
Data Drift in DL: Lessons Learned from Encrypted
Traffic Classification

Navid Malekghaini∗, Elham Akbari∗, Mohammad A. Salahuddin∗, Noura Limam∗, Raouf Boutaba∗,
Bertrand Mathieu†, Stephanie Moteau†, and Stephane Tuffin†

∗David R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada
{nmalekgh, eakbaria, mohammad.salahuddin, noura.limam, rboutaba}@uwaterloo.ca

†Orange Labs, Lannion, France
{bertrand2.mathieu, stephanie.moteau, stephane.tuffin}@orange.com

Abstract—Deep learning models have shown to achieve high
performance in encrypted traffic classification. However, when it
comes to production use, multiple factors challenge the perfor-
mance of these models. The emergence of new network traffic
protocols, especially at the application-layer, as well as updates to
previous protocols affect the patterns in input data, making the
model’s previously learned patterns obsolete. Furthermore, pro-
posed model architectures are usually tested on datasets collected
in controlled settings, which makes the reported performances
unreliable for production use. In this paper, we study how the
performances of two high-performing traffic classifiers change
on multiple real-world datasets collected over the course of two
years. We investigate the changes in traffic data patterns showing
the extent to which these changes reduce the performance of the
two models. Furthermore, we propose architectural adaptations
to a flow time-series based traffic classifier, showing that they
improve accuracy by 4.8%.

Index Terms—Data Drift, Encrypted Traffic Classification,
Deep Learning, Web Traffic, HTTP/2, QUIC

I. INTRODUCTION

Deep learning (DL) models have shown superior perfor-
mance in encrypted traffic classification [1]–[3]. However,
when it comes to deploying a DL model in production,
there is more to consider than model performance, which is
dependent on the target (i.e., test) dataset. In practice, the
model performance is tightly coupled with the target dataset
properties. The effect of the target dataset on model accuracy
has been highlighted when comparing the performances of
different traffic classification models [2], [4].

The need for datasets with sample distributions that reflects
real-world data is a known issue in traffic classification. The
fact that network traffic datasets are often collected under
controlled settings or generated synthetically is not due to
a dismissal of this principle but rather, it is a reflection of
the difficulty of labeling real-world network traffic. Even if
perfectly collected and labeled data existed at some point,
it is likely to be considered irrelevant six months later, due
to the dynamic nature of network traffic. Over time, traffic
patterns are affected by the protocols, software, and devices
that generate them. This pattern evolution is known as data
drift, or concept drift, in the machine learning (ML) literature.

Data drift is a phenomenon in which the distribution of input
data over classes changes over time. For example, a service

ISBN 978-3-903176-48-5© 2022 IFIP

may switch to another transport protocol leading to a different
flow time-series shape or traffic shape. A flow time-series-
based classifier is then likely to decay in identifying the new
traffic. Hence, data drift refers to a change in the distribution
of real-world data caused by its dynamic nature, which affects
model performance.

In this work, we study the effect of data drift on the
performance of two state-of-the-art encrypted network traffic
classifiers [1], [2]. Using several datasets of real-world net-
work traffic collected from a major ISP’s network, we show
that model performance degradation does indeed occur in a
production setting, i.e., when a model trained on old data
attempts at classifying new data. We offer an explanation
for the degradation, based on the portions of the traffic that
the models struggle on. We also analyse the architecture of
the models, offering guidelines for designing architectures
that we empirically show are more robust to data drift. We
study the effect of dataset size on model performance, guided
by the observation that in practice, several factors in the
data collection process affect the number of possible labeled
samples, and the datasets on which the models train can be of
various sizes. Our main contributions can be summarized as:

• To the best of our knowledge, we are the first to address
the problem of data drift in real-world encrypted traffic
classification. We study this phenomenon using five real-
world network traffic datasets collected over a course of
more than two years from a major ISP’s network.

• We provide insights into the type of data drift that
happens in network traffic. These insights are useful to
practitioners working with traffic classification models in
production.

• We provide guidelines for designing models that are
robust to a change of dataset and encryption protocol.
Our guidelines have the distinction of being empirically
tested on real-world data.

This paper is organized as follows. Section II presents the
closely related works, while Section III presents the datasets
and models used in the paper. In Section IV, we explain
our experiments with the models trained on one dataset and
tested on one or more other datasets. We further investigate
and explain the obtained results. In Section V, we present

Authorized licensed use limited to: University of Waterloo. Downloaded on September 09,2022 at 18:10:43 UTC from IEEE Xplore. Restrictions apply.

our insights and guidelines on designing a robust model
architecture, along with the supporting experiment results.
Section VI concludes the paper and outlines directions for
future work.

II. RELATED WORK

In light of the obfuscation of previously reliable features
by encryption such as application-layer payload, the traffic
classification literature turned to features (e.g., packet size,
timestamp, direction and the statistics derived from them)
that were difficult to tweak without affecting quality of ser-
vice. Before the advent of DL, the performance of several
supervised models such as Naı̈ve Bayes, AdaBoost, Support
Vector Machines for encrypted traffic classification using these
features were studied in [5], [6]. Furthermore, semi-supervised
approaches based on Gaussian Mixture Models, k-Means and
k-Nearest Neighbour clustering and Multi-Objective Genetic
Algorithms were studied in [7]–[9] for real-time encrypted
traffic classification. A survey of classical ML approaches can
be found in [10], [11].

The capacity to automatically extract feature vectors from
raw data in DL provided new opportunities for encrypted traf-
fic classification. These opportunities were explored using var-
ious deep models including MultiLayer Perceptrons, Stacked
Autoencoders, Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) ([1], [3], [12]). These
models were evaluated using open mixed-protocol datasets
such as ISCXVPN2016 [13] and ISCXIDS2012 [14]. The
work in [4] uses a proprietary dataset to evaluate numerous
application-level classification methods that use DL models.

