
IEEE Network • March/April 200240

olicy-based networking (PBN) has emerged as a
promising paradigm for network operation and man-
agement [1, 2]. It is based on high-level control/man-
agement policies [3-5], that is, rules that describe the

desired behavior of the network in a way as independent as
possible of network devices and topology. Two basic entities
are distinguished: the policy enforcement points (PEPs) and
policy decision points (PDPs) [6]. The PEPs typically reside
on the managed devices. Their role is to enforce the com-
mands they receive in the form of configuration data from the
PDPs. The PDPs process the high-level policies along with
other data such as network state information and generate
configuration data for the PEPs. The configuration data for
each PEP are generated according to its specific role, capabili-
ties, and limitations. If the network state or policies change,
the PDP may readjust the behavior of the devices by sending
updated configuration data.

The key concept in PBN is that by describing goals (“what”)
rather than procedures (“how”), which happens with the tradi-
tional management techniques, the policies are separated from
the network details. The high degree of abstraction and the
automation implied from this model make the network easier to
manage and ensure consistency in the behavior of the devices
across it. Besides, the dynamic binding of the policies with the
network details that takes place in real time at the PDPs allows
new types of policies to be constructed and gives extra flexibility
to the network managers. A PBN is illustrated in Fig. 1.

The IETF Resource Allocation Protocol (RAP) working
group [7] attempts to standardize communication between
PDPs and PEPs through the Common Open Policy Service
(COPS) [8] protocol and its extensions. COPS has already
received significant attention, and applications based on it
have emerged [9–12].

The COPS protocol is designed to communicate self-identi-
fying policy-related information, exchanged between the PDP

and the PEP. In COPS, each PEP may support one or more
clients of different client types; different client types exist for
the different policing areas (security, QoS, admission control,
accounting, etc). By supporting the appropriate client types,
the PEP provides a way to control the various management
aspects of the device. Such client types are currently being
developed by the IETF. These client types are considered
extensions of the base COPS protocol, since they define
details for the format and semantics of the configuration data
exchanged between the PDPs and PEPs. COPS for Policy
Provisioning (COPS-PR) [13] is one of those client types.

COPS-PR uses special structures called policy information
bases (PIBs) that store policy information at the PEPs and
control the behavior of the devices. However, the rigidity of
its mechanisms constrains the intelligence that can be pushed
toward the managed devices. This work aims at relaxing this
limitation by using meta-policies, rules that enforce the appro-
priate policies on the devices. Meta-policies are stored and
processed by the devices, independent of their semantics, thus
making the model more efficient, scalable, distributed, and
robust. The additional functionality is implemented through a
PIB we define that stores and handles meta-policies. This way,
although the philosophy of the conveyed policing information
is now different, no modifications are required to the COPS-
PR protocol.

The structure of this article is as follows. We present PBN,
COPS, and COPS-PR. A small example demonstrates how
COPS-PR works. We present the motivation of our work and
introduce the concept of meta-policies through the same exam-
ple. We present and analyze the proposed PIB. We report the
implementation status of our work, and conclude by summariz-
ing the presented work and discussing future goals.

COPS-PR
The Protocol
RAP developed COPS-PR [13] as an extension (or client
type) of COPS. COPS-PR was initially biased toward DiffServ
policy provisioning [14]. However, it appears to be suitable for

U.S. Government Work Not Protected by U.S. Copyright

The Meta-Policy Information Base
Andreas Polyrakis, University of Toronto
Raouf Boutaba, University of Waterloo

Abstract
The recent considerable growth of computer networks has revealed significant
scalability and efficiency limitations to the traditional management techniques. Pol-
icy-based networking (PBN) has emerged as a promising paradigm for configura-
tion management and service provisioning. The Common Open Policy Service
(COPS) and its extension for policy provisioning (COPS-PR) are currently being
developed as the protocols to implement PBN. COPS-PR has received significant
attention and seems efficient for several management areas. However, the rigidity
of its policy-enforcing mechanisms constrains the intelligence that can be pushed toward
the managed devices. This work aims at relaxing this limitation by using meta-poli-
cies, rules that enforce the appropriate policies on the devices. Meta-policies are stored
and processed by the devices, independent of their semantics, thus making the
model more efficient, scalable, distributed, and robust. The additional functionality
is implemented through a novel policy information base we have defined, the
Meta-Policy PIB.

PP

This research wprk is supported by research grants from Nortel Networks
and the Natural Sciences and Engineering Research Council of Canada.

IEEE Network • March/April 2002 41

several other management areas (accounting [15], IP fil-
tering [13, 16], security [17], etc.).

As its name implies, COPS-PR operates in a provi-
sioning mode. The clients connect to the appropriate
PDP, report their capabilities and limitations, and
request the initial policies to be downloaded into them.
The PDP processes the request of each client and,
according to the global policies and network state, gen-
erates and downloads the appropriate configuration data
into the PEPs, which serve all incoming events according
to these data. If the network state or policies change,
the PDP may update these configuration data in order
to keep the behavior of the managed devices consistent.

