
Resource Management in Softwarized Networks
Shihabur Rahman Chowdhury and Raouf Boutaba

David R. Cheriton School of Computer Science, University of Waterloo
{sr2chowdhury | rboutaba}@uwaterloo.ca

Abstract—Communication networks are undergoing a major
transformation through softwarization, which is changing the way
networks are designed, operated, and managed. The enhanced
programmability enabled by softwarization creates unique oppor-
tunities for adapting network function and resources in support
of applications and users with diverse requirements. To effectively
leverage the flexibility provided by network softwarization and
realize its full potential, it is of paramount importance to
devise proper mechanisms for allocating resources to different
applications and users and for monitoring their usage over time.
The overarching goal of this dissertation is to advance state-of-
the-art in how resources are allocated and monitored and build
the foundation for effective resource management in softwarized
networks. Specifically, we address four resource management
challenges in all three key enablers of network softwarization.
First, we challenge the current practice of realizing network
services with monolithic software network functions and propose
a microservice-based disaggregated architecture enabling finer-
grained resource allocation and scaling. Then, we devise optimal
solutions and scalable heuristics for establishing virtual net-
works with guaranteed bandwidth and guaranteed survivability
against failures in multi-layer IP-over-Optical and single-layer
IP substrate networks, respectively. Finally, we propose adaptive
sampling mechanisms for balancing the overhead of softwarized
network monitoring and the accuracy of the network view
constructed from monitoring data.

I. INTRODUCTION
Network Softwarization is an emerging paradigm where

software controls the treatment of network flows, adds value
to these flows by software processing, and orchestrates the on-
demand creation of customized networks to meet the needs of
customer applications [1]. Networking industry transformation
through softwarization can be illustrated by the widespread
adoption of the following technological developments.

Software-Defined Networking (SDN) proposes to decou-
ple a network’s control plane from the data plane, and im-
plements the control plane as a logically centralized software
controller running on one or more commodity servers [2].

Network Function Virtualization (NFV) proposes to
decouple Network Functions (NFs) (e.g., Network Address
Translators (NATs), Firewalls, WAN Optimizers) from hard-
ware middleboxes, and deploy the NFs as Virtual Network
Functions (VNFs) on commodity servers [3].

Network Virtualization (NV) is a networking environment
that allows coexistence of multiple Virtual Networks (VNs),
each tailored to support specific application or service, on a
shared physical infrastructure [4].

Network softwarization is achieved by the amalgamation of
SDN, NFV and NV, enabling on-demand service provisioning
and better control over the network resources. Softwarization
is replacing specialized hardware with commodity hardware
with open architecture, in this way simplifying network in-
frastructure and diversifying the supply chain. Today, network
softwarization is increasingly adopted by both large-scale

Logically Centralized Control Plane

with a Global Network View

Routing
Network

Virtualization
...

§V. PayLess + LINT: Address accuracy-

overhead trade-off in monitoring
PayLess: Control plane overhead

LINT: Data plane overhead

§III. MULE: Multi-layer Substrate

§IV. DRONE: 1+1 VN Protection

M
o
n
it
o
r

C
o
n
tr

o
l

Firewall IDS
WAN

Optimizer

SFCs: Chains of VNFs

§II. µNF: Microservice-based

VNF architecture for finer-grained

resource allocation & scaling

Fault
Mgmt.

Central Office/Data centers Core/Metro transport network elements

Network slices (virtual nodes, links

and functions) offered as a service

Southbound interface:

Interface to the data plane

D
at

a
p
la

n
e

M
an

ag
e
m

e
n
t

&

O
rc

h
e
st

ra
ti
o
n

A
p
p
s.

Northbound interface:

Read/modify network state

C
o
n
tr

o
l
P
la

n
e

Fig. 1. Dissertation Contributions Across the Network Softwarization Stack
online service providers and telecommunications and Internet
service providers, and is considered a key enabler for 5G
networks. Furthermore, it is creating new revenue streams by
enabling service offerings which would have been otherwise
very expensive to deploy and hard to manage with traditional
networking technologies. However, to effectively leverage the
flexibility provided by softwarization, it is of paramount im-
portance to devise proper mechanisms for allocating resources
to different applications and users and for monitoring their
usage over time. Sub-optimal resource allocation can result
in resource fragmentation and under-utilized infrastructure,
which in turn results in loss of revenue.

