
15th International Conference on Network and Service Management (CNSM 2019)

Host in Danger? Detecting Network Intrusions
from Authentication Logs

Haibo Bian, Tim Bai, Mohammad A. Salahuddin, Noura Limam, Abbas Abou Daya, and Raouf Boutaba
University of Waterloo, Waterloo Ontario N2L 3G1, Canada

{haibo.bian, tim.bai, mohammad.salahuddin, n2limam, aaboudaya, rboutaba}@uwaterloo.ca

Abstract—Recently, network infiltrations due to advanced
persistent threats (APTs) have grown significantly, resulting in
considerable losses to businesses and organizations. APTs are
stealthy attacks with the primary objective of gaining unau-
thorized access to network assets. They often remain dormant
for an extended period of time, which makes their detection
challenging. In this paper, we leverage machine learning (ML) to
detect hosts in a network that are targeted by an APT attack. We
evaluate a number of M L classifiers to detect susceptible hosts
in the Los Alamos National Lab dataset. We explore (i) graph-
based features extracted from multiple data sources i.e., network
flows and host authentication logs, (ii) feature engineering to
reduce dimensionality, and (iii) balancing the training dataset
using numerous over- and under-sampling techniques. Finally,
we compare our model to the state-of-the-art approaches that
leverage the same dataset, and show that our model outperforms
them with respect to prediction performance and overhead.

Index Terms—Machine learning, advanced persistent threat,
intrusion detection

I. In t r o d u c t io n

Cyber attacks have been growing in sophistication, resulting
in considerable damage to businesses. They not only result
in financial losses, but also impact customer trust and churn.
There has been an increasing trend in cyber attacks in recent
years. Typically, an attack initiates by compromising several
hosts or user accounts within a network, and leaves backdoors
to gain persistent access to internal assets. This type of attack
is commonly known as an advanced persistent threat (APT).
According to Kaspersky Lab, an APT campaign in 2019
affected over a million users who installed the ASUS Live
Update utility [1]. Similarly, a cryptocurrency exchange firm,
DragonEx, announced in 2019 that it has suffered USD 7.09
million in losses due to an APT attack [2]. Therefore, it is
imperative to defend against APT-assisted network intrusions.

Lateral movement (LM) is a crucial phase in an APT attack,
which follows after an attacker has gained persistent access
to certain network resources (e.g., servers or end-hosts). The
goal of LM is to infiltrate other resources and gain higher
privileges inside the target network. This is typically achieved
by performing credential stealing or vulnerability exploitation
on already compromised hosts. Interestingly, 50%-90% of
employees have access to data that they no longer need [3].
This is primarily due to poor security practises, such as the
violation of the least privilege principle [4], which increases
the likelihood of an attacker penetrating the crucial network
assets via LM. Therefore, it is vital to detect LM at an early
stage.

As opposed to the traditional detection of successful intru-
sions [5], an alternative is to pro-actively identify covert signs
of LM. This can potentially generate alarms even before a
successful intrusion has occurred, leading to LM detection
during early exploration. After acquiring footprints of such
behaviour, administrators can get insights into the attack
strategy. They can also identify system vulnerabilities, which
can help alleviate future attacks. However, unlike hosts that act
as proxies during the attack, newly compromised or vulnerable
hosts are fairly dormant and leave minimal footprint (e.g.,
events in authentication logs). Furthermore, in large enterprises
with thousands of hosts, it is unlikely that an infiltration will
compromise the majority of hosts. Typically, the number of
compromised hosts will be minuscule in comparison to the
network size, resulting in sparse malicious activities. These
issues make early detection of LM challenging.

Early detection of LM can be addressed by (i) tagging the
malicious host events, or (ii) tagging the target assets (TA).
However, the stealthiness and sparseness of malicious events
can make the first strategy a difficult endeavor. Though, crafting
discriminative features for each event can achieve high recall,
it comes at a high computational overhead. This makes the first
strategy unscalable for very large networks. Furthermore, for
complex network infrastructure with sporadic events, tagging
individual events can also result in a high number of false
positives. In comparison, tagging TAs reduce computational
overhead. With carefully crafted features from sparse events, it
is possible to achieve a high precision in detection performance
(cf., Section IV). We focus on the second strategy for early
detection of LM by leveraging host authentication logs.

Anomaly-based methods are widely used for intrusion
detection. These methods first establish a baseline of normal
system behavior and model a decision engine. The decision
engine determines and alerts any divergence or statistical
deviations from the norm as a threat. Machine learning (ML)
[6], [7] is an ideal technique to automatically establish the
normal behavior of a system. However, an important step
prior to training a ML model is feature extraction. These
features act as discriminators for learning and inference, and
increase the accuracy of ML models. The most commonly
employed features in intrusion detection are either network
flow-based (e.g., number of packets, direction, packet size and
inter-arrival statistics) or host event-based (e.g., authentication
type, authentication frequency, and user names used during
authentication). However, these features do not completely

978-3-903176-24-9 © 2019 IFIP

capture the host communication patterns that may expose
additional aspects of malicious behavior. Graph-based features,
derived from flow-level or event-level information to reflect
the true behaviour of hosts, are an alternative that overcome
this limitation.

The distribution of the dataset can also severely influence
ML performance. For example, in the case of an imbalanced
dataset (e.g., sparse malicious host events versus benign events),
the ML techniques are more likely to classify new data to the
majority class. Though, balancing the dataset can alleviate this
issue, it may sabotage ML performance by impacting graph-
based features (cf, Section IV). In this paper, we propose a
novel approach for anomaly-based early detection of LM. Our
main contributions are:
« We leverage ML for identifying TAs to facilitate early

detection of LM. In this respect, we evaluate numerous
supervised ML techniques and their ensemble, and compare
them in classification performance and overhead.

