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Abstract
This paper addresses the online 𝑘-selection problem with disec-
onomies of scale (OSDoS), where a seller seeks to maximize social
welfare by optimally pricing items for sequentially arriving buy-
ers, accounting for increasing marginal production costs. Previous
studies have investigated deterministic dynamic pricing mecha-
nisms for such settings. However, significant challenges remain,
particularly in achieving optimality with small or finite inventories
and developing effective randomized posted price mechanisms. To
bridge this gap, we propose a novel randomized dynamic pricing
mechanism for OSDoS, providing a tighter lower bound on the
competitive ratio compared to prior work. Our approach ensures
optimal performance in small inventory settings (i.e., when 𝑘 is
small) and surpasses existing online mechanisms in large inventory
settings (i.e., when 𝑘 is large), leading to the best-known posted
price mechanism for optimizing online selection and allocation
with diseconomies of scale across varying inventory sizes.

CCS Concepts
• Theory of computation → Online algorithms; Computa-
tional pricing and auctions.
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Posted-Price Mechanism; Competitive Analysis; Online Selection

ACM Reference Format:
Hossein Nekouyan Jazi, Bo Sun, Raouf Boutaba, and Xiaoqi Tan. 2025.
Posted Price Mechanisms for Online Allocation with Diseconomies of Scale.
In Proceedings of the ACM Web Conference 2025 (WWW ’25), April 28–May
2, 2025, Sydney, NSW, Australia. ACM, New York, NY, USA, 19 pages. https:
//doi.org/10.1145/3696410.3714590

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1274-6/25/04
https://doi.org/10.1145/3696410.3714590

1 Introduction
Online resource allocation has been widely studied in recent years
and finds a broad range of applications in cloud computing [23, 24],
network routing [2, 7, 8], and various other online, market-based
Internet platforms. In this problem, most existing studies assume
that the seller has a finite inventory of resources before a stream
of online buyers arrives, with the goal of maximizing social wel-
fare or profit from these resources. However, in real-world ap-
plications, sellers often face diseconomies of scale in providing
resources—meaning they incur increasing marginal costs for sup-
plying each additional unit of resource. For instance, in cloud com-
puting systems, the power cost of servers increases superlinearly
as the utilization of computing resources grows [1]. Similarly, in
network routing, congestion costs (e.g., end-to-end delay) increase
significantly with the rise in traffic intensity brought by users.

In this work, we study online resource allocation with increasing
marginal production costs. In particular, we frame it as an online
𝑘-selection with diseconomies of scale (OSDoS) in a posted price
mechanism: A seller offers a certain item to buyers arriving one at a
time in an online manner. Each buyer has a private valuation 𝑣𝑡 for
one unit of the item. The seller can produce 𝑘 units of the item in
total; however, the marginal cost of producing each unit increases
as more units are produced. When the 𝑡-th buyer arrives, the seller
posts a price 𝑝𝑡 to the buyer, provided that fewer than 𝑘 units have
already been produced and allocated. If the buyer’s valuation 𝑣𝑡
exceeds 𝑝𝑡 , the buyer accepts the price and takes one unit of the
item. The objective is to maximize social welfare, defined as the
sum of the utilities of all the buyers and the revenue of the seller.

The incorporation of increasing marginal production costs in
online resource allocation was first introduced by [5] and later
studied by [12] in online combinatorial auctions. Variants of OSDoS
have since been explored, including online convex packing and
covering [3], online knapsack with packing costs [21], and online
selection with convex costs [22]. A key challenge in these problems
is balancing pricing strategies. Setting prices too low early on may
allocate many items to low-value buyers, increasing production
costs and lowering social welfare. Conversely, overly high prices
can result in missed opportunities to sell. Thus, pricing for 𝑘 units
must carefully account for early-stage decisions to avoid rapid
growth in marginal production costs while maximizing efficiency.

To address this challenge, Huang et al. [12] developed optimal
deterministic dynamic pricing mechanisms for fractional online
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combinatorial auctions with production costs and infinite capacity
(𝑘 = ∞). They extended this to the integral case using fractional
pricing functions, achieving a competitive ratio close to the frac-
tional setting but with a nonzero additive loss. However, as the
competitive ratio approaches the fractional lower bound, the addi-
tive loss grows unbounded, which is undesirable. To overcome this,
Tan et al. [22] studied online selection with convex costs and limited
supply (𝑘 < ∞), establishing a lower bound for the integral setting
without additive loss. They further showed that the competitive
ratio of their deterministic posted price mechanism asymptotically
converges to the lower bound as k grows large. Recently, Sun et
al. [19] proposed a randomized static pricing algorithm, which sam-
ples a static price from a pre-determined distribution for OSDoS.
This randomization improves performance over the deterministic
approach in small inventory settings but is not asymptotically opti-
mal and fails to converge to the lower bound from [22] as 𝑘 → ∞.

Despite previous efforts, two questions remain unresolved: First,
how to derive a tight lower bound forOSDoS in small inventory set-
tings? Second, it remains an open question how to develop random-
ized algorithms to solve OSDoS with tight guarantees, especially
for settings when 𝑘 is small.

In this paper, we address these questions by deriving a new tight
lower bound for the OSDoS problem, achieving the best-known
results in both small and asymptotically large inventory settings.
Building on this, we propose a novel randomized dynamic pricing
algorithm that uses up to 𝑘 randomized prices. We show that this
algorithm is optimal for small inventories and outperforms existing
designs from [22] and [19] in large inventory settings.

1.1 Overview of Main Results and Techniques
The primary contribution of this paper is the development of novel
posted pricemechanisms using randomized dynamic pricing schemes
that extend the results in [5, 12, 19, 22]. The proposed scheme, r-
Dynamic, sequentially updates the item’s price as new units are
produced and sold. Specifically, as the marginal production cost
increases with each additional unit, r-Dynamic utilizes a different
cumulative distribution function (CDF) to independently randomize
the price for each unit. The main lower bound result is as follows:

Theorem 1 (Informal Statement of Theorem 3). Assume that
buyers’ valuations are bounded within the range [𝐿,𝑈 ] and the cu-
mulative cost of production up to the 𝑖-th unit is given by 𝑓 (𝑖). The
seller can produce a total of 𝑘 units. For any given 𝑘 ≥ 1,𝑈 ≥ 𝐿 ≥ 1,
and a cumulative production cost function 𝑓 , no online algorithm can
be (𝛼∗S (𝑘) − 𝜖)-competitive for any 𝜖 > 0, where S := {𝐿,𝑈 , 𝑓 }.

We note that [22] also established a lower bound for the com-
petitive ratio of online algorithms for OSDoS, but it was derived
by connecting the integral selection problem to its fractional coun-
terpart. This approach requires the cumulative production cost
function 𝑓 to be defined not only at discrete points but also for all
fractional values in [0, 𝑘], leading to two issues: (i) assuming the
availability of a continuous cost function 𝑓 may be impractical for
an inherently integral problem, and (ii) the lower bound is only
tight in large inventory settings, as it assumes 𝑘 → ∞. In this paper,
we address these two issues by deriving the lower bound 𝛼∗S (𝑘)
via a totally different approach. In particular, we do not rely on
results in the fractional setting and only need to assume that the
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Figure 1: The blue curve (i.e., r-Dynamic) corresponds to the
competitive ratio of Algorithm 1 that uses randomized dy-
namic pricing. The red curve (i.e., d-Dynamic) and the yellow
curve (i.e., r-Static) correspond to the competitive ratios of
the deterministic dynamic pricing mechanism developed by
[22] and the static randomized pricing mechanism by [19].
In this figure, we set 𝐿 = 1,𝑈 = 10, and 𝑓 (𝑖) = 𝑖2
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cost function 𝑓 (𝑖) is defined at discrete points for 𝑖 ∈ {1, 2, · · · , 𝑘},
leading to the tight lower bound 𝛼∗S (𝑘) for all 𝑘 ≥ 1.

Theorem 2 (Informal Statement of Theorem 4). For any
given 𝑘 ≥ 1,𝑈 ≥ 𝐿 ≥ 1, and a cumulative production cost function
𝑓 , there exists a randomized dynamic price mechanism (r-Dynamic)

that achieves a competitive ratio of 𝛼∗S (𝑘) · exp( 𝛼
∗
S (𝑘 )
𝑘

). In addition,
when 𝑘 = 2, r-Dynamic is 𝛼∗S (2)-competitive.

Due to the arbitrary nature of the cost function 𝑓 , neither our
work nor [22] can derive a closed-form expression for the competi-
tive ratio, preventing a direct comparison between our r-Dynamic
and the deterministic dynamic pricing mechanism (d-Dynamic)
in [22]. In Figure 1, we compare the asymptotic performance of r-
Dynamicwith d-Dynamic from [22] and the randomized static pric-
ing mechanism (r-Static) in [19]. The results show that r-Dynamic
significantly outperforms both d-Dynamic and r-Static, converging
faster to the lower bound as𝑘 → ∞. Notably, for small𝑘 , r-Dynamic
achieves the lower bound when 𝑘 = 2. Beyond its strong theoreti-
cal guarantees, empirical results (Section 4.2) further confirm that
r-Dynamic consistently outperforms both d-Dynamic and r-Static,
highlighting its superiority over existing designs.

The key technical component in deriving the above lower and up-
per bounds is a new representative function-based approach, which
models the dynamics of any randomized online algorithm using
a sequence of 𝑘 probability functions, {𝜓𝑖 }𝑖∈[𝑘 ] . We design a fam-
ily of hard instances and characterize the performance of any 𝛼-
competitive algorithm on these instances through a set of differen-
tial equations involving {𝜓𝑖 }𝑖∈[𝑘 ] . To determine the lower bound
𝛼∗S (𝑘) in Theorem 1, we compute the minimum 𝛼 for which these
equations have a feasible solution, namely valid probability func-
tions {𝜓𝑖 }𝑖∈[𝑘 ] . By reverse engineering the equations, we derive in-
verse probability functions, {𝜙𝑖 }𝑖∈[𝑘 ] , for pricing each unit, which
leads to r-Dynamic in Theorem 2.
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1.2 Other Related Work
Online resource allocation—the process of assigning limited re-
sources to a sequence of online requests to maximize social welfare
or profit—has been a central topic in computer science and oper-
ations research. In addition to the previously mentioned related
work, readers are referred to the survey by Gupta and Singla on the
secretary problem [11] for a detailed discussion of online allocation
and selection in random-order models. Significant advancements
have also been made in studying the prophet inequality through
the lens of posted price mechanisms [9, 16] and in online matching
with applications to Internet advertising (e.g., [13, 17]). Beyond
the stochastic i.i.d. model in the prophet inequality, recent work
explores the correlated arrival model based on a Markov chain [14].
However, these studies focus on variants of online allocation and se-
lection without considering production costs. In contrast, our work
primarily examines the impact of increasing marginal production
costs on online 𝑘-selection.

Recent years have seen efforts to study online allocation prob-
lems with various forms of production costs in stochastic settings
(e.g., [6], [10], [4], [18]). For instance, [6] examined online alloca-
tion with economies of scale (decreasing marginal costs), proposing
a constant-competitive strategy for unit-demand customers with
valuations sampled i.i.d. from an unknown distribution. In contrast,
[18] addressed Bayesian online allocation with convex production
costs (diseconomies of scale), developing posted price mechanisms
with 𝑂 (1)-approximation for fractionally subadditive buyers and
logarithmic approximations for subadditive buyers. Our study dif-
fers by focusing on OSDoS in adversarial settings, assuming no
knowledge of the arrival sequence beyond the finite support of
valuations, making these results not directly comparable to ours.

On the applied side, allocating limited resources under disec-
onomies of scale is common across various online platforms. For
example, in online cloud resource allocation [23], convex server
costs model energy consumption based on CPU utilization, while
in online electric vehicle charging [20], electricity generation costs
are often modeled as nonlinear, typically quadratic.

2 Problem Statement and Assumptions
We formally define online 𝑘-selection with diseconomies of scale
(OSDoS) as follows. Consider an online market operating under
posted price mechanisms. On the supply side, a seller can pro-
duce a total of 𝑘 units of an item, with increasing (or at least non-
decreasing) marginal production costs. Let 𝒄 := {𝑐𝑖 }∀𝑖∈[𝑘 ] repre-
sent the marginal production cost, where 𝑐𝑖 denotes the cost of pro-
ducing the 𝑖-th unit, and 𝑐1 ≤ 𝑐2 ≤ · · · ≤ 𝑐𝑘 . Define 𝑓 (𝑖) =

∑𝑖
𝑗=1 𝑐 𝑗

as the cumulative production cost of the first 𝑖 units. On the demand
side, 𝑇 buyers arrive sequentially, each demanding one unit of the
item. Let 𝑣𝑡 denote the private valuation of the 𝑡-th buyer. Once
buyer 𝑡 arrives, a price 𝑝𝑡 is posted, and then the buyer decides to
accept the price and make a purchase if a non-negative utility is
gained 𝑣𝑡 − 𝑝𝑡 ≥ 0, and reject it otherwise.

Let 𝑥𝑡 ∈ {0, 1} represent the decision of buyer 𝑡 , where 𝑥𝑡 =

1 indicates a purchase and 𝑥𝑡 = 0 otherwise. Then buyer 𝑡 ob-
tains a utility (𝑣𝑡 − 𝑝𝑡 )𝑥𝑡 and the seller collects a total revenue of∑
𝑡 ∈[𝑇 ] 𝑝𝑡𝑥𝑡 − 𝑓 (∑𝑡 ∈[𝑇 ] 𝑥𝑡 ) from all buyers. The goal of the online

market is to determine the posted prices {𝑝𝑡 }∀𝑡 ∈[𝑇 ] to maximize

the social welfare, which is the sum of utilities of all the buyers and
the revenue of the producer, i.e.,

∑
𝑡 ∈[𝑇 ] 𝑥𝑡 · (𝑣𝑡 − 𝑝𝑡 ) +

∑
𝑡 ∈[𝑇 ] 𝑥𝑡 ·

𝑝𝑡 − 𝑓 (∑𝑡 ∈[𝑇 ] 𝑥𝑡 ) =
∑
𝑡 ∈[𝑇 ] 𝑣𝑡𝑥𝑡 − 𝑓 (∑𝑡 ∈[𝑇 ] 𝑥𝑡 ).

Let I = {𝑣1, · · · , 𝑣𝑇 } denote an arrival instance of buyers. An
optimal offline algorithm that knows all the information of I can
obtain the optimal social welfare OPT(I) by solving the following
optimization problem

OPT(I) = max
𝑥𝑡 ∈{0,1}

∑︁
𝑡 ∈[𝑇 ] 𝑣𝑡𝑥𝑡 − 𝑓

(∑︁
𝑡 ∈[𝑇 ] 𝑥𝑡

)
,

s.t.
∑︁

𝑡 ∈[𝑇 ] 𝑥𝑡 ≤ 𝑘.

However, in the online market, the posted price 𝑝𝑡 is determined
without knowing the valuations of future buyers {𝑣𝜏 }𝜏>𝑡 . We aim
to design an online mechanism to determine the posted prices such
that the social welfare achieved by the online mechanism, denoted
by ALG(I), is competitive compared to OPT(I). Specifically, an
online algorithm is 𝛼-competitive if for any input instance I, the
following inequality holds:

𝛼 ≥ OPT(I)
E[ALG(I)] ,

where the expectation of E[ALG(I)] is taken with respect to the
randomness of the online algorithm. To attain a bounded compet-
itive ratio, we consider a constrained adversary model [15, 22],
where the buyers’ valuations are assumed to be bounded.

Assumption 1. Buyers’ valuations are bounded in [𝐿,𝑈 ], i.e.,
𝑣𝑡 ∈ [𝐿,𝑈 ],∀𝑡 ∈ [𝑇 ].

The interval [𝐿,𝑈 ] can be considered as the prediction interval
that covers the valuations of all buyers [15], and is known to the
online algorithm. As shown in [22], the competitive analysis of
online algorithms for OSDoS depends on the relationship between
buyers’ valuations and the production cost function. For simplicity,
we focus on the case where the production cost is always smaller
than the buyer’s valuation (𝑐𝑘 < 𝐿) and derive lower and upper
bounds in Sections 3 and 4, respectively. In Appendices I and J,
we show that this assumption is without loss of generality, as our
results extend naturally to the general case.

3 Lower Bound for OSDoS: Hardness of
Allocation with Diseconomies of Scale

We first derive a tight lower bound for OSDoS, which informs the
design of r-Dynamic (Algorithm 1) in Section 4.

3.1 Lower Bound 𝛼∗
S (𝑘)

Theorem 3 below formally states the lower bound 𝛼∗S (𝑘) for the
competitive ratio of any online algorithm for OSDoS.

