, 
DNS log, and process log. We explore the authentication and 
flow logs for TA detection during LM.

a) Authentication Log: This log is composed of over 450 
million authentication events from Windows-based desktop 
computers, spanning 58 days. Among these events there are 
749 redteam compromise events, distributed in the first 30 days 
of the dataset, as depicted in Fig. 1. We leverage data in this 
time frame, which consists of about 230 million events from 
14,582 benign hosts and 299 redteam related hosts. However, 
the malicious activities are a very small fraction of all the 
activities in the LANL dataset.



We do not consider local redteam authentication events i.e., 
malicious events where the source and destination hosts are 
the same. The behavior of an attacker that performs malicious 
activity within a physical machine tends to be quite different. 
Such an attacker has access to the physical interfaces of 
the host, hence their attack strategy and behaviour can be 
very sophisticated. Evaluating such behavior is out of scope 
for this work. Nevertheless, we capitalize on the number of 
infrequent events. In total, there are 8,941 hosts involved 
in 41,400 authentication events that occur only once in the 
dataset. Out of the 295 TAs, 280 are involved in such events. 
Therefore, considering the event infrequency i.e., sparseness, 
can potentially facilitate the detection of TAs.
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Fig. 1. Redteam activities and network flow distributions

b) Flow Log: This log contains flow events collected from 
the central routers in the network. It spans 30 days with a total 
of 129 million flows, as shown in Fig. 1. There is a noticeable 
change in distribution from day 16, which indicates a major 
change in the system. It is also worth mentioning that flows 
that do not go through the central routers will not be recorded. 
As a result, out of the 14,881 hosts in the authentication log, 
only 3,456 hosts have corresponding flow data. Also, due to 
a misconfiguration of internal network routers, the flow data 
collection completely stops after day 29 [18].

2) Balancing: Sampling algorithms are employed when a 
dataset is highly imbalanced. An imbalanced dataset can result 
in a classifier that is biased on the majority class, due to the 
nature of the training procedure. The sampling algorithms 
can be classified into two categories, under-sampling and over­
sampling. While under-sampling approaches balance the dataset 
by reducing the data points in the majority class, the over­
sampling approaches increase the data points in the minority 
class. Therefore, the under-sampling algorithms are known to 
inherently lose critical information, while the over-sampling 
algorithms suffer from over-fitting [19]. However, a potential 
advantage of under-sampling is the reduced computational 
overhead. o n  the other hand, some classifiers have the 
capability to overcome the over-fitting due to over-sampling.

We explore different algorithms from both categories for 
balancing the LANL dataset. The first algorithm is random 
under-sampling (RUS), which randomly removes samples from

the majority class. The second algorithm is condensed nearest 
neighbour (ConNN), an under-sampling algorithm based on 
fc-NN [20]. This algorithm keeps all samples in minority class 
and uses 1-NN classifier to determine whether to retain the data 
point in majority class or not. The next algorithm is Repeated 
Edited Nearest Neighbours (RENN), which implements multi­
ple iterations of Edited Nearest Neighbours (ENN) [21]. For the 
over-sampling algorithms, we start with random over-sampling 
(RoS), followed by the well-known synthetic minority over­
sampling technique (SMoTE) [22]. SMoTE over-samples data 
points by creating their synthetic counterparts. This is achieved 
by computing a vector between a data point and one of its 
neighbours. Another over-sampling algorithm is the adaptive 
synthetic (ADASYN) [23]. ADASYN also leverages fc-NN to 
adaptively generate synthetic data.

We employ the above sampling algorithms after feature 
extraction. This is primarily because applying them directly on 
the authentication log can sabotage the purity of graph-based 
features. For example, all authentication events pertaining to a 
username may get eliminated due to under-sampling. Similarly, 
over-sampling without considering the diversity of hosts in 
the dataset may result in emphasizing a single type of host. 
We study the influence of these sampling algorithms on TA 
detection in Section IV.

B. Feature Extraction
We extract a total of 35 features: 29 features from the 

authentication log and 6 from the flow log. A detailed 
description of the extracted flow log-based features can be 
found in our previous work [24].