A survey of DL models used for network traffic analysis
can be found in [15]. In this section, we focus on models
that deal with network traffic data and consider the problem
of real-world deployment of a trained classifier with respect
to robustness across different datasets. Since the literature of
encrypted traffic classification is not extensive in this specific
area, we consider other domains such as anomaly detection.

Ma et al. [16] propose a framework to detect and adjust
to concept drift in an anomaly detection system. The authors
define concept drift as a sudden change in the distribution of
the key performance indicator (KPI) stream. Since the number
of KPIs in their base anomaly detector is large, they especially
focus on automatic threshold setting for the concept drift
detection algorithm to free operators from manually tuning
per-KPI parameters. Their concept drift adaptation algorithm
is based on linearly transforming the new concept to the old
concept in each time window. Their work differs from ours,
as they deal with a different domain where input data is in the
form of a continuous stream, so applying standard concept
drift algorithms to their domain is rather straightforward.

Saurav et al. [17] consider the problem of an anomaly
detection model losing its relevance when trained on historical
data and used in a dynamically changing and non-stationary
environment, where the definition of normal behavior changes.
Their proposed model, a recurrent neural network (RNN)
trained incrementally on a data stream, is used to make

predictions while continuously adapting to new data when
prediction errors increase. They show that their model is
able to adapt to different types of concept drift, e.g., sudden,
gradual and incremental.

Taylor et al. [18] study the effect of training on one dataset
and testing on another, building up on their previous work
AppScanner, an automatic tool for fingerprinting smartphone
apps from encrypted data. They collect five datasets of app
generated traffic, four of which were collected six months after
the first one and differ from the first one in a subset of three
factors: time of collection, app device, and app version. The
authors test the effect of each factor on the accuracy of the
model when trained on the base dataset and tested on the
target dataset and find that mere time passing has the least
effect on the model’s accuracy, whereas the model’s accuracy
drops from around 70% to 19% when tested on the dataset
with new app versions and devices.

Although the work in [18] is based on traditional ML
models, it relates to ours in the recognition of the effect of
ambiguous flows in confounding the classifier, as well as
confirming the phenomenon of model decay in mobile app
fingerprinting. As opposed to the synthetic datasets employed
in [18], our work is based on real-world datasets.

III. METHODOLOGY

A. Deep Learning models

1) UW Tripartite Model: The University of Waterloo (UW)
Tripartite model is a DL model proposed in [2] and reported
to achieve above 90% accuracy on a dataset of purely en-
crypted TLS network traffic. It is a three-part model, each part
designed to operate on one of three different types of input
data. The model consists of a series of CNNs operating on
header bytes from the first three packets of the TLS handshake.
CNNs are useful for extracting shift-invariant information
which makes them suitable for header bytes. The model further
contains a series of LSTM layers operating on flow time-
series data, which includes a three-dimensional array of packet
sizes, packet directions, and packet inter-arrival times for each
flow. LSTMs are renowned for relating useful information in
a time-series data. The output of the LSTMs passes through
a dropout layer before being concatenated to other parts’
outputs. Lastly, a series of dense layers in the model is
designed to work on statistical flow data, which includes 77
features. The statistical features are called auxiliary features
in this paper, as experiments suggest that they have the least
effect on the model’s performance. The outputs of the three
parts are then concatenated and passed through two dense
layers and a softmax layer to obtain the end result, as shown
in Fig. 1.

The UW Tripartite model is used as a baseline in this work.
To the best of our knowledge, it obtains the highest accuracy
on a fully encrypted dataset, for service-level classification,
which aligns with the work in this paper.

2) UCDavis CNN Model: The authors in [1] propose a
CNN model for early classification of network traffic flows.
Their CNN model operates on the first six packets of a flow, for

Authorized licensed use limited to: University of Waterloo. Downloaded on September 09,2022 at 18:10:43 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 1. (a) UW Tripartite model architecture [2] (left), and (b) UCDavis CNN
model architecture [1] (right). Orange and yellow boxes depict convolution
and max-pooling layer kernels, respectively. Each layer’s output vector is
depicted by a white box accompanied by its size.

each of which, the first 256 raw bytes from layer 3 and above
are extracted and concatenated together to form the input
vector. The model consists of convolutional, max-pooling and
dense layers as shown in Fig. 1. UCDavis CNN model is also
used as a baseline, as it was shown in [2] that after the UW
Tripartite model, this model obtains the best accuracy on their
fully encrypted dataset among a number of evaluated models.

B. Datasets description

We use a total of six datasets in this paper which consist
of TLS and QUIC traffic traces collected from a major ISP’s
network. The source and destination IP addresses are obfus-
cated and the packets are truncated after 400 bytes, except for
the TLS handshake packets.

Preprocessing and labeling modules are used to turn the
packet captures into labeled datasets of traffic flows. Both
modules are implemented as in [2]. The preprocessed data
includes TLS raw header bytes from the flows, as well as
flow time-series data containing an array of packet sizes,
packet inter-arrival times, and packet directions for each flow.
Moreover, it consists of 77 auxiliary features for each flow,
extracted using CICFlowMeter [13]. The auxiliary features
include statistical information about flows, e.g., mean, median,
minimum, and maximum of packet sizes in each direction. The
labeling module labels the flows according to the Server Name
Indication (SNI) field and consists of 8 classes each represent-
ing a service category, namely, chat, download, games, mail,
search, social, streaming, and web.

Our datasets can be categorized into two types based on
encryption protocol: TLS and QUIC.

(i) TLS datasets: We leverage five datasets encrypted with
the TLS protocol, each containing one to two hours of packet
traces. The datasets are captured chronologically and named
in the format of MM-YYYY as: 07-2019, 09-2020, 04-2021,
05-2021, and 06-2021.

