
2021 17th International Conference on Network and Service Management (CNSM)

Reoptimizing Network Slice Embedding on
EON-enabled Transport Networks

Sepehr Taeb*, Nashid Shahriart, Shihabur R. Chowdhury§, Massimo Tornatore+, Raouf Boutaba*,
Jeebak Mitra§, and Mahdi Hemmati§

*David R. Cheriton School of Computer Science, University of Waterloo,
{staeb I rboutaba}@uwaterloo.ca

tDepartment of Computer Science, University of Regina, Nashid. Shahriar@uregina. ca
+Politecnico di Milano, massimo. tornatore@polimi. it

§Huawei Technologies Canada Research Center,
{shihabur.rahman.chowdhury I jeebak.mitra I mahdi.hemmati}@huawei.com

Abstract-SG transport networks will support dynamic ser­
vices with diverse requirements through network slicing. Elastic
Optical Networks (EONs) facilitate transport network slicing
by flexible spectrum allocation and tuning of transmission
configurations such as modulation format and forward error
correction. A major challenge in supporting dynamic services
is the lack of a priori knowledge of future slice requests. In
consequence, slice embedding can become sub-optimal over time,
leading to spectrum fragmentation and skewed utilization. This
in turn can block future slice requests, impacting operator
revenue. Therefore, operators need to periodically re-optimize
slice embedding for reducing fragmentation. In this paper, we
address this problem of re-optimizing network slice embedding
on EONs for minimizing fragmentation. The problem is solved
in its splittable version, which significantly increases problem
complexity, but offers more opportunities for a larger set of
re-configuration actions. We employ simulated annealing for
systematically exploring the large solution space. We also propose
a greedy algorithm to address the practical constraint to limit the
number of re-configuration steps taken to reach a defragmentated
state. Our extensive simulations demonstrate that the greedy
algorithm yields a solution very close to that obtained using
simulated annealing while requiring orders of magnitude lesser
number of re-configuration actions.

I. INTRODUCTION

Transport networks are evolving to support dynamic and
short-lived services with diverse quality of service (QoS)
requirements [1]-[3], such as enhanced mobile broadband
and ultra-reliable low-latency communication [4] through 50
network slicing [5]. This evolution towards network slicing is
being fueled by recent advances in Elastic Optical Network
(EON) virtualization [5], [6], as EONs support finer-grained
spectrum allocation and tuning of transmission configurations
(such as modulation format, forward error correction (FEC)
overhead, and baudrate) that allow rightsize EON resource
allocation to network slices [7], [8]. Hence, EON-enabled
transport networks can leverage their flexible resource alloca­
tion capabilities to offer to customers tailored and dynamic
network slices, typically in terms of a virtual networks (VN)
consisting of virtual nodes connected by virtual links.

A key challenge in supporting dynamic services with short
lifetime through network slicing is how to deal with the
lack of a priori knowledge of slice arrivals and departures.
Without such knowledge, it has been observed that slice
resource allocation become sub-optimal over time, and, in the

specific case of EONs, underlying spectrum resources become
fragmented and capacity utilization becomes skewed [9], [10].
Such imbalanced and fragmented spectrum utilization can
result in blocking future VN requests [9]. For these reasons,
it is essential to re-optimize resources allocated to VNs to
minimize fragmentation, ensuring optimal resource utilization,
and making room for future VN requests.

In this paper, we address the problem of re-optimizing
network slice or VN embedding on an EON. VN embedding
on EON involves allocating spectrum resources to a VN by
mapping the virtual nodes and virtual links on EON nodes
and paths with appropriate transmission configuration [7].
Among the possible objectives, we focus on reducing spec­
trum fragmentation through re-optimization of VN embedding.
Spectrum fragmentation is a direct side-effect of dynamic
arrival and departure of VNs and can have far reaching impact
such as rejection of future VN establishment requests, resulting
in lost revenues. Therefore, defragmentation is considered
crucial for network operators and has attracted remarkable
attention in research [9]. Note that minimizing fragmentation
alone without any consideration for spectrum usage may
lead to unbounded increase in spectrum usage. Therefore,
measures have to be taken to limit additional spectrum us­
age during defragmentation, which adds additional challenge
to the re-optimization problem. While solving the network
slice embedding re-optimization problem, we only consider
modifying virtual link embedding. Virtual nodes of a network
slice typically have location constraints and host the network
functions of a slice. These nodes are usually mapped to an
EON node equipped with compute resources located at a metro
data center (MDC) or a Point-of-Presence (PoP) site, which
are connected by the EON-enabled transport network. EONs
in this way form the backbone of telecommunications infras­
tructure and are primarily concerned with spectrum resources.

We significantly differ from the research literature in op­
tical network defragmentation on several aspects. First, we
consider the possibility of splitting a virtual link demand
on multiple continuous and contiguous spectrum allocations
(called splits) over one or more substrate EON path(s) (similar
to [8], [11]). Such splitting facilitates new re-configuration
actions for defragmentation, which were not considered in
the previous studies. For instance, one split of a virtual link

978-3-903176-36-2 ©2021 IFIP 292

Authorized licensed use limited to: University of Waterloo. Downloaded on January 03,2022 at 23:10:36 UTC from IEEE Xplore. Restrictions apply.

2021 17th International Conference on Network and Service Management (CNSM)

can further be divided to fill up gaps in spectrum allocation.
Similarly, two splits can be merged into a larger split to reduce
fragmentation. Second, we do not assume the existence of any
special technology (e.g., push-pull [12] and hop-retuning [13])
for performing disruption free defragmentation. We assume
the capabilities of commercial transponders and adopt make­
before-break [14] approach whenever possible.

We quantify spectrum fragmentation using the root mean
square fragmentation (RMSF) metric [15], which is non­
linear. Due to the non-linearity of our objective function of
RMSF, it becomes infeasible to use standard integer/mixed­
integer programming modeling tools to obtain optimal solution
even for very small problem instances. Therefore, we lever­
age Simulated Annealing (SA) search [16] to systematically
explore a large solution space for obtaining an estimation
of a loose lower bound of RMSF. One advantage of using
SA is that the search process naturally yields the sequence
of actions that must be taken to bring the network to the
computed re-optimized state. However, it may arrive at the
final defragmented state by applying a excessively large num­
ber of re-configuration actions on the network, which might
be undesirable from a network operator's perspective. To
address this issue, we also devise a greedy search heuristic that
navigates through the solution space with a given budget on the
number of possible actions. To the best of our knowledge, this
aspect of defragmentation was not studied before in the context
of splitting-enabled EON. Our extensive evaluation using real
network topologies demonstrate that the greedy search process
reduces network defragmentation nearly to the same extent
as the SA search while applying orders of magnitude lesser
number of reconfiguration actions.

