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Abstract—Cloud computing is being embraced more and more
by telecommunication operators for on-demand access to com-
puting resources. Knowing that 5G Core reference architecture
is envisioned to be cloud-native and service-oriented, we propose,
in this paper, offloading to the cloud, some of 5G delay-tolerant
Network Functions and in particular the Network Data Analytics
Function (NWDAF). The dynamic selection of cloud resources
to serve off-loaded 5G-NWDAF, while incurring minimum cost
and maximizing utilization of served next generation Node-Bs
(gNBs) requires agility and automation. This paper introduces
a framework to automate the selection process that satisfies
resource demands while meeting two objectives, namely, cost
minimization and utilization maximization. We first formulate the
mapping of gNBs to 5G-NWDAF problem as an Integer Linear
Program (ILP). Then, we propose an algorithm to solve it based
on branch-cut-and-price technique combining all of branch-and-
price, branch-and-cut and branch-and-bound. Results using pric-
ing data from a public cloud provider (Google Cloud Platform),
show that our proposal achieves important savings in cloud
computing costs and reduction in execution time compared to
other state-of-the-art frameworks.

Index Terms—Cloud Computing, 5G Core Network Offload-
ing, Branch-Cut-and-Price, Multi-objective optimization, Google
Cloud Platform

I. INTRODUCTION

Cloud Computing (CC) is getting popularity among Tele-
phone Companies (telcos). AT&T stated that it is becoming
a ‘public cloud first’ company by migrating its workloads
to Microsoft public cloud by 2024. They advocate that this
allows them to focus on core network capabilities, accelerate
their innovation cycle, and empower their workforce while
optimizing costs [1]. TM-Forum claims that telcos cannot
afford not to embrace the public clouds [2]. Surveys show that
enterprises are divesting their data centers and moving applica-
tion workloads, both testing and production to the public cloud
[3]. As of January 2017, 46.1% of business-critical applica-
tions are in the public or hybrid cloud [3]. Gartner forecasts
cloud services industry to grow exponentially through 2022
[4]. Furthermore, a leading research and consulting business
mandates that in order to compete in the digital world, the
adoption of public cloud by telcos is inevitable [5]. Readings
show that telcos are among the fastest-growing users of public

cloud computing starting from 2020 as they look to accelerate
their new service delivery plan [5]. Indeed, usage of CC allows
telcos to move faster, focus on their core business, minimize
their hardware footprints, and keep pace with increasing de-
mands of resources. This is due to inherent cloud elasticity
and versatility to provide resources as needed. In addition, by
leveraging auto-scaling capabilities of the public cloud, telcos
will pay only for what they need when they need it. With
the competition from Over-The-Top providers, telcos have to
minimize their costs to maintain profitability [6]. To afford the
tremendous communications infrastructure overhaul that 5G
requires, telcos need to create additional revenue generating
services such as data analytics. One way to achieve this goal
is by exploiting the cloud to deploy remote Network Functions
(NFs) for delay-tolerant services [6]. Not only NFs offloading
to the cloud is a way to cut costs, but also, it serves as a
driver for new business models for telcos, especially on data
analytics front. Network Data Analytics Function (NWDAF)
[7], part of 5G Core, is supposed to crunch huge amounts
of data and report analytics outcomes to multiple NFs. As
of today, the Network Slice Selection Function (NSSF) and
Policy Control Function (PCF) are consumers of NWDAF,
but according to 3GPP standard, any NF or NF-service can
consume it too [8]. In this paper, we use “Compute” resources
in public clouds, expressed in Virtual Central Processing Units
(vCPUs) and Virtual Memory (vMEM) to implement 5G-NFs
and in particular, edge NWDAFs.

Our objective is to dynamically deploy Virtual Machines
(VMs) on the cloud to implement 5G-NF at minimum cost
with maximum utilization according to the load of the new
generation Node-Bs (gNBs) as depicted in Fig. 1.

Our contributions are summarized as follows:

• We model the selection of 5G-NF VMs, while minimizing
CC cost and maximizing utilization to serve gNBs and
formulate it as an Integer Linear Program (ILP).

• We propose an algorithm using several techniques,
namely branch-and-bound, branch-and-price and branch-
and-cut to solve our ILP problem.

