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Abstract
An important function of collaborative network intrusion de-
tection is to analyze the network logs of the collaborators for
joint IP addresses. However, sharing IP addresses in plain is
sensitive and may be even subject to privacy legislation as it is
personally identifiable information. In this paper, we present
the privacy-preserving collection of IP addresses. We propose
a single collector, over-threshold private set intersection pro-
tocol. In this protocol N participants identify the IP addresses
that appear in at least t participant’s sets without revealing
any information about other IP addresses. Using a novel hash-
ing scheme, we reduce the computational complexity of the
previous state-of-the-art solution from O(M(N logM/t)2t) to
O(t2M

(N
t

)
), where M denotes the dataset size. This reduc-

tion makes it practically feasible to apply our protocol to
real network logs. We test our protocol using joint networks
logs of multiple institutions. Additionally, we present two
deployment options: a collusion-safe deployment, which pro-
vides stronger security guarantees at the cost of increased
communication overhead, and a non-interactive deployment,
which assumes a non-colluding collector but offers signifi-
cantly lower communication costs and applicable to many use
cases of collaborative network intrusion detection similar to
ours.

1 Introduction
Many cyberattacks are coordinated and target multiple vic-
tims. An analysis from the security company Risk Analytics
shows that 75% of attacks on institutions spread to a second
institution within one day, and over 40% spread within one
hour [23]. It is difficult for standalone intrusion detection sys-
tems to identify large scale threats due to lack of contextual
information [28]. This underscores the need for collaborative
network security, where institutions share and compare secu-
rity data (logs, alerts, indicators) to quickly identify common
threats.

A considerable body of work exists on collaborative threat
detection [52, 53, 28] as well as privacy preserving collabo-
rative threat detection [29, 32, 45]. However, until now the
research focused on sharing alerts, anomalies, and indicators
with other institutions. This approach assumes that the individ-

ual intrusion detection systems locally filter the raw network
data such as IP logs, connections etc., and only report the "out-
of-ordinary" events to other institutions. Zabarah et al. [50]
demonstrated that analyzing raw network data across multiple
institutions can reveal attacks that would go undetected by
individual institutions alone. However, the biggest challenge
for this approach is privacy. The problem is twofold. First, the
raw data is significantly more sensitive than security alerts be-
cause it contains personally identifiable information. Second,
the raw data is orders of magnitude larger than security alerts,
making any existing solution computationally unfeasible. We
propose a protocol that addresses both of these problems.

Zabarah et al. [50] found that a large portion of cyberattacks
are typically initiated from a small number of IP addresses
that are external to the institutions. Moreover, an external IP
address initiating a connection to the institution’s internal
nodes is an atypical behavior if this connection is not for a
publicly advertised service such as a website. Following these
characteristics, Zabarah et al. propose a simple criterion with
95% recall rate for detecting multi-institution attacks. If an
external IP connects to at least t institutions within a specific
time window, it is classified as malicious, where t is an empir-
ically decided threshold. This solution is simple and effective.
However, it requires institutions to share their network logs,
which creates the aforementioned privacy concern.

We address the privacy concern with an efficient Over-
Threshold Multiparty Private Set Intersection (OT-MP-PSI)
protocol. OT-MP-PSI is a cryptographic problem where N
participants each hold a set that contains at most M elements.
These participants want to know which elements appear in at
least threshold t number of sets without revealing any informa-
tion about elements that do not meet this threshold. Figure 1
shows a visualization of the problem. This problem is a direct
abstraction of the Zabarah et al.’s [50] approach. The insti-
tutions do not want to share possibly benign IP addresses,
but they are willing to share the IP addresses appearing in
multiple institutions, and are likely malicious.

While OT-MP-PSI has other applications such as heavy hit-
ter identification within the network [24, 31, 11], private file
deduplication on cloud [48] or identifying high-risk individu-
als in the spread of disease [6], this paper uses the problem
of multi-institution attacks as the main focus and subject of
evaluation.
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Figure 1: The OT-MP-PSI protocol visualization for parame-
ters N = 6,M = 5, t = 3

Kissner and Song proposed the first solution to the OT-MP-
PSI problem [26]. However, their solution requires a high
number of communication rounds and it is computationally
expensive. Specifically, their protocol requires O(N) com-
munication rounds, has O(N3M) communication complexity,
and O(N3M3) computation complexity. This makes it imprac-
tical for real-life applications with large data sets because it
requires each participant to have significant computational
resources and to be online for the duration of the protocol.
Additionally, the sequential nature of the protocol hinders
the scalability as adding more compute resources does not
directly result in faster execution times.

Mahdavi et al. [34] introduce a solution with a constant
number of rounds and better communication complexity.
However, their scheme still imposes impractically high com-
putational costs for our use case.

In this work, we propose an OT-MP-PSI protocol that out-
performs the previous state-of-the-art solution [34] by factors
ranging from 33× to 23,066× in terms of computational over-
head. This efficiency improvement enables the practical usage
of the protocol in the collaborative network intrusion detec-
tion problem because the nature of the problem requires the
processing of large IP address sets as each institution receives
connections from hundreds of thousands of IP addresses ev-
ery hour. In a setting with 33 participating institutions and
at most 144,045 IPs connecting to any institution, the sys-
tem can detect malicious IPs in 170 seconds, as we show in
our experiments. The previous state-of-the-art solution [34]
requires multiple days to complete the same computation.

We use Shamir’s secret sharing [47] to reveal identical
items that are over the threshold. Shamir’s secret sharing al-
lows a secret data item to be split into many shares such that
any size-t subset of the shares can be used to reconstruct the
original secret. However, subsets smaller than t do not reveal
anything about the original secret. We make every participant
create a single secret share for each element they own, and
then combine these secret shares among participants to find
the elements that exist in t or more sets. The main challenge
with this approach is that all t combinations of secret shares
must go through the reconstruction process to find the shares
corresponding to the same set element because secret shares
do not reveal anything about the underlying set element. A

naive approach requires
(N

t

)
Mt different combinations. Mah-

davi et al. [34] uses a binning technique that reduces the
necessary combinations to O(M(N logM/t)2t). As our main
contribution, we introduce a new hashing scheme that reduces
this number to O(tM

(N
t

)
) linear in M and hence scalable to

real problem sizes.
Moreover, we show that our protocol efficiently handles the

case where the threshold is equal to the number of participants
(t = N) with a computational complexity of O(N2M). This
problem is of independent interest [6, 37].

We prove the protocol’s security under the semi-honest mul-
tiparty computation model. The semi-honest model prevents
many practical attacks, such as eavesdropping by participants,
but can be extended to the malicious model to handle ac-
tive adversaries. However, even under the malicious model,
private set intersection protocols remain vulnerable to input
substitution attacks, which can reveal targeted information.

For network efficiency and ease of deployment, the protocol
uses a dedicated Aggregator that combines the secret shares
with some negligible leakage about the contents of the sets.
We will explain precisely what this leakage is in Section 3.

We offer two separate deployment options for our protocol:
collusion-safe option and non-interactive option. Collusion
safe option requires constant rounds of interactions and has
more communication overhead but it resists collusions. The
non-interactive option has a much simpler structure and less
communication overhead but it assumes the aggregator is
non-colluding.

