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Abstract—The adoption of virtualization in 5G and beyond
networks enables the creation of network slices tailored
to specific application requirements. While this flexibility
is transformative, it introduces new challenges in slice
management and orchestration (MANO). AI-based techniques
are becoming essential for automated slice MANO. However,
their effectiveness relies on the accuracy of network models
that map VNF configurations and resource allocations to
slice performance. Previous approaches, including simulations,
control theory, and machine learning, face limitations such as
high computational complexity, limited visibility, large data
requirements, or specific use cases, e.g., in data center networks.
In this work, we present vNetRunner, a framework for slice
modeling using individually trained virtual network function
models. We validate our framework using datasets from an
open-source 5G testbed, focusing on traffic metrics such as
mean delay and throughput. Our results demonstrate that
vNetRunner estimates mean packet delay and throughput with
Wasserstein distances of 6 ms and 0.554 Mbps, respectively,
achieving execution times that are an order of magnitude faster
than the state-of-the-art modeling approaches.

Index Terms—5G, Network Slicing, Network Digital Twins,
Deep Learning, Performance Estimation

I. INTRODUCTION

Network Function Virtualization (NFV) and Software-
defined Networking (SDN) are key enablers of 5G and beyond
networks, allowing infrastructure providers to create virtual,
isolated networks—referred to as network slices—on shared
physical infrastructure. These network slices are composed
of Virtual Network Functions (VNFs) deployed across the
Radio Access Network (RAN), transport network, and core
network, where each VNF is configured to meet specific
service requirements.1 The management and orchestration
(MANO) of these network slices faces several challenges,
including monitoring of slice KPIs [1], slice admission control
and VNF placement [2], resource allocation and scaling [3],
and fault detection and mitigation [4]. Given the complexity
of end-to-end 5G networks, AI-based approaches are emerging
as a dominant solution for automating these tasks. However,
such approaches require extensive interaction with the network
during model training, and their policies must be validated
prior to deployment in real-world settings.

1We use the terms ‘network’ and ‘slice’, as well as ‘device’ and ‘VNF’, in-
terchangeably (e.g., ‘network model’ vs. ‘slice model’, or ‘per-VNF model’ vs.
‘per-device model’).

Network simulators such as ns-3 [5], OMNeT++ [6], and
OPNET [7] offer feasible platforms for training, testing and
validating solutions. However, these simulators suffer from
significant computation complexity, often requiring hours or
even days to generate results, even for relatively small-scale
networks [8]. Although several open-source 5G testbeds, such
as OAI [9], srsRAN [10], Free5GC [11], and Open5GS [12],
offer in-lab deployment options for experimentation, they often
prove difficult to set up, configure, and maintain effectively,
presenting challenges in terms of scalability and usability.

To address these challenges, recent studies have explored
the use of Machine Learning (ML)-based models to represent
individual network elements (e.g., [13, 8]), which can then
be composed into larger network models. Such approaches
have been shown to be particularly effective in data center
environments [8]. However, these approaches are often limited
to specific use cases (e.g., data centers [8]) or rely on complex,
packet-level models that require several minutes for inference
[13]. Other studies have proposed monolithic models to rep-
resent entire networks [14, 15, 3]. Although these approaches
offer significantly faster inference, they often reply on large
datasets and often lack generalizability to unseen network
topologies or scenarios during model training.

In this work, we tackle these challenges by developing a 5G
slice modeling framework that models each VNF individually,
which are then composed into an end-to-end slice model.
Unlike [13], which emphasizes packet-level modeling, our
approach focuses on using flow-level features as the input
and output of each VNF, resulting in enhanced efficiency and
scalability. This distinction is crucial, as recent algorithms
[16, 3, 17] may require tens of thousands of interactions
with the network model to converge. Additionally, our model
outputs a distribution over flow-level features, making it
particularly well-suited for 5G VNFs, where performance
can fluctuate significantly due to unpredictable factors, such
as VNF implementation, user mobility, and varying network
conditions. We summarize our main contributions as follows.
• Per-VNF slice modeling framework: We introduce the first

device-level modeling framework, called virtual NetRunner
(vNetRunner), for 5G and beyond networks. Our approach
enables model composability, allowing seamless replace-
ment, removal, and addition of VNFs within a slice. This
modularity enhances the flexibility and scalability of slice
MANO compared to traditional network-level models.