« We employ graph-based features using real datasets from the
Los Alamos National Lab (LANL) [8]. We explore features
that are extracted from multiple data sources i.e., network
flows as well as host authentication logs, and employ feature
engineering to reduce dimensionality.

« Due to the highly imbalanced nature of the LANL dataset,
we evaluate various over- and under-sampling techniques,
and explore their impact on ML performance.

« We compare our approach to state-of-the-art approaches that
leverage the LANL dataset for detecting LM. We show that
our approach outperforms the other approaches with respect
to detection performance and overhead.
The rest of the paper is organized as follows. Section II high­

lights the recent related works on LM detection. In Section III,
we discuss the characteristics of the LANL dataset, delineate
the explored sampling algorithms, expose feature extraction and
selection, and present the ML techniques and evaluation metrics
employed for TA detection. The results of our evaluation and
comparison to the state-of-the-art approaches for LM detection
are discussed in Section IV. We conclude in Section V with
an outline of future research directions.

II. Re l a t e d W o r k s

ML has been extensively used for LM detection. Chen et
al. [9] leverage features from multiple data sources to identify
LM. They utilize rudimentary graph-based features based on
host communication, while employing autoencoder to improve
feature extraction. To address imbalance in the LANL dataset,
the authors propose a custom under-sampling technique. They
employ fc-nearest neighbors (fc-NN) and achieve an average of
91.3% precision in LM detection. However, their evaluation is
limited to fc-NN.

Bohara et al. [10] propose an unsupervised approach to
detect malicious LM. They employ the LANL dataset and
inject artificial attacks into the original dataset, instead of
using redteam events. However, these simulated attacks may not
depict behavior of real attacks in enterprise networks. Their LM
activity simulation follows the susceptible-infected-susceptible

virus spread model [11]. The authors extract features from host
communication graphs, while principal component analysis
(PCA) is used to correlate different features. For detection, they
propose a combination of two different detectors to enhance
performance. The first detector uses PCA and fc-means, while
the second one employs PCA and extreme value analysis. This
combination achieves an 88.7% true positive rate.

Tuor et al. [12] and Brown et al. [13] propose recurrent
neural network (RNN) for log level anomaly detection. Tuor
et al. introduce a language modeling framework for generic
log anomaly detection, while Brown et al. extend a previous
framework and focus on developing RNN models with attention
mechanism. These efforts do not employ feature engineering,
but rather the models directly leverage tokenized log lines. They
achieve an area under the receiver operating characteristics
(AUC) of 0.98 and 0.99, respectively. However, AUC is
impacted when the dataset is highly imbalanced. In contrast, our
approach operates on the host level, whereas the aforementioned
approaches detect at the log level.

Several other works [14]-[16] propose hybrid IDSs. Kim
et al. [14] propose a hierarchical approach that decomposes
normal training data into smaller subsets using decision tree
(DT) and leverage one-class support vector machine (SVM)
for each subset. Chitrakar et al. [15] propose a similar
approach, where the training data is split into different clusters
using fc-medoids, followed by naive bayes for further attack
classification. Agarwal et al. [16] normalize entropy of network
features using a custom algorithm and leverage SVM for attack
classification. All of the aforementioned approaches combine
multiple techniques for classification, but none of them leverage
data from different sources. In contrast, we explore features
extracted from multiple data sources to improve classification
performance.

Our work is inspired by Kaiafas et al. [17]. They construct a
bipartite graph to extract graph-based features and employ an
ensemble of ML models to improve classification performance.
However, the authors only perform fc-fold cross-validation and
do not evaluate the robustness of their ML models to unseen
data. This is crucial to ensure the detection of zero-day APTs.
We highlight this limitation in Section IV.

III. Me t h o d o l o g y

A. Dataset
1) Characteristics: The LANL dataset contain logs from

multiple data sources, including authentication log, flow log,
DNS log, and process log. We explore the authentication and
flow logs for TA detection during LM.

a) Authentication Log: This log is composed of over 450
million authentication events from Windows-based desktop
computers, spanning 58 days. Among these events there are
749 redteam compromise events, distributed in the first 30 days
of the dataset, as depicted in Fig. 1. We leverage data in this
time frame, which consists of about 230 million events from
14,582 benign hosts and 299 redteam related hosts. However,
the malicious activities are a very small fraction of all the
activities in the LANL dataset.

We do not consider local redteam authentication events i.e.,
malicious events where the source and destination hosts are
the same. The behavior of an attacker that performs malicious
activity within a physical machine tends to be quite different.
Such an attacker has access to the physical interfaces of
the host, hence their attack strategy and behaviour can be
very sophisticated. Evaluating such behavior is out of scope
for this work. Nevertheless, we capitalize on the number of
infrequent events. In total, there are 8,941 hosts involved
in 41,400 authentication events that occur only once in the
dataset. Out of the 295 TAs, 280 are involved in such events.
Therefore, considering the event infrequency i.e., sparseness,
can potentially facilitate the detection of TAs.

u
£3

%o
M

<D
£

1

0.5

0 5 10 15 20 25 30
Days

Fig. 1. Redteam activities and network flow distributions

b) Flow Log: This log contains flow events collected from
the central routers in the network. It spans 30 days with a total
of 129 million flows, as shown in Fig. 1. There is a noticeable
change in distribution from day 16, which indicates a major
change in the system. It is also worth mentioning that flows
that do not go through the central routers will not be recorded.
As a result, out of the 14,881 hosts in the authentication log,
only 3,456 hosts have corresponding flow data. Also, due to
a misconfiguration of internal network routers, the flow data
collection completely stops after day 29 [18].

2) Balancing: Sampling algorithms are employed when a
dataset is highly imbalanced. An imbalanced dataset can result
in a classifier that is biased on the majority class, due to the
nature of the training procedure. The sampling algorithms
can be classified into two categories, under-sampling and over­
sampling. While under-sampling approaches balance the dataset
by reducing the data points in the majority class, the over­
sampling approaches increase the data points in the minority
class. Therefore, the under-sampling algorithms are known to
inherently lose critical information, while the over-sampling
algorithms suffer from over-fitting [19]. However, a potential
advantage of under-sampling is the reduced computational
overhead. o n the other hand, some classifiers have the
capability to overcome the over-fitting due to over-sampling.