We implement our protocol and evaluate its performance
on real-world network connection logs from CANARIE IDS
program [10] to show its practicality.

The remainder of this paper is structured as follows. We
define the security model and describe some preliminary cryp-
tographic concepts in Section 2. We explain the use case of
the protocol in detail and provide the formal functionality of
the protocol in Section 3. We present the main challenges,
our approach, and the formal description of our protocol in
Section 4. We give a formal analysis of the failure probability
of our new hashing scheme in Section 5. We prove our pro-
tocol’s security and show its efficiency with both theoretical
analysis and experimental results in Section 6. We review
related work in Section 7 before we conclude our findings
and discuss future work in Section 8.

2 Preliminaries

2.1 Security Model
We follow Goldreich’s definition where a semi-honest party
adheres to the established protocol but records all its interme-
diate calculations and any messages it receives from other par-
ties [19]. We say a protocol is secure under the semi-honest
model if each party cannot gain any other information ex-
cept the intended output of the protocol. More formally, let
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f : ({0,1}∗)n 7−→ ({0,1}∗)n be an n-ary functionality, where
fi(x1, ...,xn), denotes the ith element of f (x1, ...,xn). Let Π

be an n-party protocol for computing f . The view of the ith

party during an execution of Π on x = (x1, ...,xn) is defined
as V IEW Π

i = (xi,m1, ...,mt) where mi represents the ith mes-
sage it has received. We say that Π privately computes f with
respect to the semi-honest model if there exists a polynomial-
time algorithm, denoted SIM, such that for every i ∈ [n]

{SIM(xi, fi(x)}x∈({0,1}∗)n
c≡ {V IEW Π

i (x)}x∈({0,1}∗)n (1)

where
c≡ denotes computationally indistinguishable.

2.2 Shamir’s Secret Sharing

The objective of secret sharing is to divide a secret value
V into n shares so that it can be reconstructed when a spe-
cific subset of these shares is combined. In a (t,n)-threshold
scheme, any group of t parties can collaborate to retrieve
the secret value V using their shares, while any group with
fewer than t members cannot gather any information about
the secret, regardless of their efforts to collude.

In Shamir’s secret sharing [47], the distributing party gen-
erates t− 1 values {ci}i∈[t−1] chosen at random from some
finite field Fq of prime order q and forms the polynomial

P(x) = ct−1xt−1 + ct−2xt−2 + ...+ c1x+V (2)

The distributing party generates n secret shares by evaluat-
ing P at n publicly-known distinct values. For instance, the
secret share for party Pi (with i ∈ Fq) is Vi = (i, f (i)). Since
t points uniquely determine a polynomial of degree t − 1,
anyone possessing t shares Vi can recover the secret V using
Lagrange interpolation:

V =
t

∑
i=1

(
Vi ·

t

∏
j=1, j ̸=i

− j
i− j

)
(3)

In our protocol, we leverage Shamir’s secret sharing to
indicate the existence of a set element only if at least t sets
include that element.

2.3 Oblivious Pseudo Random Function
(OPRF)

An Oblivious Pseudo-Random Function (OPRF) is a protocol
between a key holder that holds a secret key K and a partic-
ipant that holds an input x, where the participant learns the
result of the Pseudo-Random Function HK(x) without learn-
ing anything about the secret K, and the key holder does not
learn anything about the input x or the value of HK(x). In
our protocol, we use the following 2HashDH OPRF proto-
col introduced by Jarecki et al. [22]. Let H and H ′ be two

cryptographic hash functions.

Participant Key Holder
r←R Zq

a← H(x)r a−−−−−−−−−−→ b← aK

Output: H ′(x,b1/r)
b←−−−−−−−−−−

This protocol obliviously evaluates H ′(x,H(x)K). We can ex-
tend this protocol to multiple key holders with the following:
the participant runs the protocol with the same input for all k
key holders and combines the output by multiplying them.

H ′
(
x,H(x)K1 ·H(x)K2 · · ·H(x)Kk

)
= H ′

(
x,H(x)K1+K2+···+Kk

)
=HK1...Kk(x)

2.4 Oblivious Pseudo Random Secret Sharing
(OPR-SS)

Oblivious Pseudo-Random Secret Sharing (OPR-SS) [34] is
a protocol that combines share generation and reconstruction
properties of secret sharing and the security properties of the
OPRFs. It allows participants to get a secret share from key
holders, unique for their input and their identity, without key
holders learning anything about the input or the secret share,
and without participants learning anything about the secret
keys of key holders. Later, any t secret shares from t different
participants with the same input can be used to reconstruct
the original value. The functionality of the OPR-SS is given
in Figure 2.

The functionality is parameterized by a threshold t, the
number of key holders k and a value V .
Input of PPPiii: The participant Pi provides the input s
Input of each KKKHHH jjj: Each key holder KH j provides t se-
crets {K j,1, . . . ,K j,t}.
Functionality: The functionality computes the polynomial

PK1,...Kk
s (i) =V +

t−1

∑
m=1

im ·H(s)K1,m+K2,m+···+Kk,m

Output to PPPiii: The secret share PK1,...Kk
s (i).

Output to each KKKHHH jjj: Nothing.

Figure 2: Oblivious Pseudo-Randon Secret Sharing (OPR-
SS) Functionality FOPR−SS

In our use case V is a public value that is set to 0. Recon-
structing 0 from t different secret shares will indicate that
they correspond to the same input.

3 Use Case
Detection of multi-institution cyberattacks is a critical issue
faced by organizations today. Institutions that share a com-
mon context, such as universities within the same country or
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hospitals in the same city, often become simultaneous targets
of malicious actors. Attackers typically leverage vulnerabili-
ties across multiple organizations simultaneously, aiming to
maximize their gains before these vulnerabilities are patched.
Leveraging this intuition, Zabarah et al. [50] introduced an
effective indicator with a 95% recall rate, which counts the
number of distinct institutions contacted by an external IP
address within a predefined time window. If this count ex-
ceeds an empirically determined threshold t, the IP address is
classified as malicious. This approach is used in practice, due
to its simplicity and general applicability, as it requires only
monitoring external IP addresses without relying on specific
attack signatures.

CANARIE [10] is an institutional internet provider that
powers the network of 700+ Canadian research and educa-
tional institutions. The CANARIE IDS Program [10] is a col-
laborative initiative between CANARIE, and 106 Canadian
research and education institutions. The program collects and
analyzes participating institutions’ network logs for intrusion
detection purposes. It has deployed the indicator proposed
by Zabarah et al. [50] and uses it to identify potential threats.
However, participating institutions currently send their logs
to CANARIE in plaintext so that IP addresses connecting
to multiple institutions can be identified. This centralized,
plaintext log-sharing model is also common in commercial
outsourced Security Operations Centers, so the situation is not
unique to our setting. Although straightforward, this method
poses significant privacy risks. Institutions are hesitant to
share complete network logs because these logs contain per-
sonally identifiable information and sensitive operational data
unrelated to security threats. The aggregator, learning the
entire dataset, obtains far more information than necessary.
This also creates a compliance problem with privacy laws
around the world. Many jurisdictions, including the European
Union’s GDPR [15], Canada’s PIPEDA [14], and California’s
CCPA [27], classify IP addresses as personally identifiable
information, limiting their sharing and processing without
explicit consent. While these regulations allow exceptions for
cybersecurity purposes, such exceptions are permitted only
when strictly necessary.