The Policy Information Base
In COPS-PR, each client has to maintain a special
database, the PIB [18], where all the received configura-
tion data are stored (Fig. 2). The PIB is a structure simi-
lar to a management information base (MIB), and can
be described as a conceptual tree namespace, where the
branches represent structures of data, or provisioning
classes (PRCs), and the leaves represent instances of
these classes, called provisioning instances (PRIs). PIBs
are defined by COPS-PR only as abstract structures; the
details of each PIB (PRCs and their semantics) are
specified in separate standard documents (e.g., Internet
drafts or vendor private documents). Different PIBs are
defined in order to cover the various management areas
(DiffServ, accounting, security, etc). PIBs are defined at
a high abstraction level in order to hide the details of
the underlying hardware and provide to the PDP a uni-
fied way to control the behavior of the devices regarding
a specific management area across the entire network.

PRIs are identified within the PIB through a PRI
identifier (PRID). Policies are formed as a set of PRIs
in the PIB; by adding or removing PRIs, the PDP can imple-
ment the desired policies to be enforced at the device.

It is important to highlight that the policies each PIB can
implement are predefined (in the document that defines this
PIB). In order to control a device, the PDP has to map the
high-level network policies and network state into policies
that can be implemented in the PIB of the PEP.

PIBs are defined using the Structure of Policy Provisioning
Information (SPPI) specification [19].

A COPS-PR Example
We shall use a small filtering PIB in order to demonstrate
how COPS-PR works. The network of our example is the net-
work of a small company (Fig. 3), with the following topology:
• LAN address range: X.Y.0.0/16
• Subnets X.Y.1.0/24 (public), X.Y.2.0/24 (administrators),

X.Y.3.0/24 (employees)
• A central router A that routes the LAN and Internet traffic

and serves as the Internet gateway
Suppose that the following high-level access rules have

been set:
• Internal LAN traffic is always allowed.
• The administrator can always access the Internet, whenever

and from wherever he/she is logged in.
• During overall congestion, traffic between the employee

domain and the Internet is denied.
• The Internet can be accessed only during working hours

(Monday to Friday, 9:00-17:00).
In this example, the first rule has the highest priority, the

fourth the lowest, and the term “overall congestion” is evalu-
ated according to whether router A is congested (i.e., based
on the load of its interfaces).

Suppose that the (PEP of the) routers of the network support
a PIB with a single PRC. PRIs of this PIB describe source/desti-
nation criteria that allow access to IP traffic within the network.
Each PRI in this PIB is a standalone policy of the form

If ((Source matches Srcaddr/Srcmask) and
(Destination matches Destaddr/Destmask)) then allow

Traffic that matches at least one PRI in the PIB is allowed.
Traffic that does not match any criteria (policies in the PIB)
is, by default, denied.

� Figure 1. Policy-based networking.

Network
events

Configuration
data Configuration

data

Directory
server

High-level
policies

Policy
editing

toll

PDP

PEP

Managed
device

PDP

High-level
policies

High-level
policies

PEP

Managed
device

PEP

Managed
device

� Figure 2. PIB structure.

PRC PRI

PRC PRI

PRC PRI

PRI

PRC PRI

PRI

PRI

IEEE Network • March/April 200242

Suppose now that the following events take place:
08:59: No administrator logged on
09:00: start of working day
11:00: congestion detected
11:05: no congestion
15:08: congestion detected
15:11: administrator logs on at X.Y.3.7
15:20: no congestion
17:00: end of working day
17:15: administrator logs out
Figure 4 demonstrates snapshots of the PIB of router A

during the day. Initially, the PDP activates policy #1 by
installing a PRI that allows all LAN traffic (PRID #1). At
09:00, policy #4 becomes applicable, and a PRI that allows
traffic to/from the Internet is added into the PIB (PRI #1 is
now redundant, and the PDP may keep it or not). When con-
gestion is detected (11:00), the PDP attempts to install policy
#3. This policy conflicts with the already installed policy #4;
however, policy #3 has higher priority; hence, the employee
subnet is banned from Internet traffic. At 11:05, the network
becomes decongested, and the PIB is restored to its previous
state. When the network becomes congested again (15:08),
the PIB has to be updated again, as before. When the admin-
istrator logs on at the employee subnet (15:11), traffic to/from
the Internet to his/her IP is allowed. Note that policy #2 con-
flicts with policy #3, which bans traffic to the employee sub-
net; however, the former wins since it has higher priority.
When the network becomes decongested (15:20), policy #3 is
uninstalled, and policy #4 is installed again. At the end of the
working day (17:00), policy #4 is also uninstalled, and finally,
when the administrator logs out, policy #2 is uninstalled as
well, denying all Internet access.

Meta-Policies in COPS-PR
Motivation
The previous example reveals the two shortcomings that moti-
vated our work.

First of all, in this model the PEPs have no memory of the
previous events or network state. Assuming that the manage-
ment policies remain the same, the PIB of a PEP should be
the same whenever the same network state (i.e., combination
of the same network events) occurs. However, in this model

the PEP cannot be directed to restore
a previous state of its PIB if a network
state reoccurs. Instead, the PDP needs
to update the PIB by installing and
removing PRIs to achieve the desired
content. From another point of view,
the current model does not take
advantage of the correlation between
the network state (or events) and the
PIB content.