We explore different algorithms from both categories for
balancing the LANL dataset. The first algorithm is random
under-sampling (RUS), which randomly removes samples from

the majority class. The second algorithm is condensed nearest
neighbour (ConNN), an under-sampling algorithm based on
fc-NN [20]. This algorithm keeps all samples in minority class
and uses 1-NN classifier to determine whether to retain the data
point in majority class or not. The next algorithm is Repeated
Edited Nearest Neighbours (RENN), which implements multi­
ple iterations of Edited Nearest Neighbours (ENN) [21]. For the
over-sampling algorithms, we start with random over-sampling
(RoS), followed by the well-known synthetic minority over­
sampling technique (SMoTE) [22]. SMoTE over-samples data
points by creating their synthetic counterparts. This is achieved
by computing a vector between a data point and one of its
neighbours. Another over-sampling algorithm is the adaptive
synthetic (ADASYN) [23]. ADASYN also leverages fc-NN to
adaptively generate synthetic data.

We employ the above sampling algorithms after feature
extraction. This is primarily because applying them directly on
the authentication log can sabotage the purity of graph-based
features. For example, all authentication events pertaining to a
username may get eliminated due to under-sampling. Similarly,
over-sampling without considering the diversity of hosts in
the dataset may result in emphasizing a single type of host.
We study the influence of these sampling algorithms on TA
detection in Section IV.

B. Feature Extraction
We extract a total of 35 features: 29 features from the

authentication log and 6 from the flow log. A detailed
description of the extracted flow log-based features can be
found in our previous work [24].

The 29 authentication-based features are extracted from
a graph representation of the authentication events. As the
features are primarily based on the in-degree and out-degree
of different hosts, we build an authentication graph that is
efficient for frequent reference. We first start by building the
authentication graph G = (U ,V ,E), where U represent the
hosts that appear as sources in the authentication log, while V
represents the hosts that appear as destinations. Edges in E link
pairs (u,v) e U x V and summarize all authentication events
involving u as source and v as destination. Authentication
events are inserted in the graph as shown in Fig. 2.

For example, consider an authentication event
e(Day2, User02, C om P tr10099, ComPtr4017), where
Day2 represents the day when the logon was recorded,
User02 is the username used in the logon attempt, and
C om Ptr 10099 is the source host used by User02 to logon
to destination host ComPtr4017. Assuming that User02
was already recorded logging into ComPtr4017 from
C om Ptr 10099 twice on Day\, 3 times on Dayn, but never
before on Day2, the event e is added to the edge linking
C om P tr10099 to C om P tr4017 on the graph G with a count
of 1, as depicted in Fig. 2. Once the graph G is complete,
we build dictionaries that are used to extract the features as
described in [25]1.

'Due to space limitation, we provide a technical report to detail our feature
extraction process. This will also facilitate the reproducibility of results.

TABLE I
Mo s t s i g n i f i c a n t f e a t u r e s e x t r a c t e d f r o m a u t h e n t i c a t i o n l o g s

Feature Definition

ID u sr(d s tj)
The count of unique username used to
logon to dstj

ID src (d stj)
The count of unique source hosts that
logon to dstj

ID (usr,src) (dstj)
The count of unique (username, source)
pairs that logon to dstj

ID A F u sr (dstj)

The average over all username
of A V G dstj (usernam e), where
A V G dstj (usernam e) is the number
of times username is used to logon to
dstj divided by the number of days
username used to logon to dstj

I D A F S T Dusr (d s t j)
Standard deviation of
A V Gdstj (usernam e)

ID S u sr (dstj
The sum over all username of
S F (* , u ser n a m e , d stj ,0 ,0) , where
SF is defined in Algorithm 1

ID Ssrc (dstj)
The sum over all source of
S F (source, *, d s t j , 0, 0)

I D S (usr,src) (dstj)
The sum over all (user-
name, source) pairs of
S F (source, u se rn a m e , d stj ,0 ,0)

'W I D S (usr,src) (dstj)

The sum over all (user-
name, source) pairs of
SF (source, u sernam e, d stj ,0 ,0)
weighted by O D S(usr,dst)(source)

O D S usr (srci)
The sum over all username of
S F (srci, u sernam e, * ,0 ,0)

O D Sdst(srci)
The sum over all destination of
S F (srci, *, destina tion , 0 ,0)

O D S (usr,dst) (srci)
The sum over all (user-
name, destination) pairs of
SF (srci ,username,destination,9,fi)

O D A F S T D(usr,dst) (srci)

Standard deviation of
A V G src i (usernam e,
destina tion) , where
A V Gsrci (usernam e, destina tion)
is the number of times username is
used by srci to logon to destina tion
divided by the number of days username
is used by srci to logon to destina tion

O D A F S T Dusr (srci)

The standard deviation of
A V Gsrci (u sern a m e) , where
A V Gsrci (usernam e) is the number
of times username is used in a remote
login attempt initiated by srci divided
by the number of days username is used
by srci in a remote login attempt

M S F (d s tj)
The maximum over all srci
of O D S(usr,dst)(srci) where
S F (d s t j , srci, in , 0 ,0) > 0

SU R (d stj)

The number of unique username
used to sparsely logon to d stj (i.e.,
SF (dstj ,(username,source),in,9,fi) >
0 for at least half the logon events
(usernam e, source, d s t j)) divided by
the number of unique username used to
logon to dstj

A S (H ost3) M S F (H o s t j) * S U R (H o s tj)

Fig. 2. Graph representation of authentication events

A high-level description of the authentication-based features
is provided below. Table I further delineates a subset of the
authentication-based features.