The 29 authentication-based features are extracted from 
a graph representation of the authentication events. As the 
features are primarily based on the in-degree and out-degree 
of different hosts, we build an authentication graph that is 
efficient for frequent reference. We first start by building the 
authentication graph G = (U ,V ,E ), where U represent the 
hosts that appear as sources in the authentication log, while V  
represents the hosts that appear as destinations. Edges in E  link 
pairs (u,v) e U x V  and summarize all authentication events 
involving u as source and v as destination. Authentication 
events are inserted in the graph as shown in Fig. 2.

For example, consider an authentication event 
e(Day2, User02, C om P tr10099, ComPtr4017), where
Day2 represents the day when the logon was recorded, 
User02 is the username used in the logon attempt, and 
C om Ptr  10099 is the source host used by User02 to logon 
to destination host ComPtr4017. Assuming that User02 
was already recorded logging into ComPtr4017 from 
C om Ptr  10099 twice on Day\, 3 times on Dayn, but never 
before on Day2, the event e is added to the edge linking 
C om P tr10099 to C om P tr4017 on the graph G with a count 
of 1, as depicted in Fig. 2. Once the graph G is complete, 
we build dictionaries that are used to extract the features as 
described in [25]1.

'Due to space limitation, we provide a technical report to detail our feature 
extraction process. This will also facilitate the reproducibility of results.



TABLE I
Mo s t  s i g n i f i c a n t  f e a t u r e s  e x t r a c t e d  f r o m  a u t h e n t i c a t i o n  l o g s

Feature Definition

ID u sr(d s tj  )
The count of unique username used to 
logon to dstj

ID src (d stj  )
The count of unique source hosts that 
logon to dstj

ID  (usr,src) (dstj  )
The count of unique (username, source) 
pairs that logon to dstj

ID A F u sr (dstj )

The average over all username 
of A V G dstj  (usernam e), where 
A V G dstj  (usernam e)  is the number 
of times username is used to logon to 
dstj divided by the number of days 
username used to logon to dstj

I D A F  S T  Dusr (d s t j)
Standard deviation of
A V  Gdstj  (usernam e)

ID S u sr (dstj
The sum over all username of 
S F  (* , u ser n a m e , d stj ,0 ,0 ) ,  where 
SF is defined in Algorithm 1

ID Ssrc  (dstj )
The sum over all source of 
S F (source, *, d s t j , 0, 0)

I D S (usr,src) (dstj  )
The sum over all (user-
name, source) pairs of 
S F (source, u se rn a m e , d stj ,0 ,0 )

'W I D S (usr,src) (dstj  )

The sum over all (user-
name, source) pairs of 
SF (source, u sernam e, d stj ,0 ,0 )  
weighted by O D S(usr,dst)(source)

O D S usr (srci)
The sum over all username of 
S F  (srci, u sernam e, * ,0 ,0 )

O D Sdst(srci)
The sum over all destination of
S F  (srci, *, destina tion , 0 ,0 )

O D S (usr,dst) (srci)
The sum over all (user-
name, destination) pairs of
SF (srci  ,username,destination,9,fi)

O D A F  S T  D(usr,dst) (srci)

Standard deviation of
A V G src i  (usernam e, 
destina tion)  , where 
A V  Gsrci  (usernam e, destina tion)  
is the number of times username is 
used by srci to logon to destina tion  
divided by the number of days username 
is used by srci to logon to destina tion

O D A F  S T  Dusr (srci)

The standard deviation of
A V  Gsrci  (u sern a m e) , where 
A V  Gsrci  (usernam e)  is the number 
of times username is used in a remote 
login attempt initiated by srci divided 
by the number of days username is used 
by srci in a remote login attempt

M S F (d s tj )
The maximum over all srci 
of O D S(usr,dst)(srci) where 
S F  (d s t j , srci, in , 0 ,0 )  >  0

SU  R (d stj )

