
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 10, OCTOBER 2005 2069

Conflict Classification and Analysis of
Distributed Firewall Policies

Ehab Al-Shaer, Hazem Hamed, Raouf Boutaba, and Masum Hasan

Abstract—Firewalls are core elements in network security.
However, managing firewall rules, particularly, in multifirewall
enterprise networks, has become a complex and error-prone task.
Firewall filtering rules have to be written, ordered, and distributed
carefully in order to avoid firewall policy anomalies that might
cause network vulnerability. Therefore, inserting or modifying
filtering rules in any firewall requires thorough intrafirewall and
interfirewall analysis to determine the proper rule placement and
ordering in the firewalls. In this paper, we identify all anomalies
that could exist in a single- or multifirewall environment. We
also present a set of techniques and algorithms to automatically
discover policy anomalies in centralized and distributed firewalls.
These techniques are implemented in a software tool called the
“Firewall Policy Advisor” that simplifies the management of
filtering rules and maintains the security of next-generation
firewalls.

Index Terms—Firewall, packet filter, policy analysis, policy con-
flict, policy management, security management.

I. INTRODUCTION

WITH THE global Internet connection, network security
has gained significant attention in research and industrial

communities. Due to the increasing threat of network attacks,
firewalls have become important elements not only in enterprise
networks but also in small-size and home networks. Firewalls
have been the frontier defense for secure networks against at-
tacks and unauthorized traffic by filtering out unwanted network
traffic coming from or going to the secured network. The fil-
tering decision is based on a set of ordered filtering rules written
based on predefined security policy requirements.

Although deployment of firewall technology is an important
step toward securing our networks, the complexity of managing
firewall policies might limit the effectiveness of firewall secu-
rity. In a single firewall environment, the local firewall policy
may include intrafirewall anomalies, where the same packet
may match more than one filtering rule. Moreover, in distributed
firewall environments, firewalls might also have interfirewall

Manuscript received May 1, 2004; revised December 4, 2004. This work
was supported in part by the National Science Foundation under Grant DAS-
0353168 and in part by Cisco Systems. Any opinions, findings, conclusions or
recommendations stated in this material are those of the authors and do not nec-
essarily reflect the views of the fundings sources.

E. Al-Shaer and H. Hamed are with the Telecommunications and Information
Systems, School of Computer Science, DePaul University, Chicago, IL 60604
USA (e-mail: ehab@cs.depaul.edu; hhamed@cs.depaul.edu).

R. Boutaba is with the School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada (e-mail: rboutaba@uwaterloo.ca).

M. Hasan is with the Cisco Systems, Inc., San Jose, CA 95134 USA (e-mail:
masum@cisco.com).

Digital Object Identifier 10.1109/JSAC.2005.854119

anomalies when individual firewalls in the same path perform
different filtering actions on the same traffic. Therefore, the ad-
ministrator must give special attention not only to all rule rela-
tions in the same firewall in order to determine the correct rule
order, but also to all relations between rules in different firewalls
in order to determine the proper rule placement in the proper
firewall. As the number of filtering rules increases, the difficulty
of adding a new rule or modifying an existing one significantly
increases. It is very likely, in this case, to introduce conflicting
rules such as one general rule shadowing another specific rule,
or correlated rules whose relative ordering determines different
actions for the same packet. In addition, a typical large-scale en-
terprise network might involve hundreds of rules that might be
written by different administrators in various times. This signif-
icantly increases the potential of anomaly occurrence in the fire-
wall policy, jeopardizing the security of the protected network.

Therefore, the effectiveness of firewall security is dependent
on providing policy management techniques and tools that
network administrators can use to analyze, purify, and verify
the correctness of written firewall filtering rules. In this paper,
we first provide a formal definition of filtering rule relations,
and then identify all anomalies that might exist in any firewall
policy in both centralized and distributed firewall environments.
We also use a tree-based filtering representation to develop
anomaly discovery algorithms for reporting any intrafirewall
and interfirewall anomaly in any general network. We finally
develop a rule editor to produce anomaly free firewall policies,
and greatly simplify adding, removing, and modifying filtering
rules. These algorithms and techniques were implemented
using Java programming language in a software tool called the
“Firewall Policy Advisor.” In our previous work [1], [3], we
discussed intrafirewall conflict analysis, however, in this paper
we mainly focus on the discovery and resolution of interfirewall
anomalies.

Although firewall security has been given strong attention in
the research community, the emphasis was mostly on the fil-
tering performance issues [15], [27], [29]. On the other hand, a
few related works [9], [14] attempt to address only one of the
conflict problems which is the rule correlation in filtering poli-
cies. Other approaches [4], [13], [16] propose using a high-level
policy language to define and analyze firewall policies, and then
map this language to filtering rules. Although using such high-
level languages might avoid rule anomalies, they are not prac-
tical for the most widely used firewalls that contain low-level
filtering rules. It is simply because redefining already existing
policies using high-level languages require far more effort than
just analyzing existing rules using standalone tools such as the
Firewall Policy Advisor. In addition, none of the previous work

0733-8716/$20.00 © 2005 IEEE

2070 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 10, OCTOBER 2005

Fig. 1. Example for centralized firewall setup.

has a significant attempt to address anomalies in distributed fire-
walls. Therefore, we consider our work a significant progress in
the area as it offers a novel and comprehensive framework to au-
tomate anomaly discovery and rule editing in both centralized
and distributed firewalls.

This paper is organized as follows. In Section II, we give an
introduction to firewall operation. In Section III, we present our
formalization of filtering rule relations. In Section IV, we clas-
sify and define policy anomalies in centralized firewalls, and
we describe the intrafirewall anomaly discovery algorithm. In
Section V, we classify and define policy anomalies in distributed
firewalls, and then we describe the interfirewall anomaly dis-
covery algorithm. In Section VI, we describe the techniques
for anomaly free rule editing. In Section VII, we show the im-
plementation and evaluation of the Firewall Policy Advisor. In
Section VIII, we give a summary of related work. Finally, in
Section IX, we show our conclusions and our plans for future
work.

