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Abstract—Network Data Analytics Function (NWDAF) plays
a key role in autonomous network management and security
using machine learning (ML) techniques. However, not all ML
methods such as convolutional neural networks, deep language
models can be deployed in the core network due to their
high computational requirements. Besides, telcos may prefer
handing over ML analytics to experienced third parties instead
of implementing themselves. In this paper, we show that delay-
tolerant tasks of NWDAF can be offloaded to public third
party cloud providers while preserving user and data privacy
by employing homomorphic encryption (HE). We focus on the
problem of abnormal behaviour detection for a group of user
equipment (UE) and train various DL models with plaintext
data. We demonstrate that inferencing on encrypted data is as
accurate and precise as plaintext inferencing and we quantify
the performance degradation in terms of running times. We
believe that offloading NWDAF tasks to the cloud allows telcos
to focus on expanding their core capabilities, and reduce capital
and operational expenditures.

Index Terms—5G, NWDAF, Privacy-Preserving, Deep Learn-
ing, Homomorphic Encryption

I. INTRODUCTION

The increasing number of connected devices and the emer-
gence of new applications with diverse requirements bring
unprecedented challenges to both mobile access and core
networks [1]. These challenges pertaining to the need for
flexibility and scalability are due to the fact that current mo-
bile network functions are strongly coupled with specialized
hardware [2]. 5G mobile networks are designed following
a service-oriented architecture where network elements are
decomposed and modularized into network functions that
offer their services via restful web interfaces [3]-[5]. In
this approach, software-defined networking (SDN) [6] and
network function virtualization (NFV) [7] are respectively
employed to decouple the network control and data planes
and to implement network functions in virtual machines
or containers running on commodity hardware. Leveraging
cloud and edge computing, 5SG networks achieve enhanced
flexibility, scalability and deployability compared to tradi-
tional networks, and are able to meet diverse application
requirements thanks to network programmability [8].
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The above flexibility and programmability come at the cost
of increased management complexity for network operators.
Network automation using data-driven analytics is widely
adopted as a means to tame management complexity. Towards
this aim, Network Data Analytics Function (NWDAF) has
been standardized in Release 15 of 3GPP and is continuously
enhanced in subsequent releases. NWDAF collects network
statistics, metrics and events automatically and produces
insights about the network. NWDAF takes snapshots of the
network dynamically; it measures the performance of services
and functions, models and processes the data, and shares
analytics results with other network functions. Meaningful
network and user information is created from the collected
data using artificial intelligence (AI), machine learning (ML)
and data mining techniques [9]. This way NWDAF facilitates
autonomous network operation, efficient resource manage-
ment, enhanced service quality, reliability and security.

NWDAF, as defined in Release 17, consists of the fol-
lowing logical functions for leveraging AI/ML: Analytics
Logical Function (AnLF) and Model Training Logical Func-
tion (MTLF). AnLF is responsible for performing inferences,
deriving and exposing analytics. AnLF requires the models
from MTLF whose responsibility is to train and deploy
ML models and exposing training service. Due to dynamic
nature of the network and data, MTLF self-monitors provided
models’ performances and initiates re-training or re-designing
processes when required. In Release 17 [9], there can be more
than one NWDAF instance in the network, and an instance
has either AnLF, MTLF or both functionalities combined. An
NWDAF instance can be the consumer of another instance.
For example, NWDAF instance with only AnLF can make
use of provided models from other instances with MTLF.

Most studies on NWDAF assume that network providers
cannot rely on third party cloud computing for their data
analytics services due to data privacy concerns. However,
recent advances in cryptography have made it possible to
both train ML models and make inferences without violating
data privacy. Offloading NWDAF functionalities, especially
delay-tolerant ones, to third party cloud providers will enable
network operators to be more agile, concentrate on their
core capabilities while reducing hardware requirements and
keeping up with the ever-growing demands of resources [10].
This is thanks to with cloud elasticity and ability to provision

167

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 16:39:43 UTC from IEEE Xplore. Restrictions apply.



resources on demand.