This dissertation advances the state-of-the-art in how re-
sources are allocated and monitored, and builds a foundation
for effective resource management in softwarized networks.
We challenge some of the current practices as well as address
the shortcomings in how resource allocation is performed and
how the network infrastructure is monitored. As illustrated
in Fig. 1, this dissertation addresses resource management
issues encompassing SDN, NFV, and NV, substantially im-
proving the effectiveness of resource allocation and striking
a balance between accuracy and overhead in infrastructure
monitoring. Our specific contributions are as follows:
• We challenge the current practice of realizing net-

work services with monolithic VNFs and propose a
microservice-based disaggregated VNF architecture for
finer-grained resource allocation and scaling.

• We devise optimal solutions and scalable heuristics for
establishing VNs with guaranteed bandwidth and guaran-
teed survivability against failures in multi-layer IP-over-
Optical (Section III) and single-layer substrate networks
(Section IV), respectively.

• We propose adaptive sampling mechanisms for balancing
the overhead of softwarized network monitoring and the
accuracy of the network view constructed from monitor-
ing data (Section V).978-1-6654-0601-7/22/$31.00 © 2022 IEEE

II. A DISAGGREGATED VNF ARCHITECTURE

State-of-the-art NFV platforms (e.g., OPNFV, OpenMANO)
are merely replacing monolithic hardware middleboxes with
monolithic VNFs. Clearly, this is a first logical step towards
network softwarization. However, a fundamental problem with
monolithic VNF implementations is that many packet pro-
cessing tasks such as packet I/O, parsing and classification,
and payload inspection are repeated across a wide range
of NFs [5], [6] as illustrated in Fig. 2. This has several
negative consequences. First, monolithic VNFs restrict how
many packet processing tasks can be consolidated on the
same hardware. Second, they impose coarse-grained resource
allocation and scaling. Finally, when VNFs are chained to
form Service Function Chains (SFCs), executing these re-
dundant functionalities results in unnecessary processing over-
head (shown to exceed 25% for some SFCs [5]). This non-
exhaustive list of issues stresses the need to rethink how VNFs
can be developed and orchestrated for agile service creation
and scaling. In this dissertation, we pose and address the
following research question:

(Q1) What is an appropriate software architecture for VNFs
that will enable better function consolidation on the same

hardware, and finer-grained resource allocation and scaling
while maintaining the same level of performance as

state-of-the-art approaches?

Rx From
NIC

Parse
Headers

L7
Classification

Decompress
HTTP PayLoad

Tx to NIC

HTTP
Traffic

Other Traffic

WAN
Optimizer:

Edge
Firewall:

Rx From
NIC

Parse
Headers

L3/L4
Classification Tx to NIC

Drop
Packet

Allow

Deny

App.
Firewall:

Rx From
NIC

Parse
Headers

L7
Classification

Validate
URL

Drop
Packet

HTTP
Traffic

Other Traffic Tx To
NIC

Unsafe

Safe

Load
Balancer:

Rx From
NIC

Parse
Headers

Distribute Packets on
Hash of 5-tuple

Tx To NIC1
Tx To NIC2

Monitoring
Function:

Rx From
NIC

Parse
Headers

L7
Classification

Tx To
NIC

Count
Packets with

URL X

HTTP
Traffic

Other Traffic

Fig. 2. Common Packet Processing Tasks Across NFs

A. Solution Overview
We take advantage of the commonality of packet pro-

cessing tasks among VNFs for addressing the shortcomings
of monolithic VNFs. We propose to decompose VNFs into
independently deployable, loosely-coupled, lightweight, and
reusable packet processors, that we call MicroNFs (µNFs for
short) [7], [8]. VNFs or SFCs are then realized by composing
a packet processing pipeline from these independently de-
ployable µNFs. Such decomposition enables finer-grained re-
source allocation, independent scaling of µNFs thus increased
flexibility, and independent development and maintenance of
packet processing components.

A high level view of our system is presented in Fig. 3. It
comprises the following components:
µNF Orchestrator responsible for making global decisions

such as µNF placement across physical servers.

Orchestration agent, a per physical server local orchestra-
tion endpoint. A southbound API between the µNF orchestra-
tor and orchestration agents facilitates their communication.
µNFs are the smallest deployable units in the system.

µNFs perform a specific packet processing task and are
independently deployable loosely-coupled entities. We keep
the communication pattern between µNFs transparent from
how they process the packets.

Rx and Tx Services collectively form a lightweight soft-
ware data path for the µNFs.

