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ABSTRACT

The 5th Generation (5G) mobile networks support a wide
range of services that impose diverse and stringent QoS
requirements. This will be further exacerbated with the evo-
lution towards 6th Generation mobile networks. Inevitably,
5G and beyond mobile networks must provide stricter, dif-
ferentiated QoS guarantees to meet the increasing demands
of future applications, which cannot be satisfied with tradi-
tional human-in-the-loop service orchestration and network
management approaches. In this paper, we lay out our vision
for closed-loop service orchestration and network manage-
ment of 5G and beyond mobile networks. We extend the
MAPE (i.e, monitor, analyze, plan, and execute) control loop
to facilitate closed-loop automation, and discuss the quintes-
sential role of Artificial Intelligence/Machine Learning in its
realization. We also instigate open research challenges for
closed-loop automation of 5G and beyond mobile networks.
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1 INTRODUCTION

The 5th Generation (5G) mobile networks are poised to sup-
port a wide range of services that go well beyond traditional
voice and data. These include services with diverse QoS re-
quirements, such as enhanced mobile broadband (eMBB)
(e.g., ultra-HD video streaming), ultra-reliable low-latency
communications (URLLC) (e.g., remote surgery), and massive
machine-type communications (mMTC) (e.g., smart cities)
[13]. Services envisioned for 6th Generation mobile networks
will impose even more stringent QoS requirements (e.g., <1
millisecond end-to-end (E2E) latency, 1 Tb/sec throughput,
and seven-nines reliability). These include new services, such
as human-centric service (HCS) (e.g., brain-computer interac-
tion), converged compute, communication, control, sensing,
and localization (3CSL) (e.g., autonomous control of indus-
trial processes), and fusion of classical 5G services, such as
mobile broadband reliable low latency communication (MBR-
LLC) (e.g., multi-sensory extended-reality communications)
and massive URLLC (mURLLC) (e.g., connected robotics)
[14, 15, 17, 21, 23], as shown in Figure 1. Inevitably, 5G and
beyond mobile networks must provide stricter QoS guaran-
tees to meet the demands of future disruptive services and
applications.

Network slicing, facilitated by network softwarization and
virtualization, is a key enabling technology to accommodate
different QoS requirements on the same physical infrastruc-
ture. It enables on-demand deployment of right-size virtual-
ized network functions (VNFs) at the appropriate location,
to meet the stringent requirements imposed by the 5G and
beyond services. Effectively, the physical network can be
partitioned into multiple network slices, each supporting the
tailored QoS requirement of an application [13]. For example,
emergency response services could operate a network slice
independent from others with a specific QoS, increased se-
curity and privacy to accommodate their operational needs.


https://doi.org/10.1145/3472735.3474458
https://doi.org/10.1145/3472735.3474458
https://doi.org/10.1145/3472735.3474458

enhanced
eMBB (1 Thb/s)

MBRLLC

enhanced \ MBB
mMTC (107/ kmz)//’\ =

\\ /
S
enhanced

URLLC (< 1ms)
mURLLC

Figure 1: Services in 5G and beyond mobile networks

As network operators are rolling out 5G networks, effec-
tive life-cycle management of E2E network slices is becom-
ing increasingly important for meeting applications’ QoS re-
quirements, on a dynamic and evolving infrastructure. How-
ever, managing virtualized networks can be challenging, as
anomalies, e.g., faults and performance degradation, can un-
fold in various levels, such as the virtualized infrastructure
and the VNFs. Furthermore, softwarization and virtualization
broaden the surface for faults and performance degradation,
such as degradation specific to hypervisor and network con-
troller. Moreover, heterogeneity of infrastructure devices and
operating environments makes it difficult to manually track
error propagation. This necessitates data-driven orchestra-
tion and management approaches to support the diverse,
demanding, and stringent QoS guarantees expected from
5G and beyond networks, which cannot be satisfied with
traditional reactive human-in-the-loop orchestration and
management approaches.

Artificial Intelligence (AI) and Machine Learning (ML) of-
fer techniques for extracting knowledge from data [5, 8].
They can play a vital role in facilitating closed-loop orches-
tration and management, to realize zero-touch, data-driven
5G and beyond network life-cycle management. For exam-
ple, maintenance of network equipment is crucial to ensure
seamless network operation. Traditionally, this is achieved
based on a static maintenance schedule, which is non-trivial
to predetermine. AI/ML-enabled predictive maintenance of
network equipment is an alternate to scheduled maintenance,
which can minimize downtime and maintenance costs.