II. FIREWALL BACKGROUND

A firewall is a network element that controls the traversal of
packets across the boundaries of a secured network based on a
specific security policy. A firewall security policy is a list of or-
dered filtering rules that define the actions performed on packets
that satisfy specific conditions. A rule is composed of set of fil-
tering fields (also called network fields) such as protocol type,
source IP address, destination IP address, source port, and des-
tination port, as well as an action field. The filtering fields of a
rule represent the possible values of the corresponding fields in
actual network traffic that matches this rule. Each network field
could be a single value or a range of values. In our work, we
require that any field value in one rule cannot partially overlap
with a corresponding field value in another rule. Filtering ac-
tions are either to accept, which permits the packet into or from
the secure network, or to deny, which causes the packet to be
blocked. The packet is permitted or blocked by a specific rule
if the packet header information matches all the network fields
of this rule. Otherwise, the following rule is examined and the
process is repeated until a matching rule is found or the default
policy action is performed [6], [7]. In this paper, we assume a
“deny” default policy action.

Filtering rule format: It is possible to use any field in Internet
protocol (IP), user datagram protocol (UDP), or transmission
control protocol (TCP) headers in the rule filtering part, how-
ever, practical experience shows that the most commonly used
matching fields are: protocol type, source IP address, source
port, destination IP address, and destination port [8], [28]. The
following is the common format of packet filtering rules in a
firewall policy, as shown in the policy example in Fig. 1.

III. MODELING AND REPRESENTATION OF FIREWALL POLICIES

Modeling of firewall rule relations is necessary for analyzing
the firewall policy and designing management techniques such
as anomaly discovery and policy editing. In this section, we for-
mally describe our model of firewall rule relations, then we de-
scribe a tree-based representation for firewall policies.

A. Formalization of Firewall Rule Relations

To be able to build a useful model for filtering rules, we need
to determine all the relations that may relate packet filters. In
this section, we define all the possible relations that may exist
between filtering rules, and we show that no other relation exists.
We determine these relations based on comparing the network
fields of filtering rules, independent of the rule actions. In the
following sections, we consider these relations as well as rule
actions in our study of firewall rule conflicts.

Definition 1: Rules and are completely disjoint if
every field in is not a subset nor a superset nor equal to the
corresponding field in . Formally, iff

where

and

Definition 2: Rules and are exactly matching if every
field in is equal to the corresponding field in . Formally,

iff

where

Definition 3: Rules and are inclusively matching if
they do not exactly match and if every field in is a subset
or equal to the corresponding field in . is called the

AL-SHAER et al.:CONFLICT CLASSIFICATION AND ANALYSIS OF DISTRIBUTED FIREWALL POLICIES 2071

subset match, while is called the superset match. Formally,
iff

and such that

where

For example, in Fig. 1, Rule 1 inclusively matches Rule 2. Rule 1
is the subset match of the relation, while Rule 2 is the superset
match.

Definition 4: Rules and are partially disjoint (or par-
tially matching) if there is at least one field in that is a subset
or a superset or equal to the corresponding field in , and there
is at least one field in that is not a subset and not a su-
perset and not equal to the corresponding field in . Formally,

iff

such that and

where

and

For example, Rule 2 and Rule 6 in Fig. 1 are partially disjoint
(or partially matching).

Definition 5: Rules and are correlated if some fields
in are subsets or equal to the corresponding fields in , and
the rest of the fields in are supersets of the corresponding
fields in . Formally, iff

and such that and

where

and

For example, Rule 1 and Rule 3 in Fig. 1 are correlated.
We define to be the universal set of rule relations as follows:

The following theorems show that these relations are distinct,
i.e., only one relation can relate and , and complete, i.e.,
there is no other relation between and could exist.

Theorem 1: Any two -tuple filters in a firewall policy are
related by one and only one of the defined relations.

Proof: Intuitively, we can show that the intersection be-
tween any two relations in is an empty set. In [1], we prove
by contradiction that there are no two rules and such that

and and .
Theorem 2: The union of these relations represents the uni-

versal set of relations between any two -tuple filters in a fire-
wall policy.

Proof: In [1], we first prove that the relation between any
two two-tuple filters, and , must be in . Next, we prove
that adding one more field to any two filters related with one of
the defined relations will produce two filters, and , that
are also related by one of these relations. Based on these two

results, we use induction to prove that any two rules with -tuple
filters must be related by one of the rule relations defined in this
section.

Handling ranges in filtering fields: Network fields in a fire-
wall rule could have a singular value or range of values. The
range of values can be specified either using a prefix regular ex-
pression or an interval (0–1023). Using range
intervals might cause partial overlapping between field values
in different rules. However, in our analysis, this is not a valid
relation between fields because fields are related only by

. Therefore, in order to avoid this overlapping, we break
down these rules into several equivalent rules such that each rule
has a prefix expression [26] or a subrange of values [23] that
does not partially overlap with other rules in the policy. Similar
rule processing techniques are also described in [12] and [22].

For example, in the following rules the destination port range
of rule partially overlaps with the range in :

–

–

To resolve this overlap, is expanded into two equivalent
rules and . As shown below, the expansion guaran-
tees that the destination port ranges of the rules do not partially
overlap, yet the policy semantics is preserved

–

–

–

B. Firewall Policy Representation

We represent the firewall policy by a single-rooted tree called
the policy tree [1], [3]. The tree model provides a simple repre-
sentation of the filtering rules and at the same time allows for
easy discovery of relations and anomalies among these rules.
Each node in a policy tree represents a network field, and each
branch at this node represents a possible value of the associated
field. Every tree path starting at the root and ending at a leaf rep-
resents a rule in the policy and vice versa. Rules that have the
same field value at a specific node will share the same branch
representing that value.