Our protocol addresses these privacy and compliance chal-
lenges by enabling institutions to collaboratively identify IP
addresses appearing in at least t institutional datasets, indi-
cating potential malicious activity, without disclosing any IP
addresses below this threshold. Consequently, institutions can
privately and securely detect multi-institution attacks with-
out entrusting a single aggregator with unrestricted access to
sensitive data.

We assume that all parties are semi-honest, which means
participants adhere to the protocol but may try to learn addi-
tional information beyond their intended output. Our proto-
col offers two deployment options: collusion-safe and non-
interactive.

Collusion-safe deployment includes participants, key

holders, and the aggregator. Some participants may also serve
as key holders. In this topology, participants connect directly
to the aggregator in a star configuration, key holders connect
to all participants, and at least one key holder connects to all
other key holders. This deployment assumes at least one key
holder does not collude with the aggregator and requires a
constant number of interactions. In practice, this deployment
option is most useful when no neutral third party exists to
serve as the Aggregator because it allows one of the partici-
pants to act as the Aggregator.

Non-interactive deployment eliminates the key holders
and assumes a non-colluding aggregator. Participants may
still collude among themselves. This deployment option is
useful when there is a neutral, semi-trusted party that can act
as the Aggregator, such as our use case with the CANARIE
IDS Program [10].

The functionality is parameterized by a threshold t, the
number of participants N, and number of key holders k.
Let P = {P1, . . . ,PN} be the set of participants, and A be
the aggregator. If using the collusion-safe deployment, let
KH = {KH1, . . . ,KHk} be the set of key holders.
Input of each PPPiii: Each participant Pi provides a set
Si ⊆ S, where S is the universe of possible elements (e.g.,
IPv4/IPv6 addresses).
Input of AAA: The aggregator A provides no private input.
Input of each KKKHHH jjj: The key holders provide no private
input.
Functionality: The functionality computes the sets

I = {s∈ S | s appears in at least t of the sets {S1, . . . ,SN}}.

B = {(b1, . . . ,bN) |

{
bi = 1 if s ∈ Si

bi = 0 otherwise

}
∀s ∈ I}

Output to each PPPiii: Each participant Pi receives the set
I∩Si.
Output to AAA: The aggregator A receives the set B.
Output to each KKKHHH jjj: Nothing.

Figure 3: OT-MP-PSI Functionality FOT−MP−PSI

As shown in Figure 3, only the over-threshold elements are
revealed to the participants and the aggregator only learns the
existence of the over-threshold elements among participants.
With this functionality, institutions can safely collaborate to
detect multi-institution attacks without compromising the
privacy of their complete network logs. In our use case of
collaborative intrusion detection, the participants identified
to be involved in an attack would share the identified poten-
tially malicious IP addresses with other participants and the
aggregator through a threat sharing platform such as MISP1,
identify the significant threats with severity estimation and

1https://github.com/MISP/MISP
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Table 1: Notations
Pi := ith Participant
S := Domain of elements
Si := Set of elements held by the participant Pi

si, j := jth element in the set Si
A := Aggregator

H(·) := Cryptographic hash function
HK(·) := Hash-based message authentication code

(HMAC) with key K
hK() := The keyed hash function used to map ele-

ments into bins
Ps(x) := Polynomial used for secret share creation

K := Symmetric secret key used by participants

Protocol Parameters

N := Number of participants
t := Threshold

M := Maximum number of elements in each set
k := Number of key holders

take precautions using next-threat prediction as sugested by
Zabarah et. al. [50].

4 Protocol
We first present a high-level overview of our OT-MP-PSI pro-
tocol. The principal idea is that all participants create a secret
share for each element in their set and send these shares to
the Aggregator. The Aggregator can only reconstruct secrets
that have t or more shares. If a successful reconstruction hap-
pens, the Aggregator then informs the participants who sent
the secret shares about the reconstruction to indicate that the
underlying element is in the over-threshold intersection. This
approach has a couple of challenges.

4.1 Using the same polynomial
We need to coordinate the use of Shamir’s secret sharing, but
the security of our protocol would be compromised if there
was a central party that straightforwardly creates the shares,
because the participants would have to disclose their set ele-
ments to this party to get a secret share. The OPR-SS protocol
described in Section 2.4 is a good solution for this problem.
This approach provides resistance to collusion but it is inter-
active. We also use a simpler approach that is non-interactive
but less collusion resistant. In the non-interactive deployment,
participants communicate a secret key K among themselves,
which is not disclosed to the Aggregator, and they produce the
coefficients of the polynomial themselves using a keyed hash
function, as described in Equation 4. Here we secret share
the value 0, similar to the OPR-SS protocol. This allows the

aggregator to identify the successful reconstructions. Because
if the shares correspond to the same element, they reconstruct
the number 0, and if not, they reconstruct a random element
of Fq.

PK
s (i) = 0+

t−1

∑
j=1

H j
K(s)i

j (4)

Where s is the set element, i is the identifier of the participant
Pi, H is the hash-based message authentication code (HMAC)
function, K is the secret key, and the superscripts of HK indi-
cate iteration, i.e., H i

K(s) = HK(H i−1
K (s)). In our use case, the

protocol uses IPv4/IPv6 addresses directly as the domain of
elements without any preprocessing or mapping. With this ap-
proach, the Aggregator does not learn more than the intended
output of the protocol as long as it is non-colluding.

4.2 Reconstruction Complexity
If we naively send all secret shares to the Aggregator, the
Aggregator would need to try

(N
t

)
Mt , an exponential number

in t, different combinations to find all matching shares in all
cases. We cannot use polynomial-time decoding algorithms
for error-correcting codes, such as the list decoding [46] or
Berlekamp-Welch’ algorithm [49], because they may fail, if
the number of elements exceeds the threshold t, but does not
reach the decoding threshold for the error-correcting code.
Comparing exponentially many combinations is infeasible
if the set sizes M are large, even if the exponent t is rather
low. We need to give the Aggregator some hint on how to
combine the shares, but if we just put an identifier (e.g. keyed
hash of the element) alongside the secret share, then the pro-
tocol would leak the similarity distribution of the sets and
the Aggregator could see which sets have how many over-
lapping elements, even when those elements are under the
threshold. This is more information than the intended output
of our protocol.

A common approach to this problem is to put the shares into
bins using a hash table. In this way, the Aggregator has to only
try t-sized combinations of shares that are from the same bins.
However, in order to not leak any distribution information,
participants have to pad all of the bins with dummy shares so
that all of the bins are equal in size. This approach reduces
the complexity to O(M(N logM/t)2t), as shown by Mahdavi
et al. [34]. Empirically, the maximum bin size, corresponding
to the logM term in the complexity, carries large constants.
This prevents the system from scaling to our problem size.