In the rest of the paper, we first delineate our vision for
closed-loop orchestration and management of 5G and beyond
mobile networks in § 2. We extend the MAPE (i.e., monitor,
analyze, plan, and execute) control loop [25], and discuss the
crucial role of AI/ML in its every aspect. In § 3, we instigate
open research challenges that need to be addressed to realize
closed-loop automation in 5G and beyond mobile networks.

2 CLOSED-LOOP ORCHESTRATION AND
MANAGEMENT

In this section, we first present an overview of next genera-
tion mobile networks, followed by our vision for Al-driven
closed-loop orchestration and management.

2.1 Overview of 5G and beyond Networks

Supporting multi-faceted requirements of 5G and beyond
mobile networks warrant a highly flexible network architec-
ture, enabling E2E network slices spanning from the Radio
Access Network (RAN) to the mobile core. In this new ar-
chitecture, traditional RAN functionality is decoupled into
Remote Radio Unit (RRU), Distributed Unit (DU), and Central
Unit (CU) [4]. Different RAN functions (e.g., Radio Resource
Control (RRC), Radio Link Control (RLC), Medium Access
Control (MAC), and Baseband Unit (BBU)) can be disaggre-
gated and hosted on RRU/DU/CU to support a highly flexible
functional split that is tailored to support specific use-cases.
Fronthaul network carries radio signals from RRUs to DUs
using Common Public Radio Interface (CPRI) or e-CPRI pro-
tocols. Midhaul (between DU and CU) and backhaul (con-
necting CUs to the core) networks carry IP traffic and can
leverage SDN principles.

In the same way, Next Generation (NG) core separates
the current Evolved Packet Core (EPC) functions into finer-
grained Network Functions (NFs) (e.g., Access and Mobility
Management Function (AMF), Session Management Function
(SMF), Policy Control Function (PCF), User Plane Function
(UPF), and Unified Data Management (UDM)) and interfaces
with the Internet [4]. Both RAN and core NFs can be deployed
as VNFs on commodity servers using virtual machines (VMs),
containers, or unikernels. Virtualizing RAN and core NFs en-
able flexibility in creating, operating, and managing NFs by
hosting them on distributed computing facilities, including
multi-access edge computing (MEC) data centers. Another
key feature of this new architecture is to use open interfaces
to enable integration of hardware and software from a di-
verse collection of vendors. This will also facilitate the use
of white box hardware and open source software to take
full advantage of the economies of scale offered by an open
computing platform approach.

2.2 Closed-loop Automation

A network slice is a virtual network that is composed of a
collection of virtual nodes representing VNFs and their inter-
connecting virtual links [4]. An E2E network slice extends
the virtual network into multiple technological and poten-
tially administrative network segments (e.g., RAN, transport
network, MEC, cloud and NG core) [9]. Manually managing
EZ2E network slices that involve heterogeneous resources can
be cumbersome and time-consuming, and may lead to QoS



violations. Hence, Closed-loop Automation (CLA) is neces-
sary to realize zero-touch orchestration and management of
network slices [24]. Although CLA aims to reduce human
intervention, it still allows interactions with human opera-
tors in the form of specifying policies, defining objectives,
as well as approval/rejection of actions taken by CLA. In
the rest of this section, we extend the MAPE control loop
[25] to present our view of CLA in 5G and beyond mobile
networks, which is depicted in Figure 2. Note that each com-
ponent (e.g., Network Controller) of CLA in Figure 2 can
adopt AI/ML techniques to provide intelligent, data-driven,
and automated orchestration and management.