A second limitation lies in the rigid-
ity of the PIBs. PIBs are predefined
structures, and the high-level policies
cannot directly map into them. For
instance, in the previous example the
policy “During overall congestion traf-
fic between the employee domain and
the Internet is denied” cannot fit into
the PIB, and has to be processed by
the PDP. The latter, depending on the
overall network state, produces the
PRIs that are in conformance with the
initial policy for the given congestion
status. Then the PEP enforces the

policies these PRIs describe. Notice that the high-level policy
has to be processed partially by the PDP and partially by the
PEP. The PDP needs to query the MIB of router A in order
to determine if there is congestion, then send the appropriate
policies back to the router’s PIB. Obviously, the processing of
this policy could be carried out entirely at the PEP level. The
rigidity of the PIBs, though, does not allow any other kind of
policies to be evaluated by the PEP apart from those support-
ed by the PIB, thus making the presence of the PDP neces-
sary, even in cases where this could be avoided. This limitation
increases the volume of communication and makes the model
vulnerable to PDP errors or malfunctions and network error
situations, such as congestion or network failures.

The previously discussed limitations motivated our work.
The intelligence in the COPS-PR model seems to be concen-
trated at the PDP level. PDP decisions always download poli-
cies into the PEP, even when the same events recur. The PIB
is a rigid structure that allows only limited types of policies to
be pushed into the PEP. The PEP depends on the PDP pres-
ence, even in cases where this is not absolutely necessary.

This work extends the policy functionality of the PIB so that
the PEP will be able to take more decisions simply by examin-
ing events. Initially, the PDP downloads all applicable policies
and directs the PEP on how to react to certain events. After
that, the PDP controls the PEP mainly by communicating
events that modify its PIB indirectly, rather than by updating it
directly. Also, the PEP can be programmed to monitor some of
these events by itself and initiate the appropriate actions.
Assuming this extended functionality, the PDP is able to con-
trol the PEP mainly by communicating events rather than poli-
cies. Also, the PEP is able to make certain policing decisions by
itself. Thus, intelligence is pushed toward the PEP.

The described functionality is achieved through meta-poli-
cies, which are defined and discussed next.

The Concept of Meta-Policies
We define a meta-policy as a rule that describes how policies
are enforced. Meta-policies have the form:

if (condition) then {actions}

where condition is a logical expression, for example,
“(C>80%) and (D=true),” and “actions” are a set of PIB
commands that install PRIs into the PIB.

� Figure 3. The topology of the company example network.

Internet

Servers

Servers

Workstations Workstations

Server

Router ALAN
X.Y.0.0

Public
domain
X.Y.1.0

Administrators
domain
X.Y.2.0

Employees
domain
X.Y.3.0

IEEE Network • March/April 2002 43

� Figure 4. Instances of the PIB of router A.

Router A

Clock service,
PDP clock

Router A
MIB

Router A
MIB

Router A
MIB

PDP

Boot,
request for

PIB data

Congestion

Prid: Index
DstAddr: Destination IP
DstMask: Destination mask
SreAddr: Source IP
SreMask: Source mask