Theorem 3 (Lower Bound). Given S = {𝐿,𝑈 , 𝑓 } for the OS-
DoS problem with 𝑘 ≥ 1, no online algorithm, including those with
randomization, can achieve a competitive ratio smaller than 𝛼∗S (𝑘),
where 𝛼∗S (𝑘) is the solution to the following equation of 𝛼 :

𝑈 =

(
𝐿 − 𝑐

¯
𝑘

)
· 𝑒

𝛼
𝑘
· (𝑘+1−

¯
𝑘−𝜉 ) + 𝑐

¯
𝑘 · 𝑒

𝛼
𝑘
· (𝑘−

¯
𝑘 )+

𝑐
¯
𝑘+1 ·

(
1 − 𝑒

𝛼
𝑘

)
· 𝑒

𝛼
𝑘
· (𝑘−1−

¯
𝑘 ) + · · · + 𝑐𝑘 ·

(
1 − 𝑒

𝛼
𝑘

)
. (1)
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In Eq. (1),
¯
𝑘 ∈ [𝑘] denotes the smallest natural number such that∑︁

¯
𝑘

𝑖=1
(𝐿 − 𝑐𝑖 ) ≥

1
𝛼
·
(
𝑘𝐿 −

∑︁𝑘

𝑖=1
𝑐𝑖

)
, (2)

and 𝜉 ∈ (0, 1] denotes the unique solution to the following equation

𝜉 =

1
𝛼 · (𝑘𝐿 − ∑𝑘

𝑖=1 𝑐𝑖 ) −
∑

¯
𝑘−1
𝑖=1 (𝐿 − 𝑐𝑖 )

𝐿 − 𝑐
¯
𝑘

. (3)

Theorem 3 is our main result concerning the hardness of OSDoS.
To prove Theorem 3, a key step is to establish a set of necessary
conditions that any 𝛼-competitive online algorithm must satisfy. A
formal proof will be provided in Section 3.3. Below, we offer several
remarks to clarify the key intuitions.
• By the definition of

¯
𝑘 in Eq. (2),

¯
𝑘 represents theminimumnumber

of units that any 𝛼-competitive deterministic algorithm, denoted
by ALGd, must sell when faced with an arrival instance of 𝑘
identical buyers with valuation 𝐿, denoted by I (𝐿)

𝑖𝑑𝑒𝑛
= {𝐿, · · · , 𝐿}.

Under the instance I (𝐿)
𝑖𝑑𝑒𝑛

, the maximum social welfare achievable
by the offline optimal algorithm is 𝑘𝐿 −∑𝑘

𝑖=1 𝑐𝑖 . Therefore, ALGd
must sell at least

¯
𝑘 units to ensure 𝛼-competitiveness, implying

that
¯
𝑘 is well-defined for all values of 𝛼 ≥ 1.

• Eq. (3) demonstrates that 𝜉 is defined as the fraction of the
¯
𝑘-

th unit required to make Eq. (2) binding. We argue that 𝜉 ∈
(0, 1] is well-defined and always exists as long as there is an 𝛼-
competitive randomized algorithm, denoted as ALGr. Specifically,
if a randomized algorithmALGr is run on the same instanceI (𝐿)

𝑖𝑑𝑒𝑛
,

ALGr must sell at least
¯
𝑘 − 1 units plus a fraction 𝜉 of the

¯
𝑘-th

unit of the item, in expectation.
• Note that, in general, a closed-form expression for the lower
bound 𝛼∗S (𝑘) cannot be derived. This is expected due to the
arbitrary nature of the sequence of marginal production costs.
However, because of the monotonicity of

¯
𝑘 , 𝜉 , and the right-hand

side of Eq. (1) with respect to 𝛼 , 𝛼∗S (𝑘) can be easily computed
by solving Eq. (1) numerically using binary search.
In the next subsection, we construct a family of hard instances

and introduce a novel representative function-based approach to de-
rive a system of differential equations, which are crucial to proving
the lower bound result in Theorem 3.

3.2 Representing Worst-Case Performance by
(Probabilistic) Allocation Functions

3.2.1 Hard Instances {I (𝜖 )
𝑣 }∀𝑣∈[𝐿,𝑈 ] . We introduce a family of

hard instances based on the instance I (𝜖 ) defined as follows.
Definition 1 (Instance I (𝜖 ) ). For any given value of 𝜖 > 0, the

instance I (𝜖 ) begins with 𝑘 identical buyers, each having a valuation
of 𝐿 during the initial stage. This is followed by a series of stages,
each consisting of 𝑘 identical buyers, with valuations incrementally
increasing by 𝜖 , starting from 𝐿 + 𝜖 and reaching the upper bound
𝐿 +

⌊
𝑈 −𝐿
𝜖

⌋
· 𝜖 . The instance I (𝜖 ) is mathematically defined as:

{𝐿, . . . , 𝐿︸  ︷︷  ︸
𝑘 buyers

, 𝐿 + 𝜖, . . . , 𝐿 + 𝜖︸            ︷︷            ︸
𝑘 buyers

, . . . , 𝐿 + 𝑗 · 𝜖, . . . , 𝐿 + 𝑗 · 𝜖︸                    ︷︷                    ︸
𝑘 buyers in stage 𝐿+𝑗 ·𝜖

, . . . ,

𝐿 + ⌊(𝑈 − 𝐿)/𝜖⌋ · 𝜖, . . . , 𝐿 + ⌊(𝑈 − 𝐿)/𝜖⌋ · 𝜖︸                                                    ︷︷                                                    ︸
𝑘 buyers

},

where 𝑗 ranges from 1 to ⌊(𝑈 − 𝐿)/𝜖⌋. Furthmore, let us define the set
𝑉 (𝜖 ) = {𝐿, 𝐿 + 𝜖, . . . , 𝐿 + ⌊(𝑈 − 𝐿)/𝜖⌋ · 𝜖} to contain all the possible
valuations that buyers in the instance I (𝜖 ) may possess.

We refer to the 𝑘 buyers with valuation 𝑣 ∈ 𝑉 (𝜖 ) as stage-𝑣
arrivals in I (𝜖 ) . For any 𝑣 ∈ 𝑉 (𝜖 ) , let I (𝜖 )

𝑣 denote all the buyers in
I (𝜖 ) from the beginning up to stage-𝑣 . For instance, if 𝑣 = 𝐿 + 2𝜖 ,
thenI (𝜖 )

𝑣 includes the first 3𝑘 buyers inI (𝜖 ) with valuations 𝐿, 𝐿+𝜖 ,
and 𝐿 + 2𝜖 . Due to the online nature of the problem, we emphasize
that I (𝜖 ) may terminate at any stage 𝑣 . In other words, there exists
a family of hard instances, {I (𝜖 )

𝑣 }∀𝑣∈𝑉 (𝜖 ) , induced by I (𝜖 ) . Here,
I (𝜖 )
𝑣 denotes the arrival instance of I (𝜖 ) that terminates at stage-𝑣 .
Henceforth, we will use “instance I (𝜖 )

𝑣 " and “instance I (𝜖 ) by the
end of stage-𝑣" interchangeably.

Given any 𝛼-competitive algorithm ALG, an arbitrary instance
from {I (𝜖 )

𝑣 }∀𝑣∈𝑉 (𝜖 ) may be the one that ALG processes. Thus, for
any 𝑣 ∈ 𝑉 (𝜖 ) , by the end of stage-𝑣 of I (𝜖 ) , ALG must achieve
at least a 1/𝛼 fraction of the optimal social welfare, 𝑘𝑣 − ∑𝑘

𝑖=1 𝑐𝑖 ,
which is attained by rejecting all previous buyers except for the
last 𝑘 buyers with valuation 𝑣 . Consequently, an 𝛼-competitive
algorithm must ensure

ALG
(
I (𝜖 )
𝑣

)
≥ 1

𝛼
·
(
𝑘𝑣 −

∑︁𝑘

𝑖=1
𝑐𝑖

)
, ∀𝑣 ∈ 𝑉 (𝜖 ) , (4)

where ALG(I (𝜖 )
𝑣 ) denotes the expected performance of ALG under

the instance I (𝜖 )
𝑣 .

3.2.2 Representing ALG(I (𝜖 )
𝑣 ) by Allocation Functions. For

any randomized algorithm, we define 𝑘 + 1 states, {𝑞𝑖 }∀𝑖∈{0,· · · ,𝑘 } ,
which represent the allocation behavior of the online algorithm at
any stage of instance I (𝜖 ) , as follows:
• State 𝑞0 corresponds to the situation where the online algorithm
has not allocated any units.

• For all 𝑖 ∈ [𝑘], state 𝑞𝑖 represents that the online algorithm has
allocated at least 𝑖 units of the item.
For all 𝑣 ∈ 𝑉 (𝜖 ) and 𝑖 ∈ {0, · · · , 𝑘}, we define Ψ𝑖 (𝑣) : 𝑉 (𝜖 ) →

{0, 1} such that Ψ𝑖 (𝑣) = 1 if the algorithm is in state 𝑞𝑖 after pro-
cessing all the buyers in I (𝜖 )

𝑣 , and Ψ𝑖 (𝑣) = 0 otherwise. Specifically,
Ψ𝑖 (𝑣) = 1 if the online algorithm allocates at least 𝑖 units of the
item at the end of stage 𝑣 in I (𝜖 ) , which occurs with some proba-
bility depending on the algorithm’s randomness. Since the instance
I (𝜖 ) is deterministically defined, Ψ𝑖 (𝑣) is a binary random variable
whose distribution depends solely on the algorithm’s randomness.
This leads to the definition of 𝝍 = {𝜓𝑖 }∀𝑖∈[𝑘 ] below.

Definition 2 (Allocation Functions). For any randomized
online algorithm, let 𝝍 = {𝜓𝑖 }∀𝑖∈[𝑘 ] and𝜓𝑖 : 𝑉 (𝜖 ) → [0, 1] represent
the functions where 𝜓𝑖 (𝑣) = E[Ψ𝑖 (𝑣)], with the expectation taken
over the randomness of the algorithm.

Based on the definition above, we have 𝜓𝑖 (𝑣) = Pr(Ψ𝑖 (𝑣) = 1),
where Ψ𝑖 (𝑣) = 1 indicates that the algorithm is in state 𝑞𝑖 (i.e., at
least 𝑖 units of the item have been allocated) after processing all
buyers in I (𝜖 )

𝑣 (i.e., by the end of stage 𝑣 of instance I (𝜖 ) ). In this
context,𝜓𝑖 (𝑣) represents the probability that the online algorithm
has allocated at least 𝑖 units of the item by the end of stage 𝑣 in
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instance I (𝜖 ) . Therefore, the term probabilistic allocation functions
is used or simply allocation functions for brevity. We show that
𝜓𝑖 (𝑣) is monotonic in 𝑖 ∈ [𝑘].

Lemma 1 (Monotonicity). For any randomized online algorithm,
𝜓𝑖 (𝑣) ≤ 𝜓𝑖 (𝑣 ′) and𝜓𝑖 (𝑣) ≥ 𝜓𝑖+1 (𝑣) holds for all 𝑖 ∈ [𝑘] and 𝑣, 𝑣 ′ ∈
𝑉 (𝜖 ) such that 𝑣 < 𝑣 ′.

The proof of the above lemma is given in Appendix A. Lemma 1
implies that it suffices to focus on randomized algorithms whose
allocation functions are from the following set

Ω =

{
𝝍
��𝜓𝑖 (𝑣) ∈ [0, 1],𝜓𝑖 (𝑣) ≥ 𝜓𝑖+1 (𝑣),

𝜓𝑖 (𝑣) ≤ 𝜓𝑖 (𝑣 ′),∀𝑖 ∈ [𝑘], 𝑣, 𝑣 ′ ∈ 𝑉 (𝜖 ) , and 𝑣 < 𝑣 ′
}
.

Next, we analyze how the allocation level of an 𝛼-competitive
algorithm should evolve as new buyers with higher valuations
arrive in I (𝜖 ) . We argue that the expected performance of any
online algorithm under the instance I (𝜖 ) can be fully represented
by the 𝑘 allocation functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] . Let ALG(I (𝜖 )

𝑣 ) denote
the expected objective value of the algorithm under instance I (𝜖 )

𝑣 .
Then ALG(I (𝜖 )

𝑣 ) can be framed using 𝝍 = {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] as follows.

Proposition 1 (Representation based on 𝝍). For any random-
ized algorithmALG under the family of hard instances {I (𝜖 )

𝑣 }∀𝑣∈𝑉 (𝜖 ) ,
its expected performance can be represented by its allocation functions
{𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] ∈ Ω as follows:

ALG
(
I (𝜖 )
𝐿

)
=

𝑘∑︁
𝑖=1

𝜓
(𝐿)
𝑖

· (𝐿 − 𝑐𝑖 ),

ALG
(
I (𝜖 )
𝐿+𝑗 ·𝜖

)
= ALG

(
I (𝜖 )
𝐿

)
+

𝑘∑︁
𝑖=1

⌈
𝑈 −𝐿
𝜖

⌉∑︁
𝑚=1

[
(𝐿 +𝑚 · 𝜖)·(

𝜓𝑖 (𝐿 +𝑚 · 𝜖) −𝜓𝑖 (𝐿 + (𝑚 − 1) · 𝜖)
)]
,∀𝑗 = 1, 2, . . . ,

⌊𝑈 − 𝐿

𝜖

⌋
.

The above proposition relates the expected performance of an
online algorithm to the set of allocation functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ]
that capture its dynamics under hard instances {I (𝜖 )

𝑣 }∀𝑣∈𝑉 (𝜖 ) . The
detailed proof can be found in Appendix B.

Combining Proposition 1 and Eq. (4) gives the lemma below.

Lemma 2 (NecessaryConditions). If there exists an𝛼-competitive
algorithm for OSDoS, then there exists𝑘 allocation functions {𝜓𝑖 }𝑖∈[𝑘 ] ∈
Ω, where each function𝜓𝑖 : [𝐿,𝑈 ] → [0, 1] is continuous within its
range and also satisfies the following equation:

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +
𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝑖 (𝜂)

≥ 1
𝛼
·
(
𝑘𝑣 −

𝑘∑︁
𝑖=1

𝑐𝑖

)
, ∀𝑣 ∈ [𝐿,𝑈 ] . (5)

The above result is derived based on the family of instances
{I (𝜖 )

𝑣 }∀𝑣∈𝑉 (𝜖 ) when 𝜖 approaches to zero. The proof is given in
Appendix C. The lemma above provides a set of necessary con-
ditions for the allocation functions {𝜓𝑖 }∀𝑖∈[𝑘 ] induced by any 𝛼-
competitive algorithm. Therefore, determining a tight lower bound

for OSDoS is equivalent to finding the lowest 𝛼 such that there
exists a set of allocation functions in Ω that satisfy Eq. (5).

3.3 Proof of Theorem 3
We now move on to prove Theorem 3. Based on the necessary
conditions in Lemma 2, the lower bound can be defined as

𝛼∗S (𝑘) = inf
{
𝛼 ≥ 1

��there exist a set of 𝑘 allocation

functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] ∈ Ω that satisfy Eq. (5)
}
.

Next, we show that it is possible to find a tight design of {𝜓𝑖 }∀𝑖∈[𝑘 ]
that satisfies the necessary conditions in Eq. (5) by equality, ulti-
mately leading to Eq. (1) in Theorem 3.

For any 𝛼 ≥ 𝛼∗S (𝑘), let Γ
(𝛼 ) denote the superset of the set of

functions {𝜓𝑖 }∀𝑖∈[𝑘 ] ∈ Ω that satisfy Eq. (5). Note that Γ (𝛼 ) ⊂ Ω

holds for all 𝛼 ≥ 𝛼∗S (𝑘). Define 𝜒 (𝛼 ) (𝑣) : [𝐿,𝑈 ] → [0, 𝑘] as

𝜒 (𝛼 ) (𝑣) = inf
{∑︁𝑘

𝑖=1
𝜓𝑖 (𝑣)

�� {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] ∈ Γ (𝛼 )
}
. (6)

Based on the definition of 𝜒 (𝛼 ) , we construct a set of allocation
functions {𝜓 (𝛼 )

𝑖
(𝑣)}∀𝑖∈[𝑘 ] as follows:

𝜓
(𝛼 )
𝑖

(𝑣) =
(
𝜒 (𝛼 ) (𝑣) − (𝑖 − 1)

)
· 1{𝑖−1≤𝜒 (𝛼 ) (𝑣)≤𝑖 }+

1{𝜒 (𝛼 ) (𝑣)>𝑖 } ,∀𝑣 ∈ [𝐿,𝑈 ], ∀𝑖 ∈ [𝑘], (7)

where 1{𝐴} is the standard indicator function, equal to 1 if 𝐴 is
true and 0 otherwise. In the following lemma, we argue that the set
of functions {𝜓 (𝛼 )

𝑖
(𝑣)}∀𝑖∈[𝑘 ] is a feasible solution to Eq. (5) and

satisfies it as an equality.

Lemma 3. For any 𝛼 ≥ 𝛼∗S (𝑘), the functions {𝜓
(𝛼 )
𝑖

}∀𝑖∈[𝑘 ] satisfy
Eq. (5) as an equality.

The detailed proof for the above lemma is in Appendix D. Fol-
lowing the definition of {𝜓 (𝛼 )

𝑖
(𝑣)}∀𝑖∈[𝑘 ] , we observe that these

functions exhibit the following property:

Lemma 4. For any 𝑖 ∈ [𝑘] and 𝑣 ∈ [𝐿,𝑈 ], if 𝜓 (𝛼 )
𝑖

(𝑣) ∈ (0, 1)
holds, then𝜓 (𝛼 )

𝑗
(𝑣) = 1 for all 𝑗 = 1, · · · , 𝑖 − 1 and𝜓 (𝛼 )

𝑗
(𝑣) = 0 for

all 𝑗 = 𝑖 + 1, · · · , 𝑘 .