Fig. 2 illustrates the policy tree model of the filtering policy
given in Fig. 1. Notice that every rule should have an action leaf
in the tree. The dotted box below each leaf indicates the rule
represented by that branch in addition to other rules that are in
anomaly with it as described later in the following section. The
tree shows that Rules 1 and 5 each has a separate source address
branch as they have different field values, whereas Rules 2, 4, 6,
and 7 share the same source address branch as they all have the
same field value. Also, notice that Rule 8 has a separate branch
and also appears on other rule branches of which it is a superset,
while Rule 4 has a separate branch and also appears on other
rule branches of which it is a subset. Rule 11 does not appear
in the policy tree due to the irrelevance anomaly described in
Section IV.

2072 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 10, OCTOBER 2005

Fig. 2. Policy tree for the firewall policy in Fig. 1.

IV. ANALYSIS AND DISCOVERY OF

INTRAFIREWALL ANOMALIES

The ordering of filtering rules in a centralized firewall policy
is very crucial in determining the filtering policy within this fire-
wall. This is because the packet filtering process is performed
by sequentially matching the packet against filtering rules until
a match is found. If filtering rules are disjoint, the ordering of
the rules is insignificant. However, it is very common to have fil-
tering rules that are interrelated. In this case, if the relative rule
ordering is not carefully assigned, some rules may be always
screened by other rules producing an incorrect policy. More-
over, when the policy contains a large number of filtering rules,
the possibility of writing conflicting or redundant rules is rela-
tively high.

An intrafirewall policy anomaly is defined as the existence
of two or more filtering rules that may match the same packet
or the existence of a rule that can never match any packet on
the network paths that cross the firewall [1]. In this section, we
classify different anomalies that may exist among filtering rules
in one firewall, and then describe a technique for discovering
these anomalies.

1) Shadowing Anomaly: A rule is shadowed when a pre-
vious rule matches all the packets that match this rule, such that
the shadowed rule will never be activated. Formally, rule is
shadowed by rule if one of the following conditions holds:

order order action action

order order action action

For example, Rule 4 in shadowed by Rule 3 in Fig. 1. Shad-
owing is a critical error in the policy, as the shadowed rule never
takes effect, causing an accepted traffic to be blocked or a de-
nied traffic to be permitted.

2) Correlation Anomaly: Two rules are correlated if they
have different filtering actions, and the first rule matches some
packets that match the second rule and the second rule matches
some packets that match the first rule. Formally, rule and
rule have a correlation anomaly if the following condition
holds:

action action

Rule 1 is in correlation with Rule 3 in Fig. 1. Correlation
is considered an anomaly warning because the correlated rules
imply an action that is not explicitly stated by the filtering rules.

AL-SHAER et al.:CONFLICT CLASSIFICATION AND ANALYSIS OF DISTRIBUTED FIREWALL POLICIES 2073

3) Generalization Anomaly: A rule is a generalization of a
preceding rule if they have different actions, and if the second
rule can match all the packets that match the first rule. Formally,
rule is a generalization of rule if the following condition
holds:

order order action action

Rule 2 is a generalization of Rule 1 in Fig. 1. Generalization
is often used to exclude a specific part of the traffic from a gen-
eral filtering action, therefore, it is only considered an anomaly
warning.

4) Redundancy Anomaly: A redundant rule performs the
same action on the same packets as another rule such that if
the redundant rule is removed, the security policy will not be
affected. Formally, rule is redundant to rule if one of the
following conditions holds:

order order action action

order order action action

whereas rule is redundant to rule if the following condi-
tion holds:

order order action action

and where order order order

action action

Referring to Fig. 1, Rule 7 is redundant to Rule 6, and Rule 9
is redundant to Rule 10. Although redundancy is sometimes pre-
ferred, we consider it an error in the firewall policy because a re-
dundant rule adds unnecessary overhead to the filtering process
[21].

5) Irrelevance Anomaly: A filtering rule in a firewall is irrel-
evant if this rule cannot match any traffic that might flow through
this firewall. This exists when both the source address and the
destination address fields of the rule do not match any domain
reachable through this firewall. In other words, the path between
the source and destination addresses of this rule does not pass
through the firewall. Thus, this rule has no effect on the filtering
outcome of this firewall. Formally, rule in firewall F is irrel-
evant if

is a node on a path from to

Referring to Fig. 1, Rule 11 is irrelevant. Irrelevance is con-
sidered an anomaly because it adds unnecessary overhead to
the filtering process and it does not contribute to the policy
semantics.

In our previous work [1], we presented the details of the in-
trafirewall anomaly discovery algorithm. Before we perform the
policy analysis, we preprocess the policy to resolve any partial
overlapping among the rules as discussed in Section III-A. In-
trafirewall anomaly discovery proceeds by determining if any
two rules coincide in their policy tree paths. If the path of a
rule coincides with the path of another rule, there is a potential
anomaly that can be determined based on the anomaly defini-
tions specified in this section. If rule paths do not coincide, then
these rules are disjoint and they have no anomalies. Applying

Fig. 3. Cascaded firewalls isolating domains D and D .

the algorithm on the rules in Fig. 1, the discovered anomalies
are marked in the dotted shapes at the bottom of the policy tree
in Fig. 2.

V. ANALYSIS AND DISCOVERY OF

INTERFIREWALL ANOMALIES

It is very common to have multiple firewalls installed in the
same enterprise network. This has many network administration
advantages. It gives local control for each domain according
to the domain security requirements and applications. For
example, some domains might demand to block RTSP traffic or
multicast traffic, however, other domains in the same network
might request to receive the same traffic. Multifirewall instal-
lation also provides interdomain security, and protection from
internally generated traffic. Moreover, end-users might use fire-
walls in their personal workstations for other reasons. However,
because of the decentralized nature inherent to the security
policy in distributed firewalls, the potential of anomalies be-
tween firewalls significantly increases. Even if every firewall
policy in the network does not contain rule anomalies described
in Section IV, there could be anomalies between policies of
different firewalls. For example, an upstream firewall might
block a traffic that is permitted by a downstream firewall or
vice versa. In the first case, this anomaly is called interfirewall
“shadowing,” which is similar in principle to rule shadowing
discussed in the intrafirewall anomaly analysis. In the other
case, the resulted anomaly is called “spurious traffic” because
it allows unwanted traffic to cross portions of the network and
increases the network vulnerability to denial of service attack.
In this section, we first define the anomalies that may exist in
a distributed firewall environment, and then we identify with
examples different types of interfirewall anomalies and we
describe a technique to discover these anomalies.

