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State-of-the-art: Birds eye view
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Static & Load-unaware

(pre-SDN era)
OSPF, MPLSE-TE, ECMP

Topology-specific

(post-SDN era)

DC – Hedera1, MicroTE2

WAN - B43, SWAN4

Event specific
Congestion & Failure events; 

Attack events (e.g., link-flooding attack)

1M. Al-Fares, et al. "Hedera: dynamic flow scheduling for data center networks." In Proc. of NSDI 2010.
2T. Benson, et al. "MicroTE: Fine grained traffic engineering for data centers." In Proc. of ACM CoNeXT 2011.
3S. Jain, et al. "B4: Experience with a globally-deployed software defined WAN." In Proc. of ACM SIGCOMM 2013.
4C. Hong, et al. "Achieving high utilization with software-driven WAN." In Proc. of ACM SIGCOMM 2013.



Our Contribution: SPONGE
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A traffic engineering mechanism 

not specific to any network 

topology, traffic pattern, objective 

function, and network events



SPONGE : 
Overview
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Network dynamics is characterized by a 
stochastic process on queues

The network is modeled as a graph with 
system of queues on link end-points

A pluggable objective function supports 
different operational policies

Topology agnostic

Traffic matrix & 
network event 

agnostic

Objective function 
agnostic
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queues and a routing table at each node
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Network dynamics is modeled as variation of the 
queues at network nodes

𝛿+𝑋𝑡
𝐶 Positive variation of queue, i.e., packets in

(function of negative variation of C’s neighbors)

Packets in

𝛿−𝑋𝑡
𝐶 Negative variation of queue, i.e., packets out

(function of C’s processing time)

(𝐼𝑘
𝐶 , 𝐷𝑘

𝐶) Arrival time & destination of k-th new packet at C

Dynamics of 𝑋𝑡
𝐶 after time t =
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SPONGE: Objective
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Given a network graph and functions 
representing variations of queues, compute 
routing tables that bring the network to a 

healthy state
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Given a network graph and functions 
representing variations of queues, compute 
routing tables that bring the network to a 

healthy state

How do we quantify healthy network state?



Healthy Network State: Example-I
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Example-I: Direct routing potential (Hroute)

∑(distances of the packets in every queue from their destination)

Example-II: Low load potential (Hload)

𝑓(
1
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)
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Example-I: Direct routing potential (Hroute)

∑(distances of the packets in every queue from their destination)

Example-II: Low load potential (Hload)

𝑓(
1

𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙_𝑞𝑢𝑒𝑢𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑎𝑡_𝑎𝑙𝑙_𝑛𝑜𝑑𝑒𝑠
)

Our choice

Weighted sum of two potentials = Hroute + (1- )Hload



SPONGE: Control Optimization
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Any numerical optimization method can 
be used to compute a routing table that 

minimizes the potential function given the 
current network status
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Any numerical optimization method can 
be used to compute a routing table that 

minimizes the potential function given the 
current network status

Our choice: Simulated Annealing



SPONGE: 
Simulated 
annealing
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Metropolis-Hasting algorithm

Gibbs measure. It inherently prioritizes the 
low potential states, i.e., healthier network 
states.

1M. S. Kang, et al., “The Crossfire attack,” in Proceedings of IEEE S&P, 2013, pp. 127–141.

Neighborhood 
Generation

Fitness Function



Evaluation
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ISP networks (Abilene, Bell Canada), 
Data center (leaf-spine)

Link-flooding attack; Data-center 
congestion mitigation

Crossfire attack1, Many-to-any aggregation 
traffic pattern in data centers

1M. S. Kang, et al., “The Crossfire attack,” in Proceedings of IEEE S&P, 2013, pp. 127–141.

Use Cases

Network Topology

Traffic Pattern

Matlab simulation; Mininet emulationMethodology



Use-case: Link flooding attack
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Use-case: Data-center
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Many-to-one aggregation traffic pattern: Flows from hosts 

under green switches to hosts under the red switch
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Matlab
Simulation
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Bell Canada

Markovian with random packet sizes

Constant per packet

1M. S. Kang, et al., “The Crossfire attack,” in Proceedings of IEEE S&P, 2013, pp. 127–141.

Packet Arrival

Network Topology

Processing time

Link-flooding attack mitigationUse case



Successful packet delivery
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Direct routing 
potential

Low load potential



Mininet
Emulation
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ISP networks (Abilene, Bell Canada), 
Data center (leaf-spine)

Link-flooding attack, Data-center 
congestion mitigation

Use Cases

Network Topology

Shortest-path based routingBaseline



Use-case: Link flooding attack
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~50% less packet 
drops on avg. with 

SPONGE

Abilene topology; Crossfire attack for 30 s



Use-case: Link flooding attack
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Bell Canada topology; Crossfire attack for 3 min

~40% less packet 
drops on avg. with 

SPONGE



Use-case: Data-center
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~39.6% less packet 
drops on avg. with 
SPONGE



What’s 
Next?
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Machine learning to automatically 
identify traffic classes (e.g., malicious vs 
benign) and treat them accordingly 

Consideration for differential traffic classes
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Questions?



Backup
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Packet delivery time
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Direct routing 
potential

Low load potential



Impact of 
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
Mean delay experienced 

by packets (s)

0.1 0.85

0.5 0.70

0.9 0.72

Low load potential

Direct routing potential