μNF - 1

…

μNF Orchestrator

Southbound API
(e.g., DeployμNF)

Northbound API
(e.g., DeployChain)

μNF - 2

μNF - k

O
rc

he
st

ra
ti

on

A
ge

nt

Rx
Service

Tx
Service

NIC(s)Mgmt.
NIC

Physical Server

Fig. 3. µNF System Components

We have implemented the architecture components in-
cluding the µNFs, communication primitives between µNF,
and CPU sharing between µNFs to improve CPU utilization
without sacrificing packet processing throughput. We also
employed optimizations such as cache pre-fetching and µNF
processing pipeline parallelization for improving packet pro-
cessing throughput on multi-socket NUMA machines and for
improving packet processing latency, respectively.

III. MULTI-LAYER VIRTUAL NETWORK EMBEDDING

Softwarization is enabling the long-haul connectivity
providers, i.e., the transport network operators to offer full-
fledged VNs to their customers [9] in lieu of traditional
point-to-point connectivity services. This next generation of
transport network, also known as Transport SDN (T-SDN),
leverages SDN technology to separate the control plane from
the data plane (typically realized through a combination of

01 2
15 10

{C}{A,B} {D,E}

(a) Virtual Network Request

0

1 2
A

B C

D E15

10
10

10

15

885 890

990990

10
00

100

(b) VN Embedding on Multi-layer SN
Fig. 4. Multi-layer VN embedding example

packet and optical communications) for flexible management
and better automation. Several novel and practically important
resource allocation problems exist in this emerging area. For
instance, multi-layer IP-over-Optical networks, which combine
the high capacity of optical networks with the flexibility of
packet switched networks, are becoming a popular choice
of T-SDN deployment, However, Virtual Network Embedding
(VNE), a fundamental resource allocation problem in NV, has
been mostly addressed for single-layer Substrate Networks
(SNs). Solving the VNE problem for multi-layer SN raises
many unique challenges due to the topological flexibility
offered by such networks [10]. Specifically, the IP network
is dynamic, i.e., new IP links can be established as needed by
provisioning necessary capacity from the optical network. In
this context, we pose the following research question:

(Q2) How can we leverage the topological flexibility of
multi-layer IP-over-Optical T-SDN and: (i) strike a balance

between obtaining a low cost VN embedding while
minimizing the establishment of new IP links; (ii)

simultaneously decide on the creation of new IP links and
their embedding on the optical network?

Several deployment choices exist for multi-layer T-
SDN [11]. However, as a first step towards addressing VNE
for multi-layer networks, we limit the scope of this work to
the case of an IP-over-Optical Transport Network (OTN) [12].

A. Problem Statement
We represent the substrate OTN as an undirected graph

Ĝ = (V̂ , Ê), where V̂ and Ê are the set of OTN nodes
and OTN links, respectively. The OTN links (û, v̂) ∈ Ê have
two attributes: (i) bûv̂: pre-provisioned bandwidth capacity;
(ii) Cûv̂: the cost of allocating one unit of bandwidth from
that OTN link. We represent the substrate IP network as an
undirected graph G′ = (V ′, E′), where each IP node u′ ∈ V ′
has pu′ number of ports with homogeneous capacity capu′ .
Each IP node u′ is connected to an OTN node τ(u′). We use
the notation (u′, v′, i) to represent the i-th IP link between
u′ and v′, where 1 ≤ i ≤ pu′ . An IP link (u′, v′, i) with
bandwidth bu′v′i is provisioned by establishing an OTN path
connecting its end points. Capacity of a new IP link (u′, v′, i)
is set to min(capu′ , capv′). The cost of allocating one unit
of bandwidth from an IP link (u′, v′, i) ∈ E′ is Cu′,v′,i. We
represent a VN request as an undirected graph Ḡ = (V̄ , Ē),
where V̄ and Ē are the set of virtual nodes and virtual links,
respectively. Each virtual link (ū, v̄) ∈ Ē has bandwidth
requirement būv̄ . Each virtual node ū ∈ V̄ has a location
constraint set L(ū) ⊂ V ′ representing the set of IP nodes
where ū can be embedded.

Given a multi-layer SN composed of an IP network G′ on
an OTN Ĝ, and a VN request Ḡ:
• Map each virtual node ū ∈ V̄ to an IP node u′ ∈ V ′

according to the virtual node’s location constraint L(ū).
• Map each virtual link (ū, v̄) ∈ Ē to a path in the IP

network. This path can contain a combination of existing
IP links and newly created IP links.