A. Interfirewall Anomaly Definition

In general, an interfirewall anomaly may exist if any two fire-
walls on a network path take different filtering actions on the
same traffic. We first illustrate the simple case of multiple cas-
caded firewalls isolating two network subdomains, where the
firewalls are installed at the routing points in the network [2].

Referring to Fig. 3, we assume a traffic stream flowing from
subdomain to subdomain across multiple cascaded fire-
walls installed on the network path between the two subdomains.
At any point on this path in the direction of flow, a preceding fire-
wall is called an upstream firewall, whereas a following firewall
is called a downstream firewall. The closest firewall to the flow
source subdomain is called the most upstream firewall,
while the closest firewall to the flow destination subdomain

is called the most downstream firewall.

2074 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 10, OCTOBER 2005

Fig. 4. Example for a hierarchical distributed firewall setup.

Using the above network model, we can say that for any traffic
flowing from subdomain to subdomain an anomaly ex-
ists if one of the following conditions holds.

1) The most downstream firewall accepts a traffic that is
blocked by any of the upstream firewalls.

2) The most upstream firewall permits a traffic that is
blocked by any of the downstream firewalls.

3) A downstream firewall denies a traffic that is already
blocked by the most upstream firewall.

On the other hand, all upstream firewalls should permit any
traffic that is permitted by the most downstream firewall in order
that the flow can reach the destination.

B. Interfirewall Anomaly Classification

In this section, we classify anomalies in multifirewall envi-
ronments. Our classification rules are based on the basic case
of cascaded firewalls illustrated in Fig. 3, assuming the net-
work traffic is flowing from domain to domain . Rule

belongs to the policy of the most upstream firewall ,
while rule belongs to the policy of the most downstream
firewall . We assume that no intrafirewall shadowing or
redundancy exists in any individual firewall. As illustrated in
Section IV, this implies that every “deny” rule should be fol-
lowed by a more general “accept” rule, and the default action
of unspecified traffic is “deny.” The implied rule is resembled
by the in the upstream firewall, and in the downstream
firewall.

1) Shadowing Anomaly: A shadowing anomaly occurs if an
upstream firewall blocks the network traffic accepted by a down-
stream firewall. Formally, rule is shadowed by rule if one
of the following conditions holds:

action deny action accept (1)

action deny action accept (2)

action deny action accept (3)

action accept action accept

and action deny (4)

Intuitively, in cases (1) and (2), the upstream firewall com-
pletely blocks the traffic permitted by the downstream firewall.

Rules (2/ , 3/), and Rules (8/ , 4/) in Fig. 4
are examples of cases (1) and (2), respectively. In cases (3) and
(4), the upstream firewall partially blocks the traffic permitted
by the downstream firewall. Rules (7/ , 7/), and Rules
(5/ , 5/) in Fig. 4 are examples of cases (3) and (4),
respectively.

2) Spuriousness Anomaly: A spuriousness anomaly occurs
if an upstream firewall permits the network traffic denied by a
downstream firewall. Formally, rule allows spurious traffic
to rule if one of the following conditions holds:

action accept action deny (5)

action accept action deny (6)

action accept action deny (7)

action accept action accept

and action deny (8)

action deny action deny

and action accept

and or (9)

In cases (5) and (6), the rule in the upstream firewall per-
mits unwanted traffic because it is completely blocked by
in the downstream firewall. Examples of these cases are Rules
(2/ , 4/), and Rules (2/ , 9/) in Fig. 4, re-
spectively. In cases (7) and (8), part of the traffic allowed by
rule in upstream firewall is undesired spurious traffic since
it is blocked by rule in the downstream firewall. Examples
of these cases are also found in Rules (5/ , 4/), and
(3/ , 3/) in Fig. 4, respectively. Case (9) is not as ob-
vious as the previous cases and it needs further analysis. Since
we assume there is no intrafirewall redundancy in the upstream
firewall, the fact that has a “deny” action implies that there
exists a superset rule in the upstream firewall that follows
and accepts some traffic blocked by . This occurs when the
implied “accept” rule in the upstream firewall is an exact, su-
perset or subset match (but not correlated) of . Rules (5/ ,
4/) in Fig. 4 are an example of this case.

3) Redundancy Anomaly: A redundancy anomaly occurs if
a downstream firewall denies the network traffic already blocked
by an upstream firewall. Formally, rule is redundant to rule

AL-SHAER et al.:CONFLICT CLASSIFICATION AND ANALYSIS OF DISTRIBUTED FIREWALL POLICIES 2075

if, on every path to which and are relevant, one of
the following conditions holds:

action deny action deny (10)

action deny action deny (11)

In both of these cases, the deny action in the downstream
firewall is unnecessary because all the traffic denied by is
already blocked by in the upstream firewall. In Fig. 4, Rules
(6/ , 6/), and Rules (9/ , 6/) are examples of
cases (10) and (11), respectively.