• We show the effectiveness of our proposal compared to
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Fig. 1: Simplified gNB-NWDAF Architecture

other solutions using pricing data from Google Cloud
Platform (GCP).

The remainder of this paper is organized as follows. In section
II, we discuss the related works. Section III describes the
system model and formulates our problem as an ILP. Our
proposed algorithm to solve the ILP problem is presented in
section IV. Section V provides performance evaluation includ-
ing assumptions validation and simulation results discussion.
We conclude this paper in Section VI.

II. RELATED WORKS

Minimizing cost when using CC has triggered considerable
interest among researchers.

Authors in [9] proposed cost minimization using storage
across multiple cloud providers, while meeting multiple service
level objectives. Also, authors in [10] proposed to minimize
cloud storage costs, while achieving latency and availability
objectives across multiple Cloud Service Providers (CSPs).
Both of these papers treated the cost optimization from “Stor-
age” resources minimization perspective. Using storage cannot
be applied to stateless applications, where no data need to be
stored. Differently from them, we focus on compute resources
minimization.

Authors in [11] proposed a dynamic approach to predict the
load using autoregressive model to calculate the number of
instances to be reserved for average computation requirements.
Authors in [12] proposed a CC cost saving by exploiting the
discounts resulting from scheduling reservation of resources
on recurring basis in advance. Unlike these two approaches,
we do not rely on prediction to save costs but on dynamically
optimizing cloud resource selection over time.

In [13], authors proposed dynamic placement of virtual
deep packet inspection function in NFV infrastructure to
minimize operational expenditures including licensing cost
and power consumption. They formulated this problem as
multi-commodity flow Integer Linear Programming (ILP) and
proposed a centrality-based greedy heuristic that runs in poly-
nomial time. Unlike this work, we consider, in our paper, the
utilization in addition to the cost to meet telcos optimization
strategy.

Authors in [14] proposed a Branch and Bound (BB) ap-
proach for resource constrained scheduling in two phases to

reduce the computation time.
Authors in [15] proposed a multilevel generalized assignment
problem for minimizing the assignment cost of jobs to ma-
chines using Branch and Cut (BC). Authors in [16] formulated
Cloud Radio Access Network Assignment problem as an ILP
and used Branch and Price (BP) to solve and evaluate different
strategies for a multi-objective optimization. Different from
these works, we focus, in this paper, on minimizing CC
costs and maximizing utilization of gNBs and propose an
efficient algorithm to solve the 5G-NF selection problem using
a Branch, Cut and Price (BCP) approach.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a simplified 5G architecture consisting of three
domains, including: Radio Access Network (RAN), 5G-NF
and a backhaul transport network for interconnecting the RAN
to the 5G-NF. A 5G-NF Service overlaying a number of N
gNBs needs to be deployed on a pool of M VMs. The pool
of VMs is denoted by V = {i|1 ≤ i ≤ M}. We assume that
the latency imposed by hosting the 5G-NF for delay tolerant
services on the cloud is acceptable when backhauling gNBs
to the cloud. Indeed, according to the requirement R48 of the
NGMN alliance [17], an end-to-end latency of 10 milliseconds
is considered fine for most critical applications such as voice
and video over IP. This is easily achievable nowadays in
most public clouds as we will confirm in the performance
evaluation section (cf. section V). The set of gNBs is denoted
by G = {j|1 ≤ j ≤ N}. A group of gNBs is associated to
one 5G-NF VM pool. We define a binary decision variable
denoted by rij to show if VMi is associated to gNBj or not.
The average utilization yi of the VM pool i is formulated as
follows.

yi =
1

Ci

N∑

j=1

rij .lj (1)

where lj denotes the traffic utilization in vCPUs on the gNBj

and Ci denotes the maximum capacity in vCPUs of the VMi

implementing a 5G-NF. We model the price of instantiating
VMs to implement the 5G-NF pool i as a function of the
average utilization of VMs yi expressed in (1). We use a linear
model [18] with a proportionality slope (λ) as:

Pi = λ.yi + P0. (2)

P0 is the fixed price portion imposed by the CSP. To normalize
the price elaborated in (2), we denote by Pmax the highest
value of the VM in the CSP pricing list. We consider two sets
of gNBs, formed according to the traffic load of each gNB.
They are GL for low-load gNBs and GH for high-load gNBs.
We propose this segregation of gNBs based on traffic load,
because we anticipate to have asymmetrical traffic between
day and night in addition to differences between business and
residential areas in term of processing capacity requirement
for services [16]. We finally define a binary mapping variable
xi to express the active state of a VMi such that xi = 0 when
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∑N
j=1 rij = 0, meaning that no gNBj is mapped to a VMi for

all i, j and xi = 1, otherwise.