a) In-Degree (ID) and Out-Degree (OD): In the early
phase of LM, attackers use stolen credential to attempt logging
into and eventually compromising other hosts. This will result in
the increase of ID of the targeted hosts and oD of successfully
compromised ones.

b) In-Degree-Avg-Frequency (IDAF) and Out-Degree-Avg-
Frequency (ODAF): Infrequent malicious authentication events
would have little impact on ID/OD in the presence of a much
larger number of benign authentication events. Thus they can
be overlooked by the classifier. We consider IDAF, the daily
average number of authentication events targeting the host, as
well as oDAF, the average number of authentication events
originating from the host, and leverage the discriminatory nature
of these features.

c) IDAF-Standard-Deviation (IDAFSTD) and ODAF-
Standard-Deviation (ODAFSTD): Sparse malicious authen­
tication logs can be shadowed by regular and repetitive benign
logons when calculating IDAF and oDAF. on the other hand,
the standard deviation of IDAF will be higher for TAs targeted
by a mix of frequent legitimate logons and sparse malicious
logons, than non-TAs. Similarly, compromised hosts will have
higher oDAFSTD than benign ones.

d) In-Degree-Sparseness (IDS) and Out-Degree-
Sparseness (ODS): In order to capture infrequent events that
are likely to be malicious, we introduce a sparseness function
(SF), as depicted in Algorithm 1. SF considers infrequent
events with a specific (combination of) source host, destination
host, or username occur, and assigns a higher score to more
infrequent events. This amplifies the impact of such events on
graph features, which are otherwise largely affected by benign
events. IDS and oDS reflect the sparseness of the incoming
and outgoing logons, respectively. In this case, SF evaluates
the sparseness of these events and amplifies the impact of
sparse authentication events when computing the ID of a TA
and oD of a compromised host. As sparse malicious logons
receive higher SF scores, TAs are expected to have higher
IDS than non-TAs, and compromised hosts to have higher

oDS than benign ones.
e) Weighted-In-Degree-Sparseness (WIDS): To distin­

guish between TAs and non-TAs with comparable IDS but
legitimately targeted by a higher number of logons (e.g.,
servers), we weigh the sparseness of incoming logons by the
oDS of the source.

f) Maximum-Sparseness-Factor (MSF) and Suspicious-
User-Rate (SUR): A common characteristic of TAs is that they
have been occasionally logged into with malicious intent. The
MSF of a particular host denotes the oDS of the source that
is most likely to be malicious and that sparsely logged into
that host. The higher is the MSF of a host the more likely it is
a TA. The SUR of a given host is the proportion of usernames
used to sparsely log into the host.

g) Attack Score (AS): The AS of a host reflects the
likelihood of it being a TA. The higher the AS of a host,
the more likely it is a TA. AS is the product of MSF and
SUR, hence it is correlated with MSF and SUR. Experiments
with AS show a promising boost in precision and recall. It
serves as an evident sign that a host has been tempted by an
actively probing source host. It further reveals that selected ML
models cannot capture the product relation of different features.
With all the features, the classifier can better distinguish the
boundary for TAs and benign hosts.

Further details on each and every extracted feature is
available in [25].

Algorithm 1 Sparseness function (SF)
input : Source host Src, username Usr, destination host Dst,

thresholds 0, ft
output: Sparseness, a sparseness score of event defined by

Src, Usr, and Dst
1: Initialize Events to all events in authentication log
2: Sparseness ^ 0

/* filter(*) is a no-op, countByDays() counts the num­
bers of days where the events occur * /

3: TotalDays ^
4: E ven ts.filter(Src , Usr, Dst) .countByDays()
5: if TotalDays < 0 then
6: Sparseness ^
7: max(TotalDays * ft — Events.count(), 0)
8: end if
9: return Sparseness

C. ML Techniques
With graph-based features extracted, we evaluate several ML

techniques to detect TAs during LM. We start with decision
tree (DT), a non-parametric supervised learning method. We
also leverage random forest (RF), which is a classifier that uses
multiple DTs to improve classification performance and avoid
over-fitting. LogitBoost (LB) is another learning algorithm
based on DT that we leverage in our evaluation. We also
assess logistic regression (LR), which is very efficient and
does not require feature scaling. However, its performance
deteriorates with highly correlated features. We evaluate these
ML techniques as well as other well known techniques, such

as SVM, fc-NN, and gaussian naive bayes. However, we do
not discuss them as they under perform in our evaluation.

D. Evaluation Metrics
In order to measure the performance of ML models, we use

a variety of metrics. These include:

Precision True Positive
True Positive + False Positive

x 100

Recall True Positive
True Positive + False Negative

100

Recall x Precision
F 1 score = 2 x

Recall + Precision

The precision and recall are better criterion to assess the
performance of a classifier when the dataset is imbalanced. The
F1 score is essentially a harmonic mean of precision and recall,
which represents the overall performance of a classifier. A
higher F1 score indicates both low false positives and low false
negatives (i.e., true TAs are identified without raising many false
alarms). In addition, we plot receiver operating characteristic
(RoC) curve to illustrate the performance of a classifier at
different classification thresholds. We also calculate the area
under the RoC curve (AUC) to quantify ML performance.

IV. Ex p e r i m e n t s

A. Environment
1) Hardware: We perform data analysis and pre-processing

on a cluster of four nodes, each of which has a Intel(R)
Xeon(R) 3.30GHZ CPU and 16GB RAM. These nodes are
interconnected using 10Gbps Ethernet. ML model training,
validation and testing are performed on a machine equipped
with 2 x Intel(R) Xeon(R) 2.20GHz CPU and 384 GB RAM.

2) Software: We leverage Numpy [26], Scipy [27], and
Pandas [28] for data pre-processing. Imbalanced-learn [29] is
employed for balancing the training datasets, while Scikit-learn
[30] is used for building ML models.