The number of unique username 
used to sparsely logon to d stj  (i.e.,
SF (dstj  ,(username,source),in,9,fi)  > 
0 for at least half the logon events 
(usernam e, source, d s t j ) ) divided by 
the number of unique username used to 
logon to dstj

A S  (H ost3 ) M S F (H o s t j ) * S U R (H o s tj )

Fig. 2. Graph representation of authentication events

A high-level description of the authentication-based features 
is provided below. Table I further delineates a subset of the 
authentication-based features.

a) In-Degree (ID) and Out-Degree (OD): In the early 
phase of LM, attackers use stolen credential to attempt logging 
into and eventually compromising other hosts. This will result in 
the increase of ID of the targeted hosts and oD  of successfully 
compromised ones.

b) In-Degree-Avg-Frequency (IDAF) and Out-Degree-Avg- 
Frequency (ODAF): Infrequent malicious authentication events 
would have little impact on ID/OD in the presence of a much 
larger number of benign authentication events. Thus they can 
be overlooked by the classifier. We consider IDAF, the daily 
average number of authentication events targeting the host, as 
well as oDAF, the average number of authentication events 
originating from the host, and leverage the discriminatory nature 
of these features.

c) IDAF-Standard-Deviation (IDAFSTD) and ODAF- 
Standard-Deviation (ODAFSTD): Sparse malicious authen­
tication logs can be shadowed by regular and repetitive benign 
logons when calculating IDAF and oDAF. on the other hand, 
the standard deviation of IDAF will be higher for TAs targeted 
by a mix of frequent legitimate logons and sparse malicious 
logons, than non-TAs. Similarly, compromised hosts will have 
higher oDAFSTD than benign ones.

d) In-Degree-Sparseness (IDS) and Out-Degree- 
Sparseness (ODS): In order to capture infrequent events that 
are likely to be malicious, we introduce a sparseness function 
(SF), as depicted in Algorithm 1. SF considers infrequent 
events with a specific (combination of) source host, destination 
host, or username occur, and assigns a higher score to more 
infrequent events. This amplifies the impact of such events on 
graph features, which are otherwise largely affected by benign 
events. IDS and oDS reflect the sparseness of the incoming 
and outgoing logons, respectively. In this case, SF evaluates 
the sparseness of these events and amplifies the impact of 
sparse authentication events when computing the ID of a TA 
and oD  of a compromised host. As sparse malicious logons 
receive higher SF scores, TAs are expected to have higher 
IDS than non-TAs, and compromised hosts to have higher



oDS than benign ones.
e) Weighted-In-Degree-Sparseness (WIDS): To distin­

guish between TAs and non-TAs with comparable IDS but 
legitimately targeted by a higher number of logons (e.g., 
servers), we weigh the sparseness of incoming logons by the 
oDS of the source.

f) Maximum-Sparseness-Factor (MSF) and Suspicious- 
User-Rate (SUR): A common characteristic of TAs is that they 
have been occasionally logged into with malicious intent. The 
MSF of a particular host denotes the oDS of the source that 
is most likely to be malicious and that sparsely logged into 
that host. The higher is the MSF of a host the more likely it is 
a TA. The SUR of a given host is the proportion of usernames 
used to sparsely log into the host.

g) Attack Score (AS): The AS of a host reflects the 
likelihood of it being a TA. The higher the AS of a host, 
the more likely it is a TA. AS is the product of MSF and 
SUR, hence it is correlated with MSF and SUR. Experiments 
with AS show a promising boost in precision and recall. It 
serves as an evident sign that a host has been tempted by an 
actively probing source host. It further reveals that selected ML 
models cannot capture the product relation of different features. 
With all the features, the classifier can better distinguish the 
boundary for TAs and benign hosts.

Further details on each and every extracted feature is 
available in [25].