2.2.1 Intelligent Monitoring. The intelligent algorithms that
form the basis of CLA rely on large amounts of data col-
lected from the network infrastructure and constituent NFs.
As such, the first function of CLA is an intelligent monitor-
ing framework (similar to Monitor function in the MAPE
loop) that collects metrics at an adaptive rate to maintain
the predictive validity and efficacy of the AI/ML algorithms
being used. Given this constraint, it is infeasible to use tra-
ditional monitoring frameworks, such as those present in
OpenStack [19] and Open Source MANO [12]. These moni-
toring frameworks rely on pull-based mechanisms to gather
metrics from agents running on the corresponding node. Fur-
thermore, both OpenStack and OSM only provide support
for fixed-frequency monitoring, where metrics are collected
once during a specified, fixed time interval for every element
in the network. Such a naive approach to monitoring leads to
the collection of redundant metric values, particularly in the
case where the variance of the metric time-series is signifi-
cantly different across the various network slices. Therefore,
an intelligent monitoring framework must leverage adaptive
algorithms to determine the optimal monitoring frequency
for particular slices and metrics.

2.2.2 Data Processing Pipeline. The Analyze function in the
proposed CLA includes a data processing pipeline for inges-
tion, cleaning, indexing, enrichment, and storage, as well as
visualization of the data collected from different elements
of 5G and beyond mobile network. This includes metrics
and operational logs collected from different VNFs, compute
resources, and network elements. To scale to the volumi-
nous amount of operational data, the pipeline may use dis-
tributed cluster (e.g., Hadoop) to house the software stack
(e.g., Apache Spark) needed for data processing and storage.
The data processing pipeline is also responsible for calculat-
ing Key Performance Indicators (KPIs) and metrics based on
the collected data.

2.2.3  Data Analytics. Our proposed CLA in 5G and beyond
mobile networks leverages AI/ML techniques to extract knowl-
edge and inference from operational data gathered in the data

processing pipeline, and realize the Analyze function. Exam-
ples of inference include forecasting traffic volume changes,
estimating user mobility patterns, predicting future network
events such as throughput drop and network congestion,
and early detection of anomalous behavior that can lead to
device/link failures. These inferences will be leveraged by
the Plan function to take more informed orchestration and
management decisions.

2.2.4  Slice Orchestrator. This component is central to the
Plan function in CLA, as it is responsible for provisioning,
run-time operation, and decommissioning of network slices
based on their QoS requirements. The provisioning tasks
include instantiation, configuration, and activation of RAN
NFs, core NFs and virtual links corresponding to a network
slice. Operational and maintenance tasks such as scaling or
adaptation to changes in requirements are at the core of run-
time operation. Finally, decommissioning phase re-optimizes
resources after departure of one or more network slices. Slice
orchestration decisions can be dynamically adapted by taking
advantage of the AI/ML-based estimation and predictive
models in the Data Analytics component.

2.2.5 Performance and Fault Management. This is a critical
component of the Plan function, which is responsible for
monitoring slice performance and network state, handling
slice performance degradation, and managing faults, failures,
and alarms in network infrastructure. Guaranteeing perfor-
mance while ensuring resource efficiency in a multi-tenant
environment is challenging, where a number of network
slices co-exist with heterogeneous requirements. Similarly
failures and faults, if not treated properly, may disrupt the
services and applications hosted on network slices, incurring
high penalties in terms of revenue losses and Service Level
Agreement (SLA) violations. This component benefits from
early detection of performance degradation and fault predic-
tion provided by Data Analytics component, and accordingly
devises corrective action plan and mitigation workflow.

2.2.6 Radio Intelligence Controller (RIC). The proposed CLA
relies on RIC, introduced and standardized by the O-RAN
alliance [11], for carrying out orchestration and management
in the RAN. RIC plays an analogous role to the Network
Controller for transport segments and the NF Orchestrator
for compute resources to realize the Execute function in the
CLA. As per O-RAN alliance, RIC has two modules:

Near real-time RIC: The near real-time RIC is co-located
with the CU and performs many of the Radio Resource
Management (RRM) tasks that are carried out by tradi-
tional eNBs and gNBs. In addition to legacy RRM tasks,
such as resource block management and interference
detection, the near real-time RIC will also leverage
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Figure 2: Closed-loop orchestration and management

embedded Al algorithms to carry out more nuanced
tasks, such as UE-centric QoS management.

Non real-time RIC: The non real-time RIC interacts
with the near real-time RIC to apply policy and con-
figuration that influences the behavior of the RAN.
Policy and configuration could include new applica-
tions developed in-house by Telecom operators or by
third-parties. It is also envisioned that the non real-
time RIC will host RAN analytics and model training,
with the trained models and analytic insights deployed
to the near real-time RIC to realize the policy defined
by the network tenants.