The rest of the paper is organized as follows. We first
discuss the related works in Section II. Then, we discuss out
choice of fragmentation metric and re-configuration actions
for defragmentation followed by a formal problem definition
in Section III. Then, we present our SA algorithm for re­
optimizing VN embedding over an EON in Section IV.
Our greedy search approach with a bounded number of re­
configuration actions is presented in Section V. Then, we
present the evaluation results in Section VI. We conclude with
some future research directions in Section VII.

II. RELATED WORKS

EON spectrum defragmentation strategies fall into two
broad categories, namely, proactive and reactive [9]. Proactive
approaches are executed periodically or when fragmentation
level reaches a pre-defined threshold [17]. In contrast, re­
active approaches defragment spectrum resources when the
embedding of a new VN is blocked due to fragmentation
and can make room for the newly arrived VN [18]. How­
ever, there is no guarantee that reactive defragmentation will
be successful and it may result in sub-optimal embedding
for the VNs that are migrated during the process. Another
line of work for EON defragmentation is fragmentation­
aware VN embedding [19], [20]. Fragmentation awareness
is achieved by embedding new VNs in a way to reduce

spectrum fragmentation. Fragmentation-aware embedding may
not be sufficient to defragment an entire EON since such
embedding only concerns fragmentation around the new VN.
In contrast, proactive defragmentation accounts for all VNs
and EON links, and offers more opportunities to re-optimize
VN embeddings. Hence, in this paper, we focus on proactive
defragmentation by changing the route and/or the spectrum
allocation of connections. While doing so, existing approaches
assume the availability of techniques, such as push-pull or
hop re-tuning, that promises to reconfigure spectrum allocation
without causing any traffic disruption [21], [22]. However,
these technologies are still experimental and are not available
in commercial equipment. Conversely, we do not assume any
specific technology for eliminating disruption and adopt the
make-before-break approach whenever possible [14].

Shakya et al., proposes a defragmentation approach in [23]
that minimizes the maximum used spectrum slot index on
any EON link. This objective may not be useful since many
fragmented spectrum blocks can exist on a link even when
maximum slot index is low. Davalos et al., presents two
metaheuristic-based algorithms for selecting lighpaths that
need to be reconfigured for defragmentation [24]. This ap­
proach does not generate the order in which lightpaths should
be re-configured that we address in this paper. Comellas et
al., [17] evaluated several ordering strategies for reconfigur­
ing lightpaths for defragmentation. However, a deterministic
order can get stuck at a local minima, mandating to include
randomness in the deframengtation algorithm.

Zeng et al., presents an SA based defragmentation mech­
anism for EONs that modifies the route and/or spectrum
assignment of a randomly chosen connection [25]. The cost
function in [25] prefers a state where lightpaths have shorter
lengths, and spectrum is allocated from a lower frequency.
Conversely, we adopt a comprehensive cost function account­
ing for multiple factors such as number of fragments, size
of fragments, and locations of fragments in the spectrum.
We also employ several new re-configuration operations and
additional optimizations not considered in [25]. One caveat of
SA algorithm, both ours and that in [25], is that it requires a
large number of steps to reach a re-optimized state, making it
impractical. Therefore, we also propose an effective algorithm
that reaches a defragmented state in a limited amount of steps,
which makes our approach ready to be applied in practice.

III. PROBLEM DEFINITION

A. Problem Statement
We are given an EON G and a set of VNs 9 embedded

on G. Each VN G E 9 consists of a set of virtual nodes
(VNodes) V and virtual links (VLinks) E where each VLink
e E E has a bandwidth demand be. Each VN is embedded
by mapping each of its VNodes to an EON node and each
of its VLinks to a set of splits with a maximum of q splits.
Each split represents a path in the EON where each path p is
configured with a transmission configuration represented by a
tuple t = (d, b, m, J) E 1!' = (j[]) x JBS x M x IF) to provide
a data-rate so that the sum of data-rates is be. Here, d, b,

293

Authorized licensed use limited to: University of Waterloo. Downloaded on January 03,2022 at 23:10:36 UTC from IEEE Xplore. Restrictions apply.

2021 17th International Conference on Network and Service Management (CNSM)

dfiTABLE I D'n1 erent re-con I{'urahon actIOns an corresnon 1ll{' cost
ID Re-optimization action Disruption Extra Extra

level Transponder? Spectrum?
Rl Move a split on the same path with the optimal tuple in R Zero No No
R2 Move a split to a different path with the optimal tuple in R Zero No No

Merge two splits of the same VLink into one such that spectrum
R3 allocation of the new split does not overlap with the spectrum Zero No No

allocations of previous two splits
Merge two splits of the same VLink into one such that spectrum

R4 allocation of the new split overlaps with the spectrum allocation of High No No
any of the previous two splits

R5 Divide a split of a VLink into multiple splits on the same path Zero Yes (Possibly) Yes

A. Simulated Annealing (SA) Algorithm

SA systematically explores the neighborhood of an initial
set of embeddings of all VLinks in 9 (i.e., currenCstate) and

configuration actions with different levels of disruption and
their impact on resource usage (e.g., transponder or spectrum
usage) shown in Table I. For instance, R 1 in Table I may
change any or all of X~~), X~:b), and x~:t) of a split while
keeping its X~) fixed, whereas R 2 can change all of them.
Splitting offers us new re-configuration actions (R3 , R4 , and
Rs) that were not considered in prior work. For example, we
can merge two splits into a larger one using R 3/ R4 or divide
a large split into multiple smaller ones using Rs.