Lemma 4 asserts that if the online algorithm inducing {𝜓 (𝛼 ) }∀𝑖
begins allocating unit 𝑖 with some positive probability to buyers
in stage-𝑣 of I (𝜖 ) , then the algorithm must have already allocated
all units 𝑗 < 𝑖 with probability one to buyers arriving at or before
stage-𝑣 of I (𝜖 ) . Furthermore, if the algorithm has not allocated unit
𝑖 with probability one by the end of stage-𝑣 , then all units 𝑗 > 𝑖

remain in the system with probability one at the end of stage-𝑣 .
Given that the marginal cost for each additional unit of resource
increases, the algorithm should only produce and allocate a new
unit once all previously produced units have been fully allocated.

According to Lemma 3, the inequality in Eq. (5) can be replaced
with an equality. By combining Lemma 3 with Lemma 4, we con-
clude that there exists a unique set of functions that satisfy Eq.
(5) as an equality and also fulfill the property stated in Lemma 4.
Proposition 2 below formally states this result.
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Proposition 2. For any 𝛼 ≥ 𝛼∗S (𝑘), there exist a set of allocation
functions {𝜓 (𝛼 )

𝑖
}∀𝑖∈[𝑘 ] ∈ Ω that satisfy Eq. (5) by equality:

𝜓
(𝛼 )
𝑖

(𝑣) = 1, 𝑖 = 1, . . . ,
¯
𝑘 − 1,

𝜓
(𝛼 )

¯
𝑘

(𝑣) =
{
𝜉 + 𝑘

𝛼 · ln
(
𝑣−𝑐

¯
𝑘

𝐿−𝑐
¯
𝑘

)
𝑣 ∈ [𝐿,𝑢

¯
𝑘 ],

1 𝑣 > 𝑢
¯
𝑘 ,

𝜓
(𝛼 )
𝑖

(𝑣) =


0 𝑣 ≤ ℓ𝑖 ,

𝑘
𝛼 · ln

(
𝑣−𝑐𝑖
ℓ𝑖−𝑐𝑖

)
𝑣 ∈ [ℓ𝑖 , 𝑢𝑖 ],

1 𝑣 ≥ 𝑢𝑖 ,

𝑖 =
¯
𝑘 + 1, . . . , 𝑘 − 1,

𝜓
(𝛼 )
𝑘

(𝑣) =
{

0 𝑣 ≤ ℓ𝑘 ,

𝑘
𝛼 · ln

(
𝑣−𝑐𝑘
ℓ𝑘−𝑐𝑘

)
𝑣 ∈ [ℓ𝑘 ,𝑈 ],

where the intervals {[ℓ𝑖 , 𝑢𝑖 ]}∀𝑖 are specified by

𝑢
¯
𝑘 = ℓ

¯
𝑘+1 = (𝐿 − 𝑐

¯
𝑘 ) · 𝑒 (1−𝜉 ) ·

𝛼
𝑘 + 𝑐

¯
𝑘 , (8)

𝑢𝑖 = ℓ𝑖+1 = (ℓ𝑖 − 𝑐𝑖 ) · 𝑒𝛼/𝑘 + 𝑐𝑖 ∀𝑖 =
¯
𝑘 + 1, . . . , 𝑘 . (9)

Recall that the parameters
¯
𝑘 and 𝜉 are defined in Eq. (2) and

Eq. (3), respectively. Once 𝛼 is given, both
¯
𝑘 and 𝜉 can be uniquely

determined. Therefore, the set of allocation functions {𝜓 (𝛼 )
𝑖

}∀𝑖∈[𝑘 ]
given in Proposition 2 can also be explicitly computed once 𝛼

is given. The full proof of how to derive the explicit designs of
{𝜓 (𝛼 )

𝑖
}∀𝑖∈[𝑘 ] is given in Appendix E.

Putting together Eq. (8) and Eq. (9), we have

𝑢𝑘 = (𝐿 − 𝑐
¯
𝑘 ) · 𝑒

𝛼
𝑘
· (𝑘+1−

¯
𝑘−𝜉 ) + 𝑐

¯
𝑘 · 𝑒

𝛼
𝑘
· (𝑘−

¯
𝑘 )+

𝑐
¯
𝑘+1 · (1 − 𝑒

𝛼
𝑘 ) · 𝑒

𝛼
𝑘
· (𝑘−1−

¯
𝑘 ) + · · · + 𝑐𝑘 · (1 − 𝑒

𝛼
𝑘 ) .

Note that the right-hand side of the equation above is increasing
in 𝛼 . Therefore, as 𝛼 decreases, the value of 𝑢𝑘 also decreases and
will eventually fall below 𝑈 for a specific value of 𝛼 . Consequently,
according to the definition of𝜓 (𝛼 )

𝑘
in Proposition 2,𝜓 (𝛼 )

𝑘
(𝑈 ) will

exceed 1 (since𝜓 (𝛼 )
𝑘

(𝑈 ) > 𝜓
(𝛼 )
𝑘

(𝑢𝑘 ), and based on Eq. (9),𝜓
(𝛼 )
𝑘

(𝑢𝑘 )
is equal to one). However, this will generate an infeasible alloca-
tion function 𝜓

(𝛼 )
𝑘

, as we require that 𝜓 (𝛼 )
𝑘

(𝑣) ≤ 1 holds for all
𝑣 ∈ [𝐿,𝑈 ]. As a result, for those values of 𝛼 where 𝑢𝑘 < 𝑈 , the set
of 𝑘 allocation functions {𝜓 (𝛼 )

𝑖
}∀𝑖∈[𝑘 ] obtained in Proposition 2

becomes infeasible, meaning that 𝛼 must be less than 𝛼∗S (𝑘). There-
fore, 𝛼∗S (𝑘) is the value of 𝛼 for which𝑢𝑘 = 𝑈 , and this gives Eq. (1)
in Theorem 3. Thus, we complete the proof of Theorem 3.

4 r-Dynamic: A Randomized Dynamic Posted
Price Mechanisms

We propose a randomized dynamic pricing mechanism (r-Dynamic),
as described in Algorithm 1, to solve the OSDoS problem. Before
the buyers arrive, r-Dynamic samples 𝑘 independent random prices
{𝑃𝑖 }∀𝑖∈[𝑘 ] , where 𝑃𝑖 is the price for the 𝑖-th unit of the item. Specif-
ically, for each unit 𝑖 ∈ [𝑘], a random seed 𝑠𝑖 is drawn from
the uniform distribution Unif(0, 1), and the random price is set
as 𝑃𝑖 = 𝜙𝑖 (𝑠𝑖 ), where 𝜙𝑖 (𝑠𝑖 ) is the pricing function designed for the
𝑖-th unit. r-Dynamic then posts the price of the available unit with
the smallest index from {𝑃𝑖 }∀𝑖∈[𝑘 ] to the online arriving buyers.

Algorithm1 Randomized Dynamic Pricing (r-Dynamic) forOSDoS

1: Input: pricing functions {𝜙𝑖 }∀𝑖∈[𝑘 ] ;
2: Initiate: index of the unit to be sold 𝜅1 = 1;
3: Generate a random seed vector 𝒔 = {𝑠𝑖 }∀𝑖∈[𝑘 ] , each element

sampled independently from uniform distribution Unif(0, 1);
4: Set a price vector P = {𝑃𝑖 }∀𝑖∈[𝑘 ] , where 𝑃𝑖 = 𝜙𝑖 (𝑠𝑖 );
5: while buyer 𝑡 arrives do
6: if 𝜅𝑡 ≤ 𝑘 then:
7: Post the price 𝑝𝑡 = 𝑃𝜅𝑡 to buyer 𝑡 ;
8: if buyer 𝑡 accepts the price then
9: One unit is sold and set 𝑥𝑡 = 1;
10: end if
11: end if
12: Update 𝜅𝑡+1 = 𝜅𝑡 + 𝑥𝑡 . ⊲ 𝑥𝑡 = 0 if buyer 𝑡 declines 𝑝𝑡 .
13: end while

For all 𝑖 ∈ [𝑘], the pricing function 𝜙𝑖 : [0, 1] → [𝐿𝑖 ,𝑈𝑖 ] is
constructed such that the 𝑘 price intervals {[𝐿𝑖 ,𝑈𝑖 ]}∀𝑖∈[𝑘 ] span the
entire range of [𝐿,𝑈 ], where 𝐿 = 𝐿1 ≤ 𝑈1 = 𝐿2 ≤ 𝑈2 ≤ · · · ≤
𝑈𝑘−1 = 𝐿𝑘 ≤ 𝑈𝑘 = 𝑈 . That is, the upper boundary of 𝜙𝑖 (i.e.,
the maximum price of 𝑃𝑖 ) is the lower boundary of 𝜙𝑖+1 (i.e., the
minimum price of 𝑃𝑖+1). As a result, the posted prices will always
be non-decreasing (i.e., 𝑃1 ≤ 𝑃2 ≤ · · · ≤ 𝑃𝑘 ), regardless of the
realization of the random seeds {𝑠𝑖 }∀𝑖∈[𝑘 ] . This design ensures
that units with higher production costs are sold at higher prices,
which is consistent with the natural pricing scheme where more
expensive units reflect higher production costs.

4.1 Asymptotic Optimality of r-Dynamic
We show that by carefully designing the pricing functions, r-Dynamic
achieves an asymptotically optimal competitive ratio.

Theorem 4. Given S = {𝐿,𝑈 , 𝑓 } for the OSDoS problem with

𝑘 ≥ 1, r-Dynamic is 𝛼∗S (𝑘) ·exp( 𝛼
∗
S (𝑘 )
𝑘

)-competitive when the pricing
functions are given by

𝜙𝑖 (𝑠) = 𝐿, ∀𝑠 ∈ [0, 1], 𝑖 ∈ [
¯
𝑘∗ − 1],

𝜙
¯
𝑘∗ (𝑠) =

{
𝐿 𝑠 ∈ [0, 𝜉∗],
(𝐿 − 𝑐

¯
𝑘∗ ) · 𝑒 (𝑠−𝜉

∗ ) ·𝛼∗
S (𝑘 )/𝑘 + 𝑐

¯
𝑘∗ 𝑠 ∈ [𝜉∗, 1],

𝜙𝑖 (𝑠) = (𝐿𝑖 − 𝑐𝑖 ) · 𝑒𝑠 ·𝛼
∗
S (𝑘 )/𝑘 + 𝑐𝑖 , ∀𝑠 ∈ [0, 1], 𝑖 =

¯
𝑘∗ + 1, . . . , 𝑘,

where
¯
𝑘∗ and 𝜉∗ are respectively the values of

¯
𝑘 and 𝜉 defined

in Theorem 3, corresponding to 𝛼 = 𝛼∗S (𝑘), and the price intervals
{[𝐿𝑖 ,𝑈𝑖 ]}∀𝑖∈[𝑘 ] are given as follows:

𝑈
¯
𝑘∗ = 𝐿

¯
𝑘∗+1 = (𝐿 − 𝑐

¯
𝑘∗ ) · 𝑒 (1−𝜉

∗ ) ·𝛼∗
S (𝑘 )/𝑘 + 𝑐

¯
𝑘∗ , (10)

𝑈𝑖 = 𝐿𝑖+1 = (𝐿𝑖 − 𝑐𝑖 ) · 𝑒𝛼
∗
S (𝑘 )/𝑘 + 𝑐𝑖 , ∀𝑖 =

¯
𝑘∗ + 1, . . . , 𝑘 . (11)

We provide a proof sketch of Theorem 4 in Section 4.3. At a high
level, the design of the pricing functions {𝜙𝑖 (𝑠)}∀𝑖∈[𝑘 ] is inspired
by the dynamics of an 𝛼∗S (𝑘)-competitive algorithm on the arrival
instance I (𝜖 ) studied in the lower bound section. Essentially, the
inverse of the pricing function 𝜙𝑖 (𝑠), defined as 𝜙−1

𝑖
(𝑣) = sup{𝑠 :

𝜙𝑖 (𝑠) ≤ 𝑣}, follows the same design as 𝜓 (𝛼 )
𝑖

(𝑣) in Proposition 2

when 𝛼 = 𝛼∗S (𝑘), namely,𝜓
(𝛼∗

S (𝑘 ) )
𝑖

(𝑣) = sup{𝑠 : 𝜙𝑖 (𝑠) ≤ 𝑣}.
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Asymptotic optimality of r-Dynamic in general settings.
Previous studies (e.g., [12, 22]) have shown that 𝛼∗S (𝑘) remains
bounded by a constant as 𝑘 → ∞.

Thus, the competitive ratio of r-Dynamic approaches 𝛼∗S (𝑘) as 𝑘
goes to infinity, meaning that r-Dynamic is asymptotically optimal.

Exact optimality of r-Dynamic when 𝑘 = 2. For the small
inventory case of 𝑘 = 2, a tighter analysis shows that r-Dynamic is
𝛼∗S (2)-competitive using the same design of pricing functions in
Theorem 4, where 𝛼∗S (2) is the lower bound obtained in Theorem
3 for 𝑘 = 2. This indicates that r-Dynamic is not just asymptotically
optimal, but also optimal in the small inventory setting when 𝑘 = 2.
The corollary below formalizes this result.

Corollary 5. Given S = {𝐿,𝑈 , 𝑓 } for the OSDoS problem with
𝑘 = 2, r-Dynamic is 𝛼∗S (2)-competitive when 𝜙1 : [0, 1] → [𝐿1,𝑈1]
and 𝜙2 : [0, 1] → [𝐿2,𝑈2] are designed as follows:
• If 𝛼∗S (2) ≥

2𝐿−𝑐1−𝑐2
𝐿−𝑐1

, then:

𝜙1 (𝑠) =
{
𝐿 𝑠 ∈ [0, 𝜉∗],
(𝐿 − 𝑐1) · 𝑒 (𝑠−𝜉

∗ ) ·𝛼∗
S (2)/2 + 𝑐1 𝑠 ∈ [𝜉∗, 1],

𝜙2 (𝑠) = (𝐿2 − 𝑐2) · 𝑒𝑠 ·𝛼
∗
S (2)/2 + 𝑐2 ∀𝑠 ∈ [0, 1] .

In this case, the price intervals and 𝜉∗ are given by

𝐿1 = 𝐿,𝑈1 = 𝐿2 = (𝐿 − 𝑐1) · 𝑒 (1−𝜉
∗ ) ·𝛼∗

S (2)/2 + 𝑐1,𝑈2 = 𝑈 ,

𝜉∗ =
1

𝛼∗S (2)
· (2𝐿 − 𝑐1 − 𝑐2)

𝐿 − 𝑐1
.

• If 𝛼∗S (2) <
2𝐿−𝑐1−𝑐2

𝐿−𝑐1
, then:

𝜙1 (𝑠) = 𝐿, ∀𝑠 ∈ [0, 1],

𝜙2 (𝑠) =
{
𝐿 𝑠 ∈ [0, 𝜉∗],
(𝐿 − 𝑐2) · 𝑒 (𝑠−𝜉

∗ ) ·𝛼∗
S (2)/2 + 𝑐2 𝑠 ∈ [𝜉∗, 1] .

In this case, the price intervals and 𝜉∗ are given by

𝐿1 = 𝑈1 = 𝐿2 = 𝐿, 𝑈2 = 𝑈 ,

𝜉∗ =
(2𝐿 − 𝑐1 − 𝑐2)/𝛼∗S (2) − (𝐿 − 𝑐1)

𝐿 − 𝑐2
.

The proof of the corollary above is given in Appendix G. In the
following two subsections, we first evaluate the empirical perfor-
mance of r-Dynamic and then provide a proof sketch of Theorem 4
to show the asymptotic optimality of r-Dynamic.

4.2 Empirical Performance of r-Dynamic
We perform three experiments to evaluate the empirical perfor-
mance of r-Dynamic and compare its performance to two other
algorithms, d-Dynamic [22] and r-Static [19]. Throughout the three
experiments, the setupS is fixed to be {𝐿 = 1,𝑈 = 30, 𝑓 (𝑖) = 𝑖2/16}
and 𝑘 = 10. To stimulate different arrival patterns of buyers, we
consider the following three types of instances:
• Instance-IID: We generate the valuations of 1000 buyers using
the truncated normal distribution 𝑁 (15, 15)[1,30] .

• Instance-Sorted: We generate 1000 buyers using the same ap-
proach as Instance-IID, and sort these buyers in increasing order
by their valuations. This instance mimics the hard instance I (𝜖 ) .

• Instance-Low2High: We generate the valuations of 500 buyers
using truncated normal distribution 𝑁 (7.5, 7.5)[1,30] . Following
these 500 buyers, we generate another 500 buyers using distribu-
tion 𝑁 (22.5, 7.5)[1,30] .
Figure 2 presents the CDF plot of the empirical competitive ra-

tios for the three algorithms r-Dynamic, d-Dynamic, and r-Static,
evaluated on 300 instances from each type of instance. In Figure
2(a), r-Dynamic significantly outperforms the other two algorithms
under Instance-Sorted. This is because the valuations of online
arrivals are increasing, similar to the hard instance I (𝜖 ) defined
in Section 3.2. This result confirms the superior performance of
r-Dynamic under difficult instances compared to the other algo-
rithms. Additionally, Figure 2(a) demonstrates that r-Dynamic’s
performance is very close to the lower bound 𝛼∗S (10), suggesting
that r-Dynamicmay not only be asymptotically optimal in the large
𝑘 regime but also near-optimal in the small 𝑘 regime. In Figure 2(b),
Instance-Low2High consists of two phases: low-valued buyers ar-
riving first, followed by high-valued buyers. This instance is simpler
than Instance-Sorted, and the performance of all three algorithms
improves, with r-Dynamic continuing to outperform the others.
Finally, in Figure 2(c), under Instance-IID, all algorithms achieve
a competitive ratio close to 1, with r-Dynamic and d-Dynamic
performing similarly. These results indicate that r-Dynamic’s ad-
vantage is most evident on more challenging instances, particularly
when low-valued buyers arrive before high-valued ones.