(ii) QUIC dataset: The QUIC dataset, QUIC-05-2021, is
extracted from a packet trace of QUIC traffic captured at
the same time as the TLS 05-2021 dataset. The dataset only
consists of flow time-series data since TLS handshake bytes
are tightly coupled to the TLS protocol and thus such data
is irrelevant to QUIC. Auxiliary data was not added to this

TABLE I
DATASET PROPERTIES

Protocol Name Total flows
(K)

Labeled flows
(K)

Labeled flows
(%)

TLS

07-2019 762.7 119.8 15.7
09-2020 411.7 89.9 21.8
04-2021 284.8 42.3 14.8
05-2021 124.0 17.5 14.1
06-2021 261.2 51.2 19.6

QUIC QUIC-05-2021 37.8 26.0 68.0

0.0

0.1

0.2

0.3

0.4

Chat Download Games Mail Search Social Streaming Web

07-2019 09-2020 04-2021 05-2021 06-2021

Fig. 2. Class distribution of the TLS datasets

dataset as the effect of such data on the performance was
negligible in our experiments. The QUIC dataset is used to
show that our architecture adaptation best practices, which are
centered around the flow time-series part of the UW Tripartite
model, generalize to non-TLS encrypted data (cf., Section V).

Table I shows the total number of flows and labeled flows in
each dataset, along with the percentage of labeled flows. The
number of labeled flows shows the size of each dataset. We
examine our labeling module’s performance for the TLS flows
by calculating the percentage of labeled flows in each dataset,
which is shown in Table I. We can see that the percentage
of the labeled flows across the datasets are more or less in
line with each other. Additionally, the labeled distribution of
service classes for TLS flows are depicted in Fig. 2. There is
insignificant difference in class distribution across the datasets.
Therefore, we use the accuracy as the primary performance
metric for evaluating the models across the datasets. Moreover,
to deal with the class imbalance we adopt a weighting strategy,
i.e., we up-sample classes with a smaller number of flows.

For labeling the QUIC dataset, we changed the classes from
the TLS dataset. Since QUIC is still not widely adopted by
services across the web, not all classes from the TLS dataset
have enough samples in the QUIC dataset. For instance, QUIC
is known for enhanced security and faster connections, which
makes it more suitable for time-sensitive applications, e.g.,
streaming services. Therefore, it makes sense that we did
not see any flows labeled as the “Download” class. Hence,
we keep the Games, Social, Streaming, and Web classes,
while adding new classes of E-commerce and Resources. The
Resources class corresponds to the flows that are essentially
shared among different websites that mostly deliver tools, such
as JS APIs or design content for websites. The new labeling
module can label up to 68% of the flows, a large improvement
from the <20% labeling performance on the TLS dataset. This
is probably because fewer services use QUIC, so the SNIs are
not as varied in this dataset as they were in the TLS datasets.

Authorized licensed use limited to: University of Waterloo. Downloaded on September 09,2022 at 18:10:43 UTC from IEEE Xplore. Restrictions apply.

C. Software stack and performance metrics

The software stack for data pre-processing, model training,
and evaluation includes Tensorflow with Keras API, CUDA,
PySpark, SCAPY, and TShark. Training was conducted on
80% of each dataset, while the remaining 20% was used for
validation. A multi-class classification problem can be seen as
a set of many binary classification problems, one for each
class. Each binary classification task may result into True
Positives (TP), False Positives (FP), True Negatives (TN),
and False Negatives (FN). The performance of each binary
classifier can be measured in terms of:

Precision =
TP

TP + FP
×100 Recall =

TP

TP + FN
×100

F1− score =
2× Precision×Recall

Precision+Recall
× 100

Accuracy =
TP + TN

TP + TN + FP + FN
× 100

In this work, we measure the performance of the multi-
class classifiers in terms of accuracy, and weighted average
F1-score, recall, and precision, where weighted average is the
average of the corresponding metric across all classes weighted
by the number of data points that we could label for each
class.

IV. INVESTIGATION

In this section, we study the performance of the UW Tri-
partite traffic classification model when trained on a baseline
dataset and used on a different target dataset. We investigate
the time decay aspect by further decomposing the model and
experimenting with different datasets.

A. Baseline performance

We start by highlighting the performance of the UW Tri-
partite model [2] on the 07-2019 dataset. This dataset is the
closest in time of capture to the dataset used in [2]. Therefore,
we expect to see similar model accuracy. To have an insight
into the performance of each part of the UW Tripartite model
separately, we also conduct experiments on the decomposed
model. Table II shows the performance of the full Tripartite
model (denoted FHA) as well as its decomposed parts, i.e.,
flow time-series part (denoted F), TLS header part (denoted
H) and the auxiliary part (denoted A).

The results on the baseline 07-2019 dataset are very similar
to the results reported in [2]. In particular, for the full model
and the flow time-series part, the difference in accuracy is
around 1% and 0.2%, respectively. We notice that, when we
train the three parts of the model separately on the 07-2019
dataset, the TLS header part shows the highest accuracy, which
is 0.3% higher than the accuracy of the full model on the same
dataset, while the auxiliary part shows the lowest accuracy of
43.8%. With such a low accuracy, it is likely that the auxiliary
input to the model is not helping but rather confusing the full
UW Tripartite model, resulting in a lower performance than
the TLS header part alone.