All actions except R 4 in Table I can be applied using make­
before-break to avoid any disruption as long as the spectrum
allocation after applying any of these actions does not overlap
with the previous spectrum allocation. Note that make-before­
break requires double committed resource for a short period
of time when it is applied. There are scenarios when the
spectrum allocation after re-configuration overlaps with the
allocation present before applying the action such as for action
R4 in Table I. In such scenarios, it might not be possible to
apply make-before-break, therefore, the disruption level can be
significantly high. However, disruptive action such as R4 may
be useful to defragment a highly utilized EON and should be
used only when necessary.
B. Pre-computations

For each VLink e E E, we pre-compute P;, a set of k
shortest paths between each pair of SNodes that a VLink's end
VNodes have been mapped to. For each SPath PEP;, we
pre-compute the set of admissible transmission configurations,
Tep c T, such that each configuration t E Tep results in a
reach r t ?: len(p) and has a data-rate t(d). Te contains all the
distinct tuples suitable for e and is defined as UI;IPEP~ Tep •

IY. RE-OPTlMIZATlON WITH UNBOUNDED NUMBER OF
ACTIONS

In this section, we present a Simulated Annealing [16] (SA)
based algorithm for solving the VN embedding re-optimization
problem. SA allows us to systematically search through a
solution space, while maintaining a lineage of operations
starting from the initial network state to reach a feasible re­
optimized state. The advantage of SA is that it can avoid
getting stuck at local minima by employing random moves,
and converge to a global minimum if the SA process is run
for a sufficiently long period of time.

(2)

(1)

F RMSF
=e

LiE I I;
-II-I-

During re-optimization, the embedding of a VLink of the
existing VNs in 9 can be re-configured one or multiple times
to reduce spectrum fragmentation. VLink re-configuration
consists in changing the VLink's embedding i.e., one or
more splits' substrate path (X~\ tuple (X~~\ and spectrum
allocation (X~:b) and/or x~:t) or a combination thereof. A re­
configured split still has to satisfy spectrum contiguity and
optical reach constraints and total number of splits after re­
optimization cannot be more than q. We use 5 different re-

m, and f represent data-rate, baud-rate, modulation format,
and FEe selected from the set of possible values][j), JBS, M,
and IF, respectively. Each tuple t has a spectrum requirement
and a maximum optical reach within which t can be used
with satisfactory signal quality as defined by a reach table
R [26]. The reach table R contains a set of tuples each of
which has a specific spectrum requirement and a maximum
optical reach. Note that the same SPath can be used multiple
times as the splits of a VLink following the reasoning in
[8]. Also note that Xei = (p, t, Sb, St)l1 ::; i ::; q represents
the i-th split, where X~) and X~~) denote the selected SPath
and transmission configuration for the i-th split, respectively.
The spectrum slot allocation for the i-th split begins at index
X~:b) E S and ends at index x~:t) E S along each SLink in the
SPath X~~) to satisfy the spectrum contiguity constraint [9].

The VN embedding re-optimization problem seeks to find
a feasible sequence of re-configuration actions applied on the
VN embeddings such that the resulting embeddings of the
VNs optimize (i.e., maximize or minimize) a certain objective
function. In our problem, the objective is to minimize network­
wide RMSF metric presented in (1). This metric leverages
RMSF values of each EON link computed using (2), which
is the most comprehensive fragmentation metric [15]. We
assume VNode mapping to remain unchanged during the re­
optimization process (typical assumption in optical network
virtualization [27]). An important question regarding pro­
active defragmentation is when to start the re-optimization
process that is a problem of its own [22] and out of scope
of this paper. In this work, we assume that re-optimization is
triggered pro-actively in a periodic manner, or when specific
thresholds are exceeded (e.g., fragmentation is high).

'" FRMSF max
F RMSF _ L-eEE e _S__

net - lEI lSI

294

Authorized licensed use limited to: University of Waterloo. Downloaded on January 03,2022 at 23:10:36 UTC from IEEE Xplore. Restrictions apply.

2021 17th International Conference on Network and Service Management (CNSM)

keeps reducing the fragmentation of the EON G. A neighbor
to the currenCstate is another set of embeddings where the
embedding of only one VLink from the currenCstate is
re-configured using one of the actions presented in Table I.
SA then evaluates quality of the neighbor using our objective
function of F:!eJ;!SF in Eqn. (1) and moves to a neighbor
that improves F:!eJ;!SF. It also probabilistically accepts a
worse neighbor (a re-optimized embedding with a higher
value of F:!eJ;!SF than the currenCstate) from the search
neighborhood. Typically, a temperature parameter (T) and
energy function controls the probability of accepting a worse
neighbor. Parameter T is set to a higher value during the initial
iterations of the search, resulting in a higher probability of
accepting a worse neighbor. A cooling schedule attenuates
the temperature and eventually decreases the probability of
accepting a worse neighbor towards the end of the SA search.
By accepting worse solutions, SA tries to avoid being stuck
at a local minimum. We run multiple iterations of the neigh­
borhood exploration procedure for each temperature to cover
a wider search space. To better explain the SA algorithm, we
define the following:

• A neighborhood generation function, which, generates
a set of neighbors to the currenCstate and returns a
neighbor according to a policy.

• An energy function, which determines the fitness of a
neighbor. It regulates the probability of accepting or
rejecting a neighbor during an iteration of SA.

• A cooling schedule, which determines how the tempera­
ture is attenuated during the search process.

1) Neighborhood Generation: We devise an algorithm
(Algorithm 1) for generating a set of neighbors to the
currenCstate and returning one of the neighbors. Algo­
rithm 1 first chooses a random split Y from the uni­
formly distributed set of embeddings of the VLinks of
currenCstate. Then, Algorithm 1 generates all feasible
neighbors, all_neighbors, by applying each action from Table
I on split Y. Note that the number of feasible neighbors for
a single action can be large due to the many possible feasible
spectrum re-allocation of a split Y. Since there can be a
substantial number of feasible neighbors in all_neighbors
and a significant portion of them are not helpful for re­
optimization, Algorithm 1 adopts two heuristics for keep­
ing the most promising neighbors in neighbor...]Jool. First,
Algorithm 1 excludes those neighbors from all_neighbors
that use 5% additional spectrum slots compared to that used
in split Y's current embedding (line 4). We call 5 as Slot
Usage Limit. The rationale for doing so is that a network
operator may not want to increase spectrum usage during
re-optimization and may want to move to neighbors whose
spectrum usage remains within a specified bound. Second, Al­
gorithm 1 populates a sorted list of the remaining neighbors in
all_neighbors in increasing order of the neighbors' F:!eJ;!SF
values (sorted_neighbors) and adds only the first r% (called
as Neighborhood Limit) neighbors from sorted_neighbors to
neighbor...]Jool (line 6). Here, both 5 and r parameters and

can be tuned based on network operator policies.