The RIC is a crucial component to realize a flexible, soft-
warized RAN that provides the interfaces necessary to create
on-demand E2E network slices.

2.2.7 Network Controller. Given the dynamicity required to
support CLA, it is essential to incorporate a component that
can set up virtual links tailored to particular use-cases at
run-time. This role is fulfilled by the Network Controller as
part of the the Execute function. In particular, the Network
Controller is responsible for instantiating E2E network paths
that span across midhaul and backhaul networks, since the
NF Orchestrator may not be able to provision such paths.
The Network Controller is also responsible for realizing QoS
policies pertaining to the transport network as defined by the
Plan components. This can be accomplished by incorporating
state-of-the-art techniques for routing optimization and fault
tolerance in transport networks, many of which also leverage
AI/ML techniques.

2.2.8 NF Orchestrator. The NF Orchestrator is responsible
for managing the Network Functions Virtualization Infras-
tructure (NFVI) and executing the plans computed by the
Slice Orchestration, and Performance and Fault Management
components of the proposed CLA. In practice, this often
involves provisioning, scaling, migrating, or tearing down
compute resources in the form of VMs or containers subject
to the constraints imposed by the orchestration components.
It is often the case that the NF Orchestrator will be able
to provide connectivity between the constituent NFs of a
given slice. However, in more complex cases, intervention
from the Network Controller may be required to provision
connectivity between slice NFs.

3 RESEARCH CHALLENGES

We conclude this paper by outlining some open research
challenges that need to be addressed to realize CLA in 5G
and beyond mobile networks.

3.1 Slice Requirement Translation

A network slice is specified with its intent or desired func-
tionality, including customer facing QoS requirements such
as throughput, latency, and Bit Error Rate. Depending on
the application or service, each slice customer may have its
unique set of QoS parameters. The first step in slice orches-
tration is to map the high-level slice QoS requirements into
appropriate infrastructure resource requirements, includ-
ing RAN and core NF requirements such as their location,
required compute, memory, and storage resources, and the



level of isolation with other slices, as well as network require-
ments such as slice topology and bandwidth requirement.
Representing resource needs as a function of slice QoS re-
quirements is non-trivial, since their relationship is not linear
and various factors such as network condition, the level of
isolation between slices, and traffic load influence the per-
ceived QoS for end users. In this context, we need a deeper
understanding of how infrastructure parameters influence
perceived slice QoS and devise mechanisms for translating
customer facing slice QoS requirements into infrastructure
resource requirements.

3.2 Dynamic Function Splitting in RAN

Legacy RAN and even virtualized RAN solutions make use
of closed-box functions and proprietary interfaces, which
makes it difficult to flexibly control radio resources and im-
pedes the realization of E2E slicing. The Open RAN paradigm,
which combines RAN disaggregation, virtualization, radio
network intelligence, and open interfaces, provides the nec-
essary flexibility to realize the vision of E2E slicing[18]. The
open-interfaces and embedded intelligence of Open RAN
can enable AI/ML-driven dynamic function splitting, where
RAN NFs are split between the CU and DU depending on the
traffic type. This enables different functional splits for dif-
ferent slices, allowing the network to be tailored to support
specific use-cases.

A key challenge in this regard is the orchestration of dis-
aggregated NFs, potentially from different vendors, using
a common orchestration platform. The problem of orches-
trating these disaggregated NFs becomes especially difficult
when considering the need for highly flexible traffic steer-
ing solutions in the midhaul and backhaul segments. In this
context, a better understanding of the appropriate functional
splits for various slices is needed, which is adapted to the
requirements of different use-cases and the limitations of
transport delay budget and bandwidth. Another crucial chal-
lenge involves energy-aware placement of the disaggregated
NFs, to optimize the energy usage in the RAN and realize
the concept of energy-efficient network slices.