TABLE II
UW TRIPARTITE MODEL PERFORMANCE ON THE 07-2019 AND [2]

DATASETS

Dataset Accuracy (%)
FHA H F A

07-2019 94.5 94.8 86.3 43.8
Akbari et al. [2] 95.5 N/A 86.5 N/A

A
cc

ur
ac

y
(%

)

20

40

60

80

100

07-2019 -> 09-2020 -> 04-2021 -> 05-2021 -> 06-2021

FHA H F

Fig. 3. Accuracy of the UW Tripartite model when trained on baseline 07-
2019 dataset and used (notation →) on target datasets

B. Model robustness to time decay

We evaluate the performance of the UW Tripartite model
on different target (i.e., test) datasets, i.e., 09-2020, 04-2021,
05-2021, 06-2021, after training it on the baseline 07-2019
dataset. The target datasets were collected at different points
in time within two years from the 07-2019 dataset. More
precisely, we study the performance of the full model, as
well as the decomposed model parts when trained on the
baseline dataset and used on the target datasets. Experiments
have shown that the performance of the auxiliary part of the
model has little or rather negative impact on the performance
of the full model. In particular, when we exclude the auxiliary
part from the Tripartite model, we achieve 94.9% accuracy
on the 07-2019 dataset, which is even better than what we
achieve with the full model. For this reason and due to space
limitations, we focus our study on the TLS header and flow
time-series parts of the UW Tripartite model.

The results of the first set of experiments is shown in Fig. 3.
Evidently, the prediction ability of the model decays over time,
which is quantified in Table III. We see that the decay of the
full model is at its lowest on the 09-2020 dataset (i.e., 35.7%)
and at its highest on the 06-2021 dataset (i.e., 41.1%). Note
that the 07-2019 dataset and the 06-2021 dataset are about two
years apart.

Model decay over time is an expected phenomenon. Nev-
ertheless, we see that it does not have an equal impact on the
TLS header and flow time-series parts of the model. In fact,
the model performance on the header part decays 7% more on
average than the performance on the flow time-series part (i.e.,
40.75% compared to 33%). This suggests that using the traffic
shape features, which is captured by the flow time-series input,
make the classifier more robust to decay over time. This also
suggests that the TLS headers contribute more to the drop in
accuracy over time for the UW Tripartite model.

The previous experiments also highlight that performance
decay correlates with the time difference between the training
dataset and the target datasets. Therefore, we run experiments

Authorized licensed use limited to: University of Waterloo. Downloaded on September 09,2022 at 18:10:43 UTC from IEEE Xplore. Restrictions apply.

TABLE III
DECAY IN MODEL’S PREDICTIVE ABILITIES WHEN TRAINED ON THE

BASELINE 07-2019 DATASET

Model Target datasets Avg. accuracy
drop (%)09-2020 04-2021 05-2021 06-2021

FHA 35.7 40.5 40.8 41.1 39.52
H 38.3 40.3 41.7 42.7 40.75
F 31.4 32.1 34.0 34.6 33.02

D
ro

p
in

 a
cc

ur
ac

y
(%

)

0

25

50

75

100

07-2019 -> 06-2021 09-2020 -> 06-2021 04-2021 -> 06-2021 05-2021 -> 06-2021

TLS header part of the Tripartite model UCDavis CNN model

Fig. 4. Model decay over time for the TLS header part of the UW Tripartite
model [2] and UCDavis CNN model [1]. Notation X → Y: model was trained
on dataset X and used on Y.

to further investigate this observation. In particular, we train
the TLS header part of the model using different datasets and
test it on the most recent 06-2021 dataset. We conduct the same
experiments for the UCDavis CNN model [1] and compare the
performance of both models.

The performance decay in decreasing order of time span
between the training and target datasets are shown in Fig. 4.
It is evident that the closer the datasets are in time of capture,
the lower the performance decay. For example, the TLS header
part of the UW Tripartite model decays by 42.7%, 25.3%,
11.5%, and %7.4 when the training and target datasets are
roughly 2 years, 1 year, 2 months, and 1 month apart. We
attribute this to a discrepancy in data distribution between
the training and target datasets, i.e., data drift, which we will
investigate in the next subsection.

The same trend can be seen on the UCDavis CNN model.
In fact, time changes seem to affect the UCDavis CNN model
even more. For instance, when the training and the target
datasets are 2 years apart, the accuracy of the UCDavis
CNN model decays by 64.1%, whereas the TLS header part
of the UW Tripartite model decays by 42.7%. Two aspects
of the TLS header part of the UW Tripartite model could
be contributing to its higher robustness to data drift: (i)
more regularization layers, which prevents the model from
overfitting to the training dataset, and (ii) feature engineering,
in which the TLS handshake header bytes are used as input as
opposed to any header bytes, reducing the noise in the model’s
input.

C. Traffic data drift

The considerable drop in both model’s performances when
they are trained on 07-2019 and tested on 2021 datasets, as
well as the fact that the performance drop correlates with the

TABLE IV
ADOPTION OF HTTP/2 AND SPDY PROTOCOLS OVER TIME [19]

Protocol 2018-2019 2019-2020 2019-2021
HTTP/2 + 40.6% + 31.0% + 53.5%
SPDY - 93.4% - 66.6% - 83.3%

A
cc

ur
ac

y
(%

)

0

25

50

75

100

04-2021 07-2019 06-2021 05-2021 07-2019 06-2021

Fig. 5. Model’s performance on datasets with similar sizes (dark blue: 04-
2021 size, light blue: 05-2021 size)

difference in time of capture between datasets, could indicate
that the valid data distributions that the models are learning
may be changing with time, thus making the learned patterns
obsolete. To investigate this, we take a closer look at the layer-
5 protocol distributions in the datasets, looking for any time-
related changes that we could recognize. Note that since our
data is encrypted, only some application-layer protocols could
be identified.

Table IV shows the result of this investigation. From 2018 to
2021, the adoption of HTTP/2 rose while the usage of SPDY,
which is the predecessor to HTTP/2, drastically decreased.
From 2019 to 2021, we can see that there is a 83.3% decrease
in the usage of SPDY and a 53.5% rise in the adoption of
HTTP/2. This may in part explain the drift in the datasets
and, in particular, the different patterns in the raw header
bytes, from 2019 to 2021. Unlike HTTP/2, SPDY uses a
dynamic compression algorithm in the headers that makes it
more vulnerable to chosen plain text attacks. Therefore, SPDY
leads to more information leakage than HTTP/2 and is easier
to classify.