Algorithm 1: Select-Neighbor
1 function Select-Neighbor(current_state, 6, r)
2 Choose a random split Y from currenCstate
3 all_neighbors +- Generate all feasible neighbor states by

applying actions from Table I on split Y
Exclude neighbor states from all_neighbors that uses

2': 6% additional slots compared to current_state
sorted_neighbors +- Sort the neighbors in all_neighbor

in increasing order of their RMSF
neighbor...]Jool +- Select the first r% neighbors from

sorted_neighbors
7 max_RMSF +- Maximum value of RMSF among the

neighbors in neighbor...]Jool
for neighbor E neighbor...]Jool do

9 I Gainneighbor +- (RMSFneighbor - max_RMSF)2
10 < neighbor, action_spec >+- A neighbor from

neighbors...]Jool with a probability proportional to
Gainneighbor and corresponding action

11 return < neighbor, action_spec>

After generating neighbor...]Jool, Algorithm 1 finds the
maximum value of F:!eJ;!SF among the neighbors in
neighbor...]Jool. This value is then used to compute the relative
RMSF gain (Gainneighbor) of each of the other neighbors in
neighbor...]Jool (line 8 - 9). Gainneighbor is defined as the
square of the difference between the neighbor's F:!eJ;!SF and
the maximum value of F:!eJ;!SF. Finally, the algorithm returns
a neighbor with the probability proportional to its RMSF gain
and action_spec, the action that generated the neighbor.

2) Energy Function and Cooling Schedule: We use our
fragmentation metric F:!eJ;!SF defined in Eqn. (1) as the energy
function. During iteration k of SA search, the probability of
moving to a neighbor is a function of energy and tempera­
ture [16]. This probability is defined as follows:

{
I if D.Energy < 0

P(Energy, Tk) = -D. ITe Energy k otherwise.

Here, Tk is the temperature at the k-th iteration and
D.Energy = F:!eJ;!SF (currenCstate) - F:!eJ;!SF (new_state),
where F:!eJ;!SF(currenCstate) and F:!eJ;!SF(new_state) are
energies of currenCstate and the neighbor returned by Al­
gorithm 1, respectively. We use a linear cooling schedule [28]
and set the temperature T at iteration k +1 as: T k+1 = P*Tk,
where 0 < P < 1 is the cooling rate (Line 21).

The SA algorithm, as outlined in Algorithm 2, takes as
input an initial state, i.e., current set of VN embedding (C),
maximum number of iterations to perform (itmax), the number
of iterations to perform per temperature value (it temp), an
initial temperature (To) and the cooling rate (p). During each
iteration for a particular temperature value, new_state and its
action_spec are generated by invoking the Select-Neighbor
procedure from Algorithm 1 (line 8). Based on the energy
of the new_state and the current temperature, the SA search
moves to the new_state or not (line 11 - 15). During the
search, SA keeps track of the best state (besCstate) and
corresponding action sequence (besCsequence) according

295

Authorized licensed use limited to: University of Waterloo. Downloaded on January 03,2022 at 23:10:36 UTC from IEEE Xplore. Restrictions apply.

2021 17th International Conference on Network and Service Management (CNSM)

Algorithm 2: SA-Re-Optimize
1 function SA-Re-Optimize(C, itrnax , itternp, To, p)
2 iterations +- 0, T +- To
3 action_sequence +- best_sequence +- 1>
4 besCstate +- current_state +- C
5 while iterations < itrnax do
6 while iterationst < itternp do
7 current_cost +- F/!elf SF (current_state)
8 < new_state, action_spec >+- Select-Neighbor

(current_state,5,r)
9 new_cost +- F/!elf SF (new_state)

10 t:.energy = current_cost - new_cost
11 p +- rand(O, 1)
12 if t:.energy < °or p < et:,.energy IT then
13 I current_state +- new_state
14 current cost +- new cost
15 action_sequence.append(action_spec)
16 if currenCcost < besCcost then
17 I best_cost +- current_cost
18 best state +- current state
19 best_sequence +- action_sequence
20 Increment iterationst
21 T = P *T, Increment iterations
22 return < besCstate, best_sequence>

to the objective function F:!eJ;!SF. Finally, besCstate and
besCsequence generated during all the iterations are returned.

V. RE-OPTIMIZATION WITH BOUNDED NUMBER OF
ACTIONS

Although the SA algorithm from Section IV is capable of
systematically exploring a large solution space, it may require
an excessively large number of reconfiguration actions to reach
the re-optimized state. A long sequence of reconfiguration
steps can cause a long period of network instability, rendering
the SA algorithm impractical in realistic settings. Another
drawback of SA algorithm is the lack of fairness among
the involved VLinks, i.e., , some VLinks may be subjected
to a significantly more number of reconfiguration actions
than others, resulting in longer period of instability for those
VLinks. To resolve these two limitations of the SA algorithm,
we propose a greedy algorithm that can provide a satisfactory
re-optimization performance using a bounded number of total
actions and per-VLink actions. In this section, we first discuss
the two constraints to bound the number of actions, and then
describe how the greedy algorithm enforces these constraints.

Maximum number of actions: This bound defines the
maximum number of actions (Mmax) the re-optimization
process can take, similar to the bound proposed in [29].
The solution to the re-optimization problem will generate an
ordered sequence of at most M max actions that lead to the
best possible re-optimized state.

Maximum number of actions per-VLink: This bound
enforces a limit on the maximum number of actions (Amax)
the re-optimization process can apply on each VLink. Sim­
ilar bounds have been applied to ensure fairness during
defragmentation of wavelength division multiplexed optical

networks [29]. Note that one could easily impose a differ­
ent bound on different VLinks to facilitate a differentiated
treatment of VLinks during re-optimization. Such differential
treatment can enable a variety of service level agreements
where a VLink from the highest priority class is not impacted
during re-optimization, while a VLink from best-effort class
goes through a substantially large number ofre-configurations.