• Comprehensive comparison with state-of-the-art models:
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We compare our device-/flow-level model against a device-
/packet-level model, and a network-/flow-level model. These
approaches are evaluated based on prediction accuracy for
key flow-level metrics, including mean delay and through-
put. Our results show that vNetRunner significantly outper-
forms state of the art in both accuracy and execution time.

• Incorporation of Mixture Density Networks: We integrate
Mixture Density Networks (MDNs) into our framework,
allowing for more robust modeling of the inherent variability
and uncertainty in 5G VNFs.

• Real-world 5G testbed evaluation: Unlike most existing
studies that rely on simulations or synthetic datasets, our
models are trained and evaluated using data from a real-
world 5G testbed. This ensures the relevance and robustness
of our proposed approach in practice.

• Publicly available containerized deployment and dataset:
To facilitate further research and reproducibility, we provide
a containerized deployment of our 5G testbed along with the
dataset used in this work.2 This will allow other researchers
to easily deploy the environment and extend our work.
The remainder of this paper is organized as follows. In

Section II, we provide a comprehensive review of the relevant
literature, and discuss the research gap we aim to address.
Section III offers a detailed exposition of the vNetRunner
framework. Section IV outlines the implementation details,
including our testbed and evaluation setup, while Section V
presents and analyzes the results. Finally, we conclude in
Section VI, where we also instigate potential future directions.

II. RELATED WORK

Network modeling can be categorized into simulation-
based, ML-based, and theoretical-model-based approaches.
The theoretical modeling approaches include network calculus,
queue-theoretic or control-theoretic network modeling but, as
discussed in [18], these approaches either lack the required
granularity or are not scalable. Therefore, this section mainly
focuses on simulation-based and ML-based approaches.

A. Simulation-based Approaches

AI-driven approaches often necessitate interactions with the
network for either training, validation, or fine-tuning. In these
scenarios, the network can be substituted with a proxy, which
may be a simulation, emulation, or a machine learning (ML)-
based model. However, ML-based network models are gen-
erally not readily available in practice [16, 19], necessitating
the use of network simulators like ns-3 [5] or OMNeT++ [6].
Although these simulators provide a feasible proxy for real
network, they come with several significant drawbacks.

Network simulators, such as ns-3 [5], operate at the packet
level, which inherently makes them computationally intensive
and time-consuming [15, 13]. Consequently, their use is often
impractical for both online optimization and offline training
of network management policies [20]. The computational
requirements are further exacerbated as the complexity and

2Deployment instructions for the testbed are available on GitHub. The
dataset is publicly available on GitHub.

scale of the simulated network grows. In some instances,
network simulation can require several orders of magnitude
more execution time compared to the real-world duration of
the simulated scenario [8].

Moreover, simulators often fall short of capturing real-
world network dynamics Liu et al. [16]. Recent works [21]
have investigated Bayesian Neural Networks and Bayesian
optimization to reduce the simulation to reality gap by se-
lectively optimizing high-discrepancy states allowing more
realistic network simulation. However, this process need may
need to be repeated for each minor alteration in the network
and solutions based on such augmented network simulators
still require online fine-tuning [16] on the real network.

B. ML-based Estimators

Machine learning-based network models can be catego-
rized based on their modularity—specifically, device-level ver-
sus network-level—and their granularity—packet-level versus
flow-level. Device-level modeling approaches, as exemplified
by Yang et al. [13], focus on modeling each network device
individually, subsequently integrating these models to simu-
late the entire network. Conversely, network-level modeling
approaches [14, 15, 3] employ sophisticated neural network
architectures, such as Graph Neural Networks (GNNs), to
model the network as a whole. Despite their sophistication,
these network-level models often struggle to generalize when
the network topology changes. Furthermore, they demand ex-
tensive datasets for training due to the vast input space, which
includes all possible combinations of VNF configurations and
resource allocations in case of end-to-end 5G slices [3].

Some methodologies, such as MimicNet [8], occupy an
intermediate position between device-level and network-level
modeling. MimicNet constructs cluster-level models that en-
compass multiple hosts and switches, which can be assembled
into a larger topology comprising several clusters. However,
this approach is limited to the FatTree topology and is hindered
by high computational complexity.