To analyze this issue further in our datasets, we expect to see
a change on the accuracy of the model even when it is trained
and tested on the newest datasets. This is because we expect
to see better results on the 07-2019 datasets where there could
be considerably more SPDY flows than the 2021 datasets.

We know that in DL models the size of the datasets has a
direct impact on the overall classification accuracy. Therefore,
in order to have a fair comparison, we reduced the number of
flows in the 07-2019 dataset to the number of flows in the 04-
2021 and 05-2021 datasets. Since we reduce the dataset using
random sampling, we perform multiple experiments and report
the average accuracy. The results are depicted in Fig. 5. As
can be seen, the accuracy of the model on the reduced 07-
2019 datasets is around 8% to 10% higher than on the other
datasets. This suggests that the TLS headers in the 07-2019
dataset are easier to classify than the TLS headers in the newer
datasets.

To confirm our hypothesis about the impact of the
application-layer protocols, we conduct experiments based on

Authorized licensed use limited to: University of Waterloo. Downloaded on September 09,2022 at 18:10:43 UTC from IEEE Xplore. Restrictions apply.

TABLE V
DISTRIBUTION OF ALPN FIELD VALUES FOR DIFFERENT DATASETS

ALPN filter Dataset
07-2019 09-2020 Merged-2021

HTTP/2 0.12 0.09 0.09
HTTP/1 0.25 0.15 0.14

Missing ALPN 0.62 0.76 0.77

the Application-Layer Protocol Negotiation (ALPN) field of
the TLS protocol. Table V shows the distribution of ALPN
field values for different datasets. Note that all the 2021
datasets are merged. There are two main reasons for doing
this: (i) 07-2019 and 09-2020 datasets consist of roughly 119K
and 89K flows, respectively. In contrast, the 2021 datasets
are considerably smaller and merging them results in 98.9K
flows, which is comparable in size to the 09-2020 and 07-
2019 datasets; (ii) 2021 datasets are captured in a closer time
frame, which makes their data patterns rather similar as shown
in Fig. 4.

From Table V, it is evident that between 62%-77% of flows
in the considered datasets do not have an ALPN field value
(i.e., missing ALPN). Moreover, around 10%-20% of flows
consist of HTTP/1 and HTTP/2 application-layer protocols,
which are only a small portion of flows in each dataset.
Therefore, we evaluate model performance in three different
scenarios, where the flows in the datasets are either HTTP/1,
HTTP/2, or Unknown. It is unknown for a flow with no
ALPN if it uses HTTP/1, HTTP/2 or neither HTTP/1 nor
HTTP/2. Table VI illustrates the performance of the TLS
header part of the UW Tripartite model on each dataset
based on the ALPN field value. For HTTP/1 and HTTP/2,
model performance across the datasets is more or less the
same. However, the performance gap between the 07-2019
dataset and other datasets on flows with missing ALPN is
considerable. Specifically, the model achieves around 93.2%
accuracy on the flows with missing ALPN extracted from the
07-2019 dataset, while the performance is around 81% on the
other datasets. This further substantiates that the TLS headers
in the 07-2019 dataset are easier to classify, and the majority
of this ease comes from flows with missing ALPN.

By examining the ALPN of all the datasets, we found a
few flows with application-layer protocols other than web
protocols (e.g., Apple push-notification). Interestingly, the 07-
2019 dataset is the only dataset that contains flows with the
ALPN fields indicating the SPDY protocol. Recalling from
the Table IV, in the time frame corresponding to the 07-2019
dataset SPDY was still highly used, which we speculate as the
reason for superior classification performance on the missing
ALPN portion of this dataset. Additionally, from Table IV it
can be seen that from 2019 to 2021 the adoption of HTTP/2
has increased by more than 83.3%, which substantiates previ-
ous findings.

For a fair comparison, we reduce the number of HTTP/1,
HTTP/2, and missing ALPN flows in each dataset to the
smallest across all the datasets (i.e., the number of HTTP/2
flows in the 05-2021 dataset). The results are depicted in
Fig. 6. It is evident that the TLS header part of the UW

TABLE VI
PERFORMANCE OF THE TLS HEADER PART OF THE UW TRIPARTITE

MODEL BASED ON ALPN

Dataset Accuracy (%)
HTTP/2 HTTP/1 Missing ALPN

07-2019 93.5 97.5 93.2
09-2020 94.6 94.8 80.7

Merged-2021 91.6 96.9 81.1

A
cc

ur
ac

y
(%

)

0

25

50

75

100

07-2019 09-2020 04-2021 05-2021 06-2021

HTTP/1 HTTP/2 Missing ALPN Original

Fig. 6. Model performance with ALPN filter on the same size datassets

Tripartite model yields similar performance on HTTP/1 and
HTTP/2 protocols. The accuracy is over 80% for all datasets
on either HTTP/1 or HTTP/2 flows. However, the model shows
inferior performance, i.e., around 60% average accuracy on the
missing ALPN portion of the datasets, except for the 07-2019
dataset which has a relatively higher accuracy of around 75%.
Additionally, for the 09-2020 dataset, the performance of the
model is lower than 07-2019 and higher than 04-2021 datasets.
These results are all in line with the increase in the adoption
of HTTP/2 and decrease in SPDY usage over time in Table
IV. This further substantiates our hypothesis that the missing
ALPN portion in the 07-2019 dataset is easier to classify.
As the majority of the original flows (i.e., no filter on the
ALPN) are from the missing ALPN (i.e., Unknown) portion,
the performance of the model on the original flows is similar
or slightly better than the missing ALPN flows alone. It is
better because of the small portion of HTTP/1 or HTTP/2
flows available in the original dataset compared to missing
ALPN flows.