As the main contribution of this paper, we introduce a new
hashing algorithm. We use hash tables (hereafter, simply ta-
bles) with bins of size 1 to map the secret shares. Instead of
accommodating hash collisions with bigger bin sizes, we se-
lect one of the secret shares that map into the same bin using
a pseudo-random ordering and only put that secret share into
the table. Consequently, a single table will be missing some
of the secret shares. Each participant creates multiple such
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tables. The motivation is that if participants create enough
tables, missing values in one table will appear in others, and
the probability of failure can be bounded to an acceptably low
value with minimal cost. The main advantage of this approach
is that the Aggregator does not need to try combinations of
shares. It only needs to try combinations of participants. After
selecting t participants, the Aggregator applies Lagrange in-
terpolation to the shares corresponding to the same table and
bins (e.g., the first participant’s first table’s first bin and the
second participant’s first table’s first bin). An illustration of
the new hashing scheme is shown in Figure 4. We show that
if the size of each table is set to t×M and each participant
produces 20 tables (with some additional optimizations), the
probability of getting an incorrect result is smaller than 2−40.
We explain this hashing scheme in detail and show the failure
probability in Section 5.

Figure 4: The new hashing scheme. Every participant creates
multiple tables, P is the polynomial function, hK is the keyed
hash function used for mapping, and HK is the keyed hash
function used for pseudo-random ordering. The tuples in
boxes represent the points on the polynomial, i.e. secret shares,
and light gray numbers represent the dummy shares.

4.3 Protocol Description
Combining the solutions of these challenges, we describe our
protocol as follows:

4.3.1 Non-Interactive Deployment

Let K be the symmetric key held by all participants
PPPiii ∀i ∈ {1, . . . ,N}. Let hK : {0,1}∗ 7−→ [Mt] be the keyed
hash function used for mapping the elements to the tables. Let
HK be the hash-based message authentication code (HMAC)
function with key K, and let r be the id of the current execution
of the protocol.

1. Each participant PPPiii creates a table called Shares. It has
20 sub-tables and each sub-table has Mt bins. We denote
the xth bin of the yth sub-table as Shares[y][x]. Partic-
ipants fill the tables according to Equation 5 for each

element si, j in their set and for each α ∈ {1, . . . ,20}.

if HK(α,si, j,r)≤ HK(α,s,r)

∀s ∈ {s ∈ Si : hK(α,s,r) = hK(α,si, j,r)} (5)

then Shares[α][hK(α,si, j,r)] = PK
α,si, j ,r(i)

2. All PPPiii fill up the empty bins in Shares with random bits,
then send the tables to the Aggregator AAA.

3. After receiving N Shares tables, AAA takes every t combi-
nation of PPPiii and checks if the shares in the same bins
produce a valid secret.

4. For each PPPiii, AAA sends the indexes of valid reconstructions
in the Shares table that PPPiii has sent.

5. Each participant PPPiii matches the indexes with the under-
lying elements in their set Si and get their output Si∩ I.

4.3.2 Collusion-safe Deployment

For the collusion-safe deployment, participants do not hold a
symmetric key. All the secret shares PK

α,si, j ,r(i) are computed
with the OPR-SS protocol described in Section 2.4 and in-
stead of the keyed hash functions HK and hK , the multi key
OPRF protocol described in Section 2.3 is used. Since HK
and hK uses the same inputs for the same elements, a single
OPRF call is used to produce both values. All the interactive
rounds of the OPR-SS and OPRF protocols for each element
is batched together to achieve constant number of interactions.
The rest of the protocol is identical with the non-interactive
deployment.

4.4 Privacy of Set Sizes
Our core protocol do not consider participant’s set sizes as
private information. So by default, participants communicate
their set sizes in plaintext and find the max set size M before
running the protocol. If set sizes are private for a particu-
lar use case, then M could be decided with a differentially
private process. However, this process would need to add pos-
itive noise to M since underestimating M will break the core
protocol, and this positive noise will adversely affect the per-
formance of the core protocol because the runtime complexity
is dependent on M.

5 Analysis of Our Hashing Scheme
In this section, we analyze our new hashing scheme described
in Section 4.3 designed to efficiently address the complexity
of the matching problem. The challenge lies in the fact that
the secret shares, by definition, do not reveal the underlying
element, making it difficult to select a matching combination.
In our hashing scheme, each participant places their secret
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shares into bins of size 1 using a hash function. Consequently,
the Aggregator needs to process only one share per participant
that fall into the same bin instead of selecting all subsets
among a larger set.

In cases of hash collisions, where multiple elements map
to the same bin, we must select a single element from those
that collide. Rather than choosing this element randomly,
we employ an additional hash function to establish an order
among the shares and then select the smallest one according to
this order. This method increases the likelihood that different
participants will choose the same element for a given bin.

Participants repeat this process to create multiple tables
using a distinct mapping hash function and ordering hash
function for each table. Our goal is to limit the probability
of missing an intersection to an acceptably low level by re-
randomizing the mapping and ordering for each table. We
set our target failure probability to 2−40 as 40 is a common
statistical security parameter [13, 7, 30].

We first show that if the size of the table is set to M× t, the
probability of missing an intersection is a constant number
smaller than 1 for a single table. Let h : {0,1}∗ 7−→ [Mt]
denote the mapping hash function, H denote the cryptographic
ordering hash function, and sharesi denote a single sub-table
of the participant Pi.

Given a set element si, j ∈ Si of the participant Pi, let p
denote the probability of H(si,k)< H(si, j) for a random si,k ∈
Si. Since the output distribution of H is uniform, p can be
calculated with the following equation:

p :=
H(si, j)

max(H)

The probability that a random set element si,k maps to the
same bin as si, j is given by

P(h(si, j) = h(si,k) | si, j) =
1

Mt

The probability that a random set element si,k blocks si, j, that
is, si,k maps to the same bin and is smaller than si, j in the
ordering:

P
(
(h(si, j) = h(si,k) and H(si,k)< H(si, j) | si, j

)
=

p
Mt

To calculate a lower bound for the probability that si, j will
be placed in the table, we raise the probability that si, j is
not blocked by a random element to the Mth power because
|Si| ≤M.

P
(

H(si, j)< H(s) ∀s ∈ {s ∈ Si : h(si, j) = h(s)} | si, j

)
= P(si, j ∈ sharesi) =

(
1− p

Mt

)|Si|−1
≥
(

1− p
Mt

)M

With large M, the expression
(
1− p

Mt

)M approximates e−p/t

and for M > 50 this approximation does not affect any of
our results. We now calculate the probability that t different

participants will put si, j in the table given that si, j is in their
sets. This is because, for a successful reconstruction, all par-
ticipants that have the set element have to put the element into
the same table. Since all participants use the same ordering
hash function for the same table, the p values will be the same,
so we can raise the e−p/t to the tth power to calculate this
probability.

P(si, j ∈ sharesk ∀k∈[t] | si, j ∈ Sk ∀k∈[t])≥
(

e−p/t
)t

= e−p

From this equation, it follows that the probability of failure
for a particular set element is less than or equal to 1− e−p,
given that this element exists in t different sets.

To calculate the probability of failure for any set element,
we treat p as a continuous random variable with a uniform
distribution between 0 and 1.