Network modeling approaches can also be categorized based
on their prediction granularity. Flow-level modeling techniques
[14, 15, 3, 17] focus on predicting flow-level metrics, yet they
lack the capability to provide insights into packet-level metrics,
such as per-packet delay and packet drop rates. Despite this
limitation, flow-level metrics are generally sufficient for most
AI applications [3, 16, 19]. In contrast, packet-level modeling
approaches, such as those proposed by Yang et al. [13], are
capable of predicting detailed packet-level metrics, including
per-packet delay. However, this increased granularity comes
at the cost of higher computational complexity, resulting in
inference times that can range from several seconds to several
minutes. This may be too high for algorithms that require
thousands of interactions with the network model [17, 16].

Our proposed vNetRunner framework, falls in the device-
level and flow-level category, which has not been sufficiently
explored. Also, it is potentially the ideal option (cf., Sec-
tion V) in the context of AI-based 5G slice MANO due to
its high accuracy and low computation complexity. One of the
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limitations of device-level/flow-level models is their inability
to account for different routing configurations, unlike packet-
level models, which can handle packet forwarding through
tensor multiplication [13]. However, this limitation may be
less significant in the context of 5G network slices, as they
primarily consist of sequential chains of VNF.

III. VNETRUNNER FRAMEWORK DESIGN

In vNetRunner, each VNF is modeled individually, and
these individual models are then connected by passing the
output of an upstream VNF as the input to the downstream
VNF, creating an end-to-end model of a network slice. Fig. 1
provides an overview of the vNetRunner framework.

This design enables the seamless addition, removal, or re-
placement of VNFs by simply swapping out the corresponding
VNF model within the end-to-end slice model. Furthermore,
because the input set for a single VNF (i.e., traffic distribu-
tions, VNF configurations, and resource allocations) is con-
siderably smaller than that of a monolithic slice model, which
must account for all possible combinations across multiple
VNFs, the dataset required for training is significantly reduced.
This modularity enhances both the flexibility and scalability
of the vNetRunner framework.
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Fig. 1: vNetRunner overview

A. VNF Modeling

The VNF models are trained using datasets generated by
injecting traffic into 5G VNFs under various resource alloca-
tions and configurations, while capturing both the input and
output packet streams (i.e., PCAPs). Following data collection,
feature extraction is conducted to convert the raw packet
captures into feature vectors suitable for ML models. These
feature vectors encompass flow-level metrics, such as packet
size, packet rate, throughput, and inter-arrival time, among
others. In this work, we propose employing MDNs for VNF
modeling, leveraging their capability to represent complex,
arbitrary distributions [22].

Mixture Density Networks. Let 𝒙 = [𝑥1, · · · , 𝑥𝐷] ∈ R𝐷

represent the traffic feature vector comprising 𝐷 features, and
let 𝒓 = [𝑟1, · · · , 𝑟𝑅] ∈ R𝑅≥0 denote the resource allocation
vector consisting of 𝑅 resources. Note that 𝒓 can be extended

to include VNF configurations as well. The objective of VNF
modeling is to learn the function 𝑓𝜃 (𝒙, 𝒓), parameterized by
weights 𝜃, which captures the relationship between the VNF’s
resource allocation 𝒓, the ingress traffic feature vector 𝒙 =

𝒙in, and the egress traffic feature distribution parameters. The
output traffic feature vector 𝒙out can then be sampled from the
distribution specified by 𝑓𝜃 (𝒙𝑖𝑛, 𝒓).

In our previous work [3], we proposed approximating the
function 𝑓𝜃 (x, r) using a normal distribution, where the dis-
tribution parameters were learned through a neural network.
However, a single normal distribution may be insufficient to
capture the complexity of real-world data distributions. To ad-
dress this limitation, we extend our approach by incorporating
MDNs. MDNs allow the model to learn the parameters for a
mixture of multiple normal distributions, i.e., N𝑘 (𝜇𝑘 , 𝜎𝑘) for
𝑘 = 1, . . . , 𝐾 , along with their corresponding mixture weights
(𝜋𝑘), representing the probability that the output is drawn from
the 𝑘 th normal distribution. The resulting distribution can then
be expressed as a weighted sum of these distributions:

𝑝(𝒙out |𝒙in, 𝒓) =
𝐾∑︁
𝑘=1

𝜋𝑘 ·
1

√
2𝜋𝜎𝑘

exp

(
− (𝒙out − 𝜇𝑘)2

2𝜎2
𝑘

)
, (1)

where 𝜇𝑘 and 𝜎𝑘 are functions of 𝒙in and 𝒓.
For a sufficiently large value of 𝐾 , an MDN is capable of

approximating an arbitrary distribution [22]. Let 𝐵 denote the
size of a training batch, and {(𝒙 𝑗in, 𝒓

𝑗 ), 𝒙 𝑗out} denote the 𝑗 th

data sample. The loss for the model is then computed as:

𝐿 = − 1
𝐵

𝐵∑︁
𝑗=1

log 𝑝(𝒙 𝑗out |𝒙
𝑗

in, 𝒓
𝑗 ). (2)

Differentiable Sampling. The differentiability of VNF
model is highly advantageous for approaches that rely on
gradient-based optimization, as it allows for seamless integra-
tion with optimization techniques that leverage model gradi-
ents [3]. If the model is analytically differentiable, existing au-
tomatic differentiation libraries, such as [23], can be employed
to efficiently compute model gradients with respect to various
objectives (e.g., minimizing resource allocation or optimizing
VNF configuration for specific traffic distribution). After the
model predicts the output traffic feature distribution, the output
traffic vector can be obtained via random sampling from this
distribution. However, with MDNs, two key operations in
the random sampling process are non-differentiable. The first
non-differentiable operation is sampling from a categorical
or discrete distribution, i.e., the random selection of the 𝑘 th

distribution N𝑘 (𝜇𝑘 , 𝜎𝑘) from which to sample. The second is
the random sampling from the selected distribution.

To address the first challenge, we propose the method
introduced by Graves [24]. This method leverages a multi-
variate quantile transform, allowing gradients to be propagated
through the mixture weights (𝜋𝑘) in a differentiable manner.
The second challenge can be addressed by employing the
reparameterization trick [25], which reformulates the random
sampling process in a differentiable manner. This technique
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expresses the sampling operation as a linear transformation of
the model outputs (i.e., 𝝁 = {𝜇𝑘}𝐾𝑘=1 and 𝝈 = {𝜎𝑘}𝐾𝑘=1), and a
noise term 𝝐 ∈ R𝐷 drawn from a standard normal distribution
N(0, 1). The reparameterized sample is then computed as
𝒙out = 𝝁 + 𝝈𝝐 .

IV. IMPLEMENTATION

In this section, we describe the implementation of our
network slicing testbed, shown in Fig. 2. More detailed de-
scription of our testbed is available in [3].

A. Testbed Infrastructure

The testbed is implemented on a three-node Kubernetes
cluster. The physical machine hosting the RAN is the most
powerful, featuring 32 CPU cores and 32 GB of RAM. The
transport network and core are hosted on Intel NUC PCs, each
equipped with 8 CPU cores and 16 GB of RAM. The three
nodes are interconnected through a 1 Gbps NETGEAR switch.
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Fig. 2: Overview of our 5G testbed

B. 5G Network Implementation

RAN. The 5G RAN is implemented using the srsRAN
project [10], an open-source software that provides a 3GPP
Release 17 (R17) compliant gNB. User Equipments (UEs)
are emulated with srsUE [26]. Instead of physical radios, we
use virtual radios from srsRAN to facilitate communication
between the gNB and UEs. Additionally, GNU Radio Com-
panion is utilized to manage uplink and downlink signals.

Core. The 5G core network is based on Open5GS [12], an
open-source implementation of 3GPP R17. Network functions,
including AMF, SMF, UPF, and NRF, are containerized and
deployed on a Kubernetes cluster. In our network slicing
scenario, each slice has dedicated UPF and SMF, while other
functions such as AMF and NRF are shared.

Transport. The transport network employs a software-defined
VXLAN overlay using Open vSwitch (OvS) [27] on the
underlying physical network. Integration of the 5G network
functions with this overlay is achieved via the OvS CNI plugin
for Kubernetes.

C. Management and Control

MANO. Kubernetes v1.29 is used for MANO of the 5G
network, encapsulating the various 5G functions, including
RAN, in lightweight containers. These containers are dynam-
ically deployed, scaled, and managed across the distributed

cluster, offering flexibility and scalability. The Kubernetes API
facilitates the placement of network functions and the creation
of network slices with desired topologies. Linux cgroups are
used to dynamically manage the CPU resources for these
network functions.