B. Results
1) Feature Selection: We start with evaluating the perfor­

mance of different ML classifiers with graph-based features ex­
tracted from authentication logs and network flow logs. Table II
showcases the result of fc-fold cross-validation (fc = 10) using
a total of 35 features (6 flow-based and 29 authentication-based
features) extracted from the first 30 days of the LANL dataset.
We choose 0 and ft based on trial-and-error and the frequency
of benign activities in the dataset. Most authentication events
for a given combination of (src, username, dst) occur for
more than three times per day and exist over three days. Hence,
we set 0 = ft = 3. The parameters for the ML techniques are
set based on their performance i.e., we choose the parameters
that exhibit the best result in TA detection. DT is set to a
maximum depth of 6, while RF uses 400 as the number of
estimator with a maximum depth of 12. LB uses 100 estimators
and a DT regressor with a maximum depth of 3. LR is using
tolerance of 0.0001 and a regularization strength of 1.

TABLE II
ML PERFORMANCE USING FLOW- AND AUTHENTICATION-BASED FEATURES

(35 FEATURES)

ML model Precision Recall F1 score Training time (s)

DT 75.62% 75.15% 0.75 0.14
RF 79.99% 79.27% 0.79 3.31
LB 80.31% 80.29% 0.80 6.69
LR 31.10% 5.47% 0.09 4.04

With the exception of LR, which performs poorly, the other
ML techniques classify TAs with relatively high precision
and recall (over 75%). LB outperforms DT and RF with
the highest F1 score. The number of ML features not only
influence the computational overhead, but can also result in
model over-fitting. Hence, in order to reduce the number of
features and identify the ideal feature set for TA detection, we
then restrict the feature set to authentication-based features.
As depicted in Table III, with the exception of LR whose
performance increases significantly, we witness a marginal
performance degradation when discarding flow-based features.
RF outperforms other classifiers, while saving about 14s in
feature extraction time. The lackluster performance of the flow-
based features can be attributed to the inferior quality of flow
data in the LANL dataset, as discussed in Section III. This
undermines the suitability of flow-based features to detect TAs
during LM in this particular dataset.

TABLE III
ML PERFORMANCE USING AUTHENTICATION-BASED FEATURE SET

(29 FEATURES)

ML model Precision Recall F1 score Training time (s)

DT 75.26% 75.77% 0.75 0.11
RF 81.36% 80.12% 0.81 3.11
LB 79.64% 79.76% 0.79 5.46
LR 61.31% 53.56% 0.52 6.13

Next, we study the correlation between authentication-based
features to further reduce the features for TA detection. Table IV
shows that among the 29 features, 11 (column features)
are correlated with 4 others (row features), with a Pearson
coefficient exceeding 0.6. The technical report [25] provides
the Feature IDs (FIDs) for the authentication-based features.

TABLE IV
P e a r s o n c o r r e l a t i o n m a t r i x f o r m o s t c o r r e l a t e d

AUTHENTICATION-BASED FEATURES

FID 2 3 10 11 15 18 22 23 24 26 27
16 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.9 0.0 0.8
25 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.0 0.0 0.1 0.0
29 0.0 0.0 0.0 0.0 0.0 0.6 0.4 0.0 0.0 0.6 0.0

Based on these findings, we remove all the 11 correlated
features from the feature set. Many of these features report
on the daily average logon times; per host, per user, and per
(host, user) combination. These features are too generic and
fail to describe the true nature of LM, which makes them
less discriminative in tagging TAs. We further remove the
out-degree-avg-frequency feature. This latter feature is only
significant if there is evidence that the TA is compromised

and is actively attempting to move laterally, which is not the
case in this dataset. We re-evaluate the ML techniques after
removing the 12 aforementioned features.

As depicted in Table V, the F1 score for all ML techniques
improve with RF outperforming all other classifiers. Further­
more, LR shows the highest improvement in TA detection with
an F1 score increase of 8%. Even though DT and LB are
immune to highly correlated features [31], we notice a slight
increase in their performance. The removed features primarily
pertain to standard deviation and out-degree. on a single host,
different users can have distinct authentication patterns, which
will result in high values for standard deviation-based features,
causing confusion for the classifiers. Furthermore, TAs do not
necessarily have an exploring behaviour, thus out-degree-based
features can also degrade the classifier performance. Hence, in
the following experiments we use the reduced feature set of
17 authentication-based features.

TABLE V
ML PERFORMANCE ON REDUCED AUTHENTICATION-BASED FEATURE SET

(17 FEATURES)

ML model Precision Recall F1 score Training time (s)

DT 77.59% 75.45% 0.76 0.05
RF 83.72% 81.23% 0.82 2.06
LB 78.99% 80.25% 0.80 2.26
LR 68.13% 54.55% 0.60 5.99

2) Ensemble Learning: In an effort to improve the perfor­
mance of the stand-alone ML models for TA detection, we
consolidate them using ensemble learning. Due to the lackluster
performance of LR in comparison to other ML models (cf.,
Table V), we remove it from the list of potential classifiers in the
ensemble approach. First, we employ the majority voting (MV)
algorithm [32] that leverages all ML models in the ensemble
in a uniform manner, and use fc-fold cross validation (fc = 10)
on the first 30 days of the LANL dataset. The detection of
TAs during LM using MV over RF, LB and DT is shown in
Table VI. However, this results in an inferior performance to
stand-alone RF, since low performing classifiers can influence
the voting process.

TABLE VI
E n s e m b l e l e a r n i n g u s i n g m a j o r i t y v o t i n g

| Ensemble Precision Recall | F1 score | Training time (s) |

| RF, LB, DT 80% 80.67% | 0.80 | 2.60 |

Evidently, MV is unable to boost the performance of the best
stand-alone classifier. Therefore, we explore another ensemble
approach, namely weighted voting (WV) [33], where we can
assign weights to ML models based on their stand-alone
performance. Intuitively, this can identify a higher number
of true positives (i.e., TAs during LM) that are missed by
RF, the best performing stand-alone classifier. However, with
multiple combinations of weights assigned to the ML models in
Table VII, stand-alone RF still outperforms WV. Besides, these
ensemble approaches increase training time, undermining their
suitability for early LM detection. Therefore, we choose the
stand-alone RF classifier as our model for further experiments.