A. Greedy Algorithm

The greedy algorithm presented in Algorithm 3 takes the
current set of VN embeddings (C), maximum number of
iterations to perform (itmax), number of inner iterations
(it inn), M max , and A max as inputs. The greedy algorithm
follows a similar flow of SA algorithm from Algorithm 2
with three major differences, while ensuring the constraints
imposed by the two bounds we discussed. First, Algorithm 3
selects the best neighbor in terms of F:!eJ;!SF as opposed to
selecting a neighbor chosen based on a probability distribution
in Algorithm 2. To do so, Algorithm 3 invokes Best-Neighbor
procedure that returns the neighbor with the lowest value
of F:!eJ;!SF among the neighbors generated by applying the
actions from Table I on a randomly selected split Y. Best­
Neighbor procedure is a modified version of Algorithm 1 that
first picks a random split Y which has been subjected to Slot
Usage Limit and has not exceeded Amax actions, and returns
the neighbor with the highest RMSF gain by applying the
actions from Table I on split Y. We do not present Best­
Neighbor procedure for the sake of brevity. If the neighbor
returned by Best-Neighbor procedure improves F:!eJ;!SF from
the currenCstate, Algorithm 3 takes the corresponding ac­
tion and moves to the neighbor state. Since Algorithm 3 selects
neighbor in a greedy fashion, it can get stuck to a local
minima. To circumvent this issue, Algorithm 2 has a provision
to move to a worse neighbor than the currenCstate with a
low probability as discussed next.

The second difference of Algorithm 3 with Algorithm 2
is that Algorithm 3 moves to a worse neighbor than the
currenCstate only when it is necessary as opposed to
stochastically moving to a worse neighbor in Algorithm 2.
This move is triggered when the neighbors of all the splits
have worse F:!eJ;!SF values than F:!eJ;!SF of currenCstate.
This is achieved by incrementing a counter (iCcounter) when
a worse neighbor is found and comparing itJounter with
total number of splits (no_of_splits) in line 24 - 25. When
a better neighbor is found in a particular iteration, iCcounter
is reset to start over (Line 12). Finally, Algorithm 3 has a
terminating condition when the number of applied actions
reaches the threshold M max in line 21. When such condition
is reached, Algorithm 3 returns the best neighbor found during
the search. Note that we also tried a naive greedy algorithm
that chooses a split Y on the EON link with the maximum
fragmentation and does not take a worse neighbor at any time.
Such a naive greedy algorithm gets stuck to a local minima
very soon during the search. Hence, our proposed greedy
algorithm blends greedy selection of neighbors with random

296

Authorized licensed use limited to: University of Waterloo. Downloaded on January 03,2022 at 23:10:36 UTC from IEEE Xplore. Restrictions apply.

2021 17th International Conference on Network and Service Management (CNSM)

VI. EVALUATION

Algorithm 3: Greedy-Re-Optimize

choice of a split at the beginning and has the provision of
selecting a worse neighbor when needed.

30% to 60%). For each network utilization, we pick five
random snapshots. For each snapshot, we independently run
the compared variants five times and take the output of the
run that achieves the best defragmentation. Finally, we report
the average (with maximum and minimum as errorbars) of the
best performances of each five different snapshots.
B. Compared Variants

1) SA-baseline: This variant represents SA-Re-Optimize
algorithm (Algorithm 2) with a huge number of iterations for
itmax and it temp . The values of To = 100 and p = 0.99 for
Algorithm 2 are chosen as best performing ones from multiple
trials. This variant also uses Slot Usage Limit as <5 = 10%
and Neighborhood Limit as r = 10% for Algorithm 1 chosen
based on trials. SA-baseline is used to show convergence of
SA-Re-Optimize algorithm, and it provides a feasible lower
bound for the re-optimization problem.

2) SA-Re-Optimize: This variant shows the performance of
SA-Re-Optimize algorithm (Algorithm 2) with a fixed number
of total iterations i.e., itmax = 1000, it temp = 1000 and To =

100 and p = 0.99.
3) Gr-bounded: This variant represents Gr-Re-Optimize

algorithm (Algorithm 3). In this case, we set M max = 500
and Amax = 00 in Algorithm 3. We also vary M max and
Amax to show sensitivity of Algorithm 3.

4) SA-SOA: This variant represents the scenario where we
minimize our cost function F:::errSF (i.e., Eqn. (2» by using
the SA-based defragmentation mechanism presented in [25].
To the best of our knowledge the work in [25] is the closest
to SA-Re-Optimize algorithm (Algorithm 2). The mechanism
presented in [25] is not specific to any cost function, therefore,
we use our cost function instead of theirs for a fair comparison.

C. Performance Metrics

• RMSF Reduction: It is the reduction of fragmentation
achieved by an algorithm in terms of RMSF (F:::errSF)

from the RMSF of the given snapshot before re­
optimization. It is defined as (1 - (the ratio of F:::errSF of
the EON after re-optimization to F:::errSF of the EON
before re-optimization». The desired value of RMSF
Reduction is 1 but that is not practically achievable.
However, the closer RMSF Reduction is to 1, the more
defragmentation is achieved through re-optimization (e.g.,
roughly, RMSF reduction of 0.95 means that 95% frag­
mentation has been reduced compared to the fragmenta­
tion before re-optimization).

• Slot Ratio: It is the ratio between the total spectrum
slot usage by the VNs after re-optimization and the total
spectrum slot usage by the VNs before re-optimization.
Slot Ratio smaller than 1 means that spectrum occupation
has decreased after re-optimization.

• Action Count: It is the total number of sequential actions
adopted by an algorithm to reach its re-optimized state.

• Number of Actions per VLink: It is the average number
of actions applied on each VLink by an algorithm to reach
its re-optimized state.

else
Increment it_counter
if it_counter> no_of_splits then

I

current_state +- new_state
current cost +- new cost
action_sequence.append(action_spec)

Increment iterationst
Increment iterations

return < besCstate, best_sequence>

1 function Gr-Re-Optimize(C, itrnax , itinn, M rnax , A rnax)

2 iterations +- 0, move_counter +- 0
3 action_sequence +- best_sequence +- 1>
4 besCstate +- current_state +- C
5 while iterations < itrnax do
6 iCcounter +- 0
7 while iterationst < itinn do

currenCcost +- F;;elfSF (currenCstate)
< new_state, action_spec >+- Best-Neighbor

(current_state,5,r)
new_cost +- F;;elfsF(new_state)
if new_cost < currenCcost then

it_counter +- 0
Increment move_counter
current_state +- new_state
currenCcost +- new_cost
action_sequence.append(action_spec)
if currenCcost < besCcost then