• Map all newly created IP links to a path in the OTN.
• The total cost of provisioning resources for new IP links

and for the virtual links should be minimized.

We give an illustrative example of the problem in Fig. 4. Here,
we provision a new IP link AC (red link in Fig. 4(b)) by
mapping it to OTN-layer (the bottom layer in Fig. 4(b)) in the
process of establishing a VN.

B. Solution Overview
For the MULti-layer virtual network Embedding (MULE)

problem, we propose the following solutions [13], [14].
OPT-MULE: An Integer Linear Program (ILP) formulation

for optimally solving MULE. Our ILP formulation jointly
optimizes VN embedding, creation of new IP links and em-
bedding of newly created IP links on the OTN layer. We also
prove that optimally solving MULE is NP-hard. To the best
of our knowledge, this is the first optimal solution to the VNE
problem for multi-layer IP-over-OTN networks.

FAST-MULE: Given the NP-Hard nature of optimally
solving the multi-layer VNE problem, we propose, FAST-
MULE, a heuristic for solving larger problem instances. We
are faced with two challenges while designing FAST-MULE:
performing (i) joint VN embedding across the IP and the OTN
layers; and (ii) joint virtual node and link mapping. We address
the first challenge by transforming the multi-layer SN into a
single-layer graph, in this way jointly computing embedding
across the layers. For addressing the second challenge, we
extract star subgraphs from the VN and jointly embed the
nodes and links of the subgraph by transforming the embed-
ding problem to an instance of the max-flow problem.

IV. DEDICATED PROTECTION FOR SURVIVABLE VNE

Another challenge in T-SDN virtualization concerns guar-
anteeing VN survivability against failures. T-SDN customer
VNs typically carry high volumes of traffic at high speed,
and usually have Service Level Agreements (SLAs) with the
infrastructure provider for recovery from substrate failures
within tens of milliseconds [15]. One way to satisfy such tight
SLA is that the infrastructure provider provisions dedicated
backup resources for the entire VN (i.e., for each virtual node
and link in a VN), also known as 1+1 protection scheme.
Backup of the entire VN topology can be later used for
immediate recovery from a substrate failure [16]. However,
such fast recovery with dedicated backup is expensive for
the infrastructure provider. The research literature lacks a
systematic approach to solving the problem with optimal
resource footprint. Furthermore, relevant literature [17] shows
that sequentially embedding the primary and backup can lead
to failure in embedding even though a feasible embedding ex-
ists, which adds another dimension when designing a heuristic.
In this context, we pose the following research question:

(Q3) How can we simultaneously compute the primary and
the backup embedding of a VN for dedicated protection
while jointly determining virtual node and virtual link

embedding and incurring the minimum resource footprint in
the substrate network?

A. Problem Statement
We represent the SN as an undirected graph, G = (V,E),

where V and E are the set of substrate nodes and links,
respectively. Each substrate link (u, v) ∈ E has the following

{A, B, C}

{C, D}

{E, F, G}
a

b c

Location Constraint

5

5

5

(a) Virtual Network Request

A

B

F

E

D
C G

15

15

15

15

15

15

15 15

15a

c

b

ca

b

15

P
ri
m
ar
y

B
ack
u
p

(b) Embedding on SN by DRONE

Fig. 5. Example VN embedding with DRONE

attributes: (i) buv : bandwidth capacity of the link (u, v), and
(ii) Cuv : cost of allocating unit bandwidth on (u, v) for
provisioning a virtual link. We represent a VN as an undirected
graph Ḡ = (V̄ , Ē), where V̄ and Ē are the set of virtual nodes
and virtual links, respectively. Each virtual link (ū, v̄) ∈ Ē has
bandwidth requirement būv̄ . The VN has a location constraint
set, L = {L(ū)|L(ū) ⊆ V,∀ū ∈ V̄ }, such that a virtual node
ū ∈ V̄ can only be provisioned on a substrate node u ∈ L(ū).

Given a SN G = (V,E), VN request Ḡ = (V̄ , Ē), and a
set of location constraints L, embed Ḡ on G such that:
• Each virtual node ū ∈ Ḡ has a primary and a backup

embedding in the SN, satisfying the location constraint.
• For each virtual node ū ∈ Ḡ, the substrate nodes used

for the primary embedding are disjoint from the substrate
nodes used for the backup embedding.