Now we investigate whether the model is biased on the
ALPN field or not. Indeed, this could lead to better model
performance when the ALPN field value is either HTTP/1 or
HTTP/2. To investigate this, we obfuscate the ALPN field
in the raw traffic bytes (e.g., replace with random bytes)
and re-pre-process the data. We re-evaluate the TLS header
part of the UW Tripartite model with the obfuscated ALPN
field on HTTP/1 and HTTP/2 flows. As shown in Fig. 7,
the ALPN field has an impact on classification performance,
with lower performance when it is obfuscated. However, the
performance degradation is only around 1%-2% in accuracy.
For example, on the 04-2021 dataset, the model achieves
83.2% and 81.3% accuracy on HTTP/1 with clear ALPN and
obfuscated ALPN, respectively. For HTTP/2, the accuracy is
83.25% versus 82.8%. Note that we leverage datasets with
similar sizes as before and present average accuracy across
multiple experiments. Hence, we show that a clear ALPN field
is not the primary reason behind the model’s performance gap
between HTTP/1 and HTTP/2 flows with known ALPN, and

Authorized licensed use limited to: University of Waterloo. Downloaded on September 09,2022 at 18:10:43 UTC from IEEE Xplore. Restrictions apply.

A
cc

ur
ac

y
(%

)

0

25

50

75

100

04-2021 05-2021 06-2021

HTTP/1 with clear ALPN HTTP/1 with obfuscated ALPN
HTTP/2 with clear ALPN HTTP/2 with obfuscated ALPN

Fig. 7. Impact of ALPN obfuscation on the performance of the TLS header
part of the UW Tripartite model

TABLE VII
ACCURACY OF THE TLS HEADER PART OF THE TRIPARTITE MODEL WHEN

ALL DATASETS ARE MERGED BASED ON THE ALPN FILTER

ALPN HTTP/1 or HTTP/2 Uknown
Accuracy (%) 95.2 83.0

the other flows with missing ALPN.
There are more protocols over TLS than HTTP/1 and

HTTP/2 (e.g., Apple push-notification), and new and updated
web protocols are likely to emerge over time. However,
HTTP/1 and HTTP/2 are well established standard web proto-
cols, and it is plausible to assume that the model’s performance
over HTTP/1 and HTTP/2 protocols will remain rather con-
sistent across different datasets in comparison to the unknown
protocols. The results in Fig. 6 support this claim with similar
model performance for HTTP/1 and HTTP/2 web protocols.
Also, these results can be attributed to the existence of more
information in flows that contain web traffic (e.g., HTTP/1
and HTTP/2) compared to other protocols (e.g., Apple push-
notification). Therefore, web-related flows are easier to classify
for the model.

Another hypothesis is that due to the negligible changes
of the established protocols over time, training the model
on all historical HTTP/1 and HTTP/2 improves the model’s
accuracy, while training it on all Unknown flows confuses the
model despite the large number of samples in the dataset.
To test this hypothesis, we merge all HTTP/1 and HTTP/2
flows of all datasets in one dataset, and all Unknown flows
of all datasets in another dataset. Table VII illustrates the
accuracy of the TLS header part of the UW Tripartite model
on the HTTP/1 and HTTP/2 flows of all the datasets versus the
merged unknown portion of all datasets. We see that the model
shows an accuracy of 95.2% on the first dataset, compared to
an accuracy of 83.04% on the second one. We also notice
that the accuracy on the Unknown portion is low, despite the
large number of flows. Therefore, it seems that training the
model on a merged dataset of HTTP/1 and HTTP/2 flows helps
with its performance, whereas training the model on more
unknown flows seems to confuse the model, possibly because
of the more varied patterns and protocols in that portion of
the dataset.

V. ARCHITECTURE ADAPTATION

In this section, we examine the performance of the UW
Tripartite model on the 2021 datasets. Observing a drop in

TABLE VIII
ACCURACY OF THE UW TRIPARTITE MODEL AND ITS DECOMPOSED

PARTS ACROSS THE 2021 DATASETS

Model Accuracy (%)
04-2021 05-2021 06-2021

FHA 40.0 83.4 87.1
F 11.0 81.0 85.9
H 84.3 79.0 85.8

model accuracy, we suggest updating the model architecture
that improves accuracy on several datasets, thus making it
more robust to data drift.

A. Ensuring model convergence

We start by training and testing the UW Tripartite model
and its decomposed parts on datasets from 2021. We skip the
auxiliary part of the model as its performance is negligible
compared to the other two parts. The results of these experi-
ments are shown in Table VIII.

Although suffering a drop from the baseline 2019 dataset,
the accuracy of the Tripartite model is reasonable at 83.4%
and 87.1% on 05-2021 and 06-2021 datasets, respectively.
However, the model has a rather peculiar accuracy of only 40%
on the 04-2021 dataset, which is primarily attributed to the
flow time-series part of the model, showing a mere accuracy
of 11% (i.e., worse than a random classifier). On the other
hand, the TLS header part of the model performs reasonably
on the same dataset.

Before we delve into the reasons for the under performance
of flow time-series part of the UW Tripartite model, we note
that the lower performance of the model on 2021 datasets
compared to 2019 dataset can be attributed to dataset size.
07-2019 dataset had 119K labeled flows, whereas 04-2021,
05-2021 and 06-2021 datasets have 42K, 17K and 51K flows,
respectively. Therefore, given a much larger amount of training
data, we expect the model to achieve a higher accuracy
on 07-2019 dataset regardless of the architecture. However,
the dismal accuracy on 04-2021 dataset cannot be simply
explained by dataset size, and has to do with the model itself.