B. Problem Formulation

We define two parameters α and β as weight coefficients
with values ranging between 0 and 1 so that we scalar-
ize our multi-objective Minimum Cost, Maximum Utilization
(MCMU) problem. We assume that these parameters are set
by the operator to specify the sought optimization strategy
according to the choice of prevailing factors (CC cost or uti-
lization maximization from low-loaded gNBs). We formulate
our MCMU problem as a weighted optimization problem with
two homogenized objective terms as follows.

min
r

α
M∑

i=1

xiP0 + λyi
Pmax

− β
M∑

i=1

∑
j∈GL

rij lj∑
j∈GL

lj
(3a)

s.t.
M∑

i=1

∑

j∈GH

rij lj =
∑

j∈GH

lj (3b)

N∑

j=1

rij lj ≤ Ci, ∀i ∈ {1, . . . ,M} (3c)

M∑

i=1

rij ≤ 1, ∀j ∈ {1, . . . , N} (3d)

xi ∈ {0, 1}, ∀i ∈ {1, . . . ,M} (3e)
rij ∈ {0, 1}, ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N} (3f)

The proposed objective function in (3a) consists of minimizing
the total VM pool operation cost and maximizing the traffic
utilization resulting from the low load traffic gNBs, while en-
tirely satisfying the high-load traffic gNBs. Indeed, constraint
(3b) specifies that the traffic of highly loaded gNBs is totally
handled by the VMs implementing the 5G-NF. Constraint (3c)
ensures that the capacity (Ci) of the VM pool i is not exceeded
by the sum of load of its children gNBs. Constraint (3d)
stipulates that no gNB could be associated to more than one
VM pool of 5G-NF. Constraints (3e) and (3f) stipulate that the
decision variables are binary.

IV. PROPOSED ALGORITHM

Our MCMU problem, formulated in (3), is an ILP and
hence cannot be solved directly using convex optimization
techniques. It is NP-hard and the optimal solution can only be
found by exhaustively figuring out all MN possible combina-
tions of VM/gNB assignments which is impractical for large-
scale networks [16]. Therefore, we propose an algorithm based
on the BCP framework [19], by combining column generation
starting from linear relaxation, along with using cut planes
before resorting to branch-and-bound to compute the optimal
solution of our MCMU problem. Linear relaxation is about
disregarding the integrality constraint of integer variables. Cuts
attempt to restrict the feasible region of the linear relaxations
so that their solutions are closer to integers. In the BCP
algorithm, sets of columns are left out of the linear relaxation

in order to handle the problem more efficiently by decreasing
the computational complexity. Columns are then “priced” and
added back to the linear relaxation as needed. To decide
which column will be added, a sub-problem called the “pricing
problem” is created to identify which columns should enter the
basis in an aim to decrease the objective function in case of
minimization. When such column is found, the Linear Program
(LP) is then re-optimized.
In the following subsection, we detail the steps of our BCP
algorithm first by formalizing the steps for Column Generation
on our MCMU problem by means of a problem transformation,
and then decomposing it into Master (MP) and Pricing (PP)
problems as follows.