SDN Controller. The ONOS SDN controller [28] is employed
to manage the routing of network flows within network slices.
By interfacing with OvS switches in the VXLAN overlay,
ONOS directs slice traffic through OvS queues at specific
rates, enabling bandwidth slicing capabilities.

D. Dataset Collection

To generate the dataset for training VNF and slice models,
we inject Poisson-distributed traffic into the UPF, Transport
(OvS), and RAN VNFs. Since open-source per-VNF imple-
mentations of the RAN are not yet available, we treat entire
RAN as a single VNF. However, vNetRunner can be extended
to include per-VNF modeling for the RAN once such im-
plementations become available. Additionally, since the UPF
requires significantly lower CPU resources compared to the
RAN, we do not perform CPU resource allocation for the
UPF. The Poisson traffic is generated with rates ranging from
1 Mbps to 40 Mbps, in 5 Mbps increments. For synchronizing
the time between different machines, we use NTP [29]. For
each traffic profile, VNF resources are varied, and the resulting
output traffic is captured as PCAP files. Data is collected
for 60 seconds for each combination of traffic and resource
allocation. The captured PCAP files are then pre-processed to
extract feature vectors representing flow-level and packet-level
metrics, which serve as input and output for the VNF and slice
models.

V. PERFORMANCE EVALUATION

A. Comparison Approaches

Network-level Modeling with Flow-Level Metrics: To rep-
resent approaches that utilize a single ML model for the entire
network, we train a model that predicts output traffic features
based on input traffic features and resource allocation. Similar
to [14, 15, 3, 17], this model predicts flow-level metrics for
the slice’s egress traffic given the ingress traffic feature vector
and VNF resource allocations. As discussed in Section II, this
model requires a large amount of data for training. Therefore,
for a fair comparison, we ensure that the size of the dataset
used for training this model matches the size of that used to
train vNetRunner. We refer to this approach as Net-Flow.

Device-level Modeling with Packet-level Metrics: To capture
approaches that model each network element individually, we
train a separate model for each VNF based on the architecture
proposed in [13]. This architecture includes a Bidirectional
LSTM for encoding, followed by an attention mechanism, and
another Bidirectional LSTM for decoding. Unlike vNetRunner,
each device model takes a per-packet feature vector as input
and predicts per-packet delay and packet drop. The overall
slice model is constructed by sequentially modifying the
packet streams using the output of each VNF model, with the
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TABLE I: Hyperparameters for vNetRunner and Net-Flow
Models

Approach VNF Model Hidden Layers Num.
Gaussians

vNetRunner RAN Feature model [128, 64, 32] 2
vNetRunner UPF Feature model [64, 32] 2
vNetRunner OvS Feature model [128, 64, 32] 2
vNetRunner RAN Delay model [128, 64, 32] 3
vNetRunner UPF Delay model [64] 2
vNetRunner OvS Delay model [128, 64, 32] 3

Net-Flow N/A Feature model [64, 64] 1
Net-Flow N/A Delay model [128, 64, 32] 3

TABLE II: Hyperparam. for Dev-Pkt Models

VNF LSTM
Width

Num. Attn.
Heads

Attn.
Dim

Window
Size

UPF [128, 64, 32] 3 32 10
RAN [128, 64, 32] 3 32 10
OvS [128, 64, 32] 3 32 10

modified packet stream serving as the input for the next VNF
in the sequence. The same dataset used to train vNetRunner is
employed to train this model. We optimize the model using a
combination of mean squared error and binary cross-entropy
loss. This method is referred to as Dev-Pkt.

B. Hyperparameters

For the flow-level approaches (i.e., Net-Flow, vNetRunner),
we train two distinct models for each VNF using the collected
dataset (cf., Section IV-D). The first model, referred to as the
feature model, follows the design outlined in Section III. The
second model focuses on predicting packet delay. Unlike the
feature model, the output of the delay model is not used as
input to subsequent VNFs. Instead, the delay predicted by each
VNF model is accumulated to calculate the total end-to-end
delay for the slice. The hyperparameters used for both models
are listed in Table I, with their values determined through
experimentation and fine-tuning.