P(fail | p)≤ 1− e−p

P(fail)≤
∫ 1

0
(1− e−p)d p = e−1 ≈ 0.3678

This shows that the probability of failure, more explicitly, the
probability of missing any given over-threshold intersection
with a single table is at most e−1. Every participant needs to
create 28 different tables so that the probability of failure is
at most (e−1)28 ≈ 2−40.4

We implement two additional optimizations to the hashing
scheme that brings the required number of tables to 20. First,
instead of using a unique ordering hash function for each table,
we use the same ordering hash function for every two consecu-
tive tables and reverse the ordering for even-numbered tables.
Second, We do a second insertion after the first insertion for
every table. We use a different mapping hash function h′ for
the second insertion. The second insertion utilize the unused
bins from the first insertion. The theoretical analyses of these
optimizations are described in Appendix A.

6 Evaluation
We evaluate the security and performance of our OT-MP-PSI
protocol. First, we provide a security analysis using the semi-
honest multi-party computation model. We then provide a
theoretical complexity analysis for computation and commu-
nication costs. Finally, we present experimental performance
benchmarks for our protocol, including on the real-world data
set from CANARIE IDS Program [10].

6.1 Security Analysis
In this section, we analyze the security of our protocol under
the semi-honest model and show that it is secure by construct-
ing the simulators for the participants and the Aggregator.

Theorem 1. The non-interactive protocol described in Sec-
tion 4.3 is secure in the semi-honest model given that the
Aggregator A is non-colluding.
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Proof. We will prove security by constructing the simulator
functions, defined in Section 2.1, for the participants and the
Aggregator. The construction of the simulator for participants
SIMPi((Si,K,r), I ∩ Si) is as follows: The simulator needs
to produce the message sent by the Aggregator, which is the
indexes of the successful reconstructions as stated in the step 4
of the protocol in Section 4.3. To do this, simulator creates the
Shares table of Pi by replicating the first step of the protocol.
Then using the protocol output I∩Si, it identifies the indexes
in the Shares table that contains elements in the intersection.
These indexes will be indistinguishable with the V IEW of Pi
as they will be identical.

We can construct the simulator SIMA(r,B) for the Ag-
gregator as follows: The simulator creates N different sets
{S′1, . . . ,S

′
N} that satisfy the protocol output B of the Aggre-

gator. For each j ∈ [|B|], let tuple (b1, . . . ,bN) be the jth tuple
in B, the simulator puts the same random element x j to all S

′
i

where bi = 1. Then it fills each set with independent uniform
random elements until their size is M. The simulator then cre-
ates the secret shares and the Shares tables for each simulated
set, following the protocol description with hash functions
parameterized on a random key K′. The simulated Shares
tables have the same probability distribution of successful
reconstructions as the real ones; secret shares do not reveal
any information without a successful reconstruction and the
indexes of the tables with successful reconstructions are fol-
lowing the same random distribution. Thus, the simulated
Shares tables are indistinguishable from the real ones.

Theorem 2. The collusion-safe protocol described in Section
4.3 is secure in the semi-honest model given that the at least
one key holder is not colluding with the Aggregator.

Proof. The security proofs of the OPR-SS protocol and the
OPRF protocol are shown by Mahdavi et al. [34] and Jarecki
et al. [22] respectively. Thus, we can assume that no partici-
pant or the Aggregator learns anything about the additively
shared key given at least one key holder is non-colluding.
Hence, the simulator’s output distributions remain indepen-
dent given an honest party with secret key information.

Therefore, we can construct a simulator for a subset of
participants colluding with the Aggregator using a simple
combination of the simulators described in the previous proof
using Goldreich’s composition theorem for the semi-honest
model [19].

6.2 Complexity Analysis

In this section, we provide a theoretical complexity analysis
for our OT-MP-PSI protocol. We analyze the computation
and communication costs for participants and the Aggregator.

6.2.1 Computational Complexity

Theorem 3. The computational complexity of the Aggregator
for the protocols described in Section 4.3 is O(t2M

(N
t

)
).

Proof. The Aggregator has to try
(N

t

)
different combinations

of participants. For each combination, the Aggregator has to
do O(tM) Lagrange interpolations. For threshold t, a single
Lagrange interpolation has a complexity of O(t). Thus, the
total complexity is O(t2M

(N
t

)
).

As a corollary of Theorem 3, we can say that the com-
putational complexity for the set intersection problem with
two participants (N = t = 2) is O(M), and for the case of
a threshold equal to the number of participants (N = t) is
O(N2M).

Theorem 4. The computational complexity of the participants
for the non-interactive protocol described in section 4.3 is
O(tM).

Proof. The participants have to create 2M secret shares for
each subtable because of the second insertion optimization
described in Appendix A.2 and 20 ·2 ·M secret shares in total.
The cost of creating a secret share is O(t). Thus, the total
complexity is O(tM).

6.2.2 Communication Complexity

Theorem 5. The communication complexity of the non-
interactive protocol described in Section 4.3 is O(tMN).

Proof. All the participants have to send their Shares tables to
the Aggregator. The size of each Shares table is O(tM). Thus,
with N participants, the total communication complexity is
O(tMN).

Theorem 6. The communication complexity of the collusion-
safe protocol described in Section 4.3 is O(tkMN) and it runs
in 5 communication rounds.

Proof. OPR-SS protocol runs in three communication rounds
and it has O(tk) communication complexity where k is the
number of key holders as shown by Mahdavi et al. [34]. OPRF
protocol runs in one communication round and it has constant
communication cost. There will be 20 ·2 ·MN OPR-SS and
OPRF invocations in the entire protocol. Therefore, the total
communication cost of the protocol will be O(tkMN) All of
the OPR-SS invocations can be batched together and after
getting the secret shares, all of the OPRF invocations can
also be batched. Thus, adding the one additional communi-
cation round between the participants and the aggregator, the
protocol will run in 5 communication rounds in total.

8



2 4 6 8 10
100

103

106

Number of Tables

N
um

be
ro

fM
is

se
d

In
te

rs
ec

tio
n

E
le

m
en

ts Experimental Results
Computed Upper Bound

Figure 5: Number of missed Intersection Elements in 107

trials (M = 200, t = 4)

6.3 Correctness Evaluation
We experimentally evaluate the failure rate of our hashing
scheme to validate our theoretical failure probability analysis.
Figure 5 shows the number of missed over-threshold intersec-
tion elements out of 10 million trials for different number of
tables. For odd number of tables the last table does not have
a pair, so the failure probability upper bound is calculated
as (2 table fail probability)(i−1)/2× (1 table fail probability)
where i is the number of tables. It can be observed that the ex-
perimental results are well below the computed upper bounds.

It is not computationally feasible to experimentally show
the 2−40 lower bound that we claim in Section 5. However,
these results are still helpful to show the soundness of our
calculations.

6.4 Performance Evaluation
In this section, we provide performance benchmarks for our
OT-MP-PSI protocol. The protocol has two distinct phases
that occur in sequential order: share creation in the partici-
pants and reconstruction in the Aggregator. Thus, we measure
their runtime separately using synthetic data. We compare
our results with the implementation of Mahdavi et al. [34] as
the only other solution with a public code repository at the
time of writing. We also evaluate our system using real-world
network data obtained from CANARIE IDS Program [10].