4.3 Proof Sketch of Theorem 4
For an arbitrary arrival instance I = {𝑣𝑡 }∀𝑡 ∈[𝑇 ] , we prove that

r-Dynamic is 𝛼∗S (𝑘) · exp( 𝛼
∗
S (𝑘 )
𝑘

)-competitive if the pricing func-
tions {𝜙𝑖 }∀𝑖∈[𝑘 ] are designed according to Theorem 4.

Recall that P = {𝑃𝑖 }𝑖∈[𝑘 ] is generated using the pricing functions
{𝜙𝑖 }∀𝑖∈[𝑘 ] at the start of r-Dynamic (line 3 of Algorithm 1). Here-
after, we will refer to Algorithm 1 as r-Dynamic(P) to indicate that
the algorithm is executed with the random price vector P. Based
on the design of {𝜙𝑖 }∀𝑖∈[𝑘 ] in Theorem 4, the first

¯
𝑘∗ − 1 prices

in P are all 𝐿’s (i.e., 𝑃1 = · · · = 𝑃
¯
𝑘∗−1 = 𝐿), the

¯
𝑘∗-th price 𝑃

¯
𝑘∗ is a

random variable within [𝐿,𝑈
¯
𝑘∗ ], and for all 𝑖 ∈ {

¯
𝑘∗ + 1, · · · , 𝑘], the

𝑖-th price 𝑃𝑖 is a random variable within [𝐿𝑖 ,𝑈𝑖 ]. Here, the values
of

¯
𝑘∗ and {[𝐿𝑖 ,𝑈𝑖 ]}∀𝑖 are all defined in Theorem 4.
Let P denote the support of all possible values of the random

price vector P:

P = {𝐿}¯
𝑘∗−1 × [𝐿,𝑈

¯
𝑘∗ ] ×

∏
𝑖∈{

¯
𝑘∗+1,· · · ,𝑘 }

[𝐿𝑖 ,𝑈𝑖 ] .

Given a price vector P ∈ P, let𝑊 (P) represent the total number of
items allocated by r-Dynamic(P) under the input instance I. Since
P is a random variable,𝑊 (P) is also a random variable. For clarity,
we will sometimes omit the price vector and refer to it simply as
𝑊 whenever the context is clear.

Let 𝜔 be the maximum value in the support of the random vari-
able𝑊 (i.e.,𝜔 is the maximum possible value of𝑊 (P) for all P ∈ P).
Thus, 𝜔 is a deterministic value that depends only on the input
instance I. In addition, let 𝝅 ∈ P be a price vector such that
r-Dynamic(𝝅) allocates the 𝜔-th item earlier than any other price
vector in the set P. That is, for all P ∈ P, r-Dynamic(P) allocates
the 𝜔-th item no earlier than that of r-Dynamic(𝝅). Let us define
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Figure 2: CDF plots of empirical competitive ratios of r-Dynamic (Algorithm 1), d-Dynamic [22] and r-Static [19].

the set {𝜏𝑖 }∀𝑖∈[𝜔 ] so that 𝜏𝑖 is the arrival time of the buyer in the
instance I to whom r-Dynamic(𝝅) allocates the 𝑖-th unit. Note
that for all 𝑖 ∈ {1, · · · , 𝜔}, 𝜏𝑖 is a deterministic value once 𝝅 and I
are given. Let the random variable𝑊 𝜏𝜔 (P) denote the total number
of items allocated by r-Dynamic(P) after the arrival of buyer 𝜏𝜔 in
the instance I. The lemma below shows that the random variable
𝑊 𝜏𝜔 (P) is always lower bounded by 𝜔 − 1.

Lemma 5. Given instance I,𝑊 𝜏𝜔 (P) ≥ 𝜔 − 1 holds for all 𝑷 ∈ P.

Lemma 5 greatly simplifies the analysis of r-Dynamic since it
implies that the support of the random variable𝑊 𝜏𝜔 consists only
of two values:𝜔−1 and𝜔 (note that all𝑊 ’s are upper bounded by𝜔).
The intuition behind Lemma 5 is as follows. For all 𝑖 ∈ {1, · · · , 𝜔},
recall that 𝜏𝑖 denotes the arrival time of the buyer in the instance I
who receives the 𝑖-th unit under r-Dynamic(𝝅). Upon the arrival
of buyer 𝜏𝑖 , if the number of items allocated by r-Dynamic(P) is
less than 𝑖 − 1, then the current 𝜏𝑖 -th buyer will definitely accept
the price offered to her, ensuring that one more unit will be sold.
As a result, at least 𝜔 − 1 items will be allocated by the end of time
𝜏𝜔 . Lemma 5 thus follows.

The following two lemmas help us lower bound the expected
performance ofr-Dynamic on input instance I and upper bound
the objective of the offline optimal algorithm, respectively.

Lemma 6. If a buyer in instance I arrives before time 𝜏𝜔 with
a valuation within [𝐿𝜔 ,𝑈 ], then for all P ∈ P, r-Dynamic(P) will
allocate one unit of the item to that buyer.

Lemma 6 can be proved as follows. By definition, 𝜏𝜔 is the earli-
est time across all possible price vectors in P that the production
level exceeds 𝜔 − 1, causing the posted price to exceed𝑈𝜔−1. Thus,
for all possible realization of P ∈ P, the posted prices by r-Dynamic
remain below 𝑈𝜔−1 before the arrival of buyer at time 𝜏𝜔 . Con-
sequently, when a buyer with a valuation within [𝐿𝜔 ,𝑈 ] arrives
before time 𝜏𝜔 , the buyer accepts the price posted to him (since
𝐿𝜔 ≥ 𝑈𝜔−1) and a unit of item will thus be allocated to this buyer.

Lemma 7. There are no buyers in instance I with a valuation
within [𝑈𝜔 ,𝑈 ] arriving after time 𝜏𝜔 , namely, the valuations of all
buyers arrive after 𝜏𝜔 are less than𝑈𝜔 .

The above lemma can be proved by contradiction. If there exists
a buyer arriving after time 𝜏𝜔 with a valuation within [𝑈𝜔 ,𝑈 ], then
theremust exist a price vector inP, say P′, such that r-Dynamic(P′)
will allocate more than 𝜔 units, contradicting the definition of 𝜔 .

Applying Lemma 6 and observing that r-Dynamic sells at least
𝜔 − 1 units, we can derive a lower bound on the expected per-
formance of r-Dynamic. Conversely, using the lemma 7 and the
fact that for all P ∈ P, the allocation level of r-Dynamic never
exceeds 𝜔 , we can upper bound the objective of the offline optimal
algorithm. The combination of these two bounds yields the final
competitive ratio of r-Dynamic. For the full proof of Theorem 4,
refer to Appendix F.

5 Conclusions and Future Work
In this paper, we studied online 𝑘-selection with production costs
that exhibit diseconomies of scale (OSDoS) and developed novel
randomized dynamic pricing mechanisms with the best-known
competitive ratios. Specifically, our randomized dynamic pricing
scheme provides tight guarantees in both the small and large in-
ventory settings (i.e., small and large 𝑘), addressing the gap left by
[22]. These findings advance the theoretical understanding of OS-
DoS and offer practical insights for designing randomized dynamic
pricing mechanisms in online resource allocation problems with
increasing marginal production costs.

This work highlights several promising directions for future
research. First, we conjecture that our proposed randomized pric-
ing mechanism is optimal for all 𝑘 ≥ 1. However, a more refined
analysis is required to establish or refute its optimality for𝑘 ≥ 3. Ad-
ditionally, extending our results to multi-resource or combinatorial
settings could reveal new insights into online resource allocation
with diseconomies of scale in more complex environments. Fur-
thermore, it would be valuable to explore other metrics, such as
risk and fairness, in online allocation and selection to ensure that
the developed randomized pricing mechanisms not only maximize
efficiency but also promote reliable and equitable outcomes.
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A Proof of Lemma 1
The monotonicity of each function𝜓𝑖 follows from the fact that if
the random variable Ψ𝑖 (𝑣) is realized to be equal to one for some

𝑣 , then for all 𝑣 ′ > 𝑣 , Ψ𝑖 (𝑣 ′) must also be equal to one (based on
the definition of Ψ𝑖 ). Since𝜓𝑖 (𝑣) and𝜓𝑖 (𝑣 ′) represent the expected
values of Ψ𝑖 (𝑣) and Ψ𝑖 (𝑣 ′), respectively, this property ensures that
each𝜓𝑖 is increasing. Furthermore, by the definition of the state vari-
ables 𝑞𝑖 and 𝑞𝑖+1, whenever Ψ𝑖+1 (𝑣) = 1, the allocation must have
reached at least 𝑖 + 1 units, which implies Ψ𝑖 (𝑣) = 1. Consequently,
it follows that𝜓𝑖 (𝑣) ≥ 𝜓𝑖+1 (𝑣).

B Proof of Proposition 1
For any randomized algorithm ALG, let 𝐷 (𝐿) denote the number of
units that ALG allocates under the instance I (𝜖 )

𝐿
(i.e., the instance

I (𝜖 ) by the end of stage-𝐿). Thus, 𝐷 (𝐿) is a random variable taking
values from 0 to 𝑘 . Based on definition of 𝐷 (𝐿), ALG(I (𝜖 )

𝐿
) can be

computed as follows:

ALG
(
I (𝜖 )
𝐿

)
= E

𝐷 (𝐿) · 𝐿 −
𝐷 (𝐿)∑︁
𝑖=1

𝑐𝑖

 ,
where the expectation is taken with respect to the randomness of
𝐷 (𝐿) (the distribution depends on the randomness of the algorithm
ALG). Let the indicator function 1{𝐷 (𝐿)=𝑗 } = 1 if ALG allocates
exactly 𝑗 units at the end of stage-𝐿, and 1{𝐷 (𝐿)=𝑗 } = 0 otherwise.
Based on definition of the random variables {Ψ𝑖 (𝐿)}∀𝑖∈[𝑘 ] , we
argue that:

1{𝐷 (𝐿)=𝑗 } = Ψ𝑗 (𝐿) − Ψ𝑗+1 (𝐿), 1 ≤ 𝑗 ≤ 𝑘. (12)

Here,Ψ𝑘+1 (𝐿) = 0 always holds. To seewhy Eq. (12) is true, consider
the case where the random variable 𝐷 (𝐿) = 𝑗 , then:

Ψ𝑖 (𝐿) = 1, ∀𝑖 ≤ 𝑗,

Ψ𝑖 (𝐿) = 0, ∀𝑖 > 𝑗 .

From the equation above, we can observe that when the indicator
function 1{𝐷 (𝐿)=𝑗 } = 1, Ψ𝑗+1 (𝐿) − Ψ𝑗 (𝐿) = 1 holds. For the case
when 1{𝐷 (𝐿)=𝑗 } = 0, if 𝐷 (𝐿) < 𝑗 , then Ψ𝑗 (𝐿) = Ψ𝑗+1 (𝐿) = 0 and
1{𝐷 (𝐿)=𝑗 } = Ψ𝑗 (𝐿) − Ψ𝑗+1 (𝐿) follows. For the case 𝐷 (𝐿) > 𝑗 , the
two equations Ψ𝑗 (𝐿) = Ψ𝑗+1 (𝐿) = 1 and 1{𝐷 (𝐿)=𝑗 } = Ψ𝑗 (𝐿) −
Ψ𝑗+1 (𝐿) again follow. As a result, ALG(I (𝜖 )

𝐿
) can be computed as

follows:

ALG
(
I (𝜖 )
𝐿

)
= E

𝐷 (𝐿) · 𝐿 −
𝐷 (𝐿)∑︁
𝑖=1

𝑐𝑖


=

𝑘∑︁
𝑗=1

E
[
1{𝐷 (𝐿)=𝑗 }

]
·
(
𝑗 · 𝐿 −

𝑗∑︁
𝑖=1

𝑐𝑖

)
=

𝑘∑︁
𝑗=1

E
[
Ψ𝑗 (𝐿) − Ψ𝑗+1 (𝐿)

]
·
(
𝑗 · 𝐿 −

𝑗∑︁
𝑖=1

𝑐𝑖

)
=

𝑘∑︁
𝑗=1

(
𝜓 𝑗 (𝐿) −𝜓 𝑗+1 (𝐿)

)
·
(
𝑗 · 𝐿 −

𝑗∑︁
𝑖=1

𝑐𝑖

)
=

𝑘∑︁
𝑗=1

𝜓 𝑗 (𝐿) · (𝐿 − 𝑐 𝑗 ) −𝜓𝑘+1 (𝐿) ·
(
𝑘 · 𝐿 −

𝑘∑︁
𝑖=1

𝑐𝑖

)
=

𝑘∑︁
𝑗=1

𝜓 𝑗 (𝐿) · (𝐿 − 𝑐 𝑗 ).
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Now, let us compute the objective of the 𝛼-competitive algorithm
at the end of stage-𝑣 , ∀𝑣 ∈ 𝑉 (𝜖 ) , such that 𝑣 = 𝐿 +𝑚 · 𝜖 . Let the
random variable 𝑋𝑖 (𝑣) be the value obtained from allocating the
𝑖-th unit of the item at the end of some stage-𝑣 ∈ 𝑉 (𝜖 ) . It follows
that

E[𝑋𝑖 (𝑣) − 𝑐𝑖 ] = 𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 )+

E


𝑚∑︁
𝑗=1

(𝐿 + 𝑗 · 𝜖 − 𝑐𝑖 ) ·
(
Ψ𝑖 (𝐿 + 𝑗 · 𝜖) − Ψ𝑖 (𝐿 + ( 𝑗 − 1) · 𝜖)

)
=𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +

𝑚∑︁
𝑗=1

(𝐿 + 𝑗 · 𝜖 − 𝑐𝑖 )·

E [Ψ𝑖 (𝐿 + 𝑗 · 𝜖) − Ψ𝑖 (𝐿 + ( 𝑗 − 1) · 𝜖)]

=𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +
𝑚∑︁
𝑗=1

(𝐿 + 𝑗 · 𝜖 − 𝑐𝑖 )·(
𝜓𝑖 (𝐿 + 𝑗 · 𝜖) −𝜓𝑖 (𝐿 + ( 𝑗 − 1) · 𝜖)

)
.

where the first equality follows because if the 𝑖-th unit is allocated
at some stage 𝐿 + 𝑗 · 𝜖 , then the algorithm must have sold at least 𝑖
units of the item by the end of 𝐿 + 𝑗 · 𝜖 , leading to Ψ𝑖 (𝐿 + 𝑗 · 𝜖) = 1.
Additionally, if the 𝑖-th unit is allocated at stage 𝐿 + 𝑗 · 𝜖 , then at
stage 𝐿 + ( 𝑗 − 1) · 𝜖 , the algorithm must have allocated fewer than 𝑖
units, indicating that Ψ𝑖 (𝐿 + ( 𝑗 − 1) · 𝜖) = 0. Putting together the
above results, it follows that:

ALG
(
I (𝜖 )
𝑣=𝐿+𝑚 ·𝜖

)
=

𝑘∑︁
𝑖=1

E[𝑋𝑖 (𝐿 +𝑚 · 𝜖) − 𝑐𝑖 ]

=

𝑘∑︁
𝑖=1

[
𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +

𝑚∑︁
𝑗=1

(𝐿 + 𝑗 · 𝜖 − 𝑐𝑖 ) ·
(
𝜓𝑖 (𝐿 + 𝑗 · 𝜖)

−𝜓𝑖 (𝐿 + ( 𝑗 − 1) · 𝜖)
)]
,

= ALG
(
I (𝜖 )
𝐿

)
+

𝑘∑︁
𝑖=1

𝑚∑︁
𝑗=1

(𝐿 + 𝑗 · 𝜖 − 𝑐𝑖 )·(
𝜓𝑖 (𝐿 + 𝑗 · 𝜖) −𝜓𝑖 (𝐿 + ( 𝑗 − 1) · 𝜖)

)
, ∀𝑚 ∈

{
1, . . . , ⌊𝑈 − 𝐿

𝜖
⌋
}
.

Proposition 1 thus follows.

C Proof of Lemma 2
Based on Proposition 1, for any online algorithm ALG, we have:

ALG
(
I (𝜖 )
𝐿

)
=

𝑘∑︁
𝑖=1

𝜓
(𝐿)
𝑖

· (𝐿 − 𝑐𝑖 ),

ALG
(
I (𝜖 )
𝐿+𝑗 ·𝜖

)
= ALG

(
I (𝜖 )
𝐿

)
+

𝑘∑︁
𝑖=1

𝑗∑︁
𝑚=1

(
(𝐿 +𝑚 · 𝜖)·(

𝜓𝑖 (𝐿+𝑚 · 𝜖) −𝜓𝑖 (𝐿 +𝑚 · 𝜖 − 𝜖)
))
, ∀𝑗 = 1, 2, . . . ,

⌊
𝑈 − 𝐿

𝜖

⌋
.