4) Correlation Anomaly: A correlation anomaly occurs as a
result of having two correlated rules in the upstream and down-
stream firewalls. We defined correlated rules in Section III-A.
Intrafirewall correlated rules have an anomaly only if these rules
have different filtering actions. However, correlated rules having
any action are always a source of anomaly in distributed fire-
walls because of the implied rule resulting from the conjunction
of the correlated rules. This creates not only ambiguity in the in-
terfirewall policy, but also spurious, and shadowing anomalies.
Formally, the correlation anomaly for rules and occurs
if one of the following conditions holds:

action accept action accept

and action deny

and action deny (12)

action deny action deny

and action accept

and action accept (13)

action accept action deny (14)

action deny action accept (15)

An example for case (12) is

In this example, effectively, the correlative conjunction
of these two rules implies that only the traffic coming from

and destined to will be accepted as
indicated in the following implied rule:

This means that other traffic destined to will be
shadowed at the upstream firewall, while spurious traffic origi-
nating from will reach the downstream firewall.

For case (13), the example is

In this case, the resulting action at the downstream firewall
will deny the traffic coming from and destined to

. The implied filtering rule will be

This means that other traffic originating from
will be shadowed at the upstream firewall, while spurious traffic
destined to may reach the downstream firewall. A
possible resolution for cases (12) and (13) is to replace each of
the correlated rules with the implied filtering rule .

The example for case (14) is

This example shows that the resulting filtering action at
the upstream firewall permits the traffic that is coming from

and destined to . However, the
same traffic is blocked at the downstream firewall, resulting in
spurious traffic flow. To resolve this anomaly, an extra rule
should be added in the upstream firewall prior to such that
it blocks the spurious traffic as follows:

As for case (15), the example is

This example shows a different situation where the resulting fil-
tering action at the upstream firewall will block the traffic that is
coming from and destined to . How-
ever, because this traffic is accepted at the downstream firewall,

is shadowed by . To resolve this anomaly, an extra rule
should be added in the upstream firewall before to avoid

the shadowing anomaly as follows:

In the following theorem, we show that the anomaly cases
we presented above are covering all the possible interfirewall
anomalies.

Theorem 3: The set of conditions presented above represent
all possible rule anomalies that might exist between the policies
of any two firewalls.

Proof: Based on the rule relations defined in Section III-A,
there are exactly six possible relations between any two rules
in different firewalls, namely: completely disjoint, partially
disjoint, completely matching, subset matching, superset
matching, or correlated. For each relation, there are four dif-
ferent possible combinations considering the action type (i.e.,
accept and deny) and the firewall location relative to the traffic
flow (i.e., upstream and downstream). Therefore, there are 24
possible combinations of rule relations.

2076 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 10, OCTOBER 2005

Fig. 5. State diagram for interfirewall anomaly discovery for rules R and R , where R belongs to the upstream firewall and R belongs to the downstream
firewall.

We can then simply enumerate all possible relations between
any two filtering rules in two different firewalls. In this sec-
tion, we identified 15 of these relations/combinations, and the
remaining 9 are listed below

action accept action accept (16)

action accept deny

action accept deny (17–20)

action accept deny

action accept deny (21–24)

By studying each individual case, we can show that none of
the above nine cases causes any anomaly. Case (16) resembles
the necessary condition to permit some traffic between the two
firewalls and thereby cannot be considered as an anomaly. Cases
(17)–(24) represent partially or completely disjoint rules, which
in either case do not cause any interfirewall anomaly because the
two rules operate on completely different traffic flows. There-
fore, none of the cases (16)–(24) could cause any rule anomaly
between any two firewalls. Notice that the fact that there is an
extra implicit rule or as a required condition in cases (4),
(8), (9), (12), and (13) does not increase the number of possible
relations/combinations. This is because if the extra rule (or

) does not hold, this implies that rule and rule become
redundant for the cases (4), (8), (9), (12) and (13), and the cases
(8), (12), and (13), respectively. In this case, and do not
contribute to the anomaly analysis and, thus, the dissatisfaction
of this implicit condition does not impact this proof.

In conclusion, since cases (1)–(24) identify all possible com-
binations between any two interfirewall rules, the set of con-

ditions stated in this section represent a complete set of rule
anomalies between any two firewalls. Without loss of generality,
this result can be applied on any number of rules in distributed
firewalls.

C. Interfirewall Anomaly Discovery Algorithm

This algorithm finds the rule relations described in
Section V-B and discovers the anomalies between filtering
rules in two or more connected firewalls. In Fig. 5, we show
the state diagram of the interfirewall anomaly discovery algo-
rithm. The figure shows the anomaly discovery for any two
rules, and , where is a rule in the upstream firewall
policy, and is a rule in the downstream firewall policy. For
simplicity, the address and port fields are integrated in one
field for both the source and destination. At the start state, we
assume no relationship between the two rules. Each field in
is compared with the corresponding field in starting with
the protocol, then source and destination addresses and ports.
Based on these comparisons, the relation between the two rules
is determined, as well as the anomaly if it exists. For example,
if is found to inclusively match (State 10), then is
partially shadowed if its action is “accept” (State 11), or is
spurious if the action of is “deny” (State 12).

Since more than two firewalls may exist between subdomains
in an enterprise network, the interfirewall anomaly discovery
process should be performed on all firewalls in the path con-
necting any two subdomains in the network. For example, in
Fig. 4, interfirewall anomaly analysis is performed on (,

) for all traffic that goes between and the Internet,
on (,) for all traffic that goes between and the

AL-SHAER et al.:CONFLICT CLASSIFICATION AND ANALYSIS OF DISTRIBUTED FIREWALL POLICIES 2077

Internet, and on (, ,) for all traffic that goes
between and . Intuitively, interfirewall anomaly dis-
covery is achieved by building the aggregate policy tree pre-
sented in Section III-B for all the firewalls isolating every two
subdomains in the network. We start the analysis by determining
the list of network paths between every two subdomains in the
network. For each path, we determine all the firewalls in the
traffic flow. Then, for every firewall in the path, we first run
the intrafirewall anomaly discovery algorithm (Section IV) to
ensure that every individual firewall is free from intrafirewall
anomalies. Next, we build the policy tree of the most upstream
firewall, and then add into this tree the rules of all the consecu-
tive firewalls in the path as described later in this section. During
this process, only the rules that apply to this path (have relevant
source and destination addresses) are selected and marked. At
the end of the routine, and as a result of applying the algorithm
on all the network paths, the rules that potentially create anoma-
lies are reported. In addition, any rule left unmarked is reported
as an irrelevant rule anomaly (Section IV) because it does not
apply to any path in the network. Algorithm 1 implements the
interfirewall anomaly discovery state diagram shown in Fig. 5.
The algorithm can be divided in two phases: the state transi-
tion phase (lines 2–24), which represents the transition states in
the state diagram, and the state termination phase (lines 25–51),
which represents the termination states.