6.4.1 Setup

We implement our protocol using Julia language with 430
lines of code. The cryptographic libraries that we use are
SHA.jl and Nettle.jl. We use Julia’s threads library for paral-
lelization. We used the 61-bit Mersenne prime for the finite
field. This is so that we can take advantage of fast modulo
arithmetic with Mersenne primes and use 128-bit integers in-
stead of arbitrary precision integers. Our implementation and
the benchmark scripts used to generate the graphs in Section
6 are available at https://github.com/onurerenarpac
i/Rand-Hashing-OT-MP-PSI. The data collected from the

CANARIE IDS Program is not disclosed due to the privacy
agreements between institutions.

We use a server with 8 x Intel Xeon E7-8870 processors
for all of our experiments. In total, we have 80 physical cores,
each running at 2.4 GHz. The server has 1 TB of memory.
However, none of our experiments require more than 14 GB
of memory. Most of the memory is consumed by parallel La-
grange interpolations, and the degree of parallelism depends
on the number of available CPU cores.

6.4.2 Reconstruction
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Figure 6: Reconstruction time comparison with Mahdavi et
al. [34] (N = 10)

We compare the reconstruction time of our protocol with
the reconstruction time of Mahdavi et al. [34] in Figure 6.
We terminated some of the experiments using Mahdavi et
al.’s work [34] because they ran for more than an hour. Our
protocol is at least two orders of magnitude faster than Mah-
davi et al. [34] for all parameters, and the difference increases
exponentially with bigger threshold values.
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Figure 7: Reconstruction time on CANARIE IDS data [10]

To demonstrate the practicality of our protocol in a real-
world setting, we collected network connection logs from
54 institutions via the CANARIE IDS Program for a one-
week period (November 1–8, 2023). During this time, the
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CANARIE IDS Program ingested approximately 8 billion
logs per day, totaling about 700 GB (gzip-compressed) daily.
We filtered the logs to only include records where the source
was an external IP address and the destination was an in-
ternal IP address. Following Zabarah et al. [50], we ran the
OT-MP-PSI protocol on hourly batches. For each institution
and each hour, we extracted the unique external IP addresses
connecting to that institution during that hour to form the
participant sets for the protocol. If an institution has no ex-
ternal IPs that start connections in that hour, the institution
is not included in the protocol. We set the threshold value to
3 which is the suggested value by Zabarah et al. [50]. The
reconstruction time during this week is shown in Figure 7.
The maximum reconstruction time during the week is 438
seconds, where 40 institutions participate in the protocol, and
the maximum set size is 220,011. The mean and median re-
construction times are 170 and 168 seconds, the mean and
median participating institution counts are 33 and 32, and
the mean and median maximum set sizes are 144,045 and
162,113 respectively. Since the protocol runs once every hour,
we consider the mean/median reconstruction time acceptable
for a real-world application.

10 12 14 16 18 20

100

101

102

Number of Participants (N)

R
un

tim
e

in
se

co
nd

s
(s

)

t=3
t=4
t=5

Figure 8: Reconstruction time versus number of participants
(M = 10000)

We measure the reconstruction time of our protocol for dif-
ferent numbers of participants in Figure 8. The reconstruction
time increases polynomially with the number of participants.
This is because of the

(N
t

)
term in our protocol’s complexity

has an upper bound of ( eN
t )t >

(N
t

)
.

We measure the reconstruction time of our protocol for
different threshold values in Figure 9. The reconstruction time
increases exponentially with the threshold value until t =N/2,
after which it decreases exponentially. This is because of the(N

t

)
term in the complexity of our protocol.

6.4.3 Share Generation

We measure the share generation time of a single partici-
pant for different maximum set sizes and different thresh-
old t values with the collusion-safe deployment and the non-
interactive deployment in Figure 10. The share generation
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Figure 9: Reconstruction time vs threshold (M = 10000)
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Figure 10: Share generation time of a single participant with
the collusion-safe and non-interactive deployment

time increases linearly with the maximum set size, which con-
firms the O(tM) complexity of the participants. We observe
that the collusion-safe deployment is approximately an order
of magnitude slower than the non-interactive version.

We also compare the runtimes of share generation process
and the reconstruction process in Figure 11. We see that our
new-hashing algorithm shifted the bottleneck from reconstruc-
tion to share generation.

7 Related Work
We discuss the previous solutions to the OT-MP-PSI prob-
lem, some other closely related problems, and related work
regarding our new hashing scheme.

7.1 Previous Solutions to OT-MP-PSI
7.1.1 Kissner and Song

Kissner and Song proposed the first solution to the OT-MP-
PSI problem [26]. They use polynomial rings to represent
multisets. Given a multiset S = {S j}1≤ j≤k, they represent it as
a polynomial f (x) = Πk

j=1(x−S j). With this representation,
the union of two sets becomes the product of two polynomials.
They use homomorphic encryption to encrypt the polynomi-
als; then, all the participants sequentially multiply their sets
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Table 2: Comparison of OT-MP-PSI Solutions
Solution Comp. Complexity Comm. Complexity Comm. Rounds Collusion Resistance

Kissner and Song [26] O(N3M3) O(N3M) O(N) up to k collusions

Mahdavi et al. [34] O(M(N logM/t)2t) O(tMNk) O(1) up to k collusions

Ma et al. [33] O(N|S|) O(N|S|) O(1) two non-colluding server

Ours (Non-interactive) O(t2M
(N

t

)
) O(tMN) 1 non-colluding server

Ours (Collusion-safe) O(t2M
(N

t

)
) O(tMNk) O(1) up to k collusions
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Figure 11: Comparison of reconstruction of the Aggregator
and share generation of a single participant (t=3)

to produce a polynomial that represents the union of all sets.
Then, they do homomorphic derivative operations on this
polynomial to find the elements that exist in at least threshold
number of sets. Their solution requires a high number of com-
munication rounds. Specifically, their protocol requires O(N)
communication rounds and O(N3M) communication com-
plexity. Moreover, multiplying the polynomials and evaluat-
ing them for each set element has a computational complexity
of O(N2M3) for each participant, totaling to O(N3M3) com-
putation when serialized. There are three reasons why this
is worse than our O(t2M

(N
t

)
) complexity. First, every arith-

metic operation is performed with homomorphic encryption,
which is computationally expensive. Second, each polynomial
multiplication depends on the previous participants’ multipli-
cation, making it less parallelizable than our reconstruction
process. Finally, in the use cases we are interested, M is much
larger than N, i.e, few users with large datasets, resulting in
t2
(N

t

)
≪ N3M2. However, if the threshold t is close to N/2

and N is large enough, this assumption might not hold.

7.1.2 Mahdavi et al.

Mahdavi et al. [34] introduce a solution with a constant num-
ber of rounds and better communication complexity than Kiss-
ner and Song [26]. They use Shamir’s secret sharing scheme

to reveal identical items over the threshold, similar to our so-
lution. They introduce the OPR-SS protocol that we use for
our collusion-safe deployment option.

Their scheme has O(M(N logM/t)2t) computational com-
plexity due to the binning technique, which we substantially
improve with our new hashing scheme.

7.1.3 Ma et al.

Ma et al. [33] propose a solution designed for use cases involv-
ing small input sets and small domain sizes. Their approach
employs two mutually non-colluding servers to reduce the
OT-MP-PSI problem to a two-party computation (2PC) prob-
lem. Uniquely, in this protocol, servers can compute results
for multiple thresholds at no extra client cost. However, the
main limitation of this solution is its computational and com-
munication complexity, which is O(N|S|), where |S| is the
size of the domain of the elements. Therefore, if the inputs
come from a large domain, such as the IPv6 addresses in our
use case, this solution would not be feasible.