For the packet-level models (i.e., Dev-Pkt), we only train
a single model per VNF to predict the per-packet delay and
drop. The hyperparameters for these VNF models are given
in Table II. All the models are trained with a learning rate of
0.0001 for 30K–50K epochs until the loss converges.

To train and validate the VNF and slice models, the col-
lected data is segmented into 1-second windows for feature
extraction and prediction. For the VNF models, the test dataset
is constructed using combinations of resource allocations and
traffic intensities that are not present in the training set. This
approach is employed to assess the generalization capability
of the models across unseen conditions, ensuring robust per-
formance beyond the training distribution.

C. Performance Evaluation of Per VNF Model

Model Training. In this subsection, we compare the VNF
models for vNetRunner (i.e., Dev-Flow) against those for
Dev-Pkt. Figures Fig. 3a and Fig. 3b illustrate the training
and validation losses for both the vNetRunner and Dev-Pkt
approaches, specifically for the RAN VNF model. Note that

vNetRunner is trained using negative log probability loss (Eq.
(2)), while Dev-Pkt is trained using a combination of mean
square error for delay prediction and binary cross entropy for
packet drop prediction. From these plots, we observe that the
training and validation losses decrease consistently as training
progresses and eventually converge to similar levels. This
indicates that the models do not suffer from overfitting or
underfitting. The VNF models’ losses for UPF and OvS exhibit
similar trends. Therefore, we omit their discussions for the
sake of brevity.

Regression Plots. We validate the models by plotting
regression plots in Fig. 3c–3h. In these plots, the x-axis rep-
resents the ground truth, while the y-axis shows the predicted
average values. Predictions that fall closer to the x = y line
are considered more accurate. Since packet delay ranges from
milliseconds to tens of seconds, we use logarithmic scales
for both axes in the delay plots. The plots also display the
Pearson correlation coefficient (𝜌), which quantifies the linear
relationship between the ground truth and the predicted values.

Analyzing the regression plots for the RAN and OvS
VNF models (Fig. 3c–3f), we can observe that Dev-Pkt
produces a higher number of inaccurate predictions compared
to vNetRunner. For both of the VNFs, we can see that Dev-Pkt
tends to under-predict the throughput. However, the correlation
between the ground truth and the predictions for Dev-Pkt
is higher for delay models, indicating that while Dev-Pkt
demonstrates reasonable accuracy in learning packet delay, it
struggles with modeling packet drops, which impacts through-
put estimation. In contrast to RAN and OvS, the regression
plots for the UPF (Fig. 3g and Fig. 3h) do not follow the same
trend. Since no resource allocation is performed for the UPF
(cf., Section IV-D), it results in almost zero packet loss (i.e., in-
put throughput equals output throughput). Consequently, both
vNetRunner and Dev-Pkt achieve near-perfect throughput and
delay estimation for the UPF. Notably, the Dev-Pkt Pearson
correlation for the UPF delay (Fig. 3h) marginally exceeds that
of vNetRunner, suggesting that packet-level approaches might
perform better when the learning task is relatively simple.
This implies that such approaches could benefit from larger
datasets and more complex models when dealing with more
challenging VNF models.

Wasserstein Distance. To quantify the distributional per-
formance, we compute the Wasserstein distance (W-distance)
between the predicted and ground truth distributions, as shown
in Fig. 4. Given the wide range of delay values, from millisec-
onds to tens of seconds, we calculate W-distances for specific
delay and throughput thresholds, i.e., we limit the ground truth
delay and throughput under specific values and compute the
W-distance for the corresponding predictions.

For the RAN delay (Fig. 4b), both vNetRunner and Dev-
Pkt perform quite well. For delay values under 10 ms
(10−2 s), vNetRunner achieves a W-distance of approximately
0.0385 ms, while Dev-Pkt has a slightly higher W-distance
of 0.112 ms. Although vNetRunner performs better than Dev-
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(e) OvS throughput reg. plot
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(f) OvS delay reg. plot
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(g) UPF throughput reg. plot
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Fig. 3: Loss and Regression plots for VNF models’ throughput and delay
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(b) RAN delay W-distance
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(c) OvS throughput W-distance
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Fig. 4: Wasserstein distance for VNF models

Pkt, both approaches achieve a small W-distance relative to
the ground truth. This trend is maintained across larger delay
thresholds, such as 10 s where vNetRunner and Dev-Pkt show
a W-distance of 0.105 s and 0.371 s, respectively.