LAN access

1 X.Y.*.* X.Y.*.*24 24 //LAN

Pr
id

Sr
eA

d
d

r

D
st

A
d

d
r

D
st

M
as

k

Sr
eM

as
k

8:59

PIB

1 X.Y.*.* X.Y.*.*24 24 //LAN

17:15

1 X.Y.*.* X.Y.*.*24 24 //LAN

9:00

2 *.*.*.* *.*.*.** * //Internet

1 X.Y.*.* X.Y.*.*24 24 //LAN

11:05

2 *.*.*.* *.*.*.** * //Internet

1 X.Y.*.* X.Y.*.*24 24 //LAN

11:00

3 X.Y.1.0 *.*.*.*24 * //public to everywhere

4 *.*.*.* X.Y.1.0* 24 //everywhere to public

5 X.Y.2.0 *.*.*.*24 * //managers to everywhere

6 *.*.*.* X.Y.2.0* 24 //everywhere to managers

1 X.Y.*.* X.Y.*.*24 24 //LAN

15:08

3 X.Y.1.0 *.*.*.*24 * //public to everywhere

4 *.*.*.* X.Y.1.0* 24 //everywhere to public

5 X.Y.2.0 *.*.*.*24 * //managers to everywhere

6 *.*.*.* X.Y.2.0* 24 //everywhere to managers

2 *.*.*.* *.*.*.** * //Internet

15:20

1 X.Y.*.* X.Y.*.*24 24 //LAN

7 X.Y.3.7 *.*.*.*24 * //admin to everywhere

1 X.Y.*.* X.Y.*.*24 24 //LAN

17:00

7 X.Y.3.7 *.*.*.*24 * //admin to everywhere

8 *.*.*.* X.Y.3.7* 24 //everywhere to admin

8 *.*.*.* X.Y.3.7* 24 //everywhere to admin

1 X.Y.*.* X.Y.*.*24 24 //LAN

15:11

3 X.Y.1.0 *.*.*.*24 * //public to everywhere

4 *.*.*.* X.Y.1.0* 24 //everywhere to public

5 X.Y.2.0 *.*.*.*24 * //managers to everywhere

6 *.*.*.* X.Y.2.0* 24 //everywhere to managers

7 X.Y.3.7 *.*.*.*24 * //admin to everywhere

8 *.*.*.* X.Y.3.7* 24 //everywhere to admin

PDP

Beginning of
working day

Allow
Internet

PDP

Deny Internet
to employees

PDP

No
congestion

Allow Internet
to employees

PDP

Congestion
Deny Internet
to employees

Authentication
server PDP

Administrator
logged in

Allow Internet
to admin

Router A
MIB PDP

No
congestion

Allow Internet
to employees

Clock service,
PDP clock PDP

End of
working day

Deny Internet
except of admin

Authentication
server PDP

Administrator
logged out

Deny Internet
to all

12 1
2

4
57

8

10
11

6

9 3

12 1
2

4
57

8

10
11

6

9 3

IEEE Network • March/April 200244

Meta-policies are generated by the PDP and consumed by
the PEP. The PEP evaluates the condition of each meta-pol-
icy, and when if evaluates true, it enforces the actions. Both
the condition and the actions may contain parameters. For
instance, the meta-policy “if (AdminLogged) then {install (7,
AdminIP, 24, *.*.*.*, 24,), install (8, *.*.*.*,24, AdminIP,
24)}” contains two parameters: AdminLogged and AdminIP.
Such parameters are evaluated by the PEP according to
directions sent by the PDP. For example, the PDP may pro-
vide the value of these parameters, or direct the PEP to
evaluate them from its MIB or by contacting another server
or service.

The key idea in meta-policies is that the PEP can store and
process them without understanding their exact semantics: the
condition is treated as a logical expression; the actions, pre-
generated by the PDP, just denote PRIs that must be installed.
In this way, the PEP can process any meta-policy, indepen-
dent of its complexity and meaning.

Example
Consider the company example we studied before. We shall
examine how it is affected by meta-policies (Fig. 5).

First of all, policy #1, “Internal LAN traffic is always
allowed,” must always be enforced. Hence, the PDP directly
enforces this policy by installing PRI #1 into the PIB when
the router boots.

In addition, the PDP downloads to the PEP the following
meta-policies:

• if (WorkTime) then {install (2,*.*.*.*,24,*.*.*,*,24)}
• if ((if1Util>80%) or (if2Util>80%) or (if3Util>80%))

then {
install (3,X.Y.1.0,24,*.*.*.*,24), install (4, *.*.*.*,24,
X.Y.1.0,24)
install (5,X.Y.2.0,24,*.*.*.*,24), install (6, *.*.*.* ,24,
X.Y.2.0,24)

}
• if (AdminLogged) then

{install(1,AdminIP,24,*.*.*.*,24), install(1, *.*.*.*,24,
AdminIP,24,)}

and informs the PEP that the two first meta-policies are con-
flicting, and the second one has higher priority.

Since the meta-policies contain parameters, the PDP also
has to inform the PEP of the evaluation methods for these
parameters. In our example, the PDP sends the values of
the parameters “WorkTime,” “AdminLogged,” and
“AdminIP,” and it directs the PEP to evaluate by itself the
parameters “if1Util,” “if2Util,” and “if3Util” through the
appropriate MIB variables that denote the usage of the
router’s interfaces.

The PEP monitors the parameters, and when their values
change it reevaluates the affected conditions. While the condi-
tion of a meta-policy is met, the corresponding PRIs are
installed in the PIB. In this way, the PIB always contains the
PRIs that achieve the desired behavior.

Meta-policies allow the PDP to initially download the
applicable policies and meta-policies and then control the
PEP mainly by reporting network events. Moreover, some of
these events can be monitored by the PEP itself without
involvement of the PDP. Note that such events do not have to
be local; the PEP can be programmed (e.g., by downloading
and executing some scripts or through mobile agents) to mon-
itor such events through another server or service: for
instance, the parameter “WorkTime” could have been moni-
tored by the PEP through a script running on it that gets the
current time by contacting a network time service, without
involvement of the PDP.

The Meta-Policy PIB
The proposed enhancements require meta-policing informa-
tion to be exchanged between the PDP and the PEP, and
stored and processed by the latter. We decided to use COPS-
PR to communicate such data and define a PIB to store them
at the PEP (as opposed to defining another protocol and/or
storage structure, or extending existing ones). This decision
was based on a number of factors. The provisioning style
adopted by COPS-PR perfectly suits our needs. Our work is
in line with the IETF and requires no new protocols to be
developed. A PIB can easily be adapted by the Internet com-
munity (researchers and vendors). Finally, the design and
implementation are simplified since the definition of a PIB is
much simpler than defining a new protocol, and the imple-
mentation is based on existing tested tools.