7.1.4 Threshold Private Set Intersection (TPSI)

Although very similarly named, the OT-MP-PSI and TPSI
problems are very different. We can observe this similar nam-
ing caused some confusion in the existing literature: Mohanty
et al. [36] incorrectly classify [26, 34, 6] as TPSI protocols
and compare them with other TPSI protocols.

TPSI [51] is a cryptographic problem where two or more
participants holding sets of elements want to learn the inter-
section of their sets if the intersection size is above a certain
threshold. Several solutions have been proposed for the TPSI
problem [51, 21, 18, 5].

7.1.5 Quorum-PSI

Quorum-PSI, introduced by Chandran et al. [12], is a less
general version of the OT-MP-PSI problem. In Quorum-PSI
there is a dedicated party P1 (the only party with output)
which has the element in the intersection also in its set, i.e.,
not all possible subsets of parties that exceed the threshold
are considered, but only those that contain P1. This difference
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enables more efficient solutions [12], which are not possible
for the OT-MP-PSI problem.

7.2 Related Work Regarding the Hashing
Scheme

Although there are no previous works that directly address the
OT-MP-PSI problem with a hashing scheme, there are some
works that address similar problems in the context of two-
party private set intersection (2P-PSI) and multi-party private
set intersection (MP-PSI) protocols, which are special cases
of OT-MP-PSI where N = t = 2 for 2P-PSI and t = N for MP-
PSI. Both of these problems have many real-world use cases,
such as path discovery in social networks [35], botnet detec-
tion [38], web ad campaign performance measurement [44],
or cheater detection in games [9]. Our hashing scheme effi-
ciently extends to both problems because our computational
complexity O(t2M

(N
t

)
) becomes O(M) for N = t = 2 and

O(N2M) for t = N as shown in Section 6.2.1.

7.2.1 Cuckoo Hashing with Simple Hashing

Cuckoo Hashing. Cuckoo hashing [39] is a technique to
avoid hash collisions by assigning each key multiple possi-
ble locations using different hash functions. Originally de-
signed for worst-case constant-time lookups, it has since been
applied in private protocols such as private set intersection
(PSI) [43, 41], private information retrieval (PIR) [1, 2], obliv-
ious RAM (ORAM) [4, 20], and symmetric searchable en-
cryption (SSE) [8, 40]. While many other variants have been
proposed [3, 25, 16], the original construction by Pagh and
Rodler [39] uses two hash functions h0,h1 mapping M ele-
ments to two tables T0,T1, each with (1+ ε)M bins, storing
at most one element per bin. When inserting x into bin hb(x)
in table Tb, if another element y already occupies that bin, y
is evicted to h1−b(y) in T1−b, with b toggled each time. The
process continues until no collisions remain or a relocation
limit is reached.

A naive PSI approach would have both parties, Alice and
Bob, use Cuckoo hashing and compare items in corresponding
bins. However, an element x might be placed by Alice in h0(x)
but by Bob in h1(x), and comparing both bins would reveal
to Bob that Alice holds an item corresponding to those two
bins, breaking privacy. The solution, as used in [17, 44, 42],
has Alice use Cuckoo hashing while Bob uses simple hash-
ing, mapping each of his items to both bins h0(x) and h1(x).
Bob pads each bin with b = O(logM/ log logM) elements,
resulting in O(M logM/ log logM) total comparisons. This
construction applies only to two-party protocols.

7.2.2 2D Cuckoo Hashing

Pinkas et al. [43] propose a new variant of Cuckoo hashing
called 2D Cuckoo Hashing that reduces the number of com-

parisons to O(M) for 2P-PSI. The construction involves two
tables with two sub-tables in each table. Alice and Bob use
different strategies to assign their items to the tables. These
strategies are modified versions of the Cuckoo hashing inser-
tion strategy designed in a way to ensure that if Alice and
Bob have the same element, there will be a sub-table that has
the element in both participants.

Although both our hashing scheme and the 2D Cuckoo
hashing achieve O(M) complexity for 2P-PSI, our scheme
is more general and can be applied to any number of partici-
pants and any threshold t. 2D Cuckoo hashing is specifically
designed for 2P-PSI and does not generalize to more than
two participants or a threshold t due to Alice and Bob’s asym-
metric insertion strategy. However, being this specific allows
2D Cuckoo hashing to achieve lower constants in concrete
implementations for two parties.

8 Conclusion

In this work, we introduced a practical Over-Threshold Multi-
party Private Set Intersection (OT-MP-PSI) protocol designed
specifically to support collaborative network intrusion detec-
tion. Our protocol efficiently identifies IP addresses appearing
across multiple institutions’ logs, allowing timely detection
of coordinated attacks without compromising privacy.

Previous approaches, such as those by Kissner and
Song [26] and Mahdavi et al. [34], either required extensive
communication rounds or incurred prohibitive computational
costs for large datasets. Our solution addresses these limita-
tions, achieving a computational complexity of O(t2M

(N
t

)
)

through a novel hashing scheme, thus making it practical for
real-world network security scenarios.

Our experimental evaluation, using real-world network logs
from CANARIE IDS Program[10], demonstrates the practi-
cality and efficiency of our protocol. With an average runtime
of just 170 seconds for analyzing data from 33 institutions and
datasets containing over 144,000 IP addresses, our solution
is well-suited for operational deployment in network security
contexts.

In summary, our protocol provides a scalable, privacy-
preserving mechanism essential for collaborative intrusion
detection. Future work will explore optimizations for effi-
ciently handling participant combinations, further enhancing
performance in large-scale deployments.

Acknowledgments

We gratefully acknowledge the support of NSERC for grants
RGPIN-2023-03244, RGPIN-06587-2019, IRC-537591, the
Government of Ontario, and the Royal Bank of Canada for
funding this research, and CANARIE for providing the net-
work logs used in the experiments.

12



References
[1] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana

Raykova, Phillipp Schoppmann, Karn Seth, and Kevin
Yeo. Communication–Computation trade-offs in PIR.
In 30th USENIX Security Symposium (USENIX Security
21), pages 1811–1828. USENIX Association, August
2021.

[2] Sebastian Angel, Hao Chen, Kim Laine, and Srinath
Setty. PIR with compressed queries and amortized query
processing. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 962–979, 2018.

[3] Yuriy Arbitman, Moni Naor, and Gil Segev. De-
amortized Cuckoo hashing: Provable worst-case perfor-
mance and experimental results. In Susanne Albers,
Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris
Nikoletseas, and Wolfgang Thomas, editors, Automata,
Languages and Programming, pages 107–118, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[4] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik
Nayak, Enoch Peserico, and Elaine Shi. OptORAMa:
Optimal oblivious RAM. In Anne Canteaut and Yuval
Ishai, editors, Advances in Cryptology – EUROCRYPT
2020, pages 403–432, Cham, 2020. Springer Interna-
tional Publishing.

[5] Saikrishna Badrinarayanan, Peihan Miao, Srinivasan
Raghuraman, and Peter Rindal. Multi-party threshold
private set intersection with sublinear communication.
In Juan A. Garay, editor, Public-Key Cryptography –
PKC 2021, pages 349–379, Cham, 2021. Springer Inter-
national Publishing.