• Each virtual link (ū, v̄) ∈ Ē has a primary and a backup
embedding in the SN. A primary or backup embedding
of a virtual link on the SN corresponds to a single path
in the SN having at least būv̄ available bandwidth. The
substrate paths corresponding to the primary and backup
embedding of a virtual link (ū, v̄) ∈ Ē are represented
by Pūv̄ and P ′ūv̄ , respectively.

• Backup embedding of a virtual link is disjoint from the
set of substrate paths used for primary embedding of the
virtual links. The same disjointedness principle applies
for the primary embedding.

• The total cost of provisioning bandwidth in the SN is
minimum according to the following cost function:∑

∀(ū,v̄)∈Ē

∑
∀(u,v)∈Pūv̄∪P ′

ūv̄

Cuv × būv̄ (1)

Fig. 5 shows an illustrative example with dark nodes and lines
representing the primary, and grey nodes and lines representing
the backup embedding of a VN on an SN.

B. Solution Overview
We propose Dedicated Protection for Virtual Network

Embedding (DRONE), a suite of solutions for the 1 + 1-
Protected Virtual Network Embedding (1 + 1 – ProViNE)
problem [18], [19]. We focus on single node failure scenario
since it is the most probable case [20], [21]. Specifically, we
make the following contributions.

OPT-DRONE: An ILP formulation for optimally solving
1 + 1 – ProViNE, improving on the quadratic formulation
from previous work [17]. We formulate 1 + 1 – ProViNE
as simultaneously embedding two copies of the same VN
disjointly on the SN. To accomplish this goal, we replicate
the input VN, Ḡ to obtain a shadow VN, G̃ = (Ṽ , Ẽ). Our

transformed input now contains the graph Ĝ = (V̂ , Ê), s.t.
Ĝ = Ḡ∪ G̃. We now embed Ĝ on G s.t. any node u ∈ V̄ and
any node ũ ∈ Ṽ are not provisioned on the same substrate
node. Similar constraints apply on the virtual links as well.

FAST-DRONE: OPT-DRONE is NP-hard. Therefore, we
also devise FAST-DRONE, a heuristic for finding solutions
within a reasonable time frame. For the ease of designing
an effective heuristic, we reformulate 1 + 1 – ProViNE as a
variant of graph partitioning problem as follows. Given an SN
G = (V,E), a VN request Ḡ = (V̄ , Ē), and a set of location
constraints L, solving 1 + 1 – ProViNE entails partitioning G
into two disjoint partitions P and Q such that:
• ∀ū ∈ V̄ , P has at least one element from each L(ū).
• ∀ū ∈ V̄ , Q has at least one element from each L(ū).
• The sub-graph induced by the elements of each set L(ū)

in P (and Q) is connected.
• The sum of costs of embedding Ḡ on P and Q is

minimum according to the given cost function (1).
We leverage this new problem formulation and devise a

heuristic that starts with a seed mapping set containing the
primary and backup mappings of one randomly chosen virtual
node. Then we iteratively grow this seed mapping to compute
the primary and backup mappings of the remaining virtual
nodes and partition the SN in this process. Once the SN is
partitioned, we embed the virtual links in these partitions sep-
arately by using the Constrained Shortest Path First algorithm.

V. ADAPTIVE MONITORING OF SOFTWARIZED NETWORKS

The trade-off between accuracy and overhead has been
a longstanding issue in network monitoring. This issue is
further aggravated by the flexibility brought by network soft-
warization. Softwarization is enabling the network operators to
program a wide-range of network resources ranging from the
software switches, the software network functions, and even
the hardware data plane for collecting fine-grained and near
real-time network monitoring data. A direct consequence of
this advantage is the increased monitoring overhead in both
the control and the data planes [22], [23]. In this context, we
address the following research question:

(Q4) How can we construct an accurate and timely view of
the network without incurring significant control plane and

data plane overhead for network monitoring?

A. Solution Overview
Our approach to addressing the accuracy – overhead trade-

off in softwarized network monitoring is to identify less
interesting observations while collecting monitoring data and
adapt the monitoring accordingly. Our objective is to reduce
both the control and data plane overhead without negatively
impacting the quality of collected monitoring data. To this end,
we propose the following adaptive monitoring mechanisms for
the control and data plane, respectively.