There may be cases where ML models, especially Deep
Learning (DL) models, cannot be deployed in the core net-
work due to their high computational needs. Additionally,
network operators may prefer to delegate implementation of
ML models to third parties that have expertise in this area
rather than implementing them by themselves. In such cases,
NWDAF could rely on models that are trained or deployed
in public clouds. A significant issue that can arise from
using public cloud computing services is data privacy since
cloud services may be vulnerable to data breaches [11] and
insider attacks [12]. Preserving data privacy can be achieved
with homomorphic encryption (HE) that allows to perform
computations on encrypted data thereby eliminating the risk
of exposing sensitive data.

As the main contribution of this paper, we show that
NWDAF can employ DL models on public cloud servers
while preserving privacy of data and their owners by employ-
ing HE. To demonstrate the feasibility of this approach, we
focus on the problem of detecting abnormal user behaviour.
We trained various DL models for abnormal user behaviour
detection and evaluate their performance and limitations when
using DL with HE. Furthermore, we quantify the performance
degradation traded off for preserving user and data privacy.

This paper is organized as follows. Section II presents the
user abnormal behaviour detection problem, discusses related
work, our proposed architecture for privacy-preserving ana-
Iytics on NWDAF, and explores investigate HE libraries and
frameworks compatible with DL while describing the dataset
and our DL models. Section III introduces our evaluation
methodology, describes performed experiments and discussed
obtained results. Finally, Section IV concludes the paper and
points out future directions for privacy-preserving NWDAF
analytics.

II. ANOMALY DETECTION FOR A GROUP OF USER
EQUIPMENT (UE)

The focus of this paper is on one of the use cases
of NWDAF, namely the Abnormal Behaviour Information
(anomaly) for a Group of UEs which is believed to be crucial
for network security and service quality. Hijacked or misused
UEs can be the cause of abnormal behaviour, e.g. abnormal
traffic patterns, unexpected UE locations, unexpected transac-
tion dispersion amounts, wrong destination addresses. 3GPP
does not define how NWDAF will detect those abnormalities
and leaves the implementation to service providers.

In [13], Yuan et al. provide an extensive literature review of
anomaly detection techniques in 5G with or without consid-
ering NWDAF. The reviewed anomaly detection techniques
include supervised, semi-supervised and unsupervised ML
techniques. Each has its own advantages and disadvantages.
Supervised learning methods such as DL can be effective
in achieving more accurate detection but require labeled
data. Semi-supervised and unsupervised learning methods are
particularly useful when there are insufficient or no labeled

Third Party
Model Inferencing

Clowd ________F. Privacy ‘@ _ _ _ _ _______.
Secure Model i Homomorphic
Deployment/Training Encryption
NWDAF

MTLF | AnLF | AF

iy

Figure 1: NWDAF architecture where MTLF either securely
deploys trained model to the cloud or initiates secure model
training on the cloud, and AnLF makes inferences on the
cloud models with encrypted inputs.
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data. However, their performances can be insufficient for
example when the data have high intra-class differences.

Although ML heavily depends on data, the literature still
lacks comprehensive datasets for NWDAF use cases even
though network data analytics services were first introduced
in 3GPP Rel-15 late 2017. In [14], Sevgican et al. address
this issue by providing a publicly available synthetic dataset!
which can be used for two of the standardized NWDAF use
cases: network load level prediction; and anomaly detection.
We discuss details of the dataset in Section II-B and how it
is in this work. The authors also provide a supervised ML
solution for network load prediction and network anomaly
classification. Linear regression, long short-term memory
(LSTM), and recursive neural network (RNN) are used for
prediction whereas logistic regression and eXtreme Gradient
Boosting (XGBoost) are used for anomaly detection [14].