Algorithm 1 Interfirewall anomaly
discovery
1: for each in
2: if ACTION then find

transition states
3: UNDETERMINED
4: if then
5: if UNDETERMINED then
6: EXACT
7: end if
8: else if then
9: if SUBSET, CORRELATED

then
10: CORRELATED
11: else if DISJOINT then
12: SUPERSET
13: end if
14: else if then
15: if SUPERSET, CORRELATED

then
16: CORRELATED
17: else if DISJOINT then
18: SUBSET
19: end if
20: else
21: DISJOINT
22: end if
23:
24:
25: else find termination state
26: if EXACT then
27: if accept and deny

then

28: SHADOWING
29: else if deny and

accept then
30: SPURIOUSNESS
31: else if deny and

deny then
32: REDUNDANCY
33: end if
34: else if SUBSET then
35: if accept and

deny then
36: SHADOWING
37: else if accept then
38: SPURIOUSNESS
39: else if deny and

deny then
40: REDUNDANCY
41: end if
42: else if SUPERSET then
43: if deny then
44: SPURIOUSNESS
45: else if accept then
46: = SHADOWING
47: end if
48: else if CORRELATED then
49: CORRELATION
50: end if
51: end if
52: end for

After building the policy tree for the most upstream firewall,
the transition routine is invoked upon inserting every rule from
subsequent downstream firewalls in the aggregate policy tree.
Based on the field values, the current rule is inserted in the policy
tree by matching the fields of previously inserted rules in the
tree, which belong to the preceding upstream firewalls. If the
rule is disjoint or correlated, it is inserted into a new branch. If
the rule is a superset match, it is inserted into the branches of all
the subset rules. Otherwise, the rule is inserted in the first branch
of a rule that is an exact or superset match. The termination
routine determines the anomaly based on the discovered relation
and the actions of the currently inserted rule with the existing
rule in the policy tree as described in Fig. 5. If an anomaly is
discovered, the involved rules are marked accordingly and the
anomaly is reported.

As an example, we apply the interfirewall anomaly discovery
algorithm on the example network in Fig. 4. We start by iden-
tifying the participating subdomains in the network given the
network topology and routing tables. The domains in the figure
are , , , and in addition to the global Internet
domain. The Internet domain is basically any address that does
not belong to one of the network subdomains. Afterwards, we
identify all the possible directed paths between any two subdo-
mains in the network and determine the firewalls that control
the traffic on that path, and we run the algorithm on each one
of these paths. According to the figure, the algorithm analyzes
20 distinct paths for interfirewall anomalies and produces the
anomalies indicated in Section V-B.

2078 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 10, OCTOBER 2005

Analyzing general network topologies: Although we use a hi-
erarchical network topology example for interfirewall anomaly
discovery, this analysis can be performed on any network
topology since a static routing topology can be represented as
a tree [5]. In case the network topology contains loops, the
network topology can be expanded into multiple hierarchical
subnetworks (i.e., routing trees) based on the routing con-
figuration of the network nodes. In this case, by combining
the anomaly analysis results for the different subnetworks, all
possible interfirewall anomalies can be discovered. In case dy-
namic routing is used, similarly, each routing/delivery tree has
to be considered separately for the analysis and the combination
of all the resulting reports gives the total anomalies.

Performance optimization of interfirewall anomaly discovery:
In complex hierarchical networks, there is a high degree of over-
lapping between the paths connecting different network subdo-
mains. Since the basic interfirewall analysis technique is per-
formed on every path in the network, the same policy tree might
be reconstructed a number of times due to the overlapping of
network paths. This occurs when a network segment is used in
more than one path in the analysis. For example, in the net-
work in Fig. 4, the segment is common to all the
paths between the subdomains of and and, therefore,
the policy tree involving firewalls and is repeatedly
constructed for the analysis of each path between these subdo-
mains. To avoid this computational redundancy and optimize the
processing time, we store the policy trees of the paths that are
constructed during our analysis so that they can be used in the
analysis of other overlapping paths. Unlike the basic technique,
this approach requires that every rule in the firewalls on this path
is inserted in the constructed policy tree even if this rule does not
relate to the currently analyzed path. This is required in order to
guarantee that the reused policy tree includes all rules needed
to analyze other new paths and subdomains. This optimization
produces considerable reduction in the processing time at the
expense of requiring more memory space to store intermediate
policy trees.

VI. RULE EDITING IN DISTRIBUTED FIREWALL POLICIES

Firewall policies are often written by different network ad-
ministrators and occasionally updated (by inserting, modifying,
or removing rules) to accommodate new security requirements
and network topology changes. Editing an enterprise security
policy can be far more difficult than creating a new one. A new
filtering rule may not apply to every network subdomain, there-
fore, this rule should be properly located in the correct firewalls
to avoid blocking or permitting the wrong traffic. Moreover, as
rules in a local firewall policy are ordered, a new rule must be in-
serted in a particular order to avoid creating intrafirewall anom-
alies. The same applies if the rule is modified or removed. In this
section, we present firewall policy editing techniques that sim-
plify the rule editing task significantly, and avoid introducing
anomalies due to policy updates. The policy editor helps the user
to determine the correct firewalls at which a new rule should
be located avoiding interfirewall anomalies, and helps to deter-
mine the proper order for the rule within these firewalls avoiding
intrafirewall anomalies. Using the policy editor, administrators

need no prior analysis of the firewall rules in order to insert,
modify, or remove a rule.