1) PayLess [24] (control plane): SDN control plane con-
structs a global network view by querying the data plane for
traffic statistics, which consumes control plane bandwidth and
incurs message processing overhead at the controller [22].
PayLess is a variable frequency SDN monitoring algorithm

that adapts monitoring frequency according to traffic inten-
sity. An SDN controller running PayLess assigns a statistics
collection timeout τ to each new flow. If the flow is still active
after τ time units, a statistics collection event triggers and the
controller queries the corresponding switch for reading that
flow’s counters (e.g., packet and/or byte count). Depending on
the change in the counter value since the last measurement,
the controller adjusts the timeout τ of that flow as follows:

• If the change is small, i.e., below a threshold ∆1, τ for
that flow is multiplied by a factor α (capped at Tmax).

• If the change is above a threshold ∆2, τ of that flow is
reduced by a factor β (capped at Tmin).

The rationale behind this timeout adjustment is that flows
that significantly changed in volume (bytes or packets) have
higher chances of contributing to triggering interesting net-
work events (e.g., become heavy-hitters). Therefore, once we
detect such change, we monitor that flow more frequently. For
a similar reason, we reduce the polling frequency of the steady
flows since they are not conveying much information.

2) LINT [25] (data plane): In-band Network Telemetry
(INT) [26] is an emerging standard for enabling network
devices to embed device internal state such as packet pro-
cessing latency and queue depth into each passing packet,
consequently, facilitating a real-time and microscopic view
into network traffic. The microscopic telemetry capabilities
enabled by INT come at the expense of increased data plane
overhead [23] stemming from piggybacking telemetry data on
live network traffic. Our empirical study using real network
traces revealed that INT data plane overhead can result in
20% - 30% reduction in network goodput [25]. Therefore, we
proposed LINT (short for Lightweight INT), which aims at
reducing INT data plane overhead while reaping its benefits
as much as possible. We design LINT to be implementable
within the constraints of commodity programmable data plane
devices [27] and capable of working without any global
coordination and intervention from a control plane.

We leverage model-driven data acquisition techniques from
sensor networking literature [28] for identifying and filtering
less interesting telemetry data directly in the data plane without
negatively impacting the quality of collected telemetry data.
A network device running LINT tries to estimate the amount
of error that can be introduced if the requested telemetry
data items are not piggybacked on the current packet. For
estimating this error, the device uses a predictor function
(Exponentially Weighted Moving Average (EWMA) in our
implementation) for each telemetry data item of interest. The
predictor function for a telemetry data item d is used for
computing the following:

• dnextD : the predictor function applied on all past observa-
tions of d in this device.

• dnextC : the predictor function applied on the observations
of d reported so far.

When the device predicts that these two quantities may di-
verge beyond an acceptable threshold δ, i.e., |dnextD −dnextC | >
δ × dnextD , it reports the current observation. Otherwise, the
device skips reporting the current observation, in this way,
adapting telemetry data reporting based on estimated error.

VI. SUMMARY OF RESULTS

2 4 6 8
SFC Length

0

3

6

9

C
PU

 c
or

es
 n

ee
de

d
fo

r
lin

e-
ra

te NetBricks
NF

(a) µNF vs.
NetBricks [29]

A
cc

ep
te

d
V

N
s C
os

t

1.0

1.3

1.5

1.7

2.0

Im
pr

ov
em

en
t (

X
)

(b) FAST-MULE vs.
D-VNE [30]

A
cc

ep
te

d
V

N
s C
os

t

1.0

1.2

1.9

3.8

Im
pr

ov
em

en
t (

X
)

(c) FAST-DRONE vs.
PAR [17]

PayLess LINT
0

30

60

90

O
ve

rh
ea

d
R

ed
uc

ti
on

(%
)

Overhead Reduction
Error (NRMSE)

0

5

10

15

20

N
R

M
SE

 (%
)

(d) Effectiveness of PayLess &
LINT

Fig. 6. Highlights of thesis contributions: (a) effectiveness of µNF in
enabling finer-grained resource allocation compared to NetBricks [29]; (b)
VN acceptance and embedding cost comparison between FAST-MULE and
D-VNE [30]; (c) VN acceptance and embedding cost comparison between
FAST-DRONE and PAR [17]; and (d) effectiveness of PayLess and LINT in
reducing control and data plane overhead, respectively.

We have evaluated our solutions using a variety of methods
including, testbed experiments, network emulation and simula-
tions. We leveraged publicly available real network topologies
and real traffic traces when possible. In many cases, we
also implemented state-of-the-art solutions and compared our
contributions against them. In this section and in Fig. 6, we
summarize and present some key results of our contributions.