In our work, we devise the architecture shown in Figure 1
for Abnormal Behaviour Detection for a Group of UEs where
NWDAF instances make use of third party cloud computing
services while preserving data-privacy. MTLF’s secure model
deployment to cloud services or its secure model training
initiation process are not detailed in this paper for the sake
of conciseness. Model training is done on plaintext data and
we focused on AnLF’s secure model inferences conducted on
encrypted data using homomorphic encryption. We evaluate
the performance of this approach under various configurations
and compare our results with the work of Sevgican et al [14].

A. Privacy Preservation in Deep Learning

The theory of HE dates back to 1970s [15] but was
considered impractical. However, the breakthrough by Craig
Gentry [16] in 2009 and subsequent improvements in both
theory and implementations together with general hardware
advances paved the way for the use of HE in practice with
performance improvements by up to five orders of magni-
tude [17]. For instance, multiplication time of ciphertexts has
been decreased from 30 minutes to less than 20 milliseconds.

Uhttps://github.com/sevgicansalih/nwdaf_data
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Advances in HE enabled many real-world applications in
various domains but most importantly it led to the develop-
ment of HE libraries, compilers and frameworks empowering
non-expert in cryptography to develop their own secure and
privacy-preserving applications. The authors of [17] describe
these HE libraries, compilers and frameworks and how they
are used in their evaluations.

In our work, we adopt the Intel’s graph compiler for Ar-
tificial Neural Networks with HE-backend (nGraph-HE) [18]
[19] which supports CKKS encryption scheme implemented
by the Simple Encrypted Arithmetic Library (SEAL) from
Microsoft Research [20]. This choice is motivated by the
fact that it simplifies working on pre-trained neural networks
for making privacy-preserving inferences by abstracting FHE
operations such as key generation, encryption, and decryption.

Even though the framework simplifies private inferencing,
there are engineering challenges related to the framework,
SEAL library and HE. One of the challenges comes from
HE where HE computations are, by definition, data indepen-
dent and this restricts branching on data. This also prevents
the usage of significant DL methods such as the ReLU
activation function, or the minimum and maximum pooling
layers in convolutional neural networks. Such DL models
trained under these constraints are referred to as HE-friendly
models. Another challenge comes from configuring SEAL
which offers leveled HE operations. A wrong configuration
of the parameters will result in private inferencing different
from what is expected since the library does not implement
bootstrapping which is an important technique for refreshing
ciphertexts to reduce the noise to a fixed level.

B. Dataset

The synthetic dataset used has 6 fields: time period, net-
work area information as cell identifier, subscription category,
user equipment type, data rate and anomaly information. A
row of the data contains the information about data rate of
group of personal equipment within the specific subscription
category connected to a particular cell in a specific time period
together with whether there is an anomaly or not. There are
five types of personal equipment: IoT device, vehicle, cell
phone, smart watch, and tablet computer. There are three
subscription categories which are platinum, gold, and silver.
The authors of the dataset used fixed topology with 5 cells
together with their adjacency information, and they applied
mobility of user equipment when generating the data while
considering personal equipment type, subscription category
and time of day. For example, mean handover ratio of IoT
device is much more lower than that of the vehicle due to the
nature of these equipment, and mean handover ratios are the
lowest between 22:00 and 06:00 as humans are less likely
to move around at night time. Sevgican et al. considered
rush hours (07:00-09:30 and 16:00-20:00) where personal
equipment have lower handover ratios compared to other
time of the day except night time since the increased traffic

Zhttps://github.com/MarbleHE/SoK
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Figure 2: One day sample from the dataset redrawn from [14].

affects our daily lives and mobility. In addition, data rates vary
between subscription categories and personal equipment. For
example, people tend to buy better subscription categories for
their cell phones rather than for their IoT devices.

Cell phones have the highest data rate while smart watches
have the lowest data rate. The authors generate the dataset
by aggregating each type of personal equipment with their
subscription category within the cell. Then, they simulate the
mobility of each personal equipment with their subscription
categories with specified handover ratios between adjacent
cells, and their aggregated data rates are used in dataset. In
addition, they add anomalies to specific time periods which
results in unexpected increase in network traffic and the
anomaly fades and stabilizes in time.