It is important to highlight that the following PIB is mean-
ingless by itself. The same PEP is supposed to implement one
or more other PIBs, the contents of which are controlled by
the meta-policy PIB.

PIB Definition
The PIB we have defined provides the necessary classes
(PRCs) for handling meta-policies. The PIB is defined accord-
ing to the IETF specifications (i.e., using SPPI). Although a
detailed description of the PIB is out of the scope of this doc-
ument, a brief overview is given in the following paragraph.

The PIB is divided into five groups (Fig. 6):
• The Capabilities Group contains the PRCs that store the

capabilities and limitations of the PEP (as far as the meta-
policy PIB is concerned). The PRIs of these classes are
reported to the PDP when the PEP connects.

• The Base Meta-Policy Group contains the classes that form
the meta-policies, define their relative priority in case of
conflicts, and report their status.

• The Condition Group provides classes for forming the con-
ditions of the meta-policies.

• The Action Group includes the PRCs that define the actions
of the meta-policies.

• The Parameter Group contains the PRCs where the param-
eters, and their evaluation methods are stored.
Prior to installing a meta-policy, the PDP has to install its

parameters into the meta-policy PIB (unless these parameters
are already installed by another meta-policy). The parameters
are stored in the parameter table (PRC). Depending on the
evaluation method of the parameter, the mibPibParameter or
pdpParameter class is used. The former points to the
MIB/PIB variable from where the parameter will be evaluat-
ed; the latter stores the latest value sent by the PDP. The
evaluation methods can be extended with new ones, as we
shall see later on.

Having installed the parameters, the PDP installs the meta-
policy by inserting a row in the metaPolicy table. If the meta-
policy may be in conflict with other meta-policies under certain
circumstances (i.e., it attempts to install the same PRIs with
other meta-policies), the PDP also needs to declare how this
conflict will be resolved through the metaPolicyPriority class.

In order to form a meta-policy, its condition and actions
must be installed in the appropriate tables of the Condition and
Actions Group: The condition is placed on the condition table.
Each condition is either decomposed into simpler conditions of
the same table, through the complexCondition table, or is a
primitive, which is evaluated according to instructions found in
the booleanCondition and generalCondition classes. Actions
are declared it the action PRC. Depending on whether the
action is parametric or not, the action itself is actually encoded
in the actionParametricValue or the actionValue classes.

IEEE Network • March/April 2002 45

� Figure 5. Instances of the PIB of router A.

Initial values

Meta-policies

Conflicts

Work time:
AdminLogged:

AdminIP:
if1Util:
if2Util:

if3UTIL:

Parameter: Evaluation method id Condition Actions
1 WorkTime install (2,*.*.*.*,24,*.*.*.*,24)

3 AdminLogged install (1,AdminIP,24,*.*.*.*,24)
install(1,*.*.*.*,24,AdminIP,24)

ID

Value sent by the PDP

Higher lower
2 1

Value sent by the PDP
Value sent by the PDP
MIB variable a.b.c.d.e1
MIB variable a.b.c.d.e2
MIB variable a.b.c.d.e3

Work time: FALSE
AdminLogged: FALSE

Parameter evaluation methods

Boot Initial policies and
meta-policies

2 (if1Util>80%) or
(if2Util>80%) or
(if3Util>80%)

install (3,X.Y.1.0,24,*.*.*.*,24)
install (4,*.*.*.*,24,X.Y.1.0.24)
install (5,X.Y.2.0,24,*.*.*.*,24)
install (6,*.*.*.*,24,X.Y.2.0,24)

Beginning of
working day

1 X.Y.*.* X.Y.*.*24 24

Pr
id

Sr
eA

d
d

r

D
st

A
d

d
r

D
st

M
as

k

Sr
eM

as
k

8:59

1 X.Y.*.* X.Y.*.*24 24
17:15

1 X.Y.*.* X.Y.*.*24 24
9:00

2 *.*.*.* *.*.*.** *

1 X.Y.*.* X.Y.*.*24 24
11:05

2 *.*.*.* *.*.*.** *

1 X.Y.*.* X.Y.*.*24 24
11:00

3 X.Y.1.0 *.*.*.*24 *
4 *.*.*.* X.Y.1.0* 24
5 X.Y.2.0 *.*.*.*24 *
6 *.*.*.* X.Y.2.0* 24

1 X.Y.*.* X.Y.*.*24 24
15:08

3 X.Y.1.0 *.*.*.*24 *
4 *.*.*.* X.Y.1.0* 24
5 X.Y.2.0 *.*.*.*24 *
6 *.*.*.* X.Y.2.0* 24

2 *.*.*.* *.*.*.** *
15:20

1 X.Y.*.* X.Y.*.*24 24
7 X.Y.3.7 *.*.*.*24 *

1 X.Y.*.* X.Y.*.*24 24
17:00

7 X.Y.3.7 *.*.*.*24 *
8 *.*.*.* X.Y.3.7* 24

8 *.*.*.* X.Y.3.7* 24

1 X.Y.*.* X.Y.*.*24 24
15:11

3 X.Y.1.0 *.*.*.*24 *
4 *.*.*.* X.Y.1.0* 24
5 X.Y.2.0 *.*.*.*24 *
6 *.*.*.* X.Y.2.0* 24
7 X.Y.3.7 *.*.*.*24 *
8 *.*.*.* X.Y.3.7* 24