I

best_cost +- current_cost
best_state +- current state
best_sequence +- action_sequence

if move_counter = M rnax then
I return < best_state, best_sequence>

A. Simulation Setup

We implement the compared algorithms presented in Sec­
tion VI-B using C++. We consider a fully-flexible EON
using Nobel Germany topology (17 nodes and 26 links) from
the SNDlib Repository (available at http://sndlib.zib.de). Each
EON link has 4THz spectrum bandwidth divided into 160 slots
of 25GHz. To emulate a live EON, we develop a discrete
event simulator. The simulator loads the EON with VNs by
simulating VN arrival and departure events and allocating
and releasing spectrum slots to virtual links accordingly. In
our simulator, VN arrival rate follows a Poisson distribution
with varying means (20-30 VNs per 100 time units) and VN
life time is exponentially distributed with a mean of 100
time units. The number of VNodes vary from 2 to 6 and
number of VLinks vary from 3 to 15 (randomly chosen).
When a VN arrives, the simulator embeds the VN using the
algorithm proposed in [8]. This simulator generates snapshots
of the EON's current occupation at different time instances
in which a varying number of VNs are embedded. To analyse
the performance of the compared algorithms, we take different
snapshots of the EON at different utilizations (varying from

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

297

Authorized licensed use limited to: University of Waterloo. Downloaded on January 03,2022 at 23:10:36 UTC from IEEE Xplore. Restrictions apply.

2021 17th International Conference on Network and Service Management (CNSM)

Initial Network Utilization

60

Gr-bounded _

SA-SOA =

504030

SA-baseline _

SA-Re-Optimize =
c 0.95
0

t5
:::J 0.9<:J
Q)

a:
LL 0.85
[J)
::2'a: 0.8

0.75

2501-+---+---+~--+--+-~+-+A

Number of Actions
Fig. 1: Convergence of Algorithms

- SA-baseline - SA-SOA
- SA-Re-Optimize - Gr-bounded

2000 -

17501-+--+--+----t,.--Ti

15001-+--+--+-~*~ll!-

D. Discussion on Evaluation Results (a) RMSF Reduction

60

R5=1

60

60

Gr-bounded _

SA-SOA =

50

50

40

40

E E E

~ 8 ~ 8 ~ 8

Initial Network Utilization

(a) Action Count

40 50
Initial Network Utilization

(b) Slot Usage Ratio

Initial Network Utilization

30

Rl_ R3=
R2_ R4=

30

SA-baseline

SA-Re-Optimize =

<JJ
C
0 106

~
0 105

Q;
-"
E 104
:::J

Z

CO 103

;§
102

1.5 .--------------------,

Fig. 2: Performance of different algorithms
SA-baseline mm Gr-bounded ~

SA-Re-Optimize = SA-SOA =
107---------------....

(b) Action Distribution
Fig. 3: Actions taken by different algorithms

E

?f ~ 8
Q)
OJ 100
"'C
Q) 80
<.)

Q; 600...
c

400
~
<{ 20

a
30

o
~ 1.25

a:
Q)

@'
<JJ

::J
o
U5 0.75

1) Comparison of Different Algorithms: Fig. 1 shows that
convergence of the compared variants in terms of RMSF
(F!!/t!SF) values of the EON against number of actions for a
specific snapshot with 60% utilization. This figure shows that
SA-baseline converges to a feasible lowerbound if it is allowed
to run for a sufficiently long time. On the other hand, SA-Re­
Optimize does not converge to a steady value but achieves
an RMSF very close to SA-baseline's lowerbound despite
being run for a fixed number of iterations. Similarly, SA-SOA
diverges initially but reaches to an RMSF value closer to the
lowerbound through a large number of steps. In comparison
to SA based approaches, Gr-bounded decreases RMSF of the
EON sharply and achieves an RMSF close to SA-baseline's
lowerbound even by applying a limited number of actions.

Fig. 2 compares different algorithms in terms of the perfor­
mance metrics introduced before. In Fig. 2(a), RMSF reduction
decreases for larger initial network utilization. This is rational
since a highly utilized EON offers less room to re-optimize.
Fig. 2(a) also shows that SA-Re-Optimize closely approximates
SA-baseline, and both achieve great performance by reducing
more than 90% fragmentation in the given snapshots. On the
other hand, Gr-bounded and SA-SOA achieve lower reductions,
yet reductions consistently remain within 10% of SA-baseline.
Gr-bounded, despite using limited number of actions, achieves
higher or equal RMSF reduction than SA-SOA in all cases
except for the snapshots with the highest utilization (60%).
Even in the constrained snapshots of high utilization, Gr­
bounded reduces more than 80% fragmentation in the EON.
If not properly designed, defragmentation algorithms might
lead to an increase in spectrum slot usage. Our proposed
approaches (SA-baseline, SA-Re-Optimize, and Gr-bounded)
succeed instead in decreasing slot usage compared to the slot
requirement of given snapshots (see Fig. 2(b» thanks to Slot
Usage Limit (5) in Algorithm 1. Note instead that in the
case of SA-SOA, that does not employ any Slot Usage Limit,
defragmentation requires more than 20% additional spectrum
slots (while this increase is avoided by our algorithms).

Note that RMSF reductions of SA based approaches (SA­
baseline, SA-Re-Optimize, and SA-SOA) in Fig. 2(a) require a
huge number of re-configuration actions to converge to the
most optimized final state (see Fig. 3(a», in the order of
100's of thousands, which makes their application impractical

298

Authorized licensed use limited to: University of Waterloo. Downloaded on January 03,2022 at 23:10:36 UTC from IEEE Xplore. Restrictions apply.