For the OvS delay metrics (Fig. 4d), vNetRunner also con-
sistently achieves lower W-distances, while Dev-Pkt struggles
at lower delay thresholds. Specifically, for a delay threshold
of 1 ms, vNetRunner records a W-distance of 0.0402 ms,
while Dev-Pkt’s W-distance is 1.53 ms. This means that
vNetRunner’s W-distance is approximately 38 times smaller
than that of Dev-Pkt, showcasing its significant edge in this
context. Even for higher thresholds like 100 s, vNetRunner
maintains a W-distance of 0.0268 s, compared to 0.235 s for
Dev-Pkt, representing an 88.6% reduction. However, at higher
thresholds, the relative scale of the error (W-distance) is quite
small compared to the ground truth for both approaches.

When considering throughput metrics, the performance
gap between the two approaches consistently remains high
across most throughput limits. For example, in Fig. 4a, for
RAN throughput under the threshold of 5 Mbps, vNetRunner
achieves a W-distance of 0.135 Mbps, while for Dev-Pkt, it
reaches 2.48 Mbps. This suggests that vNetRunner reduces the
deviation by approximately 94.5% compared to Dev-Pkt. Sim-
ilar trends are observed for OvS throughput thresholds, where
at 35 Mbps, vNetRunner’s W-distance is 0.0954 Mbps versus
Dev-Pkt’s 4.16 Mbps, representing a significant improvement
of roughly 97.7%.

For the UPF, it is noteworthy that the ground truth delay
values are significantly lower compared to RAN and OvS.
Nevertheless, from Fig. 4f and Fig. 4e we can see that both
vNetRunner and Dev-Pkt demonstrate good performance. At
a delay threshold of 1.48e-05 s, vNetRunner achieves a W-
distance of 4.36e-07 s, compared to 6.64e-07 s for Dev-Pkt.
On the other hand, for UPF throughput, vNetRunner performs
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Fig. 5: Slice model throughput regression plots
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Fig. 6: Slice model delay regression plots

worse (i.e., higher W-distance) compared to Dev-Pkt. For
example, for a throughput threshold of 5 Mbps, vNetRun-
ner records 0.0253 Mbps, while Dev-Pkt achieves 1.13e-05
Mbps, highlighting a significant gap. However, these errors
are negligible compared to the ground truth value. For UPF
delay, vNetRunner exhibits slightly lower Pearson correlation
(Fig. 3h), but also a lower W-distance (Fig. 4f) compared
to Dev-Pkt. This suggests vNetRunner has more variability
in capturing the linear trend, but its overall distribution of
predictions aligns more closely with the true delay values.

D. Performance Evaluation of End-to-End Slice Model

Model Training. For slice modeling, we composed the
individually trained VNFs for device-level approaches to form
a complete slice-level (or network-level) model. Additionally,
we trained a single network-level model (Net-Flow), as dis-
cussed in Section V-A. Fig. 7 shows the training and validation
loss for the Net-Flow model, where, similar to the VNF
models, we observe a steady decrease in both losses as training
progresses, converging after 30K epochs.

Regression Plots. We validated the slice models by plotting
their regression plots, shown in Fig. 5 and Fig. 6. Compar-
ing these to the VNF regression plots, we notice a higher
occurrence of outliers across all approaches, indicated by
the scattered points deviating from the 𝑥 = 𝑦 line. For
device-level approaches (Dev-Pkt, vNetRunner), this behavior
is attributed to error compounding as the models are connected
sequentially. Additionally, the delay regression plots exhibit
more inaccurate predictions compared to the throughput plots.
For the Net-Flow model, the outliers are a result of the model’s
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Fig. 7: Net-Flow model loss (negative log probability Eq. (2))

requirement for a significantly larger dataset to generalize
effectively to unseen inputs.

In the throughput regression plots (Fig. 5), we can see
that vNetRunner delivers the most accurate predictions, fol-
lowed by Net-Flow and Dev-Pkt. This is further supported
by the Pearson correlation (𝜌) between the predicted and
actual distributions. For the delay plots, despite the higher
frequency of inaccurate predictions, vNetRunner maintains a
strong relationship between the input and output, reflected in
its high correlation value. In contrast, both Dev-Flow and Net-
Pkt exhibit a larger number of inaccurate predictions and a
notable drop in correlation values.