Algorithm 1 Sparseness function (SF) 
input : Source host Src, username Usr, destination host Dst, 

thresholds 0, ft
output: Sparseness, a sparseness score of event defined by 

Src, Usr, and Dst
1: Initialize Events  to all events in authentication log
2: Sparseness ^  0

/*  filter(*) is a no-op, countByDays() counts the num­
bers of days where the events occur * /

3: TotalDays ^
4: E ven ts.filter(Src , Usr, Dst) .countByDays()
5: if TotalDays < 0 then
6: Sparseness ^
7: max(TotalDays * ft — Events.count(), 0)
8: end if
9: return Sparseness

C. ML Techniques
With graph-based features extracted, we evaluate several ML 

techniques to detect TAs during LM. We start with decision 
tree (DT), a non-parametric supervised learning method. We 
also leverage random forest (RF), which is a classifier that uses 
multiple DTs to improve classification performance and avoid 
over-fitting. LogitBoost (LB) is another learning algorithm 
based on DT that we leverage in our evaluation. We also 
assess logistic regression (LR), which is very efficient and 
does not require feature scaling. However, its performance 
deteriorates with highly correlated features. We evaluate these 
ML techniques as well as other well known techniques, such

as SVM, fc-NN, and gaussian naive bayes. However, we do 
not discuss them as they under perform in our evaluation.

D. Evaluation Metrics
In order to measure the performance of ML models, we use 

a variety of metrics. These include:

Precision True Positive
True Positive + False Positive

x 100

Recall True Positive
True Positive + False Negative

100

Recall x Precision
F 1 score =  2 x

Recall + Precision

The precision and recall are better criterion to assess the 
performance of a classifier when the dataset is imbalanced. The 
F1 score is essentially a harmonic mean of precision and recall, 
which represents the overall performance of a classifier. A 
higher F1 score indicates both low false positives and low false 
negatives (i.e., true TAs are identified without raising many false 
alarms). In addition, we plot receiver operating characteristic 
(RoC) curve to illustrate the performance of a classifier at 
different classification thresholds. We also calculate the area 
under the RoC curve (AUC) to quantify ML performance.

IV. Ex p e r i m e n t s

A. Environment
1) Hardware: We perform data analysis and pre-processing 

on a cluster of four nodes, each of which has a Intel(R) 
Xeon(R) 3.30GHZ CPU and 16GB RAM. These nodes are 
interconnected using 10Gbps Ethernet. ML model training, 
validation and testing are performed on a machine equipped 
with 2 x Intel(R) Xeon(R) 2.20GHz CPU and 384 GB RAM.

2) Software: We leverage Numpy [26], Scipy [27], and 
Pandas [28] for data pre-processing. Imbalanced-learn [29] is 
employed for balancing the training datasets, while Scikit-learn 
[30] is used for building ML models.

B. Results
1) Feature Selection: We start with evaluating the perfor­

mance of different ML classifiers with graph-based features ex­
tracted from authentication logs and network flow logs. Table II 
showcases the result of fc-fold cross-validation (fc =  10) using 
a total of 35 features (6 flow-based and 29 authentication-based 
features) extracted from the first 30 days of the LANL dataset. 
We choose 0 and ft based on trial-and-error and the frequency 
of benign activities in the dataset. Most authentication events 
for a given combination of (src, username, dst) occur for 
more than three times per day and exist over three days. Hence, 
we set 0 =  ft =  3. The parameters for the ML techniques are 
set based on their performance i.e., we choose the parameters 
that exhibit the best result in TA detection. DT is set to a 
maximum depth of 6, while RF uses 400 as the number of 
estimator with a maximum depth of 12. LB uses 100 estimators 
and a DT regressor with a maximum depth of 3. LR is using 
tolerance of 0.0001 and a regularization strength of 1.