As 𝜖 → 0, following the Riemann summation, it follows that:

ALG
(
I (𝜖 )
𝑣

)
= ALG

(
I (𝜖 )
𝐿

)
+

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 ) ·
[
𝜓𝑖 (𝜂) −𝜓𝑖 (𝜂 − 𝑑𝜂)

]
,∀𝑣 ∈ [𝐿,𝑈 ] .

Based on above, the set of functions {𝜓𝑖 }𝑖∈[𝑘 ] should be defined
over the range [𝐿,𝑈 ].

In the next step, we prove that the set of functions {𝜓𝑖 }𝑖∈[𝑘 ]
exists such that these set of functions are continous within their
range [𝐿,𝑈 ]. For now, let us assume this claim holds. Then, it
follows that :

ALG
(
I (𝜖 )
𝑣

)
= ALG

(
I (𝜖 )
𝐿

)
+

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 ) · [𝜓𝑖 (𝜂) −𝜓𝑖 (𝜂 − 𝑑𝜂)]

= ALG
(
I (𝜖 )
𝐿

)
+

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 ) · 𝑑𝜓 (𝜂) .

Following from Eq. (4), if there exists an 𝛼-competitive algorithm,
then there should exists a set of functions {𝜓𝑖 }𝑖∈[𝑘 ] such that:

ALG
(
I (𝜖 )
𝑣

)
= ALG

(
I (𝜖 )
𝐿

)
+

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 ) · 𝑑𝜓 (𝜂)

≥ 1
𝛼
·
(
𝑘𝑣 −

∑︁𝑘

𝑖=1
𝑐𝑖

)
, ∀𝑣 ∈ [𝐿,𝑈 ] .

Now, let us get back to prove that a set of functions {𝜓𝑖 }𝑖∈[𝑘 ] exists
corresponding to some online algorithm, that all these functions are
continuous within the range [𝐿,𝑈 ]. Let ALG be an 𝛼-competitive
algorithm. For some 𝑣 ∈ (𝐿,𝑈 ) and 𝑖 ∈ [𝑘], let the function 𝜓𝑖 (.)
corresponding to ALG be non-continuous at 𝑣 . Let lim𝑥→𝑣− 𝜓𝑖 (𝑣) =
𝜈 and 𝜓𝑖 (𝑣) = lim𝑥→𝑣+ 𝜓𝑖 (𝑣) = 𝜈 + 𝛿 , for some 𝛿 > 0. Then the
algorithmmust be selling at least in expectation a 𝛿-fraction of the 𝑖-
th unit to the buyers with valuation 𝑣 in instance I. Conversely, for
ALG to be 𝛼-competitive, the expected objective of the algorithm
before the arrival of buyers with valuation 𝑣 , ALG(I (𝜖 )

𝑣− ), must be at
least equal to 1

𝛼 · OPT(I (𝜖 )
𝑣− ) = 1

𝛼 · OPT(I (𝜖 )
𝑣 ), where OPT(I (𝜖 )

𝑣 )
denotes the objective value of the offline optimal algorithm on
the hard instance I (𝜖 ) up to the end of stage-𝑣 . It can be seen
that selling in expectation at least a 𝛿 fraction of the 𝑖-th unit is
unnecessary and ALG could save this fraction of the unit and sell it
to buyers with higher valuations. In other words, we can construct
another online algorithm, say ÂLG, that follows ALG up to the
arrival of buyers with valuation 𝑣 , but sells the 𝛿-fraction of the
𝑖-th unit to buyers with valuation strictly greater than 𝑣 instead. It
is easy to see that ÂLG will obtain a better objective value with its
𝜓𝑖 being continuous at 𝑣 . Lemma 1 follows by repeating the same
process for any other discontinuous point of𝜓𝑖 (𝑣).
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D Proof of Lemma 3
For any 𝑣 ∈ [𝐿,𝑈 ], let us define 𝐶𝑣 as follows:

𝐶𝑣 = 𝐶𝐿 +
𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝛼
𝑖 (𝜂), ∀𝑣 ∈ (𝐿,𝑈 ],

𝐶𝐿 =

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ).

To prove Lemma 3, we need to first prove the feasibility of {𝜓 (𝛼 )
𝑖

}∀𝑖∈[𝑘 ] ,
namely, 𝐶𝑣 is greater than 1

𝛼 · (𝑘 · 𝑣 − ∑
𝑖 𝑐𝑖 ) for all 𝑣 ∈ [𝐿,𝑈 ].

For some 𝑣 ∈ [𝐿,𝑈 ], based on the definition of 𝜒𝛼 (𝑣) in Eq. (6),
there exist a set of functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] that satisfy Eq. (5) and
in the meanwhile, for some arbitrary small value 𝜖 , we have:

𝜒𝛼 (𝑣) + 𝜖 ≥
𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣) . (13)

Next, using integration by parts, we have

𝐶𝑣 = 𝐶𝐿 +
𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝛼
𝑖 (𝜂)

= 𝐶𝐿 +
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · (𝑣 − 𝑐𝑖 )−

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) −

∫ 𝑣

𝜂=𝐿

(
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝜂)

)
𝑑𝜂

=

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · (𝑣 − 𝑐𝑖 ) −

∫ 𝑣

𝜂=𝐿

(
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝜂)

)
𝑑𝜂

= 𝑣 ·
(
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑝)

)
−

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 −

∫ 𝑣

𝜂=𝐿

(
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝜂)

)
𝑑𝜂

= 𝑣 · 𝜒𝛼 (𝑣) −
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 −

∫ 𝑣

𝜂=𝐿

𝜒𝛼 (𝑣)𝑑𝜂,

where the last equality follows the definition of {𝜓𝛼
𝑖
}∀𝑖∈[𝑘 ] in Eq.

(7). Thus, we have

𝐶𝑣 = 𝑣 · 𝜒𝛼 (𝑣) −
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 −

∫ 𝑣

𝜂=𝐿

𝜒𝛼 (𝑣) · 𝑑𝜂,

≥ 𝑣 ·
𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣) − 𝑣 · 𝜖 −
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 −

∫ 𝑣

𝜂=𝐿

𝜒𝛼 (𝑣) · 𝑑𝜂,

≥ 𝑣 ·
𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣) −
∫ 𝑣

𝜂=𝐿

(
𝑘∑︁
𝑖=1

𝜓𝑖 (𝜂)
)
· 𝑑𝜂

−
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 − 𝑣 · 𝜖, (14)

where the first inequality follows Eq. (13) and the second inequal-
ity directly follows the definition of 𝜒𝛼 (𝑣) (recall that 𝜒𝛼 (𝑣) ≤∑𝑘
𝑖=1𝜓𝑖 (𝑣) holds for all 𝑣 ∈ [𝐿,𝑈 ]).
By the definition of {𝜓𝛼

𝑖
}∀𝑖∈[𝑘 ] , we have

∑
𝑖∈[𝑘 ] 𝜓

𝛼
𝑖
(𝑣) = 𝜒𝛼 (𝑣).

Putting together the inequality 𝜒𝛼 (𝑣) ≤ ∑𝑘
𝑖=1𝜓𝑖 (𝑣) and the fact

that productions costs are increasing, we have

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 ≤

𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣) · 𝑐𝑖 .

Putting together the above inequality and the right-hand-side of
Eq. (14), it follows that:

𝐶𝑣 ≥ 𝑝 ·
𝑘−1∑︁
𝑖=0

𝜓𝑖 (𝑣) −
𝑘−1∑︁
𝑖=0

∫ 𝑣

𝜂=𝐿

𝜓𝑖 (𝜂) · 𝑑𝜂−

𝑘−1∑︁
𝑖=0

𝜓𝑖 (𝑣) · 𝑐𝑖+1 − 𝑣 · 𝜖

≥ ALG
(
I (𝜖 )
𝑣

)
− 𝑣 · 𝜖,

where ALG is the online algorithm corresponding to the set of
allcation functions {𝜓𝑖 }∀𝑖∈[𝑘 ] and recall that ALG(I (𝜖 )

𝑣 ) is defined
as follows:

ALG
(
I (𝜖 )
𝐿

)
=

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ),

ALG
(
I (𝜖 )
𝑣

)
= ALG

(
I (𝜖 )
𝐿

)
+

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝑖 (𝜂), ∀𝑣 ∈ [𝐿,𝑈 ] .

Since {𝜓𝑖 }∀𝑖∈[𝑘 ] satisfy Eq. (5), it follows that

𝐶𝑣 ≥ ALG
(
I (𝜖 )
𝑣

)
− 𝑣 · 𝜖

≥ 1
𝛼
·
(
𝑘 · 𝑣 −

𝑘∑︁
𝑖=1

𝑐𝑖

)
− 𝑣 · 𝜖, ∀𝑣 ∈ [𝐿,𝑈 ] .

By setting 𝜖 → 0, it follows that

𝐶𝑣 ≥ 1
𝛼
·
(
𝑘 · 𝑣 −

𝑘∑︁
𝑖=1

𝑐𝑖

)
, ∀𝑣 ∈ [𝐿,𝑈 ] .

To complete the proof of Lemma 3, we also need to prove that
the above inequality holds as an equality for the set of functions
{𝜓𝛼

𝑖
}∀𝑖∈[𝑘 ] . This can be proved by contradiction. Suppose that at

some point 𝑣 ∈ [𝐿,𝑈 ], the above equality does not hold, then there
must exist another set of feasible functions, say {𝜓𝑖 }∀𝑖∈[𝑘 ] , induced
by a new algorithm, say ÂLG, that satisfy Eq. (5) and

𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣) <
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣).

We argue that the new set of functions {𝜓𝑖 }∀𝑖∈[𝑘 ] will allocate a
smaller fraction of its total units to buyers in I (𝜖 ) arriving at or
before stage-𝑣 compared to {𝜓𝛼

𝑖
}∀𝑖∈[𝑘 ] . However, by still following

the allocation functions {𝜓𝛼
𝑖
}∀𝑖∈[𝑘 ] , ÂLG(I (𝜖 )

𝑣 ) will be exactly
equal to 1

𝛼 (𝑘 · 𝑣 − ∑𝑘
𝑖=1 𝑐𝑖 ). Given the definition of {𝜓𝛼

𝑖
}∀𝑖∈[𝑘 ] ,

we have
∑𝑘
𝑖=1𝜓

𝛼
𝑖
(𝑣) = 𝜒𝛼 (𝑣), meaning that

∑𝑘
𝑖=1𝜓𝑖 (𝑣) < 𝜒𝛼 (𝑣).

However, this contradicts the definition of 𝜒𝛼 (𝑣). We thus complete
the proof of Lemma 3.

2720



WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Hossein Nekouyan Jazi, Bo Sun, Raouf Boutaba, and Xiaoqi Tan

E Proof of Proposition 2
From Lemma 3, we know that {𝜓𝛼

𝑖
(𝑣)}∀𝑖∈[𝑘 ] satisfy Eq. (5) with an

equality. Therefore, the set of allocation functions {𝜓𝛼
𝑖
(𝑣)}∀𝑖∈[𝑘 ]

is a solution to the following system of equations:
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝛼
𝑖 (𝜂)

=
1
𝛼
· (𝑘 · 𝑣 −

∑︁
𝑖

𝑐𝑖 ), ∀𝑖 ∈ [𝑘], 𝑣 ∈ [𝐿,𝑈 ] . (15)

Also, based on Lemma 4, we argue that if the value of the function
𝜓𝛼
𝑖
(𝑣) is changing at some value 𝑣 ∈ [𝐿,𝑈 ] (i.e., 𝑑𝜓𝛼

𝑖
(𝑣) ≠ 0), then

the value of all the functions {𝜓∗
𝑗
(𝑣)}∀ 𝑗∈[𝑖−1] are equal to one,

and all the functions in the set {𝜓∗
𝑗
(𝑣)} 𝑗>𝑖 are equal to zero. Based

on this property, we can assign an interval [ℓ𝑖 , 𝑢𝑖 ] to each 𝜓𝛼
𝑖
(𝑣).

In the interval of [ℓ𝑖 , 𝑢𝑖 ], only the value of 𝜓𝛼
𝑖
changes while the

other functions {𝜓𝛼
𝑗
}∀ 𝑗≠𝑖 in that interval are fixed to be one or zero.

Additionally, the following relation exists between the start and
end points of these intervals:

𝐿 = ℓ1 ≤ 𝑢1 = ℓ2 ≤ 𝑢2 ≤ · · · ≤ ℓ𝑘 ≤ 𝑢𝑘 = 𝑈 .

To satisfy the equality
∑
𝑖∈[𝑘 ] 𝜓

𝛼
𝑖
(𝐿) · (𝐿 − 𝑐𝑖 ) = 1

𝛼 · (𝑘 · 𝐿 −∑
𝑖 𝑐𝑖 ),

the set of functions {𝜓𝛼
𝑖
(𝑣)}∀𝑖∈[

¯
𝑘−1] should be equal to one at the

point 𝑣 = 𝐿. Thus, the explicit design of the functions {𝜓𝛼
𝑖
}∀𝑖∈[

¯
𝑘−1]

is as follows:

𝜓
(𝛼 )
𝑖

(𝑣) = 1, 𝑖 = 1, . . . ,
¯
𝑘 − 1.

In the case that
∑
𝑖∈[

¯
𝑘 ] 𝐿 − 𝑐𝑖 < 1

𝛼 · (𝑘 · 𝐿 − ∑
𝑖 𝑐𝑖 ), to satisfy∑

𝑖∈[𝑘 ] 𝜓
𝛼
𝑖
(𝐿) · (𝐿 − 𝑐𝑖 ) = 1

𝛼 · (𝑘 · 𝐿 − ∑
𝑖 𝑐𝑖 ), we need to have:

𝜓𝛼

¯
𝑘
(𝐿) =

∑
𝑖∈[

¯
𝑘−1] (𝐿 − 𝑐𝑖 ) − 1

𝛼 · ∑𝑖∈[𝑘 ] (𝐿 − 𝑐𝑖 )
𝐿 − 𝑐

¯
𝑘

= 𝜉 .

Since for all 𝑣 ∈ [ℓ
¯
𝑘 , 𝑢

¯
𝑘 ] with ℓ

¯
𝑘 = 𝐿, only the value of 𝜓𝛼

¯
𝑘
(𝑣)

changes (i.e., 𝑑𝜓𝛼
𝑖
(𝑣) = 0 for all 𝑖 ≠

¯
𝑘), it follows that:

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝛼
𝑖 (𝜂)

=

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐
¯
𝑘 )𝑑𝜓∗

¯
𝑘
(𝜂), ∀𝑣 ∈ [𝐿,𝑢

¯
𝑘 ] .

Based on the system of equations in Eq. (15), we need to have:
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐
¯
𝑘 )𝑑𝜓∗

¯
𝑘
(𝜂)

=
1
𝛼
· (𝑘 · 𝑣 −

∑︁
𝑖

𝑐𝑖 ), ∀𝑣 ∈ [ℓ
¯
𝑘 , 𝑢

¯
𝑘 ] .

Taking derivative w.r.t. 𝑣 from both sides of the equation above, we
have

(𝑣 − 𝑐
¯
𝑘 ) · 𝑑𝜓∗

¯
𝑘
(𝑣) = 𝑘

𝛼
.

Solving the above differential equation leads to

𝜓∗
¯
𝑘
(𝑣) = 𝑘

𝛼
· ln(𝑣 − 𝑐

¯
𝑘 ) +𝑄, ∀𝑣 ∈ [ℓ

¯
𝑘 , 𝑢

¯
𝑘 ],

where 𝑄 is a constant. To find 𝑄 , since 𝜓∗
¯
𝑘
(𝐿) = 𝜉 , it follows that

𝑄 = 𝜉 − 𝑘
𝛼 · ln(𝐿−𝑐

¯
𝑘 ). As a result, the explicit design of the function

𝜓𝛼

¯
𝑘
is as follows:

𝜓
(𝛼 )

¯
𝑘

(𝑣) =
{
𝜉 + 𝑘

𝛼 · ln
(
𝑣−𝑐

¯
𝑘

𝐿−𝑐
¯
𝑘

)
𝑣 ∈ [𝐿,𝑢

¯
𝑘 ],

1 𝑣 > 𝑢
¯
𝑘 .

To obtain the value of 𝑢
¯
𝑘 , we set 𝜓∗

¯
𝑘
(𝑢

¯
𝑘 ) = 1 (the function 𝜓∗

¯
𝑘

reaches its maximum). Consequently, it follows that:

𝑢
¯
𝑘 = (𝐿 − 𝑐

¯
𝑘 ) · 𝑒

𝛼
𝑘
· (1−𝜉 ) + 𝑐

¯
𝑘 .

Using the same procedure as what has been applied to𝜓𝛼

¯
𝑘
, for all

the other functions {𝜓𝛼
𝑖
(𝑣)}∀𝑖>

¯
𝑘 , we have

𝑘∑︁
𝑗=1

𝜓∗
𝑗 (𝐿) · (𝐿 − 𝑐 𝑗 ) +

𝑘∑︁
𝑗=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐 𝑗 )𝑑𝜓𝛼
𝑖 (𝜂)

=

𝑘∑︁
𝑗=1

𝜓∗
𝑗 (𝐿) · (𝐿 − 𝑐 𝑗 ) +

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝛼
𝑖 (𝜂), ∀𝑣 ∈ [ℓ𝑖 , 𝑢𝑖 ] .