Aggregated data rates of each cells can be seen in Figure 2a
where the spikes represent anomalies in the data. In Figure 2b,
we show the data rates of each personal equipment type
connected to cell 1. Data rate of cell phone is the highest
among personal equipment types. In Figure 2c, we show the
data rates of cell phone and vehicle connected to cell 1 and
their data rates are separated by their subscription categories.
Dots on the curves show that there is an anomaly in the data.

C. Deep Learning Models

Dataset has been pre-processed before used in the DL
models. Time and load values are normalized between zero
and one. Also, RRU cell, subscription category and personal
equipment identifiers are converted into one-hot vectors. The
main reason for pre-processing of dataset is to decrease
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overfitting and underfitting of HE-friendly neural networks
due to their limited capabilities. We observed that normalizing
the data and using one-hot vectors for categorical data had
improved the trained models accuracy, and also, decreased
overfitting, and especially, underfitting probabilities. Since
HE-friendly neural networks cannot directly use one of the
most essential part of the deep learning models, namely the
ReLU activation function, the data was underfitting to our
models. Even though, we have not used convolutional layers
in our model, HE-friendly DL models could not directly
make use of some of the pooling types such as minimum
and maximum pooling since branching is not possible on the
encrypted data when HE is employed.

Considering the restrictions of HE and DL, our models
use dense layers followed with polynomial activation function
except the last layer. Outputs of the last layer is used in
categorical cross-entropy loss function with the Adam op-
timizer with default values (0.001 learning rate, 0.9 51 and
0.999 (52) as a stochastic gradient descent (SGD) method.
Our models take input data such as time, load, RRU cell,
subscription category and personal equipment information to
predict whether the given data has anomaly or not. Polyno-
mial activation functions have two learnable parameters as
follows. The weights (i.e., learnable parameters) have been
initialized with the He normalization, also known as Kaiming
initialization introduced by He et al. in [21]. Both L1 and L2
regularization methods are applied on kernel and bias weights
in order to reduce overfitting and underfitting.

Another limitation of the HE is that the number of multipli-
cation operations performed on the encrypted data is limited
as the error (noise) on ciphertext accumulates with each
multiplication and the result will eventually become unreliable
and impossible to decrypt. Hence, the number of dense and
activation layers are kept low.

After the plaintext model training and validation, nGraph-
HE framework is used for plaintext and ciphertext inferenc-
ing. First, the framework converts Tensorflow computations
into computational graph and depending on the experiment
type (i.e., plaintext or ciphertext inferencing), the framework
converts computations on the graph into related operations
using SEAL. For example, multiplications between inputs and
weights are converted into HE multiplication operation be-
tween ciphertext and plaintext implemented by SEAL. Then,
the framework configures key generation, encryption and
decryption processes of input if the framework is configured
to work with HE scheme.

III. RESULTS AND DISCUSSION

The ultimate goal of this paper is to show that encrypted
data can be used for inference and achieve similar results to
previous works that use plaintext data. We argue that some
of the functionalities of NWDAF in 5G networks can be
offloaded to third party cloud providers while preserving data
privacy. In this perspective, we used nGraph-HE framework
to test trained DL models for inferencing on encrypted
data. In addition to comparing ciphertext inferencing with

plaintext inferencing in terms of success and computational
time overhead, experiments with various configurations are
conducted to analyze impact on the results and runtimes.