A. Rule Placement and Insertion Algorithm

The process of inserting a new rule in the global security
policy is performed in two steps. The first step is to identify the
firewalls in which this rule should be placed. This is needed in
order to apply the filtering rule only on the relevant subdomains
without creating any interfirewall anomalies. The second step is
to determine the proper order of the rule in each firewall such
that no intrafirewall anomaly is created.

Algorithm 2 is used to locate the firewalls where a rule should
be inserted. As a first step to insert a rule, we identify all the
possible paths that go from the source address to the destination
address of the rule (lines 1–13). If any of the source or destina-
tion addresses is an external address (Internet address), then we
find the path to/from the closest firewall to the Internet. Second,
the rule is inserted in all firewalls in the identified paths if the
rule action is “accept.” Otherwise, if the rule action is “deny,”
the rule is inserted only in the most upstream firewalls(s) rela-
tive to the source(s) (lines 14–24). As an example, the following
rules are inserted in the policy shown in Fig. 4:

Algorithm 2 Rule placement and removal in
distributed firewalls
Input: , ,
1: for each do
2: if or

then
3: Append(,)
4: else if or

then
5: Append(,)
6: end if
7: end for
8: for each do
9: for each do
10: is a firewall on

the path from to
11: Append(- ,)
12: end for
13: end for
14: for each - do
15: for each do
16: if insert then
17: Invoke Algorithm 3 to insert

in
18: else if remove then
19: Remove from
20: end if
21: if deny then
22: break
23: end if
24: end for
25: end for

AL-SHAER et al.:CONFLICT CLASSIFICATION AND ANALYSIS OF DISTRIBUTED FIREWALL POLICIES 2079

is installed in firewalls and because they are
the most upstream firewalls on the paths from the Internet and
domain to domain , re-
spectively. is installed in firewalls , , and as
they all exist on the path from the domain to
domain .

In the second step, the order of the new rule in the local fire-
wall policy is determined based on its relation with other ex-
isting rules. In general, a new rule should be inserted before any
rule that is a superset match, and after any rule that is a subset
match of this rule. Algorithm 3 uses the local policy tree to keep
track of the correct ordering of the new rule, and discover any
potential anomalies. We start by searching for the correct rule
position in the policy tree by comparing the fields of the new
rule with the corresponding tree branch values. If the field value
is a subset of the branch, then the order of the new rule so far is
smaller than the minimum order of all the rules in this branch
(line 11). If the field value is a superset of the branch, the order
of the new rule so far is greater than the maximum order of all
the rules in this branch (line 16). On the other hand, if the rule is
disjoint, then it can be given any order in the policy. Similarly,
the tree browsing continues, matching the next fields in the rule
as long as a field value is an exact match or a subset match of a
branch (lines 8, 12, 21). A new branch is created for the new rule
any time a disjoint or superset match is found (line 23). When
the action field is reached, the rule is inserted and assigned an
order within the maximum and minimum range determined in
the browsing phase. If the new rule is redundant because it is
an exact match or a subset match and it has the same action of
an existing rule, the policy editor rejects it and prompts the user
with an appropriate message (lines 27–35).

Algorithm 3 Rule insertion in a single
firewall policy
Input: ,
Output: , ,
1: UNDERTERMINED
2:
3: for each do
4: if ACTION then
5: nil
6: for each do
7: if then
8:
9: else if then
10: if MinOrder() then
11: MinOrder()-1
12:
13: end if
14: else if then
15: if MaxOrder() then
16: MaxOrder()+1
17: end if
18: end if
19: end for
20: if nil then browse target

branch
21:

22: else create new branch
23: NewBranch(,)
24: end if
25: else if nil then and action

field reached
26: NOANOMALY
27: if UNDERTERMINED and

UNDERTERMINED then
28: if then similar

actions
29: REDUNDANCY
30: else different actions
31: SHADOWING
32: end if
33: else if UNDERTERMINED

and then similar
actions

34: REDUNDANCY
35: end if
36: end if
37: end for

After inserting the rule in the appropriate firewalls, the in-
terfirewall anomaly discovery algorithm in Section V-C is ac-
tivated to verify that no intrafirewall or interfirewall anomalies
are introduced in the distributed security policy, and to identify
any correlation or generalization anomalies the new rule might
have created.

B. Rule Removal Algorithm

In distributed firewall environments, removing a rule from a
specific firewall may result in creating an interfirewall anomaly.
For example, if a “deny” rule is removed from the upstream
firewall, this may result in spurious traffic flowing downstream,
but if an “accept” rule is removed from the upstream firewall,
the relevant traffic may be blocked and all the related (exact,
subset, or superset) downstream rules will be shadowed.

When the user decides to remove a rule from a certain fire-
wall, the first step is to identify all the source and destination
subdomains that will be impacted by removing this rule. Again,
we use Algorithm 2 to locate the firewalls where a rule should
be removed. In the second step, we remove the rule from the
firewall policy as follows. If the rule is an “accept” rule, then
we remove it from all the firewalls in all paths from source to
destination subdomains. Otherwise, shadowing or spuriousness
anomaly is created if the rule is removed only from the upstream
or the downstream firewalls, respectively. If the rule is a “deny”
rule, then we just remove it from the local firewall. In this case,
we alert the administrator that removing the rule will result in
allowing some extra traffic to flow through the firewall to/from
other domains.

Modifying a rule in a firewall policy is also a critical oper-
ation. However, a modified rule can be easily verified and in-
serted based on the rule removal and insertion techniques de-
scribed above. It is important to note that the policy editor only
alerts the administrator in case rule modification results in an in-
terfirewall anomaly. If confirmed, the update is applied in spite
of the anomaly existence. This approach is practically appro-
priate since the administrator might have legitimate reasons for

2080 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 10, OCTOBER 2005

Fig. 6. Average percentage of discovered anomalies in a man-written
centralized firewall policy.

this update, like temporarily blocking undesired traffic (i.e., cre-
ating shadowing anomaly) or performing live testing on domain
firewalls (i.e., creating spurious anomaly).