[6] Aslı Bay, Zekeriya Erkin, Jaap-Henk Hoepman, Simona
Samardjiska, and Jelle Vos. Practical multi-party pri-
vate set intersection protocols. IEEE Transactions on
Information Forensics and Security, 17:1–15, 2022.

[7] Dan Boneh, Richard A DeMillo, and Richard J Lipton.
On the importance of eliminating errors in cryptographic
computations. Journal of cryptology, 14:101–119, 2001.

[8] Angèle Bossuat, Raphael Bost, Pierre-Alain Fouque,
Brice Minaud, and Michael Reichle. SSE and SSD:
Page-efficient searchable symmetric encryption. In Tal
Malkin and Chris Peikert, editors, Advances in Cryp-
tology – CRYPTO 2021, pages 157–184, Cham, 2021.
Springer International Publishing.

[9] Elie Bursztein, Mike Hamburg, Jocelyn Lagarenne, and
Dan Boneh. OpenConflict: Preventing real time map
hacks in online games. In 2011 IEEE Symposium on
Security and Privacy, pages 506–520, 2011.

[10] Canarie. About us, Jul 2021. https://www.canarie.
ca/about/.

[11] Jing Cao, Yu Jin, Aiyou Chen, Tian Bu, and Z-L Zhang.
Identifying high cardinality internet hosts. In IEEE
INFOCOM 2009, pages 810–818. IEEE, 2009.

[12] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai
Lakshmi Bhavana Obbattu, Sruthi Sekar, and Akash
Shah. Efficient linear multiparty PSI and extensions to
circuit/quorum PSI. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’21, page 1182–1204, New York, NY,
USA, 2021. Association for Computing Machinery.

[13] Alfonso De Gregorio. Cryptographic key reliable life-
times: Bounding the risk of key exposure in the presence
of faults. In International Workshop on Fault Diag-
nosis and Tolerance in Cryptography, pages 144–158.
Springer, 2006.

[14] Canada Department of Justice. Personal information
protection and electronic documents act. https://la
ws-lois.justice.gc.ca/eng/acts/P-8.6, 2000.

[15] European Commission. Regulation (EU) 2016/679 of
the European Parliament and of the Council of 27 April
2016 on the protection of natural persons with regard to
the processing of personal data and on the free move-
ment of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation) (Text with EEA
relevance), 2016.

[16] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul
Spirakis. Space efficient hash tables with worst case
constant access time. Theory of Computing Systems,
38(2):229–248, Feb 2005.

[17] Michael J Freedman, Carmit Hazay, Kobbi Nissim, and
Benny Pinkas. Efficient set intersection with simulation-
based security. Journal of Cryptology, 29(1):115–155,
2016.

[18] Satrajit Ghosh and Mark Simkin. The communication
complexity of threshold private set intersection. In
Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, pages 3–29,
Cham, 2019. Springer International Publishing.

[19] Oded Goldreich. Foundations of Cryptography: Vol-
ume 2, Basic Applications. Cambridge University Press,
USA, 1st edition, 2009.

[20] Michael T. Goodrich and Michael Mitzenmacher.
Privacy-preserving access of outsourced data via obliv-
ious RAM simulation. In Luca Aceto, Monika Hen-
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A Hashing Scheme Additional Opti-
mizations

A.1 Reversing the ordering
Instead of using a unique ordering hash function for each table,
using the same ordering hash function for every two consec-
utive tables and reversing the ordering for even-numbered
tables gives better results. The intuition behind this approach
is that we know the “unlucky” elements in the odd-numbered
tables; these are elements with big p values. By reversing the
order and making them “lucky” in the next consecutive table,
we get better probabilities than re-randomizing for each table.

With this technique, the value of p for a particular element
will be equal to 1− p in the next table. Therefore, the proba-
bility of missing a particular intersection in two consecutive
tables is given by

P(fail with two tables | p)≤ (1− e−p)(1− e−(1−p))

We then calculate the probability of failure for any intersection
similarly to the single table calculation.

P(fail with two tables)≤
∫ 1

0
(1− e−p)(1− e−(1−p))d p

= 3e−1−1≈ 0.10363

This technique reduces the required number of tables to 26 to
obtain (3e−1−1)13 ≈ 2−42.5 failure probability.

A.2 Utilizing the empty bins
Normally, after inserting their elements into the tables, the
participants would fill the empty bins with dummy shares.
However, we can utilize this wasted space to reduce the num-
ber of required tables. With this optimization, participants
will do a second insertion after the first insertion for every
table. They will use a different mapping hash function h′ for
the second insertion and reverse the ordering hash function
from the first insertion. While doing the second insertion,
elements from the first insertion have priority in the table;
in other words, if an element maps to an already occupied
position, we do not make any changes to the table.

Therefore, two events must occur for an element to be
successfully put into the table in the second insertion: it must
map into an empty bin and be the smallest element among
the elements that map into the same bin. We already know
the probability of the second event occurring in t different
sets; it is e−(1−p) due to reverse ordering. To calculate the
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probability of the first event, we first calculate the probability
of any bin being empty after the first insertion. We do this by
calculating the probability of a single element not mapping to
that bin repeated M times. Again, the approximation does not
affect the results for M > 50.

P(sharesi[x] is empty)=
(

tM−1
tM

)|Si|
≥
(

tM−1
tM

)M

≈ e−1/t

We then calculate the probability of si, j being mapped into
empty bins in all t sets in the second insertion, given that si, j
exists in t different sets.

P
(

sharesk[h′(si, j)] is empty ∀k∈[t] | si, j ∈ Sk ∀k∈[t]

)
≥
(

e−1/t
)t

= e−1

Now, we multiply these two probabilities to find the second
insertion success probability of a particular intersection.

P(success in second insertion | p)≥ e−(1−p)× e−1 = ep−2

Lastly, the probability of missing a particular intersection in
a single table is given by the failure probability of the first
insertion multiplied by the failure probability of the second
insertion. Afterward, we calculate the failure probability for
any intersection.

P(fail | p)≤(1− e−p)(1− ep−2)

P(fail)≤
∫ 1

0
(1− e−p)(1− ep−2)d p = 2e−2 ≈ 0.2706

This approach reduces the required number of tables to 22 to
have

(
2e−2

)22
= 2−41.5 failure probability. We also explored

the strategy of doing multiple insertions until the table is filled.
However, for use cases where t is significantly smaller than
M this approach results in insignificant improvements.

Finally, we can get better results by combining the two
optimizations; more explicitly, we will do second insertions
for every table and order reversing for every two consecutive
tables. In this case, the failure probability for a particular
intersection in two consecutive tables is given by

P(fail with 2 tables | p)

≤ (1− e−p)(1− ep−2) (1− e−(1−p))(1− e−p−1)

first table second table

We then calculate the failure probability for any intersection

P(fail with 2 tables)

≤
∫ 1

0
(1− e−p)(1− ep−2)(1− e−(1−p))(1− e−p−1)d p

= 2e−1 +2e−2 +3e−4−1≈ 0.06138

The combination of these two approaches reduces the num-
ber of required tables to 20 to obtain a failure probability of
(0.06138)10 = 2−40.3.
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