To troubleshoot the flow time-series part of the model
on 04-2021 dataset, we examined the confusion matrix and
accuracy of the model in the training phase, epoch by epoch.
We found that the model does not converge, and the same
class is predicted for all samples in each epoch. We tried
two alterations to the model to alleviate this problem: (i)
Learning rate reduction—The learning rate for the optimizer
was reduced from the default value of 0.001 [2] to 0.0001
(i.e., 10x reduction); (ii) Masking layer addition—A Masking
Layer was added at the beginning of the flow time-series part
of the model. The Masking Layer acts as a de-noising layer to
filter out time-steps that don’t have any information. Therefore,
these time-steps can be skipped in the LSTM layer.

The above alterations boosted the accuracy of the flow time-
series part of the model on the 04-2021 dataset from 11% to
88.3%. A smaller learning rate makes it more likely for the
model to eventually converge to global optima, although it
increases training time. A masking layer reduces data noise,
while adding to the complexity of the model. Despite the

Authorized licensed use limited to: University of Waterloo. Downloaded on September 09,2022 at 18:10:43 UTC from IEEE Xplore. Restrictions apply.

TABLE IX
MODEL ADAPTATION BEST PRACTICES FOR FLOW TIME-SERIES PART

Dataset Adaptation Training flows Accuracy (%)

04-2021 Dropout + Learning Rate 33,900 89.4
Dropout + Learning Rate + Masking Layer 33,900 90.1

05-2021 Dropout 14,024 87.3
BLSTM + Dropout 14,024 88.2

downsides, evidently, in the case of the 04-2021 dataset, these
alterations are necessary for the model to achieve reasonable
performance.

B. Adjusting to dataset size

Given that dataset size can contribute to the model’s drop
is accuracy on the 2021 datasets, we suggest a number of
best practices in designing a model architecture for smaller
datasets, based on a number of experiments carried out on the
two smallest datasets, i.e., 04-2021 and 05-2021.

1) Dropout rate reduction: The stacked LSTM in the UW
Tripartite model is followed by a dropout layer. The dropout
layer randomly sets the units of LSTM output to zero based
on the dropout rate, which is often used to avoid model over-
fitting. We found that in a smaller dataset, a high dropout rate
does not help, as it sets units of valuable information to zero,
thus leaving the final layers of the model with little information
to work with. By reducing the dropout rate from 0.5 (i.e.,
default in [2]) to 0.3, we saw a boost in model accuracy on
both 04-2021 and 05-2021 datasets, the two smallest datasets,
as shown in Table IX.

2) Flow time-series part simplification: The stacked LSTM
layer proposed in [2] is a complex model with too many
parameters for a small dataset. By reducing the number of
LSTM layers by one, thus turning the stacked LSTM to a
bidirectional LSTM (BLSTM), we were able to obtain better
results on datasets smaller than 20K flows, as shown for 05-
2021 dataset in Table IX. We further found that on datasets
smaller than 10K flows, even reducing the stacked LSTM layer
to a 1D Convolution layer helps with the model’s performance,
contrary to what was shown in [2] for large datasets.

3) Best practices: Table X summarizes our recommended
best practices based on a given dataset’s size. We suggest that
when using the UW Tripartite model, the flow time-series part
of the model should be adapted to the training dataset’s size.
When there are fewer than 50K training flows, reducing the
dropout layer value (e.g., 0.3) is sufficient. If the number of
samples are fewer than 20K, a simpler architecture such as
BLSTM is preferred over stacked LTSM. In the UW Tripartite
model architecture shown in Fig. 1, changing the stacked
LSTM to a BLSTM would simply remove the last LSTM
layer in the stack, as each LSTM works in reverse direction
to the previous one. Finally, if the dataset has fewer than 10K
flows, using simple 1D Convolutions (i.e., mentioned in [2]
Appendix) is adequate and preferable over the LSTM layer.

C. QUIC results

We also evaluate the performance of the UW Tripartite
model on real-world QUIC data, before and after employing
the adaptation guidelines proposed in the previous subsection.

TABLE X
MODEL ARCHITECTURE ADAPTATION RULES FOR THE FLOW TIME-SERIES

PART OF THE UW TRIPARTITE MODEL

Number of flows Adaptation
<= 50K Dropout reduction
<= 20K BLSTM
<= 10K 1D Convolutions [2]

(%
)

0

25

50

75

100

Accuracy Weighted Avg.
F1-score

Weighted Avg.
Precision

Weighted Avg.
Recall

Tripartite model Adapted Tripartite model

Fig. 8. Performance for flow time-series part of the UW Tripartite model
with and without adaptations on the QUIC-05-2021 dataset

We show that these guidelines indeed improve the accuracy
of the UW Tripartite model on a dataset consisting of QUIC
flows, thus proving that our adaptation practices generalize to
encrypted protocols other than TLS.

The flow time-series part of the UW Tripartite model was
shown to acquire over 99% accuracy on a synthetic QUIC
dataset [2]. However, on our real-world QUIC data, i.e., QUIC-
05-2021, the model obtained 86.7% accuracy. Therefore, we
chose the following architectural adaptations for the model: (i)
decreasing the initial learning rate, (ii) adding a masking layer,
and (iii) reducing the dropout rate to 0.4. Fig. 8 shows the
performance of the flow time-series part of the model before
and after these adaptations.

The model achieves an accuracy of 86.7% before adaptation,
whereas the adapted model achieves 95.6%. A similar trend
is visible in other performance metrics, such as weighted
average F1-score, precision, and recall, where the adapted
model outperforms the original UW Tripartite model’s flow
time-series part by 3% to 9%. The precision for both models is
quite high, however, the main advantage of the adapted model
is correctly predicting a larger portion of flows for each class,
which results in a 9% increase in recall. Fig. 9 shows the
confusion matrices of the flow time-series part of the UW
Tripartite model and its adapted version. The recall increase
is visible in the confusion matrices, where the adapted model
achieves a higher accuracy per class. The most significant
increase is for the Resources class with 10% increase in the
accuracy.