2021 17th International Conference on Network and Service Management (CNSM)

in a realistic operational settings. In contrast, Gr-bounded
achieves more than 80% reduction on fragmentation with no
additional spectrum usage by employing only up to 500 re­
configuration actions (on average, 2 to 3 actions per VLink),
making Gr-bounded a more practical solution to be leveraged
by a network operator. Finally, Fig. 3(b) shows the distribution
of different actions from Table I adopted by SA-Re-Optimize,
SA-SOA, and Gr-bounded. According to this figure, usage of
action R 1 comprises the major percentages, while the proposed
re-configuration actions (R3 - Rs) have been used in more
than 20% cases of SA-Re-Optimize and Gr-bounded. We also
observe that the action R4 which causes disruption has been
used very rarely in case of Gr-bounded.

within M max = 1000 actions. Such behavior is fundamental to
the SA algorithm and, for this reason, SA-Re-Optimize cannot
be used in a practical setting where the number of actions is
limited. Another takeaway from Fig. 4 is that RMSF reduction
of Gr-bounded increases drastically when the value of M max

goes from 100 to 300 and RMSF reduction stabilizes for
M max ?: 500. This justifies our choice of M max = 500 for
the other evaluations of Gr-bounded. Finally, Fig. 4(b) shows
that Gr-bounded applies on average one action to each VLink
when M max is low (Mmax = 100). For SA-Re-Optimize, we
keep the best re-optimized state within M max = 1000 that
can be reached with lower number of actions per VLink.
After reaching the best re-optimized state, SA-Re-Optimize
diverges to worse solutions, and hence we ignore those actions
justifying the lower number of per-VLink actions. This figure
also shows that average number of actions per VLink increases
with the increase in M max and decreases when network
utilization increases. This is due to the fact that, as utilization
increases, snapshots have more VLinks, and the same total
number of actions are distributed among more VLinks thus
reducing number of actions per VLink.

Amax=1 ~

Amax=2 ~

M
max

=700 _

Mmax=900 ~

SA-Re-Optimize c=::J

Mmax=100 ~

Mmax=300 ~

Mmax=500 c=J

0.9
c
0 0.8~
:::J 0.7-0
Q)a:: 0.6

LL
(fJ 0.5
~a:: 0.4

0.3

30 40 50 60

-

60

60

50

50

1

40

40

Initial Network Utilization

30

30

(a) RMSF Reduction

Initial Network Utilization

Amax=1 ~

Amax=2 ~

c 0.9
.12
'0
:::J 0.8-0
Q)a::

LL 0.7
(fJ

~a:: 0.6

0.5

500 ..
(fJ
c
~ 400
<{

'0 300
Q;

..0
E 200
:::J
Z

co 100 _ ~

;§----.I

(b) Action Count
Fig. 5: Performanc~ of Gr-bounded by v(lfying AmaxLet us now discuss the impact of varying A max (Maximum

number of actions per-VLink) on the performance of Gr­
bounded with M max = 500 and for different values of
initial network utilization. Recall from Section V, A max = x
means that a VLink can go through at most x number
of re-configuration actions during the whole re-optimization
process. Fig. 5(a) shows that Gr-bounded with Amax = 1
achieves the lowest RMSF reduction as it allows a single

60

Mmax=700 am
Mmax=900 rss:::=l

SA-Re-Optimize c::::J

40 50

Initial Network Utilization

Initial Network Utilization

Mmax=100 ~

Mmax=300 ~

Mmax=500 c=J

30

2

7 ..

6 ..

a

(fJ
c
o
~
::: ~ 5
a .:.::J
Q; > 4

E ~ 3
:::J

Z

t

(b) Action Count per VLink

Fig. 4: Performance of Gr-bounded by varying M max
2) Analysis of Gr-bounded: Fig. 4 shows the impact of

varying M max (Maximum number of actions) on the per­
formance of Gr-bounded with A max = 00 and for different
values of initial network utilization. Fig. 4 also compares the
performance of Gr-bounded having different M max bounds
with the best possible re-optimized state that could be achieved
by SA-Re-Optimize in limited number of steps (Mmax =

1000). Fig. 4(a) shows that Gr-bounded, even with the smallest
M max (Mmax = 100) achieves 20-30% more defragmentation
than the SA-Re-Optimize with M max = 1000. We also observe
that SA-Re-Optimize with M max = 1000 could not even
reduce RMSF more than 50% in any case. The reason for such
poor initial performance of SA-Re-Optimize is that it allows
to move to a worse neighbor with a high probability during
the initial stages of SA search that diverges SA-Re-Optimize

(a) RMSF Reduction

299

Authorized licensed use limited to: University of Waterloo. Downloaded on January 03,2022 at 23:10:36 UTC from IEEE Xplore. Restrictions apply.

2021 17th International Conference on Network and Service Management (CNSM)

re-configuration action for all the splits of a VLink. Such a
conservative version of Gr-bounded still reduces more than
60% fragmentation using the smallest number of actions as
shown in Fig. 5(b). As we loosen the constraint of Amax (by
increasing its value), a VLink can be re-configured more than
once offering more opportunities to re-optimize. Hence, RMSF
reduction increases for increasing Amax . Such gain is more
prominent for smaller values of Amax while smaller increases
in RMSF reduction are observed for Amax ?: 6. This is due
to the fact that the other limit of Maximum number of actions
(Mmax = 500) dominates in Gr-bounded for A max ?: 6.
Similar observations apply to the total number of actions in
Fig. 5(b). Another takeaway from Fig. 5(b) is that action count
increases with the increase in utilization of snapshots. This is
expected as a snapshot with higher utilization has more VLinks
that requires more actions to be applied.

VII. CONCLUSION
In this paper, we have addressed the re-optimization of

network slice embedding over EON with the objective to
minimize spectrum fragmentation. Given an EON with a set of
embedded VNs, the problem is to re-optimize the existing VN
embeddings by employing a series of different re-configuration
actions. We advance the state-of-the-art by addressing, for
the first time, the spectrum defragmentation problem in the
context of splitting-enabled EON and by proposing novel
re-configuration actions that offer more opportunities to re­
optimize. Given the complex and non-linear nature of this
problem, we have proposed simulated annealing based algo­
rithm for systematically exploring its large solution space.
We also propose a greedy search mechanism to address the
practical constraint to limit the number of re-configuration
steps taken to reach a final defragmentated state.

Our extensive simulation results demonstrate that the sim­
ulated annealing based algorithm reduces more than 90%
fragmentation at the expense of employing a huge number re­
configuration actions. Our results also show that the proposed
greedy search algorithm, if we consider a scenario with limited
number of re-configuration actions, achieves better defragmen­
tation (reduces more than 80% fragmentation) than a prior
approach that employs simulated annealing. The greedy search
algorithm can impose different level of bounds on the number
of actions to be taken, enabling a fair or prioritized treatment
of VLinks during re-optimization. Moreover, our results show
that, when the number of admissible reconfiguration action
is limited (e.g., below 500), having the possibility to exploit
a comprehensive set of reconfiguration actions (involving
merging and dividing splits of a virtual link) allows to achieve
noticeable improvement in defragmentation. In future, we
plan to investigate reactive fragmentation approaches and
fragmentation-aware embedding in a splitting-enabled EON.