Taking derivative w.r.t. 𝑣 from both sides of the equation above, it
follows that:

(𝑣 − 𝑐𝑖 ) · 𝑑𝜓𝛼
𝑖 (𝑣) = 𝑘

𝛼
.

Solving the above differential equation leads to

𝜓𝛼
𝑖 (𝑣) = 𝑘

𝛼
· ln(𝑣 − 𝑐𝑖 ) + 𝑄̂, ∀𝑣 ∈ [ℓ𝑖 , 𝑢𝑖 ] .

Since𝜓∗ (ℓ𝑖 ) = 0, we have 𝑄̂ = − ln(ℓ𝑖 − 𝑐𝑖 ). The explicit design of
the function𝜓𝛼

𝑖
is thus as follows:

𝜓
(𝛼 )
𝑖

(𝑣) =


0 𝑣 ≤ ℓ𝑖 ,

𝑘
𝛼 · ln

(
𝑣−𝑐𝑖
ℓ𝑖−𝑐𝑖

)
𝑣 ∈ [ℓ𝑖 , 𝑢𝑖 ],

1 𝑣 ≥ 𝑢𝑖 .

𝑖 =
¯
𝑘 + 1, . . . , 𝑘 − 1

For the function𝜓𝛼
𝑘
, since it is the last function, it follows that:

𝜓
(𝛼 )
𝑘

(𝑣) =
{

0 𝑣 ≤ ℓ𝑘 ,

𝑘
𝛼 · ln

(
𝑣−𝑐𝑘
ℓ𝑘−𝑐𝑘

)
𝑣 ∈ [ℓ𝑘 ,𝑈 ] .

By setting𝜓∗ (𝑢𝑖 ) = 1, it follows that:

𝑢𝑖 = (ℓ𝑖 − 𝑐𝑖 ) · 𝑒
𝛼
𝑘 + 𝑐𝑖 , ¯

𝑘 + 1 ≤ 𝑖 ≤ 𝑘.

Putting everything together, Proposition 2 follows.

F Full Proof of Theorem 4
In this section, we provide a complete proof of Theorem 5. We begin
by introducing several important notations and lemmas. Then, we
break the problem into two independent subproblems based on
the buyers’ valuations in some arbitrary arrival instance I. For
each case, we proceed to show how to upper bound OPT(I), the
objective of the optimal offline algorithm on I. We then proceed
to lower bound the expected performance of r-Dynamic on that
instance, ALG(I). Ultimately, we combine everything and obtain
a performance guarantee for r-Dynamic under all adversarially
chosen instances of OSDoS for that subproblem.
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F.1 Notations and Definitions
Consider an arbitrary arrival instance I = {𝑣𝑡 }𝑡 ∈[𝑇 ] . Recall that
the random price vector P = {𝑃1, · · · , 𝑃𝑘 } is generated using the
pricing functions {𝜙𝑖 }∀𝑖∈[𝑘 ] at the beginning of r-Dynamic (line
3 of Algorithm 1). In the following, we will refer to Algorithm 1
as r-Dynamic(P) to indicate that the algorithm is executed with
the random price vector being realized as P. Based on the design
of {𝜙𝑖 }∀𝑖∈[𝑘 ] in Theorem 4, the first 𝑘∗ − 1 prices in P are all 𝐿’s
(i.e., 𝑃1 = · · · = 𝑃𝑘∗−1 = 𝐿), the 𝑘∗-th price 𝑃𝑘∗ is a random variable
within [𝐿,𝑈𝑘∗ ], and for all 𝑖 ∈ {𝑘∗ +1, · · · , 𝑘], we have 𝑃𝑖 ∈ [𝐿𝑖 ,𝑈𝑖 ]
(recall that 𝑃𝑖 is also a random variable). Here, the values of

¯
𝑘∗ and

{[𝐿𝑖 ,𝑈𝑖 ]}∀𝑖 are all defined in Theorem 4.
Let P denote the support of all possible values of the random

price vector P:

P = {𝐿}¯
𝑘∗−1 × [𝐿,𝑈

¯
𝑘∗ ] ×

∏
𝑖∈{

¯
𝑘∗+1,· · · ,𝑘 }

[𝐿𝑖 ,𝑈𝑖 ] .

Given a price vector realization P ∈ P, let𝑊 (P) represent the
total number of items allocated by r-Dynamic(P) under the input
instance I. Since P is a random variable,𝑊 (P) is also a random
variable. For clarity, we will sometimes omit the price vector and
refer to it simply as𝑊 whenever the context is clear.

Let 𝜔 denote the maximum value in the support of the random
variable𝑊 (i.e., 𝜔 is the maximum possible value of𝑊 (P) for all
P ∈ P). Thus, 𝜔 is a deterministic value that depends only on the
input instance I. Furthermore, let 𝝅 ∈ P be a price vector such that
r-Dynamic(𝝅) allocates the 𝜔-th item earlier than any other price
vector in the set P. That is, for all P ∈ P, r-Dynamic(P) allocates
the 𝜔-th item no earlier than that of r-Dynamic(𝝅).

Let us define the set {(𝜈𝑖 , 𝜏𝑖 )}∀𝑖∈[𝜔 ] so that 𝜏𝑖 is the arrival time
of the buyer in the instance I to whom r-Dynamic(𝝅) allocates
the 𝑖-th unit and 𝜈𝑖 is its valuation. Note that for all 𝑖 ∈ {1, · · · , 𝜔},
𝜏𝑖 and 𝜈𝑖 are deterministic values once 𝝅 and I are given.

We can derive the following inequality regarding 𝜈𝑖 :

𝜈𝑖 ≥ 𝐿𝑖 , ∀𝑖 ∈ [𝜔], (16)

where 𝐿𝑖 is the lower bound for the range of the pricing function 𝜙𝑖 ,
used to generate the random price for the 𝑖-th unit. This inequality
holds since the buyer arriving at time 𝜏𝑖 accepts the price posted
for the 𝑖-th unit by r-Dynamic. The price for the 𝑖-th unit is at least
equal to 𝐿𝑖 based on the design of the pricing functions 𝜙𝑖 .

Let the random variable𝑊 𝜏𝜔 (P) denote the total number of
items allocated by r-Dynamic(P) after the arrival of buyer 𝜏𝜔 in
the instance I. The lemma below shows that the random variable
𝑊 𝜏𝜔 (P) is always lower bounded by 𝜔 − 1.

Lemma 8. Given an arbitrary instance I,𝑊 𝜏𝜔 (P) ≥ 𝜔 − 1 holds
for all 𝑷 ∈ P.

Proof. If 𝜔 = 1, this lemma is trivial, so we consider the case
where 𝜔 ≥ 2. Suppose before the arrival of the buyer at time 𝜏2,
no items have been sold. From Eq. (16), we know that 𝜈2 ≥ 𝐿2.
Additionally, based on the design of the pricing functions 𝜙1 (.)
and 𝜙2 (.), we have 𝐿2 ≥ 𝑈1. Consequently, it follows that 𝜈2 ≥ 𝑈1.
Since the realized price for the first unit under any sampled price
vector will be at most𝑈1 (based on design of the pricing function
𝜙1), the buyer arriving at time 𝜏2 will accept the price for the first
unit, and the algorithm will sell the first item. Thus, for all possible

price vector P, the value of the random variable𝑊 𝜏2 (P) is at least
equal to one. By the same reasoning, if before the arrival of the
buyer at time 𝜏3, only one item has been sold, the buyer arriving at
𝜏3 will accept the price for the second unit, regardless of its price,
and the total number of items sold by r-Dynamic will increase to
two. This reasoning can be extended to the time 𝜏𝜔 . As a result,
after the arrival of the buyer at time 𝜏𝜔 , r-Dynamic sells at least
𝜔 − 1 units and thereby the claim in the lemma follows. □

Lemma 8 implies that the support of the random variable𝑊 𝜏𝜔

consists only of two values: 𝜔 − 1 and 𝜔 . This greatly simplifies the
analysis of the algorithm.

The following two lemmas help us lower bound the expected
performance of r-Dynamic under the input instance I and up-
per bound the objective of the offline optimal algorithm given the
instance I, respectively.

Lemma 9. If a buyer in instance I arrives before time 𝜏𝜔 with
a valuation within [𝐿𝜔 ,𝑈 ], then for all P ∈ P, r-Dynamic(P) will
allocate one unit of the item to that buyer.

Proof. According to the definition of 𝝅 , 𝜏𝜔 is the earliest time
across all possible price vectors in P that the production level
exceeds 𝜔 − 1, causing the posted price to exceed 𝑈𝜔−1. Thus, for
all possible realization of P, the posted prices by r-Dynamic remain
below𝑈𝜔−1 before the arrival of buyer at time 𝜏𝜔 . Consequently,
when a buyer with a valuation within [𝐿𝜔 ,𝑈 ] arrives before time
𝜏𝜔 , the buyer accepts the price posted to him (since 𝐿𝜔 ≥ 𝑈𝜔−1)
and a unit of item will thus be allocated to this buyer. □

Lemma 10. There are no buyers in instance I with a valuation
within [𝑈𝜔 ,𝑈 ] arriving after time 𝜏𝜔 , namely, the valuations of all
buyers arrive after 𝜏𝜔 are less than𝑈𝜔 .

Proof. If there exist a buyer with a valuation larger than 𝑈𝜔

arriving after the time 𝜏𝜔 , then there must exist a price vector in
P, say P′, such that the number of units sold by r-Dynamic(P′)
will exceed 𝜔 . This contradicts the definition of 𝜔 . Thus, the lemma
follows.1 □

Given an instanceI, let the setB ⊆ I contain the highest-valued
buyers that the offline optimal algorithm selects. We further divide
B into two subsets: B1 and B2. B1 comprises the highest-valued
buyers up to time 𝜏𝜔 , while B2 includes the remaining buyers in
B who arrive at or after time 𝜏𝜔 . Let us further partition B1 into
two subsets: B1,1 and B1,2. Here, B1,1 consists of buyers in B1 with
valuations at least 𝐿𝜔 , and B1,2 = B1 \ B1,1 comprises those with
valuations strictly less than 𝐿𝜔 .

For the rest of the analysis, let us study the problem for two
separate cases that may occur depending on the instance I.

F.2 Case 1: Buyer 𝜏𝜔 Has the Highest Valuation
In this case, in the set B2, no buyer has a valuation greater than
𝑈𝜔−1 except for the buyer at time 𝜏𝜔 . Therefore, the buyer at time
𝜏𝜔 possesses the highest valuation in the instance I.

1In fact, such a price vector P′ for the initial 𝜔 units should have the same prices as
the vector 𝝅 and for the (𝑖 + 1)-th unit, P′ should be equal to𝑈𝜔 (i.e., 𝑃 ′

𝑖+1 = 𝑈𝜔 ).
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F.2.1 Bound OPT from Above for Case 1. The following upper
bound can be derived for OPT(I), which denotes the objective
value of the offline optimal algorithm on instance I:

OPT(I)

= 𝑉 (B1) +𝑉 (B2) −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑉 (B1) + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

= 𝑉 (B1,1) +𝑉 (B1,2) + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ |B1,1 | ·𝑈𝜔−1 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1)
+ |B1,2 | ·𝑈𝜔−1 + (|B2 | − 1) ·𝑈𝜔−1

+ 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ (𝑘 − 1) ·𝑈𝜔−1 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1)

+ 𝜈𝜏𝜔 −
𝑘∑︁
𝑖=1

𝑐𝑖 ,

where the first inequality directly follows the condition of Case
1. The second inequality follows the definition of B1,1 and B1,2.
Finally, the third inequality follows the fact that we only focus on
the case when 𝑐𝑘 < 𝐿.

F.2.2 Bound ALG from Below for Case 1. Moving forward, we focus
on establishing a lower bound on the performance of r-Dynamic
under the arrival instance I. Let the random variables {𝑋𝑖 }∀𝑖∈[𝑘 ]
represent the value obtained by r-Dynamic from allocating the 𝑖-th
unit of the item. Given the input instance I, let E[ALG(I)] denote
the expected performance of r-Dynamic. Therefore, we have:

E[ALG(I)]

= E

[
𝑘∑︁
𝑖=1

(𝑋𝑖 − 𝑐𝑖 ) · 1{i-th item is sold under price vector P}

]
,

≥
𝜔−1∑︁
𝑖=1

E[𝑋𝑖 − 𝑐𝑖 ]

=

𝜔−1∑︁
𝑖=1

E[𝑋𝑖 ] −
𝜔−1∑︁
𝑖=1

𝑐𝑖

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) −

𝜔−1∑︁
𝑖=1

𝑐𝑖 .

In the equations above, all expectations are taken with respect to
the randomness of the price vector P. The first inequality follows
Lemma 8, indicating that under any price vector P, r-Dynamic sells
at least 𝜔 − 1 units. The first term in the second inequality follows
due to the independent sampling used to set the price of the 𝑖-th
unit using the pricing function 𝜙𝑖 , and the second term follows
Lemma 9.

Let us define𝜓𝑖 (𝑣) = sup{𝑠 : 𝜙𝑖 (𝑠) ≤ 𝑣} for all 𝑖 ∈ [𝑘]. From the
definition of {𝜙𝑖 }∀𝑖∈[𝑘 ] in Theorem 4, it follows that:

E[ALG(I)]

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 −

𝜔−1∑︁
𝑖=1

𝑐𝑖 +
(
𝑉 (B1,1) − |B1 | · 𝐿𝜔

)
=

𝜔∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖+1) +
𝜔−1∑︁
𝑖=1

∫ 𝑈𝜔−1

𝜂=𝐿

(𝜂 − 𝑐𝑖+1)𝑑𝜓𝑖 (𝜂)

+
(
𝑉 (B1,1) − |B1 | · 𝐿𝜔

)
.

Furthermore, it is evident that based on the design of {𝜙𝑖 }∀𝑖∈[𝑘 ]
with 𝛼 = 𝛼∗S (𝑘), the set of functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] follows the
same design as {𝜓𝛼

𝑖
(𝑣)}∀𝑖∈[𝑘 ] given in Proposition 2. As a result,

it follows that:
𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖+1) +
𝜔−1∑︁
𝑖=1

∫ 𝑈𝜔−1

𝜂=𝐿

(𝜂 − 𝑐𝑖+1)𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1) − |B1 | · 𝐿𝜔 )

≥ 1
𝛼∗S (𝑘)

·
(
𝑘 ·𝑈𝜔−1 −

∑︁
𝑖

𝑐𝑖

)
+

(
𝑉 (B1,1) − |B1 | · 𝐿𝜔

)
.

F.2.3 Putting Everything Together for Case 1. Putting together the
lower bound and upper bound derived for the expected objective
value of r-Dynamic and the offline optimal algorithm, it follows
that:

OPT(I)
E[ALG(I)]

≤
(𝑘 − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 + (𝑉 (B1,1) − |B1,1 | · 𝐿𝜔 ) −

∑𝑘
𝑖=1 𝑐𝑖

1
𝛼∗
S (𝑘 )

· (𝑘 ·𝑈𝜔−1 −
∑
𝑖 𝑐𝑖 ) + (𝑉 (B1,1) − |B1,1 | · 𝐿𝜔 )

≤
(𝑘 − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 − ∑𝑘

𝑖=1 𝑐𝑖
1

𝛼∗
S (𝑘 )

· (𝑘 ·𝑈𝜔−1 −
∑
𝑖 𝑐𝑖 )

= 𝛼∗S (𝑘) ·
(
1 +

𝜈𝜏𝜔 −𝑈𝜔−1
𝑘 ·𝑈𝜔−1 −𝐶

)
≤ 𝛼∗S (𝑘) ·

(
1 + 𝑈𝜔 −𝑈𝜔−1

𝑘 ·𝑈𝜔−1 −𝐶

)
≤ 𝛼∗S (𝑘) · 𝑒

𝛼∗
S (𝑘 )
𝑘 .

In the equation above, the last inequality is due to the fact that
𝑈𝜔−𝑈𝜔−1
𝑈𝜔−1−𝑐𝜔 =

𝑈𝜔−𝑐𝜔
𝑈𝜔−1−𝑐𝜔 − 1 ≤ 1 + 𝑒

𝛼∗
S (𝑘 )
𝑘 , where the last inequality

follows the design in Eq. (10).

F.3 Case 2: Buyer 𝜏𝜔 Does Not Have the Highest
Valuation

In the set of buyersB2, there are other buyers with valuation greater
than𝑈𝜔−1 besides the buyer at time 𝜏𝜔 . Let 𝜆 denote the value of
the highest buyer in B2 along with the value of buyer at time 𝜏𝜔 .
First, let us consider the case that 𝜆 ≤ 𝜈𝜏𝜔 . The proof for the case
that 𝜆 > 𝜈𝜏𝜔 follows exactly the same as the following case.