We first demonstrate the finer-grained resource alloca-
tion capability of µNF compared to state-of-the-art run-
to-completion monolithic SFC deployment system Net-
Bricks [29] in Fig. 6(a). We deploy SFCs of varying lengths
using both µNF and NetBricks on a testbed and measure the
number of CPU cores they require for sustaining line-rate
packet processing throughput (for the smallest packet size).
We found µNF to be always using the same or lesser number
of CPU cores compared to NetBricks. Furthermore, the CPU
core consumption gap between µNF and NetBricks widens as
the SFCs become longer.

Following the effectiveness of fine-grained resource al-
location, we demonstrate the performance of the resource
allocation heuristics proposed for MULE and 1 + 1 – ProViNE
in Fig. 6(b) and Fig. 6(c), respectively. In both cases, we exten-

sively evaluate the solutions using realistic network topologies
and compare the results against state-of-the-art heuristics. In
case of MULE, our proposed heuristic, FAST-MULE, accepts
≈1.6× more VNs and incurs ≈1.7× less resource provisioning
cost on average compared to state-of-the-art heuristic [30].
FAST-MULE also finds the optimal solution for a special class
of VN, i.e., star topology with uniform bandwidth requirement.
FAST-DRONE outperforms the corresponding state-of-the-art
heuristic [17] by accepting ≈3.8× more VNs and incurring
≈1.17× less resource provisioning cost on average.

Finally, Fig. 6(d) shows the effectiveness of PayLess and
LINT in reducing control and data plane overhead for soft-
warized network monitoring, respectively. We evaluate our
contributions using network emulation and simulation using
both synthetic and real traffic traces. Our key results are:
(i) PayLess can reduce control plane messaging overhead by
more than 80% and incurs ≈20% normalized root means
squared error (NRMSE) of link utilization measurement on
average compared to periodically polling the switches in 250
ms intervals; and (ii) on average, LINT reduces the data plane
overhead of INT by ≈30% while incurring ≈5% NRMSE for
switch processing latency measurement.

VII. CONCLUSION

Telecommunications and data center network operators are
increasingly adopting network softwarization for diversifying
their supply chain, enabling on-demand service provisioning,
achieving better control over the network resources, and
accelerating the time-to-market for new services. However,
reaping the full benefits of softwarization requires resource
management mechanisms that can take full advantage of the
flexibility brought forth by softwarization. In this context,
this dissertation challenges some of the current resource
management practices and addresses the shortcomings in how
resource allocation is performed and how softwarized net-
works are monitored. Specifically, it addressed four resource
management challenges in three key enablers of network
softwarization, namely SDN, NFV, and network virtualization,
paving the way for effective resource management in next
generation communication networks. We have demonstrated
the effectiveness and superiority of our proposed solutions
through extensive testbed evaluation, network emulation and
simulations using realistic scenarios, and comparing to state-
of-the-art solutions when possible. We believe that the disser-
tation research has contributed to solving some fundamental
problems underlying network softwarization, which we hope
will facilitate its further adoption along with the use of AI for
achieving closed loop automated network management.

VIII. FINAL REMARKS

This thesis is available at http://hdl.handle.net/10012/16824.
Research conducted as part of this dissertation has
been published in [6]–[8], [13], [14], [18], [19],
[24], [25], [31] and has resulted into two patents
granted [32], [33] (the full list of publications and
patents along with bibliometric data is available at
https://scholar.google.com/citations?user=r AbXNsAAAAJ).
Part of the work that appeared in this dissertation has received
conference best paper awards at IEEE/ACM/IFIP CNSM

2017 [13] and IEEE NetSoft 2019 [7]. Furthermore, this
dissertation has been recognized with the 2021 Alumni Gold
Medal from the University of Waterloo.

REFERENCES

[1] H. Freeman and R. Boutaba. Networking industry transformation
through softwarization [the president’s page]. IEEE COMMAG, 54(8):4–
6, August 2016.

[2] M. Casado et al. Ethane: Taking control of the enterprise. In ACM
SIGCOMM, pp. 1–12, 2007.

[3] Network Functions Virtualisation – Introductory White Paper, Oct 2012.
[4] M. Chowdhury and R. Boutaba. A survey of network virtualization.