Wasserstein Distance. To numerically quantify the per-
formance of the different slice modeling approaches, we
plot their Wasserstein distance (W-distance) results, shown
in Fig. 8, using the same methodology discussed in the
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previous subsection. As expected, vNetRunner maintains the
lowest W-distance for both throughput and delay metrics. In
terms of throughput (Fig. 8a) vNetRunner maintains a W-
distance of less than 0.554 Mbps across the entire range of
throughput thresholds. Specifically, at 45 Mbps, vNetRunner
achieves 0.554 Mbps, compared to 2.709 Mbps for Dev-Pkt
and 2.297 Mbps for Net-Flow. This represents an improvement
of approximately 79.5% and 75.9%, respectively, over Dev-Pkt
and Net-Flow.

For delay metrics, vNetRunner also outperforms the other
approaches significantly, especially at lower thresholds. From
Fig. 8b, we can see that when delay is limited to 10 ms
(10−2 s), vNetRunner achieves a W-distance of 0.0827 ms,
while Net-Flow and Dev-Pkt record 2.34 ms and 10.58 ms.
This means that vNetRunner’s W-distance is 96.5% lower than
Dev-Pkt and 96.5% lower than Net-Flow. These differences are
especially critical for usecases that require ultra-low latency
e.g., URLLC (Ultra-Reliable Low Latency Communication)
slices. At higher delay limits, the predictions of all models
become relatively more accurate. For example, when the delay
is limited to 1 second, vNetRunner records a W-distance of
80.88 ms, Net-Flow achieves 60.16 ms, and Dev-Pkt records
175.85 ms. In this scenario, vNetRunner still maintains an
edge, but Net-Flow also provides relatively competitive per-
formance compared to Dev-Pkt, whose W-distance remains
54.0% higher than vNetRunner.

Overall, from Fig. 8, we can see that vNetRunner demon-
strates consistently lower W-distances compared to both Dev-
Pkt and Net-Flow across delay and throughput metrics. This
highlights vNetRunner’s effectiveness in accurately modeling
the slice behavior, particularly under stringent thresholds.

Execution Time. As discussed in Section I, most AI-based
network management approaches can require tens of thousands
interactions with the network model for convergence. This
makes the speed up the different approaches provide over the
real network critical. Therefore, in this subsection, we compare
the execution time of vNetRunner with Net-Flow and Dev-Pkt.
For this, we tested each method over a real-world scenario
lasting 100 minutes. For device-level approaches, we ensured
that the upstream VNF model process the entire input stream
before passing it to the downstream VNF. In this setup, Net-
Flow, vNetRunner, and Dev-Pkt achieved execution times of
0.774s, 5.90s, and 340s, respectively. These results translate
to speedups of more than 7500-fold, 1000-fold, and 17-fold.
The long execution time of Dev-Pkt is due to several time-
intensive operations on the entire packet stream, including
adding delays to packets, removing dropped packets, sorting
the output stream, and performing feature extraction using a
sliding window. This indicates that Dev-Pkt’s execution time
scales poorly as the data rate (i.e., the number of packets)
increases. While parallelization can significantly reduce exe-
cution time for packet-level approaches, it can still range from
several seconds to minutes [13].
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Fig. 8: Slice models’ Wasserstein distance plots

VI. CONCLUSION

This paper presents vNetRunner, a novel per-VNF slice
modeling framework tailored for 5G and beyond networks. By
focusing on flow-level features for individual VNFs, vNetRun-
ner significantly reduces the computational complexity and
improves scalability compared to packet-level models, and
reduces the dataset requirement compared to device-level mod-
els. Additionally, unlike network-level models, vNetRunner
enables model composability, allowing seamless replacement,
removal, and addition of VNFs within a slice. Our evaluation
demonstrates that vNetRunner not only achieves high accu-
racy in estimating key performance metrics like delay and
throughput but also offers significant speedup in execution
time, making it well-suited for real-time applications. Future
work could explore modeling VNFs from different open-
source projects, hybrid packet-level and flow-level models,
and using vNetRunner for network 5G slice management tasks
such as slice admission control and resource allocation.
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