A. Problem Transformation

Based on the structure of our original problem and using
Minkowski-Weyl’s representation theorem [20] stating that
every polyhedron P can be represented in the form of a convex
linear expression of extreme points v and extreme rays w, we
transform our original problem as follows. Recall first that
this theorem states that P = {∀r ∈ R

n, ∃ (ρ, μ) ∈ R
2 : r =∑

ρ.v+
∑

μ.w} where ρ, μ are linear coefficients. Instead of
the initial decision variable rij , we use two binary variables vij
and wij , for the gNBs with low (denoted as lLj ) and high traffic-
load (denoted as lHj ), respectively. Same definition remains for
xi after this transformation, i.e., xi = 0 if VMi is inactive
(
∑

j∈GL
vij +

∑
j∈GH

wij = 0) and 1 otherwise. This way, our
MCMU problem becomes as follows.

min
v, w

Φ
M∑

i=1

xi +
M∑

i=1

∑

j∈GL

Ωivij l
L
j +

M∑

i=1

∑

j∈GH

Ψiwij l
H
j

(4a)
s.t.
M∑

i=1

∑

j∈GH

wij l
H
j =

∑

j∈GH

lHj (4b)

∑

j∈GL

vij .l
L
j +

∑

j∈GH

wij .l
H
j ≤ Ci, ∀i ∈ {1, . . . ,M} (4c)

M∑

i=1

vij ≤ 1, ∀j ∈ GL (4d)

M∑

i=1

wij ≤ 1, ∀j ∈ GH (4e)

vij ∈ {0, 1}, ∀i ∈ {1, . . . ,M}, ∀j ∈ GL (4f)
wij ∈ {0, 1}, ∀i ∈ {1, . . . ,M}, ∀j ∈ GH (4g)

where Φ = αP0

Pmax
, Ωi = αλ

Ci.Pmax
− β∑

j∈SL
lLj

and Ψi =

αλ
Ci.Pmax

. Let the two sets of feasible possible assignments
of low and high-traffic load gNBs to VM pool i be ΞL

i =
{vi1, vi2, . . . , viki

} and ΞH
i = {wi

1, w
i
2, . . . , w

i
ki
}. We sup-

pose that two particular variables of ΞL
i and ΞH

i , vik =
{vi1k, vi2k, . . . , viSk} and wi

k = {wi
1k, w

i
2k, . . . , w

i
Sk} are a

valid solution to our transformed problem formulated in (4).
Based on Dantzig-Wolfe’s decomposition [21] that sub-divides
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the problem into a Master and Pricing Problem, we define
a new variable zik = (żik, z̈

i
k) as a two-dimensional decision

variable, that reflects the feasibility of the selected solution.
Accordingly, zik would be equal to (1,1) when (vik, w

i
k) is fea-

sible and (0,0) othwerwise. The Master Problem (MP) is a sub-
version of the transformed problem, where we disregard the
complicating (coupling) constraints (4c). MP is then expressed
as follows.

(MP) min
z

ki∑

k=1

M∑

i=1

(Φxi +
∑

j∈GL

Ωivij l
L
j ż

i
k

+
∑

j∈GH

Ψiwij l
H
j z̈ik) (5a)

s.t.
ki∑

k=1

M∑

i=1

∑

j∈GH

z̈ikw
i
jkl

H
j =

∑

j∈GH

lHj (5b)

ki∑

k=1

żik ≤ 1,

ki∑

k=1

z̈ik ≤ 1, ∀i ∈ {1, . . . ,M} (5c)

ki∑

k=1

M∑

i=1

żikvij ≤ 1, ∀j ∈ GL (5d)

ki∑

k=1

M∑

i=1

z̈ikwij ≤ 1, ∀j ∈ GH (5e)

żik, z̈
i
k ∈ {0, 1}, ∀i ∈ {1, . . . ,M}, k ∈ {1, . . . , ki} (5f)

In MP, zik represents a feasible assignment of gNBs to a VM.
The count of feasible points is denoted by ki. Note that this
decomposition is performed to obtain a problem formulation
that yields better bounds compared to when the relaxation of
the original formulation is solved. However, as we get many
variables, MP cannot be solved directly due to its large number
of columns. Therefore, we define a Restricted Master Problem
(RMP) that considers a subset of the columns to be solved.
In RMP, the values of variables that do not figure in the
equations are padded as zero. For RMP, we consider z∗ as the
corresponding dual solution. We add a number of columns with
positive reduced price that results from solving the following
sub-problem:

min
1≤i≤ M

{oi − z∗i} (6)

where oi = (ȯi, öi) is the optimal solution of our Pricing
Problem (PP), that is expressed as follows.