A. Methodology

We used 70% of the dataset for training, 21% for validation,
and 9% for evaluating the performance of our models on
both plaintext and ciphertext data. Multiple neural network
models with similar architectures, but with a different number
of layers and parameters are evaluated together with a com-
bination of encryption parameters. There are a total of 102
different experiment configurations where each configuration
was run at least 20 times, and the results such as running
times, accuracy and precision were averaged.

nGraph-HE and SEAL related encryption parameters are
the degree of the polynomial modulus, coefficient modulus,
security level and complex packing. The polynomial modulus
degree represents the degree of a power-of-two cyclotomic
polynomial. Coefficient modulus is an integer modulus which
is constructed as a product of multiple distinct prime numbers
whose bit-lengths are described in the configuration. Security
level can be 128, 192 and 256 bits representing the security
level of the encryption scheme. With the complex packing en-
abled, throughput is doubled by taking advantage of the com-
plex components of the plaintext encoding map. The choice of
encryption parameters significantly affects the performance,
capabilities, and security of the encryption scheme. Using a
larger polynomial modulus together with complex packing
will allow to work on more elements without decreasing the
security level while decreasing the performance.

Experiments were run on an Intel Xeon Silver 4114 server
with 2.20GHz CPU and 64GB RAM. In the experiments,
different models are trained and the resulting models are
used with different configurations in plaintext and ciphertext
inferencing. There are 6 different models where there are
2 different layer counts together with 3 different parameter
count options. Using models with 5 and 7 layers were
observed to be sufficient for this task. The former model
has 3 dense layers followed with 2 activation layers except
the last (output) layer whereas the latter model has 4 dense
layers followed with 3 activation layers except the last layer.
The number of the layers can be increased when dealing
with much more complex problems, but polynomial modu-
lus and coefficient modulus parameters must be configured
accordingly since arithmetic operations on the encrypted data
accumulates the error, and the results may deviate after a
certain number of operations due to lack of bootstrapping. In
the sequel, we present the experimental results to analyze the
impact of various parameters of HE on the runtime.

B. Impact of Polynomial Modulus Degree, N

In Figure 3, we present the averaged and amortized run-
times of a model with 5 layers and 452 trainable parameters
and the ciphertext inferencing is done with 128-bits security
level and three different polynomial modulus degrees (/V):
13, 14, and 15. Since polynomial modulus degree determines
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Figure 3: Running times of a DL model with 5 layers and
452 parameters with 128-bits security where three different
polynomial modulus (N) degrees are compared.
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Figure 4: Running times of a DL model with 5 layers and
888 parameters with polynomial modulus degree of 14 where
three different security levels are compared.

the maximum input size (2N—1), it is observed that increas-
ing polynomial modulus degree increases the total runtime.
However, amortized runtime of an input decreases with the
increase of polynomial modulus degree.

C. Impact of the Security Level

In Figure 4, we show the averaged and amortized runtimes
of a model with 5 layers and 452 trainable parameters and
the ciphertext inferencing is done with polynomial modulus
degree of 14 and three different security levels: 128-bits,
192-bits and 256-bits. It is observed that changing security
level does not affect the total runtime. It is important to keep
the same number of the coefficient modulus. Otherwise, the
configuration with higher number of coefficient modulus will
perform slower regardless of its security level.

D. Impact of DL Layers

In Figure 5, the averaged and amortized runtimes of four
different models with 5 and 7 layers where their trainable
parameter counts are close to 450 and 880 are presented, and
the ciphertext inferencing is done with polynomial modulus
degree of 15 and security level of 192-bits. It is observed
that introducing new layers into the DL models or increasing
the parameter count in the DL models increase the running
times. The parameter count increases the number of arithmetic
operations (i.e., multiplication, summation) executed on the
encrypted data. However, the layer count has much more im-
pact on the running times as it also increases the multiplicative
depth of the encrypted data.
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Figure 5: Running times of 4 different DL models with layer
counts of 5 and 7, approximately 450 and 880 parameters
with polynomial modulus degree of 15 and 192-bits security
level where numbers of parameters and layers are compared.
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Figure 6: Running times of a DL model with 7 layers and
1200 parameters with polynomial modulus degree of 15 and
256-bits security level where complex packing feature is
compared.