TABLE VII
En s e m b l e l e a r n i n g u s i n g w e i g h t e d v o t i n g , p r i o r i t i z i n g

STAND-ALONE ML PERFORMANCE

RF LB DT Precision Recall F1 Training time (s)
T
3

T
3

T
3

80.00% 80.41% 0.80 2.86
T
2

T
4

T
4 80.70% 80.89% 0.81 2.78

T
2

T
3

T
6

80.68% 80.97% 0.81 2.60

3) Balancing the Dataset: We further evaluate the robustness
of our ML model by training and testing it on logs recorded
on different days. Redteam activities are only conducted on
certain days, generating malicious events that account for
a very small fraction of the total number of authentication
events (i.e., less than 0.0001%). Therefore, we reserve day 9,
the day with the highest number of malicious authentication
events, for testing, while the remaining days are chosen for
training our model. We evaluate several well known sampling
algorithms (cf., Section III) to balance the training dataset.
For each sampling algorithm, we use distinct seeds across 5
iterations and compute the average for each metric. These seeds
are consistent across the sampling algorithms. Furthermore,
each sampling algorithm has its own best sampling rate i.e., the
ratio of TA versus Benign (TA/Bening). Hence, we experiment
with different sampling rates and select the best sampling rate
to portray the corresponding results.

a) Over-sampling: The comparison of three different over­
sampling algorithms, namely RoS, SMoTE, and ADASYN,
is highlighted in Table VIII. SMoTE results in the second
highest recall, as synthesizing minority points help in stressing
the TA class. However, the randomness in synthetic points
do not capture the true nature of original TAs, resulting in a
lower recall. In contrast, ADASYN achieves better precision
and recall. It generates synthetic points closer to the decision
boundary, thus enabling the classifier to better distinguish TAs
from benign hosts. As opposed to over-sampling only a portion
of the minority points, RoS simply replicates TAs, which
stresses on all TAs. Uniformly Stressing on all TAs preserve
the originality of TA class and behavior to a large extent
in comparison to synthesizing, thus resulting in the highest
precision. Each algorithm over-samples the dataset with the
same sampling rate, thus the training time (TT) is similar. In
contrast to ADASYN, ROS and SMOTE consume less sampling
time (ST) due to their simpler sampling mechanism.

TABLE VIII
OVER-SAMPLING WITH DIFFERENT ALGORITHMS (17 FEATURES)

Algorithm TA/Benign Precision Recall F1 score ST (s) TT (s)

ROS 0.02 62.34% 95.36% 0.7539 0.01 4.27
SMOTE 0.02 61.99% 95.71% 0.7524 0.01 4.62

ADASYN 0.02 62.08% 96.07% 0.7542 0.06 4.66

b) Under-sampling: Recall that RUS randomly removes
samples from the majority class. This may result in a high
number of benign (majority class) hosts that have similar traits
as certain class of TAs, negatively impacting precision. This
is evident in the lower precision of RUS in comparison to
ConNN, as shown in Table IX. But the TAs that starkly differ

from the benign hosts are still classified with high recall. A
similar affect can be seen with RENN, which removes benign
hosts that are not very similar to their neighbors. In contrast,
ConNN preserves the benign hosts that are different from their
neighbors. Therefore, under-sampling with ConNN results in
the best F1 score with precision and recall of 62.47% and
95.12%, respectively. Due to its simplicity, RUS incurs the least
sampling time. In contrast, ConNN suffers from the highest
sampling time, but it also reduces the number of benign hosts
to the largest extent, which positively impacts the training time.

TABLE IX
U NDER-SAMPLING WITH DIFFERENT ALGORITHMS (17 FEATURES)

Algorithm TA/Benign Precision Recall F1 ST (s) TT (s)

RUS 0.02 60.9% 96.55% 0.7469 0.01 2.45
ConNN 0.51 62.47% 95.12% 0.7541 130.88 0.99
RENN 0.01 60.07% 97.62% 0.7437 2.81 3.32

c) Comparison: We highlight the over- and under­
sampling algorithms with the highest F1 score in Table X,
along with no sampling (i.e., unbalanced training dataset). As
evident, ADASYN increases the precision and recall by 0.54%
and 0.84%, respectively. However, this comes at the cost of
increased sampling and training times, which undermines its
suitability. On the other hand, ConNN increases precision by
0.93%. However, its sampling time is very high in comparison
to training without any sampling. Thus, we proceed without
any sampling to detect TAs during LM in the LANL dataset.

TABLE X
Co m p a r i n g d i f f e r e n t a l g o r i t h m s (17 f e a t u r e s)

Algorithm TA/Benign Precision Recall F1 ST (s) TT (s)

ADASYN 0.02 62.08% 96.07% 0.7542 0.06 4.66
ConNN 0.51 62.47% 95.12% 0.7541 130.88 0.99

Unbalanced 0.01 61.54% 95.23% 0.7476 0 3.61

4) Comparative Analysis: To further evaluate our approach,
we compare our model with two state-of-the-art approaches
for LM detection. We implement the approaches in Chen et al.
[9] and Kaiafas et al. [17]. To achieve a fair comparison, we
balance the dataset according to the algorithm in [9], which
preserves the redteam events while under-sampling the benign
activities. Due to scalability issues in [17], we only leverage
data for fc-fold cross-validation (fc = 10) from day 9. As
depicted in Table XI, our model outperforms Chen et al. in
precision, recall and F1 score. However, our approach consumes
more feature extraction time (FET) and model training time.