(PP) min
v, w

Φxi +
∑

j∈GL

Ωiv
i
j(l

L
j − v∗j ) +

∑

j∈GH

Ψiw
i
j(l

H
j − w∗

j )

(7a)
s.t.
∑

j∈GL

vij l
L
j +

∑

j∈GH

wi
j l

H
j ≤ Ci, ∀i ∈ {1, . . . ,M} (7b)

vij , wij ∈ {0, 1}, ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N}
(7c)

The two values v∗j and w∗
j correspond to the optimal dual

price resulting from solving the RMP associated with the
partitioning constraints of low and high traffic load gNBs. In
the PP, we get the optimum mapping of gNBs to VM pool i.

B. Proposed MCMU algorithm

Algorithm 1: BCP-based MCMU
Data: Objective function and constraints
Result: gNBs to VM pool mapping solution
Initialize our problem
Solve LP with relaxed constraints
Get Lower-Bound (LB) solution

(A) Choose a new node
(B) Solve Restricted Master Problem (RMP)

Evaluate a new node
if (reduced value found) then

Add such column to the basis of RMP
end
Solve PP to optimality
if (solution with reduced value found) then

Add to RMP;
goto (B)

end
if (no solution with negative reduced value found) then

update lower bound
end
if (∃ LB of other branch < computed LB) then

remove this node;
goto (A)

end
if (integer coefficient is not met) then

Generate cuts; Add them to the RMP;
goto (B)

end
if (Solution is integral) then

Update upper bound
else

branch and add children nodes to unprocessed
end
if stop criteria is reached then quit;
goto (A)

To find a solution to our original problem, we propose an
algorithm that achieves optimal results with a noticeable gain
in computation time, especially for large problem instances
depending on the values of M and N . Our algorithm is
listed in Algorithm 1. We start by generating an initial set of
configurations. Next, we apply LP relaxation to our problem
(P) and solve the LP. We iterate to complement found columns
to the basis of our solution. Then, we proceed to cut generation,
and we try to find integer-feasible solutions before we use
branch-and-bound to systematically search for the optimal
solution as long as the stop criterion is not reached. Stop
criterion could be either a time-limit or a relative gap tolerance
between the found value and LP value.
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Fig. 2: gNBs Traffic Load versus Time

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our MCMU
algorithm using CPLEX Optimizer [22]. Note that, according
to the values of α and β used in the objective function
formulated in (3a), we refer to our algorithm as MCMUαβ
omitting decimal points from α and β.

Simulation parameters are reported in Table I. On the
RAN Side, we consider a total of N = 2000 gNBs, including
1500 business and 500 residential gNBs, adapted from an
hourly traffic load from [16] and [23] by considering a
linear relation between the load in Mbps and the number
of needed vCPUs as shown in Fig. 2. We conducted 200
experiments with changing VM pool size in vCPUs from
200 vCPUs to 2200 with a step of 10 vCPUs. For ease
of interpretation, we split these 200 experiments into three
categories and we average each category and denote it by:
small, medium and large setup, respectively. GCP offers
different machine types: standard (std), micro and small
in addition to types that are highly performing in terms
of vCPUs or vMEM. For each type, different discrete
options exist in term of count of vCPUs (1..96). Accordingly,
hourly prices are charged as functions of chosen specifications.

A. Data preparation and assumption validation

Pricing is fetched from Google Compute Engine (GCE)
[24] that is the “compute” service from GCP. Same data is
found for other cloud providers such as Amazon AWS or
Microsoft Azure. We have chosen to conduct our simulations
using GCE pricing data because GCP offers low latency within
the stipulated limit of NGMN on the backhaul. To validate
this assumption, we instantiated the smallest VM instance,
called (f1-Micro), using Ubuntu 16.04 on major European
regions covered by GCP and generated within each VM 100
ping messages to other public IPs of instantiated VMs. After
averaging, we found that the ping takes less than 10 ms
between several points of presence in Europe, as reported in
Table II.