TABLE II
ML PERFORMANCE USING FLOW- AND AUTHENTICATION-BASED FEATURES 

(35 FEATURES)

ML model Precision Recall F1 score Training time (s)

DT 75.62% 75.15% 0.75 0.14
RF 79.99% 79.27% 0.79 3.31
LB 80.31% 80.29% 0.80 6.69
LR 31.10% 5.47% 0.09 4.04

With the exception of LR, which performs poorly, the other 
ML techniques classify TAs with relatively high precision 
and recall (over 75%). LB outperforms DT and RF with 
the highest F1 score. The number of ML features not only 
influence the computational overhead, but can also result in 
model over-fitting. Hence, in order to reduce the number of 
features and identify the ideal feature set for TA detection, we 
then restrict the feature set to authentication-based features. 
As depicted in Table III, with the exception of LR whose 
performance increases significantly, we witness a marginal 
performance degradation when discarding flow-based features. 
RF outperforms other classifiers, while saving about 14s in 
feature extraction time. The lackluster performance of the flow- 
based features can be attributed to the inferior quality of flow 
data in the LANL dataset, as discussed in Section III. This 
undermines the suitability of flow-based features to detect TAs 
during LM in this particular dataset.

TABLE III
ML PERFORMANCE USING AUTHENTICATION-BASED FEATURE SET 

(29 FEATURES)

ML model Precision Recall F1 score Training time (s)

DT 75.26% 75.77% 0.75 0.11
RF 81.36% 80.12% 0.81 3.11
LB 79.64% 79.76% 0.79 5.46
LR 61.31% 53.56% 0.52 6.13

Next, we study the correlation between authentication-based 
features to further reduce the features for TA detection. Table IV 
shows that among the 29 features, 11 (column features) 
are correlated with 4 others (row features), with a Pearson 
coefficient exceeding 0.6. The technical report [25] provides 
the Feature IDs (FIDs) for the authentication-based features.

TABLE IV
P e a r s o n  c o r r e l a t i o n  m a t r i x  f o r  m o s t  c o r r e l a t e d

AUTHENTICATION-BASED FEATURES

FID 2 3 10 11 15 18 22 23 24 26 27
16 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.9 0.0 0.8
25 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.0 0.0 0.1 0.0
29 0.0 0.0 0.0 0.0 0.0 0.6 0.4 0.0 0.0 0.6 0.0

Based on these findings, we remove all the 11 correlated 
features from the feature set. Many of these features report 
on the daily average logon times; per host, per user, and per 
(host, user) combination. These features are too generic and 
fail to describe the true nature of LM, which makes them 
less discriminative in tagging TAs. We further remove the 
out-degree-avg-frequency feature. This latter feature is only 
significant if there is evidence that the TA is compromised

and is actively attempting to move laterally, which is not the 
case in this dataset. We re-evaluate the ML techniques after 
removing the 12 aforementioned features.

As depicted in Table V, the F1 score for all ML techniques 
improve with RF outperforming all other classifiers. Further­
more, LR shows the highest improvement in TA detection with 
an F1 score increase of 8%. Even though DT and LB are 
immune to highly correlated features [31], we notice a slight 
increase in their performance. The removed features primarily 
pertain to standard deviation and out-degree. on  a single host, 
different users can have distinct authentication patterns, which 
will result in high values for standard deviation-based features, 
causing confusion for the classifiers. Furthermore, TAs do not 
necessarily have an exploring behaviour, thus out-degree-based 
features can also degrade the classifier performance. Hence, in 
the following experiments we use the reduced feature set of 
17 authentication-based features.

TABLE V
ML PERFORMANCE ON REDUCED AUTHENTICATION-BASED FEATURE SET 

(17 FEATURES)

ML model Precision Recall F1 score Training time (s)

DT 77.59% 75.45% 0.76 0.05
RF 83.72% 81.23% 0.82 2.06
LB 78.99% 80.25% 0.80 2.26
LR 68.13% 54.55% 0.60 5.99

2) Ensemble Learning: In an effort to improve the perfor­
mance of the stand-alone ML models for TA detection, we 
consolidate them using ensemble learning. Due to the lackluster 
performance of LR in comparison to other ML models (cf., 
Table V), we remove it from the list of potential classifiers in the 
ensemble approach. First, we employ the majority voting (MV) 
algorithm [32] that leverages all ML models in the ensemble 
in a uniform manner, and use fc-fold cross validation (fc =  10) 
on the first 30 days of the LANL dataset. The detection of 
TAs during LM using MV over RF, LB and DT is shown in 
Table VI. However, this results in an inferior performance to 
stand-alone RF, since low performing classifiers can influence 
the voting process.