Kaiafas et al. marginally outperforms our model in precision,
with an improvement of 0.02 in F1 score. However, their feature
engineering and model training times are magnitudes higher
than both Chen et al. and our approach. In the balanced dataset,
there are about 97,000 authentication events and their overhead
is largely due to feature extraction for each individual event. In
contrast, our approach strikes a balance between performance
and overhead.

TABLE XI
TA DETECTION USING STAND-ALONE RF AND CROSS-VALIDATION VERSUS

([9], [17])

Classifier Precision Recall F1 FET (s) TT (s)

Our Model 97.02% 93.04% 0.95 169.35 1.45
Chen et al. 73.12% 7.24% 0.13 0.69 5.29

Kaiafas et al. 100% 93.47% 0.97 100.81 23332.37

Followed by cross-validation, we evaluate the robustness of
the aforementioned approaches on never seen data. Thus, we
leverage authentication events from day 9 as the test dataset,
while the remainder of the dataset (i.e., 29 days) is used for
training. In this case, the training dataset is composed of over
220 million log entries, which can potentially introduce a lot of
noise. As depicted in Table XII, the model from Chen et al. fails
miserably with a near-zero recall when tested on never seen
data. The authors in [9] leverage features, including network
traffic amount, sending packet amount, authentication amount
and DNS queries amount, etc. These generic statistical features
fail to distinguish TAs in a noisy environment. Unfortunately,
we are unable to extract features for Kaiafas et al. for this
robustness evaluation in a reasonable amount of time. Thus, the
robustness evaluation for their model is unavailable. In contrast,
our model shows remarkable performance with a recall and F1
score of 98% and 0.75, respectively.

TABLE XII
Ro b u s t n e s s o f TA d e t e c t i o n u s i n g s t a n d -a l o n e RF v e r s u s

([9], [17])

Classifier Precision Recall F1 FET (s) TT (s)

Our Model 60.58% 98.81% 0.75 2210.45 3.95
Chen et al. 3.16% 2.98% 0.030 823.51 59.45

Kaiafas et al. — — — > 360000 —

Nevertheless, to compare the robustness of Kaiafas et al. we
reduce the cardinality of the training dataset from the previous
experiment. Data from days 13, 14, and 15 is used for training,
while day 9 is reserved for testing. For a fair comparison,
we leverage the under-sampling method from Chen et al. for
both comparative models. Note that Kaiafas et al. do not
disclose their sampling approach in detail. Furthermore, no
sampling is applied to our model. As shown in Table XIII, our
model significantly outperforms other approaches. Even though
Kaiafas et al. perform quite well in cross-validation, they fail
in robustness to never seen TAs. The authors in [17] extract
features, including frequency, first occurrence tag, diversity
of user, etc. However, these features fail to differentiate the
TAs from the benign hosts for large networks. Due to the
diversity of different authentication events, they can result in
hosts having similar values with regard to less crafted features,
such as the number of successful/failed authentication events.
Such noise will influence the performance of ML models that
leverage less-thought-of features. However, with features based
on the degree of sparse events, our model is able filter out
noise and differentiate TAs. Fig. 3 shows the ROC curve, which
indicates that our model has the highest AUC score of 0.995.
Note that Kaiafas’s model is using MV, which is not feasible to
be plotted in ROC curve. In comparison to previous robustness

result, our model shows a marginal loss in precision and recall.
However, our model out classes other approaches, with a high
recall of over 94%, while the F1 score is the highest at 0.74.

TABLE XIII
Ro b u s t n e s s o f TA d e t e c t i o n u s i n g s t a n d -a l o n e RF v e r s u s

([9], [17]) ON A REDUCED TRAINING DATASET

Classifier Precision Recall F1 FET (s) TT (s)

Our Model 61.24% 94.05% 0.74 475.46 2.56
Chen et al. 4.64% 9.52% 0.06 11.22 0.66

Kaiafas et al. 9.58% 45.83% 0.16 40488.56 1903.24

False Positive Rate

Fig. 3. ROC for robustness in TA detection using stand-alone RF vs. ([9],
[17]), with days 13, 14 and 15 for training, and day 9 reserved for testing

V. Co n c l u s i o n

In this paper, we propose a novel approach for detecting
TAs during the LM phase of an APT attack. We explore
graph-based features extracted from multiple data sources (i.e.,
network flows and host authentication logs) in the LANL
dataset. Among all the baseline features, we filter less impactful
and correlated features to select the ideal feature set for TA
detection and reduce computational overhead. To cope with
the highly imbalanced nature of the dataset, different sampling
algorithms are explored to improve classifier performance. The
result shows that our approach is robust against unbalanced
dataset. We found our approach to outperform the other state-
of-the-art approaches in TA detection on the LANL dataset.

Our approach is limited by the poor quality of the LANL
dataset. This prevents us from exploiting data from multiple
sources for TA detection. This is largely due to the incom­
pleteness of network traffic monitoring data. Apart from this
aspect, the sampling algorithms do not significantly boost the
performance of classifiers, which needs further investigation.
Furthermore, as the data grows rapidly in an enterprise network,
the exploration of incremental learning would be valuable in
the future. This will facilitate the adjustment of ML decision
boundary after deployment.

Ac k n o w l e d g m e n t

This work is supported by the Royal Bank of Canada, and
Partnership Grant No. 530335 of the Natural Science and
Engineering Research Council of Canada.

REFERENCES

[1] S. Gatlan, “Asus live update infected with backdoor in
supply chain attack,” Mar 2019, accessed: 2019-04-05. [Online].
Available: https://www.bleepingcomputer.com/news/security/asus-live-
update-infected-with-backdoor-in-supply-chain-attack/

[2] TokenPost, “Crypto exchange dragonex lost $7m in hack, announces
compensation plan,” Apr 2019, accessed: 2019-04-05. [Online].
Available: https://tokenpost.com/Crypto-exchange-DragonEx-lost-7M-in-
hack-announces-compensation-plan-1568

[3] S. Sinclair, S. W. Smith, S. Trudeau, M. E. Johnson, and A. Portera,
“Information risk in financial institutions: Field study and research
roadmap,” in Proceedings o f Enterprise Applications and Services in
the Finance Industry, D. J. Veit, D. Kundisch, T. Weitzel, C. Weinhardt,
F. A. Rabhi, and F. Rajola, Eds., 2008.