F.3.1 Bound OPT from Above for Case 2. Following the same ap-
proach as the previous Case 1, let us first upper bound the objective
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of the offline optimal algorithm on instance I:

OPT(I)

= 𝑉 (B1) +𝑉 (B2) −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑉 (B1) + (|B2 | − 1) · 𝜆 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑉 (B1,1) +𝑉 (B1,2) + (|B2 | − 1) · 𝜆 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ |B1,1 | ·𝑈𝜔−1 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1)+

|B1,2 | ·𝑈𝜔−1 + (|B2 | − 1) · 𝜆 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ (𝑘 − 1) · 𝜆 + 𝜈𝜏𝜔 + (𝑉 (B1) − |B1 | · 𝐿𝜔 ) −
𝑘∑︁
𝑖=1

𝑐𝑖 .

F.3.2 Bound ALG from Below for Case 2. To establish a lower
bound on the performance of r-Dynamic in this case, let us consider
the following lemma:

Lemma 11. If the random price of the 𝜔-th unit is realized to be
less than 𝜆 and further assume that 𝜆 ≤ 𝜈𝜏𝜔 , then the number of
items allocated by r-Dynamic in the end is equal to 𝜔 .

Proof. Under any price realization, as established by Lemma
8, it is proven that after the arrival of the buyer at time 𝜏𝜔 , the
number of allocated units is at least 𝜔 − 1. If the price of the 𝜔-th
unit is realized to be less than 𝜆, then upon the arrival of the buyer
with valuation 𝜆 at some time after 𝜏𝜔 , the buyer will accept the
price if the 𝜔-th unit has not already been sold. □

Next, we obtain a lower bound on the performance of r-Dynamic
as follows:

E[ALG(I)]

= E

[
𝑘∑︁
𝑖=1

(𝑋𝑖 − 𝑐𝑖 ) · 1{i-th item is sold under pricie vector P}

]
≥

𝜔−1∑︁
𝑖=1

E[𝑋𝑖 − 𝑐𝑖 ] + E[𝑋𝜔 − 𝑐𝜔 |𝑃𝜔 ≤ 𝜆]

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 +

∫ 𝜙−1
𝜔 (𝜆)

0
𝜙𝜔 (𝜂)𝑑𝜂 − 𝜙−1

𝜔 (𝜆) · 𝑐𝜔

−
𝜔−1∑︁
𝑖=1

𝑐𝑖 + (𝑉 (B1) − |B1 | · 𝐿𝜔 ) .

In the equations above, all expectations are taken with respect to
the randomness of the price vector P ∈ P. The first inequality
follows Lemma 11, where 𝑃𝜔 denotes the 𝜔-element of the random
price vector P that r-Dynamic posts for the 𝜔-th unit. The second
inequality is true because of the independent sampling that is used
to set the random price of the 𝑖-th unit using 𝜙𝑖 and Lemma 9.

Let us define 𝜓𝑖 (𝑣) = sup{𝑠 : 𝜙𝑖 (𝑠) ≤ 𝑣}, 𝑖 ∈ [𝑘]. From the
definition of {𝜙𝑖 }𝑖∈[𝑘 ] in Theorem 4, it follows that:

𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 +

∫ 𝜙−1
𝜔 (𝜆)

0
𝜙𝜔 (𝜂)𝑑𝜂 − 𝜙−1

𝜔 (𝜆) · 𝑐𝜔

−
𝜔−1∑︁
𝑖=1

𝑐𝑖 + (𝑉 (B1) − |B1 | · 𝐿𝜔 )

=

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖+1) +
𝜔∑︁
𝑖=1

∫ 𝜆

𝜂=𝐿

(𝜂 − 𝑐𝑖+1)𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1) − |B1 | · 𝐿𝜔 ).

Furthermore, it is evident that the set of functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ]
follows the same design as {𝜓𝛼

𝑖
(𝑣)}𝑖∈[𝑘 ] given in Lemma 2 (recall

that {𝜓𝛼
𝑖
(𝑣)}𝑖∈[𝑘 ] are based on {𝜙𝑖 }∀𝑖∈[𝑘 ] ). As a result, it follows

that:
𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖+1) +
𝜔∑︁
𝑖=1

∫ 𝜆

𝜂=𝐿

(𝜂 − 𝑐𝑖+1)𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1) − |B1 | · 𝐿𝜔 )

≥ 1
𝛼∗S (𝑘)

·
(
𝑘 · 𝜆 −

∑︁
𝑖

𝑐𝑖 ) + (𝑉 (B1

)
− |B1 | · 𝐿𝜔 ) .

F.3.3 Putting Everything Together for Case 2. Putting together the
above lower and upper bounds, it follows that:

OPT(I)
E[ALG(I)]

≤
(𝑘 − 1) · 𝜆 + 𝜈𝜏𝜔 + (𝑉 (B1) − |B1 | · 𝐿𝜔 ) −

∑𝑘
𝑖=1 𝑐𝑖

1
𝛼∗
S (𝑘 )

· (𝑘 · 𝜆 − ∑𝑘
𝑖=1 𝑐𝑖 ) + (𝑉 (B1) − |B1 | · 𝐿𝜔 )

≤
(𝑘 − 1) · 𝜆 + 𝜈𝜏𝜔 − ∑𝑘

𝑖=1 𝑐𝑖
1

𝛼∗
S (𝑘 )

· (𝑘 · 𝜆 − ∑𝑘
𝑖=1 𝑐𝑖 )

= 𝛼∗S (𝑘) · (1 +
𝜈𝜏𝜔 − 𝜆

𝑘 · 𝜆 −𝐶
)

≤ 𝛼∗S (𝑘) · (1 +
𝑈𝜔 −𝑈𝜔−1
𝑘 ·𝑈𝜔−1 −𝐶

)

≤ 𝛼∗S (𝑘) · 𝑒
𝛼∗
S (𝑘 )
𝑘 .

We thus complete the proof of Theorem 4.

Remark 1. Theorem 4 argues that r-Dynamic is asymptotically
optimal. We emphasize that our analysis of Theorem 4 is not tight be-
cause it does not differentiate between the sample paths of r-Dynamic
when the algorithm sells 𝜔 − 1 units and those when it sells 𝜔 units.
As a result, our analysis considers that r-Dynamic sells 𝜔 − 1 units of
the item on all sample paths.2 However, in the subsequent analysis
for the case of 𝑘 = 2, we can enumerate all the scenarios and therefore
do not require such a reduction. For this reason, we can prove in the
next section that r-Dynamic is indeed optimal for 𝑘 = 2 (see the proof
of Corollary 5 next).

2We conjecture that r-Dynamic is optimal even in the small inventory regime if a
tighter analysis is performed.
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G Proof of Corollary 5
In this section, we prove that for an arbitrary instance I, the ex-
pected performance of r-Dynamic, denoted as E[ALG(I)], is at
least OPT(I)

𝛼∗
S (2)

.
Let 𝑣∗1, 𝑣

∗
2 denote the two highest valuations in the instance I

(we omit the proof for the trivial case with only one buyer in I).
Depending on the values of 𝑣∗1 and 𝑣∗2 , the following three cases
occur. In each scenario, we prove that E[ALG(I)] ≥ OPT(I)

𝛼∗
S (2)

=

𝑣∗1+𝑣∗2−𝑐1−𝑐2
𝛼∗
S (2)

holds.
Case I: 𝑣∗1 ≤ 𝑣∗2 ≤ 𝑈1. Let random variables 𝑋1 and 𝑋2 denote

the valuations of the buyers that purchase the first and second unit
of the item, respectively. Then, it follows that

E[ALG(I)]
= E𝒔∼𝑈 2 (0,1) [𝑋1 + 𝑋2 − 𝑐1 − 𝑐2]

≥
∫ 𝜙−1

1 (𝑣∗1 )

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1

+ (𝑣∗2 − 𝑐1) · (𝜙−1
1 (𝑣∗2) − 𝜙−1

1 (𝑣∗1)),

≥
∫ 𝜙−1

1 (𝑣∗1 )

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1

+
∫ 𝜙−1

1 (𝑣∗2 )

𝑠1=𝜙
−1
1 (𝑣∗1 )

(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1

=

∫ 𝜙−1
1 (𝑣∗2 )

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1

≥
𝑣∗1 + 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)

=
OPT(I)
𝛼∗S (2)

,

where the first two terms in the first inequality arise from the fact
that if the realized price for the first unit of the item, denoted as
𝑃1 = 𝜙1 (𝑠1), is set below 𝑣∗1 , then in the worst-case scenario, the
value obtained from the first item will be at least equal to 𝜙1 (𝑠1).
The subsequent two terms are included because if the price for
the first item falls within the range from 𝑣∗1 to 𝑣∗2 , then the first
item is allocated to the buyer whose valuation is 𝑣∗2 . The second
inequality follows since 𝜙1 (𝑠1) is an non-decreasing function. The
third inequality follows from the design of 𝜙1 (𝑠1) in Theorem 5.

Case II: 𝑣∗1 ≤ 𝑈1 = 𝐿2 ≤ 𝑣∗2 ≤ 𝑈 . In this case, we have

E[ALG(I)]
= E𝒔∼𝑈 2 (0,1) [𝑋1 − 𝑐1] + E𝒔∼𝑈 2 (0,1) [𝑋2 − 𝑐2]

≥
∫ 𝜙−1

1 (𝑣∗1 )

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1)𝑑𝑠1 + (𝑣∗2 − 𝑐1) · (1 − 𝜙−1

1 (𝑣∗1))

+ (𝑣∗2 − 𝑐2) · 𝜙−1
1 (𝑣∗1) · 𝜙

−1
2 (𝑣∗2)

=
2 · 𝑣∗1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑣∗2 − 𝑐1) · (1 − 𝜙−1

1 (𝑣∗1))

+ (𝑣∗2 − 𝑐2) · 𝜙−1
1 (𝑣∗1) · 𝜙

−1
2 (𝑣∗2) .

To prove E[ALG(I)] ≥ OPT(I)
𝛼∗
S (2)

=
𝑣∗1+𝑣∗2−𝑐1−𝑐2

𝛼∗
S (2)

, we define the fol-
lowing function

𝐺 (𝑣∗1, 𝑣
∗
2) =

2 · 𝑣∗1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑣∗2 − 𝑐1) · (1 − 𝜙−1

1 (𝑣∗1))+

(𝑣∗2 − 𝑐2) · 𝜙−1
1 (𝑣∗1) · 𝜙

−1
2 (𝑣∗2) −

𝑣∗1 + 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)
.

Then the goal is to prove 𝐺 (𝑣∗1, 𝑣
∗
2) ≥ 0 in its domain 𝐿 ≤ 𝑣∗1 ≤ 𝑈1

and 𝐿2 ≤ 𝑣∗2 ≤ 𝑈 . The proposition below formally states this result.

Proposition 3. For all 𝑣∗1 ∈ [𝐿1,𝑈1] and 𝑣∗2 ∈ [𝐿2,𝑈2], we have
𝐺 (𝑣∗1, 𝑣

∗
2) ≥ 0.

We deferred the proof of the above proposition to Appendix H.
The idea is to simply prove that 𝐺 (𝑣∗1, 𝑣

∗
2) ≥ 0 holds at all extreme

points within its domain.
Case III: 𝐿2 ≤ 𝑣∗1 ≤ 𝑣∗2 . In this case, we show that we can lower

bound the expected performance of r-Dynamic as follows:

E[ALG(I)]
= E𝒔∼𝑈 2 (0,1) [𝑋1 − 𝑐1] + E𝒔∼𝑈 2 (0,1) [𝑋2 − 𝑐2]

≥
∫ 1

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1 +

∫ 𝜙−1
2 (𝑣∗1 )

𝑠2=0
(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

+ (𝑣∗2 − 𝑐2) · (𝜙−1
2 (𝑣∗2) − 𝜙−1

2 (𝑣∗1))

≥
∫ 1

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1 +

∫ 𝜙−1
2 (𝑣∗1 )

𝑠2=0
(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

+
∫ 𝜙−1

2 (𝑣∗2 )

𝑠2=𝜙
−1
2 (𝑣∗1 )

(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

=

∫ 1

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1 +

∫ 𝜙−1
2 (𝑣∗2 )

𝑠2=0
(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

=
2 ·𝑈1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+

∫ 𝜙−1
2 (𝑣∗2 )

𝑠2=0
(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

=
2 · 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)

≥OPT(I)
𝛼∗S (2)

,

where the first term in the first inequality arises from the fact
that if the realized price for the first unit of the item, denoted
as 𝑃1 = 𝜙1 (𝑠1), is set below 𝐿2, then in the worst-case scenario,
the value obtained from the first item will be at least equal to
𝜙1 (𝑠1). The second and third terms follow the same reasoning. The
second inequality follows the fact that 𝜙2 (𝑠2) is non-decreasing.
The third and forth equalities follow the design of 𝜙1 (𝑠1) and 𝜙2 (𝑠2)
in Theorem 5.

Combining the analysis of the above three cases, Corollary 5
follows.

H Proof of Proposition 3
We first evaluate the value of 𝐺 (𝑣∗1, 𝑣

∗
2) at its critical points, that

is, at the points where 𝜕𝐺 (𝑣∗1 ,𝑣∗2 )
𝜕𝑣∗1

= 0 and 𝜕𝐺 (𝑣∗1 ,𝑣∗2 )
𝜕𝑣∗2

= 0, and show
that 𝐺 (𝑣∗1, 𝑣

∗
2) ≥ 0 holds at these critical points. After that, the
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proposition follows by evaluating the values of𝐺 (𝑣∗1, 𝑣
∗
2) at the four

boundary hyperplanes of its domain.
First, let us compute 𝜕𝐺 (𝑣∗1 ,𝑣∗2 )

𝜕𝑣∗1
. It follows that:

𝜕𝐺 (𝑣∗1, 𝑣
∗
2)

𝜕𝑣∗1

=
1

𝛼∗S (2)
− 2
𝛼∗S (2)

·
𝑣∗2 − 𝑐1

𝑣∗1 − 𝑐1
+ 2
𝛼∗S (2)

·
𝑣∗2 − 𝑐2

𝑣∗1 − 𝑐1
· 𝜙−1

2 (𝑣∗2) .

Setting the right-hand side of above equation to be zero, we have

𝜙−1
2 (𝑣∗2) · (𝑣

∗
2 − 𝑐2) = 𝑣∗2 − 𝑐1 −

𝑣∗1 − 𝑐1

2
.

Using the equation above, we then compute 𝐺 (𝑣∗1, 𝑣
∗
2) at the points

that 𝜕𝐺 (𝑣∗1 ,𝑣∗2 )
𝜕𝑣∗1

= 0, it follows that:

𝐺 (𝑣∗1, 𝑣
∗
2) =

𝑣∗1 − 𝑣∗2
𝛼∗S (2)

+ (𝑣∗2 − 𝑐1) · (1 − 𝜙−1
1 (𝑣∗1))

+ (𝑣∗2 − 𝑐1 −
𝑣∗1 − 𝑐1

2
) · 𝜙−1

1 (𝑣∗1)

=
𝑣∗1 − 𝑣∗2
𝛼∗S (2)

+ (𝑣∗2 − 𝑐1) −
𝑣∗1 − 𝑐1

2
· 𝜙−1

1 (𝑣∗1)

≥
𝑣∗1 − 𝑣∗2
𝛼∗S (2)

+ (𝑣∗2 − 𝑐1) −
𝑣∗1 − 𝑐1

2

=𝑣∗1 · ( 1
𝛼∗S (2)

− 1
2
) + 𝑣∗2 · (1 − 1

𝛼∗S (2)
) − 𝑐1

2

≥
𝑣∗1 − 𝑐1

2
>0,

leading to the conclusion that 𝐺 (𝑣∗1, 𝑣
∗
2) ≥ 0 holds at its critical

points.
Next, we consider the boundary hyperplanes and prove that

𝐺 (𝑣∗1, 𝑣
∗
2) is positive in all four boundary planes given below:

• 𝐺 (𝐿1, 𝑣∗2), ∀𝑣∗2 ∈ [𝐿2,𝑈2].
• 𝐺 (𝑈1, 𝑣∗2), ∀𝑣∗2 ∈ [𝐿2,𝑈2].
• 𝐺 (𝑣∗1, 𝐿2), ∀𝑣∗1 ∈ [𝐿1,𝑈1].
• 𝐺 (𝑣∗1,𝑈2), ∀𝑣∗1 ∈ [𝐿1,𝑈1].

We start with the first one 𝐺 (𝐿1, 𝑣∗2):

𝐺 (𝐿, 𝑣∗2) =
2 · 𝐿 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑣∗2 − 𝑐2) −

𝐿 + 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)

=(𝑣∗2 − 𝑐2) −
𝑣∗2 − 𝐿

𝛼∗S (2)
≥0, ∀𝐿2 ≤ 𝑣∗2 ≤ 𝑈2,

where the equations above follow since 𝐿 ≥ 𝑐2 holds (the assump-
tion that the marginal production costs are always less than the
valuations).

For the second one 𝐺 (𝑈1, 𝑣∗2):
𝐺 (𝑈1, 𝑣

∗
2)

=
2 ·𝑈1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑣∗2 − 𝑐2) · 𝜙−1

2 (𝑣∗2) −
𝑈1 + 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)

=(𝑣∗2 − 𝑐2) · 𝜙−1
2 (𝑣∗2) −

𝑣∗2 −𝑈1

𝛼∗S (2)
≥0, ∀𝐿2 ≤ 𝑣∗2 ≤ 𝑈2 = 𝑈 .