VI. CONCLUSION

In this work, we investigated the effect of data drift on two
state-of-the-art deep encrypted traffic classification models.
We examined the robustness of these models to data drift,
providing insights about the type of drift that occurs in network
traffic data.

We showed that a model that operates on the traffic shape
is more resilient to data drift than one that operates on TLS

Authorized licensed use limited to: University of Waterloo. Downloaded on September 09,2022 at 18:10:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Confusion matrix of the flow time-series part of the UW Tripartie model (left) vs. its adapted version (right) on the QUIC-05-2021 dataset

headers. Also, we examined the impact of model architecture
and feature engineering on model robustness by comparing
the two models over the same datasets. Additionally, we
examined the impact of the application-layer protocols on
model robustness, demonstrating that the model performance
improves by selecting more stable protocols (e.g., HTTP/1,
HTTP/2) for the model to train on, regardless of dataset
collection time.

To warrant the need for architectural adaptations, we show-
cased the performance and convergence issues that arise when
a state-of-the-art architecture is trained on different datasets
with no adaptations. We examined the performance of different
parts of the model, as well as the effect of changing some
of its structural parameters, to provide best practices for
designing an architecture that performs well on unseen and
possibly newer datasets. We showed the generalizability of
our guidelines to different encryption protocols by testing the
adapted architecture on a dataset of QUIC traffic.

The adaptation approaches proposed in this paper are man-
ual. An automatic choice of parameters that leads to a robust
classifier is a direction for future work. Another direction
is to improve the generalizability of the classifier by using
transfer learning or incremental learning methods that leverage
previously learned knowledge, both to reduce training time and
increase performance on new datasets.

REFERENCES

[1] S. Rezaei, B. Kroencke, and X. Liu, “Large-scale mobile app identifi-
cation using deep learning,” IEEE Access, vol. 8, pp. 348–362, 2020.

[2] I. Akbari, M. A. Salahuddin, L. Ven, N. Limam, R. Boutaba, B. Mathieu,
S. Moteau, and S. Tuffin, “A look behind the curtain: Traffic classifica-
tion in an increasingly encrypted web,” Proc. ACM Meas. Anal. Comput.
Syst., vol. 5, no. 1, 2021.

[3] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, and
M. Saberian, “Deep packet: A novel approach for encrypted traffic
classification using deep learning,” Soft Computing, vol. 24, no. 3, pp.
1999–2012, 2020.

[4] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile en-
crypted traffic classification using deep learning: Experimental evalu-
ation, lessons learned, and challenges,” IEEE Transactions on Network
and Service Management, vol. 16, no. 2, pp. 445–458, 2019.

[5] Y. Kumano, S. Ata, N. Nakamura, Y. Nakahira, and I. Oka, “Towards
real-time processing for application identification of encrypted traffic,”

in 2014 International Conference on Computing, Networking and Com-
munications (ICNC). IEEE, 2014, pp. 136–140.

[6] R. Alshammari and A. N. Zincir-Heywood, “Can encrypted traffic be
identified without port numbers, ip addresses and payload inspection?”
Computer networks, vol. 55, no. 6, pp. 1326–1350, 2011.

[7] L. Bernaille and R. Teixeira, “Early recognition of encrypted appli-
cations,” in International Conference on Passive and Active Network
Measurement. Springer, 2007, pp. 165–175.

[8] C. Bacquet, A. N. Zincir-Heywood, and M. I. Heywood, “Genetic
optimization and hierarchical clustering applied to encrypted traffic
identification,” in 2011 IEEE symposium on computational intelligence
in cyber security (CICS). IEEE, 2011, pp. 194–201.

[9] R. Bar-Yanai, M. Langberg, D. Peleg, and L. Roditty, “Realtime
classification for encrypted traffic,” in International Symposium on
Experimental Algorithms. Springer, 2010, pp. 373–385.

[10] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A survey of methods
for encrypted traffic classification and analysis,” International Journal
of Network Management, vol. 25, no. 5, pp. 355–374, 2015.

[11] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, pp. 1–99, 2018.

[12] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” arXiv
preprint arXiv:1708.06376, 2017.

[13] A. H. Lashkari, G. Draper-Gil, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of tor traffic using time based features.” in ICISSp,
2017, pp. 253–262.

[14] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” computers & security, vol. 31, no. 3, pp. 357–374,
2012.

[15] M. Abbasi, A. Shahraki, and A. Taherkordi, “Deep learning for network
traffic monitoring and analysis (ntma): a survey,” Computer Communi-
cations, vol. 170, pp. 19–41, 2021.

[16] M. Ma, S. Zhang, D. Pei, X. Huang, and H. Dai, “Robust and rapid
adaption for concept drift in software system anomaly detection,”
in 2018 IEEE 29th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2018, pp. 13–24.

[17] S. Saurav, P. Malhotra, V. TV, N. Gugulothu, L. Vig, P. Agarwal, and
G. Shroff, “Online anomaly detection with concept drift adaptation
using recurrent neural networks,” in Proceedings of the acm india joint
international conference on data science and management of data, 2018,
pp. 78–87.

[18] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust smart-
phone app identification via encrypted network traffic analysis,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 1, pp.
63–78, 2017.

[19] W3Techs, “Historical yearly trends in the usage statistics of site
elements for websites,” Accessed Feb. 2022. [Online]. Available:
https://w3techs.com/technologies/history overview/site element/all/y

Authorized licensed use limited to: University of Waterloo. Downloaded on September 09,2022 at 18:10:43 UTC from IEEE Xplore. Restrictions apply.