A default setup is proposed by GCE [25] for VMs. It has
a Standard Price (SP) which we use as our baseline. We also
computed the lower-bound solution of VM minimizing the cost
and maximizing the utilization by solving the LP problem.
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Fig. 3: Cost Comparison of Baseline, LP, MCMU91

TABLE I: Simulation parameters

Parameter Value
Machine type std, highcpu, highmem, megamem,

ultramem, micro and small
VM vCPUs standard sizes 1, 2, 4, 8, 16, 32, 40, 64, 80, 96
Memory (GB) 0.6 .. 3844
Hourly Price (USD) 0.0076 . . . 27.7557
(α, β) (0.9, 0.1), (0.5, 0.5), (0.1, 0.9)
small/medium/large setup 525/1185/1855 (vCPUs)
Count of gNBs (N) 2000
Business gNBs 1500
Residential gNBs 500
Max Capacity C per VM 96 (vCPUs) [24]
Number of Experiments 200
stop criterion 120 seconds

B. Results

Fig. 3 depicts the categorized hourly average costs for
all schemes (Baseline, LP, and MCMU91). We can see that
MCMU91 dramatically decreases the average cost compared
to the baseline (SP) and provides values that are close to the
LP. The reason is that the baseline scheme selects the standard
VM by default without considering the gNBs load and the
matching VM capacity.

In order to assess the effectiveness of our algorithm, we
considered 200 experiments with variable Ci from 200 to 2190
with a step size of 10 and we classified these experiments into
3 setups (small, medium and large) according to the values of
Ci. Accordingly, each setup consists of 66 experiments. Fig.
4a compares the average computation time of MCMU with
two well-known algorithms: BB [14], and BC [15], for the
three setups of VM pool sizes. We can see that our MCMU
algorithm is faster than BB and BC approaches, especially
for large setups. For the small setups, as the constraints are
aggressive in term of gNBs to VM pool mapping, we found
that for some cases, the three evaluated approaches (BB, BC,
and MCMU91) were not able to find a solution in a timely
manner and thus the stop criteria of 120 seconds is reached
which explains the increase in time. For medium setups, the
ability to find a solution for all the approaches is comparable.
Note that BC performs worst than BB in the large scenario

TABLE II: Latency in ms for some countries using GCP

From\To Belgium London Frankfurt Netherlands
Belgium N/A 6.1 7.8 107.7
London 6.2 N/A 13.4 10.5
Frankfurt 7.7 12.7 N/A 7.4
Netherlands 107.7 11.9 8.8 N/A
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case and it could not find a solution before the stop criterion
for several experiments.

To further show the effectiveness of our proposal, we plot in
Fig. 4b the time taken by our algorithm compared to BB and
BC in the last 30 experiments of large setups. We measured
the time in milliseconds and plotted them in logarithmic scale
as there is one order of magnitude difference. We see that for
the majority of the experiments, BB and BC could not find a
solution before the chosen stop criterion, while MCMU based
on BCP could find it, thanks to its faster convergence resulting
from combining column generation and cuts on top of BB.
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(a) Multiple methods
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(b) Zoom on the computation time

Fig. 4: Computation Time Comparison

Fig. 5 shows the impact of the two parameters α and β
on the performance of our MCMU algorithm. We considered
different optimization strategies according to the chosen values
of these two parameters as summarized in table III. We can see

TABLE III: Optimization Strategies

Scheme Values of α, β
Prevailing Cost over Utilization (MCMU91) 0.9, 0.1
Equal-Importance of Cost and Utilization (MCMU55) 0.5, 0.5
Prevailing Utilization Maximization (MCMU19) 0.1, 0.9

that MCMU91 performs the best as the importance is given
to the cost. MCMU55 gives equal importance to each of the
weight factors and consequently lags behind MCMU91 and
comes ahead of MCMU19 where the cost is maximum. The
reason is that MCMU55, although it provides proportional
fairness in regard to each of the objectives but it increases
the incurred cost.
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Fig. 5: MCMU Schemes with different α and β

VI. CONCLUSION

This paper addressed the minimum cost maximum uti-
lization optimization problem for offloading delay tolerant
5G Network Functions (e.g. NWDAF) to public clouds. We
formulated this problem as an Integer Linear Program and

proposed a simple yet efficient algorithm based on the branch-
cut-and-price framework to solve it. Results show that our
algorithm performs well compared to optimal solution by
providing considerable cost saving compared to the standard
problem of VM provisioning with default VM selected. Also,
using simulations, we found that our algorithm is faster and
more likely to find a solution compared to other state-of-the-art
approaches.
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