Clock service,
PDP clock

12 1
2

4
57

8

10
11

6

9 3

PDP
Router A

WorkTime=True

MIB of
router A

PDP

Administrator
logged in

Authentication
server PDP

Administrator
logged out

Authentication
server PDP

End of
working day

Clock service,
PDP clock

12 1
2

4
57

8

10
11

6

9 3

PDP

WorkTime=False

AdminLogged-false, AdminIP=0.0.0.0

Congestion

MIB of
router A

No congestion

MIB of
router A

No congestion

MIB of
router A

Congestion

AdminLogged=true, AdminIP=X.Y.3.7

IEEE Network • March/April 200246

Further description of the PIB is beyond the scope of this
article. However, we would like to emphasize that the defined
PIB is extensible. For instance, a network manager may want to
extend the parameter evaluation methods by adding a new type
of parameters that are evaluated by executing a certain script.
In this case, the PIB is extended by adding the additional
parameter evaluation methods as additional PRCs of the
Parameter Group and associating these classes with the param-
eter PRC (and, of course, installing the scripts that will com-
pute the value of the parameter into the PEP). In addition, the
PDP should be aware of what these scripts do and how to use
them. A realistic scenario is one where a vendor that develops a
PDP also provides some code that extends the functionality of
the meta-policy PIB in a specific way. Network managers down-
load this code and install it on their devices (the code may be
vendor-specific). In this way the PEPs that reside on such
devices have extended functionality, and the PDP knows exactly
how to use the additional mechanisms.

The previously described mechanisms that acquire informa-
tion about the network state can be either standard-based or
custom. For instance, a PEP could be enhanced by installing a
module on it that acquires data through SNMP from any
SNMP-enabled device on the network. COPS or LDAP could
also be used to retrieve network state information. However,
modules that use nonstandard protocols to retrieve informa-
tion from custom servers or services can also be used.

PEP Behavior
We have also defined how the PEP must behave and how PIB
data are interpreted.

Communication — In general, the communication between
the PEP and the PDP as well as their behavior adheres to the
COPS-PR protocol [13].

When the PEP connects to the PDP, it reports its meta-polic-
ing capabilities and limitations through a configuration request
(REQ) message. This message reports the classes of the Capa-
bilities Group. The PDP downloads all the appropriate meta-
policies according to the reported capabilities and limitations.

Decision (DEC) messages are sent as solicited replies to
REQ messages, or unsolicited, whenever the policing data
into the PIB needs to be updated. Meta-policing data is han-
dled as any other kind of PIB data; hence, the format of DEC
messages and the way these are installed into the PIB are
exactly as defined by COPS-PR. Notice, however, that meta-
policy data may now report network events to the PEP, since
the PDP may send values for parameters that represent such
events (e.g., the PDP may report congestion by setting the
value of a parameter in the PIB of the PEP). This means that
the semantics of the exchanged data can now be different,
conveying events to the PEP instead of configuration data
that are mapped directly to its policy mechanisms.

According to COPS-PR, the PEP reports the success or
failure of the DEC message with a solicited report message
(RPT). In the case of meta-policies, such messages report
whether the meta-policy itself was successfully installed/unin-
stalled (i.e., if the operation is valid according to the meta-
policy PIB specification), not whether the meta-policy
manages to install/uninstall its actions successfully. Unsolicited
RPT messages can be accounting-related information. Such
information is stored in the activeMetaPolicy class. Unsolicit-

� Figure 6. The meta-policy PIB.

Instance identifier

Instance Id reference

xmIDTD table

xmIDTDP rid

Capabilities group

Base meta-policy
group

Action group

Legend

Parameter group

xmIDTDURL

ConditionTable

Condition group

ConditionPrid

ConditionReverse

Group tag

Group tag reference

actionPrid

actionRefTag

actionTable actionValueTable

actionParametricValueTable

actionTargetPrid

actionPrid

ParameterRef

metaPolicyPrid

metaPolicyName

metaPolicyTable

metaPolicyActive

metaPolicySuppress

metaPolicyStatusTable
1:1 1:1 1:1

metaPolicyCondition

metaPolicyAction

metaPolicyPriorityPrid

higherPriority

metaPolicyPriorityTable

lowerPriority

operator

leftTerm

complexConditionTable

booleanConditionTable

generalConditionTable

rightTerm

xmlDTDRef

parameterReference

parameterPrid

parameterName

parameterTable

lastValue

parameterTable

targetOID

EvaluationFrequency

mibPibParameterTable

pdpParameterTable

xmlCondition

IEEE Network • March/April 2002 47

ed RPT messages can finally report PEP errors that are not
related to a specific DEC message. Such RPT messages can
be triggered by badly behaving meta-policies, (e.g., that
attempt to install invalid or conflicting PRIs).