E. Impact of Complex Packing

In Figure 6, we present the averaged and amortized run-
times of testing the complex packing option with a model of
7 layers and 1200 parameters where ciphertext inferencing
is done with polynomial modulus degree of 15 and 256-
bits security level. When complex packing is disabled, the
maximum input number is equal to 2V~! where N is the
polynomial modulus degree. The maximum input number is
doubled when complex packing is enabled. Therefore, aver-
aged running time increases with enabling complex packing.
Yet, complex packing reduces the amortized running time.

F. Evaluation of the Privacy Preservation

The average time for training a DL model with plaintext
data together with validation step is 24.98 £ 2.87 seconds
where it takes 5 epochs to train a DL model. As shown in
the experiment results, inferencing on encrypted data with HE
increases computational time cost due to the nature of HE.
Averaged and amortized runtimes of inferencing on plaintext
and ciphertext data are shown in the Table 1. Privacy preserv-
ing inferencing with HE increases computational runtimes by
the magnitude of 5 in terms of amortized runtimes whereas it
increases running time by the magnitude of 6 on the average
without considering amortized running times.

Average accuracy and precision values for training, vali-
dation and testings of all experiments are shown in Table II.
Average plaintext and ciphertext testing accuracy and pre-
cision values are equal to 0.776 £ 0.01. Average approx-
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imation value between plaintext and ciphertext inferencing
is 1.271 x 1078 £ 2.59 x 1078, It can be concluded that
the accuracy and precision difference between plaintext and
ciphertext output values is negligible.

Table I: Averaged and amortized time results of experiments.

Plaintext
Time 103.47 + 44.57 ms
Amortized 0.01 £+ 0.006 ms

Ciphertext
653.47 £+ 376.13 ms
0.049 + 0.018 ms

Table II: Experiments’ average accuracy and precision results.

Training Validation Plaint. & Ciphert.
Accuracy | 0.775+0.002 | 0.775 %+ 0.006 0.776 £ 0.01
Precision | 0.775+0.004 | 0.774 £ 0.006 0.776 £ 0.01

Sevgican et al. states in [14] that their base logistic re-
gression algorithm achieves 0.556 accuracy and 0.769 preci-
sion while their XGBoost algorithm achieves 0.626 accuracy
and 0.773 precision. Average plaintext and ciphertext testing
accuracy and precision values are 0.776 £ 0.01. Comparing
the results of both works, it can be concluded that using
encrypted data with HE for inferencing does not decrease the
trained model’s accuracy and precision although it introduces
a running time overhead. The abnormal behaviour detection
for a group of UEs can be executed in a public cloud while
preserving data privacy. However, the use of HE is restricted
to the analysis of historic data and we have to enhance the
performance of HE-based schemes for real-time application
settings.

IV. CONCLUSIONS

This paper proposed offloading delay-tolerant tasks of
NWDAF to third party (public) cloud service providers
while preserving data privacy using homomorphic encryption
schemes. This allows telecom operators to be more agile,
to focus on their core capabilities, and to reduce capital
and operational expenditures. Even though NWDAF was first
introduced in late 2017, the literature still lacks network data
that can be used for NWDAF use cases. In light of this
shortcoming, we have used a synthetic NWDAF dataset which
contains abnormal behavior information for a selected group
of UEs, and various deep learning models are trained and
tested with both plaintext and ciphertext data. We showed that
inferencing with ciphertext data is as successful as inferencing
with normal plaintext data and its accuracy and precision
are similar to or slightly better than results of previous
works with the same data. In addition, we evaluated both
runtime and amortized running time effects of encryption
and DL parameters through extensive experiments and show
that preserving privacy increases both averaged amortized
runtimes and running times by 5 and 6 times, respectively.

In the future, our work can be extended to use ciphertext
data for both model training and inferencing in the cloud, and
to evaluate communication costs, security threats along with
the computational overhead. These extensions will further
affirm our belief that both model training and analytical
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functionalities of NWDAF instances can be offloaded to third

party cloud providers while preserving the privacy of the

network and user data.
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