REFERENCES

[1] B. Yan et al., "Tidal-traffic-aware routing and spectrum allocation in
elastic optical networks," IEEElOSA Journal ofOptical Communications
and Networking, vol. 10, no. 11, pp. 832-842, 2018.

[2] M. Hadi, M. R. Pakravan, and E. Agrell, "Dynamic resource allocation
in metro elastic optical networks using Iyapunov drift optimization," J.
of Opt. Commn. and Net., vol. 11, no. 6, pp. 250-259, 2019.

[3] Z. Zhong et al., "Provisioning short-term traffic fluctuations in elastic
optical networks," IEEE/ACM TNet., vol. 27, no. 4, pp. 1460-1473,
2019.

[4] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, "Network
slicing in 5g: Survey and challenges," IEEE Communications Magazine,
vol. 55, no. 5, pp. 94-100, 2017.

[5] S. Aleksic, "Towards fifth-generation (5g) optical transport networks,"
in Proceedings of ICTON, 2015, pp. 1-4.

[6] R. Boutaba, N. Shahriar, and S. Fathi, "Elastic optical networking for
5G transport," Springer JNSM, vol. 25, no. 4, pp. 819-847, 2017.

[7] L. Gong and Z. Zhu, "Virtual optical network embedding (VONE) over
elastic optical networks," IEEE/OSA Journal of Lightwave Technology,
vol. 32, no. 3, pp. 450-460, 2014.

[8] N. Shahriar et aI., "Achieving a fully-flexible virtual network embedding
in elastic optical networks," in IEEE INFOCOM, 2019, pp. 1756-1764.

[9] B. C. Chatterjee, S. Ba, and E. Oki, "Fragmentation problems and
management approaches in elastic optical networks: A survey," IEEE
Communications Surveys & Tutorials, vol. 20, no. 1, pp. 183-210,2017.

[10] H. Beyranvand et al., "An analytical framework for the performance
evaluation of node-and network-wise operation scenarios in elastic
optical networks," IEEE TComm, vol. 62, no. 5, pp. 1621-1633, 2014.

[11] A. Pages et aI., "Optimal route, spectrum, and modulation level assign-
ment in split-spectrum-enabled dynamic elastic optical networks," J. of
Opt. Commn. and Net., vol. 6, no. 2, pp. 114-126, 2014.

[12] F. Cugini, F. Paolucci, G. Meloni, G. Berrettini, M. Secondini, F. Fresi,
N. Sambo, L. Poti, and P. Castoldi, "Push-pull defragmentation without
traffic disruption in flexible grid optical networks," IEEE/OSA Journal
of Lightwave Technology, vol. 31, no. 1, pp. 125-133,2012.

[13] R. Proietti et al., "Rapid and complete hitless defragmentation method
using a coherent rx 10 with fast wavelength tracking in elastic optical
networks," Optics express, vol. 20, no. 24, pp. 26958-26968, 2012.

[14] T. Takagi et aI., "Disruption minimized spectrum defragmentation in
elastic optical path networks that adopt distance adaptive modulation,"
in ECOC, 2011, pp. Mo-2.

[15] P. Lechowicz et aI., "Fragmentation-aware algorithm with bordering
super-channels in spectrally/spatially-flexible optical networks," J. of
Opt. Commn. and Net., 2020, to appear.

[16] E. Aarts and J. Korst, "Simulated annealing and boltzmann machines,"
1988.

[17] J. Comellas, L. Vicario, and G. Junyent, "Proactive defragmentation
in elastic optical networks under dynamic load conditions," Photonic
Network Communications, vol. 36, no. 1, pp. 26-34, 2018.

[18] S. Shakya et aI., "Virtual network embedding and reconfiguration in
elastic optical networks," in IEEE GLOBECOM, 2014, pp. 2160-2165.

[19] M. Zhu et aI., "Fragmentation-aware vone in elastic optical networks,"
J. of Opt. Commn. and Net., vol. 10, no. 9, pp. 809-822, 2018.

[20] S. Fernandez-Martinez, B. Baran, and D. P. Pinto-Roa, "Spectrum de­
fragmentation algorithms in elastic optical networks," Optical Switching
and Networking, vol. 34, pp. 10-22, 2019.

[21] R. Wang and B. Mukherjee, "Provisioning in elastic optical networks
with non-disruptive defragmentation," IEEElOSA Journal of Lightwave
Technology, vol. 31, no. 15, pp. 2491-2500, 2013.

[22] M. Zhang et aI., "Dynamic and adaptive bandwidth defragmentation in
spectrum-sliced elastic optical networks with time-varying traffic," J. of
Light. Tech., vol. 32, no. 5, pp. 1014-1023, 2014.

[23] S. Shakya and X. Cao, "Spectral defragmentation in elastic optical path
networks using independent sets," in National Fiber Optic Engineers
Conference. Optical Society of America, 2013, pp. NThII-4.

[24] E. J. Davalos et aI., "Spectrum defragmentation in elastic optical
networks: Two approaches with metaheuristics," IEEE Access, vol. 7,
pp. 119835-119843, 2019.

[25] Y. Zeng et aI., "Defragmentation of flexible optical networks based on
simulated annealing," in IEEE ACP, 2012, pp. 1-3.

[26] T. Ahmed et aI., "Dynamic routing, spectrum, and modulation-format
allocation in mixed-grid optical networks," J. of Opt. Commn. and Net.,
vol. 12, no. 5, pp. 79-88, 2020.

[27] G. Zhang et aI., "A survey on ofdm-based elastic core optical network­
ing," IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp.
65-87, 2012.

[28] S. B. Masti and S. V. Raghavan, "Simulated annealing algorithm for
virtual network reconfiguration," in IEEE Euro-NF Con! on Next Gen.
Internet, 2012, pp. 95-102.

[29] H. Duong et aI., "Efficient make before break capacity defragmentation,"
in IEEE HPSR, 2018, pp. 1-6.

300

Authorized licensed use limited to: University of Waterloo. Downloaded on January 03,2022 at 23:10:36 UTC from IEEE Xplore. Restrictions apply.