Handling Meta-Policy Data — When meta-policy data are
to be installed into the PIB, the PEP needs to perform integri-
ty and consistency checks to ensure that these data conform
to the PIB definition. If not, the entire DEC message is
rejected, and an RPT message indicating the cause of the
error is sent to the PDP (as defined in COPS-PR).

Parameters: The PIB defines two types of evaluation meth-
ods for the parameters, and more can be added by users such
as network operators. Independent of the way a parameter is
evaluated, a change in its value triggers the reevaluation of
the conditions and actions in which it is contained.

Conditions: The condition of each meta-policy is decom-
posed into primitive logical expressions. Each logical expres-
sion contains a number of parameters, which must exist in the
PIB before the logical expression is installed. When a logical
expression is installed, it is evaluated according to the current
values of its parameters. The overall condition is evaluated
according to the evaluation of these logical expressions. If the
values of the parameters change, the condition may need to
be reevaluated.

Actions: When the condition of a meta-policy evaluates
true, and if no conflicting meta-policy with higher priority is
already active, the meta-policy is activated by installing the
appropriate PRIs into the PIB. The meta-policy stays active
while its condition is met, and no other meta-policy with high-
er priority is activated. In this case, the PRIs installed by this
meta-policy are removed from the PIB.

Backward Compatibility
The proposed PIB does not create any backward compatibility
issues when PDPs that support the proposed PIB are required
to cooperate with PEPs that do not, and vice versa. If only the
PDP does not support the additional functionality, the PEP is
never directed to use the meta-policy PIB. If only the PEP
does not implement the PIB, the REQ message will not
report meta-policy classes, and the PDP will not attempt to
install data in them, as defined by COPS-PR [13].

Trade-offs
The meta-policy PIB allows policing intelligence to be pushed
toward the PEP. However, the additional functionality implies
more complicated algorithms at the PEP that increase the
CPU and memory requirements on the managed devices.
Such resources, which are critical for the smooth operation of
several network devices (e.g., routers), are usually limited and
mainly dedicated to the critical operations of the device. On
the other hand, the processing and memory capabilities of the
modern devices tend to increase rapidly, and it can be predict-
ed that devices in the near future will have the power to
accommodate meta-policy functionality. Besides, compatibility
with standard COPS-PR allows devices with limited resources
not to implement the additional functionality and still commu-
nicate with PDPs that support meta-policies.

Apart from the increased resource requirements at the
PEP, meta-policies require sophisticated algorithms at the
PDP as well. However, PDPs are complex anyway, and they
usually reside on servers that have adequate computing power
for such complex computations.

An important issue with meta-policies is security. Meta-
policies inherit COPS-PR security issues, but they do not
introduce any important new ones since they introduce no
new protocols or policing mechanisms on the devices. On the

other hand, the extensibility of the meta-policy PIB with mod-
ules or scripts that execute code on behalf of the PEP makes
the PEP and the device vulnerable to the security issues of the
used modules or scripts.

Implementation
In order to test and evaluate the concept of meta-policies we
have already built the proposed meta-policy PIB. This PIB is
hosted into a PEP we have developed for testing purposes.
The PEP also hosts a simple filtering PIB similar to the one
described in the example studied earlier in this article. The
PEP communicates through COPS-PR with a simple PDP
that controls the contents of the filtering PIB either directly
or through the meta-policy PIB. All the components (the
PEP, its PIBs, and the PDP) are written in Java and run on
Linux boxes.

Currently, the PEPs are being transported on two open-
architecture Nortel Networks programmable Passport routers
available in our lab. These routers can be programmed to run
small java applications, called oplets, which will implement the
additional functionality of the PEP and PIBs. The oplets run
on an environment supported by the routers, the Oplet Run-
time Environment (ORE), which provides access to the mech-
anisms of the routers. The PDP will control the behavior of
the two routers by installing the appropriate policies and
meta-policies on the PEPs residing on them. In addition, the
programmability of the routers will allow us to write oplets
that will communicate with third-party servers or services
(e.g., network time service) and evaluate meta-policy parame-
ters on behalf of the PEPs. The goal of these experiments is
to test the proposed PIB with regard to its performance and
efficiency, and compare it with the existing techniques (COPS-
PR without meta-policies).

Conclusion
This article introduces the concept of meta-policies and demon-
strates through a simple example how these can be used to
overcome the limitation of the current COPS-PR model. The
idea underlying the meta-policy concept is to push some of the
COPS-PR PDP functionality and intelligence toward the PEPs
through the meta-policy PIB. Finally, this article describes the
defined meta-policy PIB and its implementation.

As a future work, we intend to study further enhancements
to the meta-policy PIB. As a first step, we would like to inves-
tigate whether hierarchies of meta-policies can increase the
intelligence of the PEP, and how the proposed PIB should be
modified (if necessary) to support such hierarchies. Another
research goal is to examine how other promising technologies,
such as mobile agents or directories, can be exploited to
enhance the functionality of the PEP, in combination with the
proposed PIB. We believe that this will allow us to move most
of the functionality of the PDPs into the managed devices.
This will make our long-term goal, the existence of “smarter”
devices and the concept of “plug-and-play” networks, seem
more feasible and realistic.