3.3 Data-driven Orchestration Algorithms

Network slice orchestration refers to the allocation of re-
source and bandwidth to NFs and virtual links, respectively,
in different network segments to satisfy given QoS require-
ment. Contemporary slice orchestration strategies are obliv-
ious to the future network conditions and changes in traffic
volume [6]. These strategies usually over-provision resources
to circumvent worst-case network behaviors or to accommo-
date peak traffic demand. Such over-provisioning results in
inefficient use of resources and blocking of future network
slices. This gap in research literature mandates investigat-
ing dynamic slice orchestration algorithms where resource

allocation decisions will be adapted time-to-time by taking
advantage of data-driven predictive models and the QoS re-
quirements of the slices. Devising such predictive models
also pose non-technical challenges, such as obtaining ground
truth data from operational networks while complying with
local and national policies.

3.4 KPI and Infrastructure Monitoring

KPIs are quantitative measures used for evaluating if ser-
vices are meeting the agreed upon QoS parameters. For 5G
services, the standardization bodies such as 3GPP as well as
the research community have defined several KPIs [2, 3, 16].
However, network slice KPI monitoring research is still in
preliminary stages and only a handful of works propose an ar-
chitecture for a KPI monitoring system [20]. A key challenge
in KPI monitoring is the non-trivial difficulty in computing
these KPIs for E2E network slices. Many of these KPIs are
composite, i.e., require measuring multiple infrastructure and
NF related metrics for computing their values. A detailed
understanding of how different infrastructure and NF related
metrics impact the network slice KPIs is still missing.

Traditionally, infrastructure monitoring has been a polling-
based approach where a logically centralized control plane
or management system polls the counters or probes from the
infrastructure. However, polling-based approaches work at
coarse time granularity that may be inadequate for providing
service assurance to mission critical URLLC services. More
recently, push-based streaming telemetry [1, 22] is gaining
traction in both academia and industry because of its capa-
bility to stream network telemetry data directly from the
devices to the collection and analysis engines in near real-
time. Indeed, streaming telemetry is a promising approach
to be used in 5G and beyond networks, however, it comes
with drawbacks such as increased data plane overhead to
piggyback telemetry data on live network traffic [7, 10]. Sam-
pling can reduce some of the overhead at the expense of
reducing accuracy, which can be unacceptable for some 5G
and beyond services.

3.5 Predictive Maintenance

Maintenance of network equipment is crucial to ensure seam-
less network operation. Typically, network operators rely
on a recurring pre-determined maintenance schedule. How-
ever, it is non-trivial to choose the optimal maintenance
schedule to minimize maintenance contract costs and en-
sure undisrupted services that are offered via E2E network
slices. Predictive maintenance of network equipment is an
alternate to scheduled or periodic maintenance, which can
minimize downtime and maintenance costs. In this paradigm,
prediction models for network equipment failures give early
notification of events (e.g., link/device failure) that may lead
to performance degradation (e.g., QoS violations). In this



way, network operators can proactively take preventive mea-
sures (e.g., reroute traffic, migrate NFs) and plan ahead for
maintenance. A key challenge in this aspect is the collection
and labeling of network operational data. In operational net-
works, device logs are typically collected without any labels
and often miss failure data. Consequently, it becomes diffi-
cult to associate failures and alerts from network equipment
to their physical meaning.

3.6 Fault and Performance Management

Fault and performance management of E2E network slices
can be addressed via a two-pronged approach: (i) proactive,
and (ii) reactive. Identification of faults and performance
degradation is crucial to ensure the QoS requirements for
EZ2E slices in 5G and beyond mobile networks. Proactive
fault and performance management can alleviate the impact
of QoS violations, while reducing operational cost. Once a
fault or a performance degradation has been identified, it
is quintessential to localize its root cause, which pertains
to reactive management. Root cause analysis is crucial to
isolate alarms and extract meaningful dependencies between
them, leading to subsequent stages of mitigation and healing.

Once a fault or performance degradation is detected, mit-
igation workflows (e.g., reconfiguring E2E slice, resource
reallocation, service migration, traffic re-routing) must be
executed to alleviate failure impact on services and to pre-
vent failure re-occurrence. However, the challenge lies in
determining the appropriate workflow that should be taken
when faults and performance degradation are detected. With
the complexity of 5G and beyond networks, it is impractical
to hand-craft if-this-then-that policies for triggering mitiga-
tion workflow in the face of failures. In this context, Rein-
forcement Learning is a promising approach for enabling
networks to learn the best mitigation workflow for different
scenarios over time.
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