The equations above follow since (𝑣∗2−𝑐2)·𝜙−1
2 (𝑣∗2) ≥

∫ 𝜙−1
2 (𝑣∗ )

𝑠2=0 (𝜙2 (𝑠2)−

𝑐2) · 𝑑𝑠2 ≥ 2 · 𝑣
∗
2−𝑈1
𝛼∗
S (2)

based on the definition of 𝜙2 (𝑠).
For the third one 𝐺 (𝑣∗1, 𝐿2):

𝐺 (𝑣∗1, 𝐿2)

=
2 · 𝑣∗1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝐿2 − 𝑐1) · 𝜙−1

1 (𝑣∗1) −
𝑣∗1 + 𝐿2 − 𝑐1 − 𝑐2

𝛼∗S (2)

=(𝐿2 − 𝑐1) · (1 − 𝜙−1
1 (𝑣∗1)) −

𝐿2 − 𝑣∗1
𝛼∗S (2)

≥0, ∀𝐿1 ≤ 𝑣∗1 ≤ 𝑈1,

where the above equation follows since (𝐿2 − 𝑐1) · (1 −𝜙−1
1 (𝑣∗1)) ≥∫ 𝜙−1

1 (𝐿2 )
𝑠1=𝜙

−1
1 (𝑣∗1 )

(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1 ≥ 2 · 𝐿2−𝑣∗1
𝛼∗
S (2)

(based on the definition
of 𝜙1 (𝑠)).

Finally, for the last one 𝐺 (𝑣∗1,𝑈2):

𝐺 (𝑣∗1,𝑈2) =
2 · 𝑣∗1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑈2 − 𝑐1) · (1 − 𝜙−1

1 (𝑣∗1))

+ (𝑈2 − 𝑐2) · 𝜙−1
1 (𝑣∗1) −

𝑣∗1 +𝑈2 − 𝑐1 − 𝑐2

𝛼∗S (2)

≥(𝑈2 − 𝑐2) −
𝑈2 − 𝑣∗1
𝛼∗S (2)

≥0, ∀𝐿 = 𝐿1 ≤ 𝑣∗1 ≤ 𝑈1,

where the equations above follow since 𝑣∗1 ≥ 𝑐2 holds (again, the
assumption that the marginal production costs are always less than
the valuations).

Combining all the above analysis, we thus complete the proof of
Proposition 3.

I Extension of the Lower Bound Results to
General Production Cost Functions

In this section, we extend our lower bound result in Theorem 3,
originally developed for the high-value case,3 to general cumulative
production cost functions.

Before presenting the main theorem on obtaining a lower bound
for general cost functions, let us introduce some notations. Define
𝑓 ∗ (𝑣) : [𝐿,𝑈 ] → R as the conjugate of the total production cost
function, where 𝑓 ∗ (𝑣) = max𝑖∈[𝑘 ]

(
𝑣 · 𝑖 − 𝑓 (𝑖)

)
. Additionally, let

𝑔(𝑣) be defined as

𝑔(𝑣) = (𝑓 ∗)′ (𝑣) =
∑︁
𝑖∈[𝑘 ]

1{𝑣≥𝑐𝑖 } ,

3This corresponds to the case when 𝑐𝑘 < 𝐿, or equivalently, the lowest possible
valuation 𝐿 is no less than the highest marginal production cost 𝑐𝑘 .

2726



WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Hossein Nekouyan Jazi, Bo Sun, Raouf Boutaba, and Xiaoqi Tan

where 1{𝐴} is the standard indicator function. Let
¯
𝑘 denote the

smallest natural number such that:

¯
𝑘∑︁
𝑖=1

(𝐿 − 𝑐𝑖 ) >
1
𝛼
· 𝑓 ∗ (𝐿) .

Following Theorem 3, we also define 𝜉 as follows:

𝜉 =

1
𝛼 · 𝑓 ∗ (𝐿) − ∑

¯
𝑘−1
𝑖=1 (𝐿 − 𝑐𝑖 )

𝐿 − 𝑐
¯
𝑘

.

Theorem 6 below extends our lower bound results to settings
with general cost functions.

Theorem 6. Given S = {𝐿,𝑈 , 𝑓 } for the OSDoS problem with
𝑘 ≥ 1 and general production cost functions 𝑓 , no online algorithm,
including those with randomization, can achieve a competitive ratio
smaller than 𝛼∗S (𝑘), where 𝛼

∗
S (𝑘) is the solution to the following

system of equations of 𝛼 :∫ 𝑢
¯
𝑘

𝜂=𝐿

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐

¯
𝑘 )

𝑑𝜂 = 1 − 𝜉, (17)∫ 𝑢
¯
𝑖

𝜂=ℓ𝑖

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖 )

𝑑𝜂 = 1, 𝑢𝑖 = ℓ𝑖+1, 𝑖 = ¯
𝑘 + 1, . . . , 𝑘, (18)

𝑢𝑘 = 𝑈 . (19)

Proof. The proof proceeds similarly to the proof of Theorem 3
until the derivation of Eq. (5). Given the arrival instance I (𝜖 ) up
to the end of stage-𝑣 , the objective of the offline optimal algorithm
equals 𝑓 ∗ (𝑣). Therefore, we reformulate Eq. (4) as follows:

ALG
(
I (𝜖 )
𝑣

)
≥ 1

𝛼
· 𝑓 ∗ (𝑣), ∀𝑣 ∈ [𝐿,𝑈 ] .

In the case of general production cost functions, we derive the
following inequality to capture the production level changes of an
𝛼-competitive algorithm:

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 )+

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝑖 (𝜂) ≥
1
𝛼
· 𝑓 ∗ (𝑣). (20)

In addition, we define 𝛼∗S (𝑘) as follows:

𝛼∗S (𝑘) = inf
{
𝛼 ≥ 1

��there exist a set of 𝑘 allocation

functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] ∈ Ω that satisfy Eq. (20)
}
.

From this point onward, the proof continues in the same manner as
the proof of Theorem 3. Let us define the function 𝜒𝛼 (𝑣) : [𝐿,𝑈 ] →
[0, 𝑘] and the set of functions {𝜓𝛼

𝑖
(𝑣)}

𝑖∈[𝑘 ] as specified in Eq. (6)
and Eq. (2). Consequently, Lemma 3 holds as long as we have in-
creasing marginal production costs (i.e., diseconomies of scale) and
Lemma 4 that follows the definition of {𝜓𝛼

𝑖
(𝑣)}

𝑖∈[𝑘 ] holds in this
case as well.

The primary distinction between the two proofs arises in the
following proposition, which gives an explicit design of the function
{𝜓𝛼

𝑖
}∀𝑖∈[𝑘 ] by replacing the inequality with an equality in Eq. (20).

Proposition 4. For any 𝛼 ≥ 𝛼∗S (𝑘), there exist a unique set of
functions {𝜓𝛼

𝑖
(𝑣)}∀𝑖∈[𝑘 ] that satisfy Eq. (20) with an equality:

𝜓𝛼
𝑖 (𝑣) = 1, ∀𝑣 ∈ [𝐿,𝑈 ], 1 ≤ 𝑖 ≤

¯
𝑘 − 1,

𝜓𝛼

¯
𝑘
(𝑣) =


0 𝑣 ≤ ℓ

¯
𝑘 ,

𝜉 +
∫ 𝑣

𝜂=𝐿

𝑔 (𝜂 )
𝛼 · (𝜂−𝑐𝑖 ) 𝑑𝜂, 𝑣 ∈ [𝐿,𝑢

¯
𝑘 ],

1 𝑣 ≥ 𝑢
¯
𝑘 ,

𝜓𝛼
𝑖 (𝑣) =


0 𝑣 ≤ ℓ𝑖 ,∫ 𝑣

𝜂=ℓ𝑖

𝑔 (𝜂 )
𝛼 · (𝜂−𝑐𝑖 ) 𝑑𝜂, 𝑣 ∈ [ℓ𝑖 , 𝑢𝑖 ],

1 𝑣 ≥ 𝑢𝑖 ,

, 𝑖 =
¯
𝑘 + 1, . . . , 𝑘 − 1.

𝜓𝛼
𝑘
(𝑣) =

{
0 𝑣 ≤ ℓ𝑘 ,∫ 𝑣

𝜂=ℓ𝑘

𝑔 (𝜂 )
𝛼 · (𝜂−𝑐𝑘 ) 𝑑𝜂, 𝑣 ∈ [ℓ𝑘 ,𝑈 ],

where the intervals are specified by:∫ 𝑢
¯
𝑘

𝜂=𝐿

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐

¯
𝑘 )

𝑑𝜂 = 1 − 𝜉, (21)∫ 𝑢
¯
𝑖

𝜂=ℓ𝑖

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖 )

𝑑𝜂 = 1, 𝑢𝑖 = ℓ𝑖+1, ∀𝑖 = ¯
𝑘 + 1, . . . , 𝑘 . (22)

In the proposition above, for any given 𝛼 ≥ 𝛼∗S (𝑘), the values of
𝑢𝑖 and ℓ𝑖 can be determined. We begin by solving Eq. (21) to find the
value of 𝑢

¯
𝑘 , and then proceed to find the value of other variables

{𝑢𝑖 }∀𝑖 using Eq. (22).
Based on the above proposition, as the value of 𝛼 decreases, the

value of 𝑢𝑘 also decreases. Again, following the same reasoning as
the proof of Theorem 3, the lower bound 𝛼∗S (𝑘) is the value of 𝛼
for which 𝑢𝑘 computed above is equal to 𝑈 . We thus complete the
proof of Theorem 6. □

J Extension of the Upper Bound Results to
General Production Cost Functions

In this section, we extend the randomized dynamic pricing scheme
r-Dynamic, originally developed for the high-value case, to general
cumulative production cost functions.

Theorem 7. Given S = {𝐿,𝑈 , 𝑓 } for the OSDoS problem with
𝑘 ≥ 1, r-Dynamic (Algorithm 1) is max𝑖∈[𝑘 ] 𝛼∗S (𝑘) · (1 +

𝑈𝑖−𝑐𝑖
𝑓 ∗ (𝑈𝑖−1 ) )-

competitive for the following design of the pricing functions {𝜙𝑖 }∀𝑖∈[𝑘 ] ,
where 𝛼∗S (𝑘) is the lower bound obtained in Theorem 6:

𝜙𝑖 (𝑠) = 𝐿, ∀𝑠 ∈ [0, 1], 𝑖 ∈ [
¯
𝑘∗ − 1],

𝜙
¯
𝑘∗ (𝑠) =

{
𝐿 𝑠 ∈ [0, 𝜉∗],
𝜓−1

¯
𝑘∗ (𝑠) 𝑠 ∈ (𝜉∗, 1],

𝜙𝑖 (𝑠) = 𝜓−1
𝑖 (𝑠), ∀𝑠 ∈ [0, 1], 𝑖 =

¯
𝑘∗ + 1, . . . , 𝑘,

where the set of functions {𝜓𝑖 }∀𝑖∈{
¯
𝑘∗,· · · ,𝑘 } are defined as follows:

𝜓
¯
𝑘∗ (𝑣) = 𝜉∗ +

∫ 𝑣

𝜂=𝐿

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖 )

𝑑𝜂, ∀𝑣 ∈ [𝐿,𝑈
¯
𝑘∗ ],

𝜓𝑖 (𝑣) =
∫ 𝑣

𝜂=ℓ𝑖

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖 )

𝑑𝜂, ∀𝑣 ∈ [𝐿𝑖 ,𝑈𝑖 ], 𝑖 = ¯
𝑘∗ + 1, . . . , 𝑘 ;
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the parameters
¯
𝑘∗ and 𝜉∗ are respectively the values of

¯
𝑘 and 𝜉 defined

in Appendix I, corresponding to 𝛼 = 𝛼∗S (𝑘), and the price intervals
{[𝐿𝑖 ,𝑈𝑖 ]}∀𝑖∈[𝑘 ] are given as follows:∫ 𝑈

¯
𝑘∗

𝜂=𝐿

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐

¯
𝑘 )

𝑑𝜂 = 1 − 𝜉,∫ 𝑈𝑖

𝜂=𝐿𝑖

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖 )

𝑑𝜂 = 1, 𝑢𝑖 = ℓ𝑖+1,∀𝑖 = ¯
𝑘∗ + 1, . . . , 𝑘 .

Proof. The proof will follow the same process as the proof in
Appendix F. So we only provide a brief proof sketch.

Consider an arbitrary arrival instance I = {𝑣𝑡 }𝑡 ∈[𝑇 ] . Recall
that the random price vector P = {𝑃1, · · · , 𝑃𝑘 } is generated using
the pricing functions {𝜙𝑖 }∀𝑖∈[𝑘 ] at the beginning of r-Dynamic
(line 3 of Algorithm 1). Let us define the random variable𝑊 (P),
the variable 𝜔 and the price vector 𝝅 , the set {𝜈𝑖 , 𝜏𝑖 }∀𝑖∈[𝜔 ] , and
𝑊 𝜏𝜔 (P) in the same fashion as in Appendix F.

Following the same reasoning, the property in Eq. (16) can be
derived for {𝜈𝑖 }∀𝑖∈[𝜔 ] , and the lemmas 8, 9, and 10 follow as well.

We also define B ⊆ I, as before, to be the set of highest-valued
buyers to whom the offline optimal algorithm allocates a unit of
the item in instance I. We further divide B into two subsets: B1
and B2, as done in the previous proof. Additionally, we partition
B1 into two subsets: B1,1 and B1,2, as before.

We continue our analysis for two separate cases that can arise
depending on the instance I. In this proof, we only provide the
proof for the first case and the proof of the second case follows
similarly as Appendix F.

Case 1: In this case, no buyer in B2 has a valuation greater than
𝑈𝜔−1 except for the buyer at time 𝜏𝜔 . Therefore, the buyer at time
𝜏𝜔 possesses the highest valuation in instance I. The following up-
per bound can be derived for OPT(I), which denotes the objective
value of the offline optimal algorithm:

OPT(I) = 𝑉 (B1) +𝑉 (B2) −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑉 (B1) + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

= 𝑉 (B1,1) +𝑉 (B1,2) + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ |B1,1 | ·𝑈𝜔−1 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1)

+ |B1,2 | ·𝑈𝜔−1 + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

= ( |B1,1 | + |B1,2 | + |B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔

+ (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑓 ∗ (𝑈𝜔−1) + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) + 𝜈𝜏𝜔 − 𝑐𝜔 ,

where the first inequality follows the condition of Case 1. The
second inequality follows the definition of the sets B1,1 and B1,2.
Finally, the third inequality follows since based on definition of 𝑓 ∗,
we have ( |B1,1 | + |B1,2 | + |B2 | − 1) ·𝑈𝜔−1 −

∑ | B |−1
𝑖=1 𝑐𝑖 ≤ 𝑓 ∗ (𝑈𝜔−1).

Moving forward, we can lower bound the expected performance
of r-Dynamic under I, denoted by E[ALG(I)], using the same
approach as before.

E[ALG(I)]

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) −

𝜔−1∑︁
𝑖=1

𝑐𝑖 .

Based on the definition of {𝜙𝑖 }∀𝑖∈[𝑘 ] , we have:
E[ALG(I)]

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 −

𝜔−1∑︁
𝑖=1

𝑐𝑖 + (𝑉 (B1,1) − |B1 | ·𝑈𝜔−1)

=

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +
𝜔−1∑︁
𝑖=1

∫ 𝑈𝜔−1

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1,1) − |B1 | ·𝑈𝜔−1) .
Furthermore, based on the design of {𝜓𝑖 }∀𝑖∈[𝑘 ] in Theorem 7, we
have

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +
𝜔−1∑︁
𝑖=1

∫ 𝑈𝜔−1

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1) − |B1 | ·𝑈𝜔−1)

≥ 1
𝛼∗S (𝑘)

𝑓 ∗ (𝑈𝜔−1) + (𝑉 (B1) − |B1 | ·𝑈𝜔−1) .

Putting together the above lower and upper bounds, it follows that:
OPT(I)

E[ALG(I)]

≤
𝑓 ∗ (𝑈𝜔−1) + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) + 𝜈𝜏𝜔 − 𝑐𝜔

1
𝛼∗
S (𝑘 )

𝑓 ∗ (𝑈𝜔−1) + (𝑉 (B1) − |B1 | ·𝑈𝜔−1)

≤
𝑓 ∗ (𝑈𝜔−1) + 𝜈𝜏𝜔 − 𝑐𝜔

1
𝛼∗
S (𝑘 )

𝑓 ∗ (𝑈𝜔−1)

=𝛼∗S (𝑘) ·
(
1 +

𝜈𝜏𝜔 − 𝑐𝜔

𝑓 ∗ (𝑈𝜔−1)

)
≤𝛼∗S (𝑘) ·

(
1 + 𝑈𝜔 − 𝑐𝜔

𝑓 ∗ (𝑈𝜔−1)

)
≤ max
𝑖∈[𝑘 ]

𝛼∗S (𝑘) ·
(
1 + 𝑈𝑖 − 𝑐𝑖

𝑓 ∗ (𝑈𝑖−1)

)
.

Case 2: In the set of buyers B2, there are other buyers with
valuations greater than 𝑈𝜔−1 besides the buyer at time 𝜏𝜔 . The
proof in this case follows the same structure as the proof above and
the proof in Appendix F. □
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