TABLE VI
E n s e m b l e  l e a r n i n g  u s i n g  m a j o r i t y  v o t i n g

| Ensemble Precision Recall | F1 score | Training time (s) |

| RF, LB, DT 80% 80.67% | 0.80 | 2.60 |

Evidently, MV is unable to boost the performance of the best 
stand-alone classifier. Therefore, we explore another ensemble 
approach, namely weighted voting (WV) [33], where we can 
assign weights to ML models based on their stand-alone 
performance. Intuitively, this can identify a higher number 
of true positives (i.e., TAs during LM) that are missed by 
RF, the best performing stand-alone classifier. However, with 
multiple combinations of weights assigned to the ML models in 
Table VII, stand-alone RF still outperforms WV. Besides, these 
ensemble approaches increase training time, undermining their 
suitability for early LM detection. Therefore, we choose the 
stand-alone RF classifier as our model for further experiments.



TABLE VII
En s e m b l e  l e a r n i n g  u s i n g  w e i g h t e d  v o t i n g , p r i o r i t i z i n g

STAND-ALONE ML PERFORMANCE

RF LB DT Precision Recall F1 Training time (s)
T
3

T
3

T
3

80.00% 80.41% 0.80 2.86
T
2

T
4

T
4 80.70% 80.89% 0.81 2.78

T
2

T
3

T
6

80.68% 80.97% 0.81 2.60

3) Balancing the Dataset: We further evaluate the robustness 
of our ML model by training and testing it on logs recorded 
on different days. Redteam activities are only conducted on 
certain days, generating malicious events that account for 
a very small fraction of the total number of authentication 
events (i.e., less than 0.0001%). Therefore, we reserve day 9, 
the day with the highest number of malicious authentication 
events, for testing, while the remaining days are chosen for 
training our model. We evaluate several well known sampling 
algorithms (cf., Section III) to balance the training dataset. 
For each sampling algorithm, we use distinct seeds across 5 
iterations and compute the average for each metric. These seeds 
are consistent across the sampling algorithms. Furthermore, 
each sampling algorithm has its own best sampling rate i.e., the 
ratio of TA versus Benign (TA/Bening). Hence, we experiment 
with different sampling rates and select the best sampling rate 
to portray the corresponding results.

a) Over-sampling: The comparison of three different over­
sampling algorithms, namely RoS, SMoTE, and ADASYN, 
is highlighted in Table VIII. SMoTE results in the second 
highest recall, as synthesizing minority points help in stressing 
the TA class. However, the randomness in synthetic points 
do not capture the true nature of original TAs, resulting in a 
lower recall. In contrast, ADASYN achieves better precision 
and recall. It generates synthetic points closer to the decision 
boundary, thus enabling the classifier to better distinguish TAs 
from benign hosts. As opposed to over-sampling only a portion 
of the minority points, RoS simply replicates TAs, which 
stresses on all TAs. Uniformly Stressing on all TAs preserve 
the originality of TA class and behavior to a large extent 
in comparison to synthesizing, thus resulting in the highest 
precision. Each algorithm over-samples the dataset with the 
same sampling rate, thus the training time (TT) is similar. In 
contrast to ADASYN, ROS and SMOTE consume less sampling 
time (ST) due to their simpler sampling mechanism.

TABLE VIII
OVER-SAMPLING WITH DIFFERENT ALGORITHMS (17 FEATURES)

Algorithm TA/Benign Precision Recall F1 score ST (s) TT (s)

ROS 0.02 62.34% 95.36% 0.7539 0.01 4.27
SMOTE 0.02 61.99% 95.71% 0.7524 0.01 4.62

ADASYN 0.02 62.08% 96.07% 0.7542 0.06 4.66

b) Under-sampling: Recall that RUS randomly removes 
samples from the majority class. This may result in a high 
number of benign (majority class) hosts that have similar traits 
as certain class of TAs, negatively impacting precision. This 
is evident in the lower precision of RUS in comparison to 
ConNN, as shown in Table IX. But the TAs that starkly differ

from the benign hosts are still classified with high recall. A 
similar affect can be seen with RENN, which removes benign 
hosts that are not very similar to their neighbors. In contrast, 
ConNN preserves the benign hosts that are different from their 
neighbors. Therefore, under-sampling with ConNN results in 
the best F1 score with precision and recall of 62.47% and 
95.12%, respectively. Due to its simplicity, RUS incurs the least 
sampling time. In contrast, ConNN suffers from the highest 
sampling time, but it also reduces the number of benign hosts 
to the largest extent, which positively impacts the training time.