Elsevier Computer Networks, 54(5):862–876, April 2010.
[5] V. Sekar et al. Design and implementation of a consolidated middlebox

architecture. In USENIX NSDI, pp. 323–336, 2012.
[6] S. R. Chowdhury et al. Re-architecting nfv ecosystem with mi-

croservices: State of the art and research challenges. IEEE Network,
33(3):168–176, 2019.

[7] S. R. Chowdhury et al. µNF: A Disaggregated Packet Processing
Architecture. In IEEE NetSoft, 2019.

[8] S. R. Chowdhury et al. A Disaggregated Packet Processing Architecture
for Network Function Virtualization. IEEE JSAC, 38(6):1075–1088,
2020.

[9] SDN Architecture for Transport Networks. White paper, March 2016.
[10] X. Jin et al. Optimizing bulk transfers with software-defined optical

wan. In ACM SIGCOMM, pp. 87–100, 2016.
[11] F. Rambach et al. A multilayer cost model for metro/core networks.

IEEE/OSA JOCN, 5(3):210–225.
[12] ITU-t recommendation g.709/y.1331: Interfaces for the optical transport

network. Technical Report, 2016.
[13] S. R. Chowdhury et al. Mule: Multi-layer virtual network embedding.

In Proc. of IEEE/ACM/IFIP CNSM, pp. 1 – 9, 2017.
[14] S. R. Chowdhury et al. Multi-layer virtual network embedding. IEEE

TNSM, 15(3):1132–1145, 2018.
[15] S. Ramamurthy and B. Mukherjee. Survivable WDM mesh networks.

Part I-protection. In IEEE INFOCOM, pp. 744–751, 1999.
[16] W. Wang et al. First demonstration of virtual transport network services

with multi-layer protection schemes over flexi-grid optical networks.
IEEE Comm. Lett., 20(2):260–263, 2016.

[17] Z. Ye et al. Survivable virtual infrastructure mapping with dedicated
protection in transport software-defined networks [invited]. IEEE/OSA
JOCN, 7(2):183–189, 2015.

[18] S. R. Chowdhury et al. Protecting virtual networks with drone. In
IEEE/IFIP NOMS, 2016.

[19] S. R. Chowdhury et al. Dedicated protection for survivable virtual
network embedding. IEEE TNSM, 13(4):913–926, 2020.

[20] P. Gill et al. Understanding network failures in data centers: measure-
ment, analysis, and implications. ACM CCR, 41(4):350–361, 2011.

[21] A. Markopoulou et al. Characterization of failures in an operational ip
backbone network. IEEE/ACM ToN, 16(4):749–762, 2008.

[22] A. Yassine et al. Software defined network traffic measurement: Current
trends and challenges. IEEE Instr. & Measurement Mag., 18(2):42–50,
April 2015.

[23] R. Ben Basat et al. Pint: Probabilistic in-band network telemetry. In
ACM SIGCOMM, pp. 662–680, 2020.

[24] S. R. Chowdhury et al. PayLess: A low cost network monitoring
framework for software defined networks. In IEEE/IFIP NOMS, 2014.

[25] S. R. Chowdhury et al. LINT: Accuracy-adaptive and Lightweight In-
band Network Telemetry. In IFIP/IEEE IM, 2021.

[26] T. P. A. W. Group. In-band Network Telemetry (INT) data plane
specification, June 2020.

[27] P. Bosshart et al. Forwarding metamorphosis: Fast programmable match-
action processing in hardware for sdn. In ACM SIGCOMM, 2013.

[28] D. Goldsmith and J. Brusey. The spanish inquisition protocol—model
based transmission reduction for wireless sensor networks. In IEEE
SENSORS, pp. 2043–2048, 2010.

[29] A. Panda et al. Netbricks: Taking the V out of NFV. In OSDI’16.
[30] J. Zhang et al. Dynamic virtual network embedding over multilayer

optical networks. IEEE/OSA JOCN, 7(9):918–927, September 2015.
[31] S. R. Chowdhury et al. ReViNE: Reallocation of virtual network

embedding to eliminate substrate bottlenecks. In IFIP/IEEE IM, 2017.
[32] R. Ahmed et al. Dedicated protection for virtual network embedding,

2019. U.S. Patent No. 10,313,195. Issued June 04, 2019.
[33] S. R. Chowdhury et al. Multi-layer virtual network embedding, 2021.

U.S. Patent No. 10,951,317. Issued March 16, 2021.