[4] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings o f the IEEE, vol. 63, no. 9, pp. 1278-
1308, 1975.

[5] S. Agrawal and J. Agrawal, “Survey on anomaly detection using data
mining techniques,” Procedia Computer Science, vol. 60, pp. 708-713,
2015.

[6] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba,
F. Estrada-Solano, and O. M. Caicedo, “Machine learning for cognitive
network management,” IEEE Communications Magazine, vol. 56, no. 1,
pp. 158-165, 2018.

[7] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Springer Journal o f Internet Services and Applications,
vol. 9, no. 1, 2018.

[8] A. D. Kent, “Comprehensive, Multi-Source Cyber-Security Events,” Los
Alamos National Laboratory, 2015.

[9] M. Chen, Y. Yao, J. Liu, B. Jiang, L. Su, and Z. Lu, “A novel approach
for identifying lateral movement attacks based on network embedding,”
in Proceedings o f IEEE International Conf. on Parallel Distributed
Processing with Applications, Ubiquitous Computing Communications,
Big Data Cloud Computing, Social Computing Networking, Sustainable
Computing Communications, 2018, pp. 708-715.

[10] A. Bohara, M. A. Noureddine, A. Fawaz, and W. H. Sanders, “An
unsupervised multi-detector approach for identifying malicious lateral
movement,” in Proceedings of IEEE Symposium on Reliable Distributed
Systems, 2017, pp. 224-233.

[11] P. Van Mieghem, “The n-intertwined sis epidemic network model,”
Computing, vol. 93, pp. 147-169, 2011.

[12] A. R. Tuor, R. Baerwolf, N. Knowles, B. Hutchinson, N. Nichols, and
R. Jasper, “Recurrent neural network language models for open vocabu-
lary event-level cyber anomaly detection,” in Proceedings of Workshops
at the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[13] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols, “Recurrent neural
network attention mechanisms for interpretable system log anomaly
detection,” in Proceedings o f the First Workshop on Machine Learning
for Computing Systems, 2018, pp. 1-8.

[14] G. Kim, S. Lee, and S. Kim, “A novel hybrid intrusion detection method
integrating anomaly detection with misuse detection,” Expert Systems
with Applications, vol. 41, no. 4, pp. 1690-1700, 2014.

[15] R. Chitrakar and C. Huang, “Anomaly based intrusion detection using
hybrid learning approach of combining k-medoids clustering and naive
bayes classification,” in Proceedings o f IEEE International Conference
on Wireless Communications, Networking and Mobile Computing, 2012,
pp. 1-5.

[16] B. Agarwal and N. Mittal, “Hybrid approach for detection of anomaly
network traffic using data mining techniques,” Procedia Technology,
vol. 6, pp. 996-1003, 2012.

[17] G. Kaiafas, G. Varisteas, S. Lagraa, R. State, C. D. Nguyen, T. Ries,
and M. Ourdane, “Detecting malicious authentication events trustfully,”
in Proceedings o f IEEE/IFIP Network Operations and Management
Symposium, 2018, pp. 1-6.

[18] A. D. Kent, “Cybersecurity Data Sources for Dynamic Network Research,”
in Proceedings of Dynamic Networks in Cybersecurity. Imperial College
Press, Jun. 2015.

[19] P. Baldi, “Autoencoders, unsupervised learning and deep architectures,”
in Proceedings o f the International Conference on Unsupervised and
Transfer Learning Workshop, 2011, pp. 37-50.

[20] P. Hart, “The condensed nearest neighbor rule (corresp.),” IEEE Trans-
actions on Information Theory, vol. 14, no. 3, pp. 515-516, 1968.

[21] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using
edited data,” IEEE Transactions on Systems, Man, and Cybernetics, no. 3,
pp. 408-421, 1972.

[22] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of artificial
intelligence research, vol. 16, pp. 321-357, 2002.

[23] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic
sampling approach for imbalanced learning,” in Proceedings o f IEEE
International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence), 2008, pp. 1322-1328.

[24] A. A. Daya, M. A. Salahuddin, N. Limam, and R. Boutaba, “A graph-
based machine learning approach for bot detection,” in Proceedings of
IFIP/IEEE International Symposium on Integrated Network Management,
2019.

[25] H. Bian. Technique report for graph features. [Online]. Available:
https://bitbucket.org/gentlebian/technique-report/src/master/

[26] T. E. Oliphant, Guide to NumPy, 2nd ed. USA: CreateSpace Independent
Publishing Platform, 2015.

[27] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001-, accessed Mar 2019. [Online]. Available:
http://www.scipy.org/

[28] W. McKinney, “Data structures for statistical computing in python,” in
Proceedings o f the Python in Science Conference, 2010.

[29] G. Lemaitre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in machine learning,”
Journal o f Machine Learning Research, vol. 18, no. 17, pp. 1-5, 2017.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in python,” J. Mach. Learn. Res., vol. 12,
2011.

[31] L. Toloi and T. Lengauer, “Classification with correlated features:
unreliability of feature ranking and solutions,” Bioinformatics, vol. 27,
no. 14, pp. 1986-1994, 2011.

[32] L. I. Kuncheva, Combining pattern classifiers: methods and algorithms.
John Wiley & Sons, 2004.

[33] T. G. Dietterich, “Ensemble methods in machine learning,” in Interna-
tional workshop on multiple classifier systems. Springer, 2000, pp.
1-15.