TABLE IX
U NDER-SAMPLING WITH DIFFERENT ALGORITHMS (17 FEATURES)

Algorithm TA/Benign Precision Recall F1 ST (s) TT (s)

RUS 0.02 60.9% 96.55% 0.7469 0.01 2.45
ConNN 0.51 62.47% 95.12% 0.7541 130.88 0.99
RENN 0.01 60.07% 97.62% 0.7437 2.81 3.32

c) Comparison: We highlight the over- and under­
sampling algorithms with the highest F1 score in Table X, 
along with no sampling (i.e., unbalanced training dataset). As 
evident, ADASYN increases the precision and recall by 0.54% 
and 0.84%, respectively. However, this comes at the cost of 
increased sampling and training times, which undermines its 
suitability. On the other hand, ConNN increases precision by 
0.93%. However, its sampling time is very high in comparison 
to training without any sampling. Thus, we proceed without 
any sampling to detect TAs during LM in the LANL dataset.

TABLE X
Co m p a r i n g  d i f f e r e n t  a l g o r i t h m s  (17 f e a t u r e s )

Algorithm TA/Benign Precision Recall F1 ST (s) TT (s)

ADASYN 0.02 62.08% 96.07% 0.7542 0.06 4.66
ConNN 0.51 62.47% 95.12% 0.7541 130.88 0.99

Unbalanced 0.01 61.54% 95.23% 0.7476 0 3.61

4) Comparative Analysis: To further evaluate our approach, 
we compare our model with two state-of-the-art approaches 
for LM detection. We implement the approaches in Chen et al. 
[9] and Kaiafas et al. [17]. To achieve a fair comparison, we 
balance the dataset according to the algorithm in [9], which 
preserves the redteam events while under-sampling the benign 
activities. Due to scalability issues in [17], we only leverage 
data for fc-fold cross-validation (fc =  10) from day 9. As 
depicted in Table XI, our model outperforms Chen et al. in 
precision, recall and F1 score. However, our approach consumes 
more feature extraction time (FET) and model training time.

Kaiafas et al. marginally outperforms our model in precision, 
with an improvement of 0.02 in F1 score. However, their feature 
engineering and model training times are magnitudes higher 
than both Chen et al. and our approach. In the balanced dataset, 
there are about 97,000 authentication events and their overhead 
is largely due to feature extraction for each individual event. In 
contrast, our approach strikes a balance between performance 
and overhead.



TABLE XI
TA DETECTION USING STAND-ALONE RF AND CROSS-VALIDATION VERSUS

( [9], [17])

Classifier Precision Recall F1 FET (s) TT (s)

Our Model 97.02% 93.04% 0.95 169.35 1.45
Chen et al. 73.12% 7.24% 0.13 0.69 5.29

Kaiafas et al. 100% 93.47% 0.97 100.81 23332.37

Followed by cross-validation, we evaluate the robustness of 
the aforementioned approaches on never seen data. Thus, we 
leverage authentication events from day 9 as the test dataset, 
while the remainder of the dataset (i.e., 29 days) is used for 
training. In this case, the training dataset is composed of over 
220 million log entries, which can potentially introduce a lot of 
noise. As depicted in Table XII, the model from Chen et al. fails 
miserably with a near-zero recall when tested on never seen 
data. The authors in [9] leverage features, including network 
traffic amount, sending packet amount, authentication amount 
and DNS queries amount, etc. These generic statistical features 
fail to distinguish TAs in a noisy environment. Unfortunately, 
we are unable to extract features for Kaiafas et al. for this 
robustness evaluation in a reasonable amount of time. Thus, the 
robustness evaluation for their model is unavailable. In contrast, 
our model shows remarkable performance with a recall and F1 
score of 98% and 0.75, respectively.