References
[1] S. J. Shepard, “Policy-based Networks: Hype and Hope,” IT Prof., vol. 2, no.

1, Jan.-Feb. 2000, pp.12–16.
[2] “Introduction to Policy-Based Networking and Quality of Service,” IPHigh-

way, White Paper, Jan. 2000.
[3] R. Boutaba, K. El-Guemhioui, and P. Dini, “An Outlook on Intranet Manage-

ment,” IEEE Commun. Mag., Special issue on Intranet Services and Commu-
nication Management, Oct. 1997, pp. 92–97.

[4] R. Boutaba and S. Znaty, “An Architectural Approach for Integrated Net-
works and Systems Management,” ACM-SIGCOM Comp. Commun. Rev.,
vol. 25, no 5, Oct. 1995, pp. 13–39.

IEEE Network • March/April 200248

[5] M. Sloman, “Policy Driven Management For Distributed Systems,” Int’l. J.
Net. Sys. Mgmt., vol. 2, no. 4, Dec. 1994, pp. 333-60.

[6] A. Westerinen et al., “Terminology,” IETF, Internet draft, draft-ietf-policy-ter-
minology-02.txt, Nov. 2000; http://www.ietf.org/internet-drafts/draft-ietf-
policy-terminology-02.txt

[7] “Resource Allocation Protocol (rap),” http://www.ietf.org/html.charters/rap-
charter.html

[8] D. Durham et al., “The COPS (Common Open Policy Service) Protocol,” IETF,
RFC 2748, Jan. 2000; http://www.ietf.org/rfc/rfc2748.txt

[9] “Policy-Powered Networking and the Role of Directories,” 3COM, White
Paper, July 1998.

[10] “Policy Based Networking Products, Design and Architecture,” IPHighway,
White Paper, Jan. 2000.

[11] “Intel COPS client Software Development Kit,” http://www.intel.com/
ial/cops

[12] “COPS Download Page,” http://www.vovida.org/protocols/
downloads/cops

[13] K. Chan et al., “COPS Usage for Policy Provisioning,” IETF, RFC 3084,
Mar. 2001; http://www.ietf.org/rfc/rfc3084.txt

[14] M. Fine et al., “Differentiated Services Quality of Service Policy Information
Base,”IETF, Internet draft, draft-ietf-diffserv-pib-03.txt, March 2001;
http://www.ietf.org/internet-drafts/draft-ietf-diffserv-pib-03.txt

[15] D. Rawlins et al., “Framework of COPS-PR Policy Information Base for
Accounting Usage,” IETF, Internet-Draft, draft-ietf-rap-acct-fr-pib-01.txt, July
2000; http://www.ietf.org/internet-drafts/draft-ietf-rap-acct-fr-pib-01.txt

[16] J. Ottensmeyer, M. Bokaemper, and K. Roeber,”A Filtering Policy Informa-
tion Base (PIB) for Edge Router Filtering Services and Provisioning via COPS-
PR,” IETF, Internet draft, draft-otty-cops-pr-filter-pib-00.txt, Nov. 2000;
http://www.ietf.org/internet-drafts/draft-otty-cops-pr-filter-pib-00.txt

[17] M. Li et al., “IPSec Policy Information Base,” IETF, Internet-Draft, draft-ietf-
ipsp-ipsecpib-02.txt, Mar. 2001; http://www.ietf.org/internet-drafts/draft-
ietf-ipsp-ipsecpib-02.txt

[18] M. Fine et al., “Framework Policy Information Base,” IETF, Internet-Draft,
draft-ietf-rap-frameworkpib-04.txt, Nov. 2000; http://www.ietf.org/internet-
drafts/draft-ietf-rap-frameworkpib-04.txt

[19] K. McCloghrie et al., “Structure of Policy Provisioning Information (SPPI),”
IETF, Internet draft, draft-ietf-rap-frameworkpib-06.txt, Feb. 2001; http://
www.ietf.org/internet-drafts/draft-ietf-rap-frameworkpib-06.txt

Additional Reading
[1] “Internet Engineering Task Force,” http://www.ietf.org

Biographies
ANDREAS POLYRAKIS (apolyr@cs.toronto.edu) works as a network engineer at the
National University of Athens, Greece. Recently he received his M.Sc. degree
from the University of Toronto, Canada. His main area of interest is policy-based
networking, but he is also interested in other areas of networking, such as direc-
tory-enabled networking, active networks, and QoS provisioning in IP networks.

RAOUF BOUTABA (rboutaba@bbcr.uwaterloo.ca) has been teaching networks and
distributed systems in the Department of Computer Science of the University of
Waterloo since 1999. He conducts research in integrated network and systems
management, wired and wireless multimedia networks, and quality of service con-
trol in the Internet. He has been program chair of the Technical Committee on
Information Infrastructure of the IEEE Communications Society since 2000 and
chair of the IFIP working group on network and distributed systems management
since 2001. He was the recipient of Premier’s Research Excellence Award in 2000.