TABLE XII
Ro b u s t n e s s  o f  TA d e t e c t i o n  u s i n g  s t a n d -a l o n e  RF v e r s u s  

( [9], [17])

Classifier Precision Recall F1 FET (s) TT (s)

Our Model 60.58% 98.81% 0.75 2210.45 3.95
Chen et al. 3.16% 2.98% 0.030 823.51 59.45

Kaiafas et al. — — — >  360000 —

Nevertheless, to compare the robustness of Kaiafas et al. we 
reduce the cardinality of the training dataset from the previous 
experiment. Data from days 13, 14, and 15 is used for training, 
while day 9 is reserved for testing. For a fair comparison, 
we leverage the under-sampling method from Chen et al. for 
both comparative models. Note that Kaiafas et al. do not 
disclose their sampling approach in detail. Furthermore, no 
sampling is applied to our model. As shown in Table XIII, our 
model significantly outperforms other approaches. Even though 
Kaiafas et al. perform quite well in cross-validation, they fail 
in robustness to never seen TAs. The authors in [17] extract 
features, including frequency, first occurrence tag, diversity 
of user, etc. However, these features fail to differentiate the 
TAs from the benign hosts for large networks. Due to the 
diversity of different authentication events, they can result in 
hosts having similar values with regard to less crafted features, 
such as the number of successful/failed authentication events. 
Such noise will influence the performance of ML models that 
leverage less-thought-of features. However, with features based 
on the degree of sparse events, our model is able filter out 
noise and differentiate TAs. Fig. 3 shows the ROC curve, which 
indicates that our model has the highest AUC score of 0.995. 
Note that Kaiafas’s model is using MV, which is not feasible to 
be plotted in ROC curve. In comparison to previous robustness

result, our model shows a marginal loss in precision and recall. 
However, our model out classes other approaches, with a high 
recall of over 94%, while the F1 score is the highest at 0.74.

TABLE XIII
Ro b u s t n e s s  o f  TA d e t e c t i o n  u s i n g  s t a n d -a l o n e  RF v e r s u s  

( [9], [17]) ON A REDUCED TRAINING DATASET

Classifier Precision Recall F1 FET (s) TT (s)

Our Model 61.24% 94.05% 0.74 475.46 2.56
Chen et al. 4.64% 9.52% 0.06 11.22 0.66

Kaiafas et al. 9.58% 45.83% 0.16 40488.56 1903.24

False Positive Rate

Fig. 3. ROC for robustness in TA detection using stand-alone RF vs. ( [9],
[17]), with days 13, 14 and 15 for training, and day 9 reserved for testing

V. Co n c l u s i o n

In this paper, we propose a novel approach for detecting 
TAs during the LM phase of an APT attack. We explore 
graph-based features extracted from multiple data sources (i.e., 
network flows and host authentication logs) in the LANL 
dataset. Among all the baseline features, we filter less impactful 
and correlated features to select the ideal feature set for TA 
detection and reduce computational overhead. To cope with 
the highly imbalanced nature of the dataset, different sampling 
algorithms are explored to improve classifier performance. The 
result shows that our approach is robust against unbalanced 
dataset. We found our approach to outperform the other state- 
of-the-art approaches in TA detection on the LANL dataset.

Our approach is limited by the poor quality of the LANL 
dataset. This prevents us from exploiting data from multiple 
sources for TA detection. This is largely due to the incom­
pleteness of network traffic monitoring data. Apart from this 
aspect, the sampling algorithms do not significantly boost the 
performance of classifiers, which needs further investigation. 
Furthermore, as the data grows rapidly in an enterprise network, 
the exploration of incremental learning would be valuable in 
the future. This will facilitate the adjustment of ML decision 
boundary after deployment.
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