VII. FIREWALL POLICY ADVISOR: IMPLEMENTATION

AND EVALUATION

We implemented the techniques and algorithms described in
Sections V and IV in a software tool called the “Firewall Policy
Advisor” or FPA.1 The tool implements the interfirewall and
intrafirewall anomaly discovery algorithms, as well as the dis-
tributed firewall policy editor. The FPA was developed using
Java programming language and it includes a graphical user in-
terface. In this section, we present our evaluation study of the
usability and the performance of the anomaly discovery tech-
niques described in this paper.

To assess the practical value of our techniques, we first used
the FPA tool to analyze real firewall rules in our university
network, as well as in some local industrial networks in the
area. In many cases, the FPA has shown to be effective by
discovering many firewall anomalies that were not discovered
by human visual inspection. We then attempted to quantitatively
evaluate the practical usability of the FPA by conducting a set
of experiments that consider the level of network administrator
expertise and the frequency of occurrence of each anomaly type.
In this experiment, we created two firewall policy exercises
and asked 12 network administrators with varying level of
expertise in the field to complete each exercise. The exercises
include writing filtering rules in centralized and distributed
firewalls based on a given security policy requirements. We
then used the FPA tool to analyze the rules in the answer of
each one and calculated the ratio of each anomaly relative to
total number of rules. The average total number of rules was
40 in the centralized firewall, and 90 in the distributed firewall
for a network having only three firewalls. The results of this
experiment are shown in Figs. 6 and 7 for the centralized and
distributed firewall exercises, respectively.

These results show clearly that the margin of error that can be
done even by an expert administrator is quite significant (about
8% for centralized one and 18% for the distributed one). This
figure is even much higher for an intermediate and beginner ad-
ministrators (about 13% and 27% for centralized firewall and
26% and 39% for the distritbuted firewalls, respectively). An-
other interesting observation is the high percentage of redundant
as well as spurious rules in all experience levels.

In the last phase of our evaluation study, we conducted
a number of experiments to measure the performance and

1http://www.mnlab.cti.depaul.edu/mnlab/projects/FPA

Fig. 7. Average percentage of discovered anomalies in a man-written
distributed firewall policy.

the scalability of firewall anomaly discovery under different
filtering policies and network topologies. Our experiments
were performed on a Pentium PIII 400 MHz processor with
128 MByte of RAM.

To study the performance of the intrafirewall anomaly dis-
covery algorithm, we produced four sets of firewall rules. The
first set includes rules that are different in the destination address
only, and the second set includes rules that have distinct source
addresses. These two sets resemble a realistic combination of
practical firewall rules, and represent the best case scenario be-
cause they require the minimum policy-tree navigation for ana-
lyzing each rule. In the third set, each rule is a superset match
of the preceding rule. This set represents the worst case sce-
nario because each rule requires complete policy-tree navigation
in order to analyze the entire rule set. The fourth set includes
rules that are randomly selected from the three previous sets in
order to represent the average case scenario. We used the FPA
tool to run the intrafirewall policy analysis algorithm on each
set using various sizes of rule sets (10–90 rules). In each case,
we measured the processing time needed to produce the policy
analysis report. The results we obtained are shown in Fig. 8(a).
Set 1 shows the least processing time because all the rules are
aggregated in one branch in the policy tree, which makes the
number of field matches and node creations minimal. Set 2 has
a slightly higher processing time, since each rule in the set has a
distinct branch at a higher level in the policy tree. This requires
more time to create new tree nodes for inserting each rule in
the tree. Set 3 is expected to have the highest processing time
since every rule in the set must be matched with all rules in the
policy tree. Set 4 shows a moderate (average) processing time
and represents the most practical scenario as it combines many
different cases. Even in the worst case scenario (Set 3), the pro-
cessing time looks very reasonable; approximately 20–240 ms
for 10–90 rules. In addition, the processing time increases about
2.1–2.8 ms per rule, which is considered insignificant overhead
even if hundreds of rules exist in a firewall.

For evaluating the performance of the interfirewall anomaly
discovery algorithm, we conducted two different experiments.
In the first experiment, we applied the discovery algorithm on
a set of firewalls that exist on one network path. The rules used
in each firewall are similar to Set 2 rules in the previous ex-
periment. We varied the number of rules in each firewall, and
the number of firewalls on the path. The results in Fig. 8(b)
show that the processing time of the algorithm applied on mul-
tiple firewalls is very close to the performance of intrafirewall
analysis applied on a single firewall containing an equivalent
number of rules. For example, it takes 100 ms to analyze four
firewalls each containing 20 rules. This is almost equal to the

AL-SHAER et al.:CONFLICT CLASSIFICATION AND ANALYSIS OF DISTRIBUTED FIREWALL POLICIES 2081

Fig. 8. Processing time for (a) intrafirewall anomaly discovery, (b) interfirewall anomaly discovery of one path.

Fig. 9. Interfirewall processing time for (a) basic technique and (b) optimized technique.

time required to perform intrafirewall analysis on a single fire-
wall having 80 rules. These results indicate that the complexity
of the interfirewall analysis algorithm is dependent on the total
number of rules in all firewalls on the analyzed path rather than
the number of firewalls being analyzed.

In the second experiment, we applied the discovery algorithm
on a complex network of distributed firewalls. We used a bal-
anced three-level hierarchical network topology connected to
the Internet via the root node. Each nonleaf node in the net-
work has filtering capability. We created four networks with dif-
ferent branching degrees at each level in the hierarchy starting at
the root node: (1) 2-2-2, (2) 3-2-2, (3) 3-3-2, and (4) 3-3-3. For
example, the root node in Network 2 has 3 branches, whereas
every node on levels two and three has two branches. For each
network, we installed a random set of filtering rules in each fire-
wall. The generated topology information and the firewall setup
of each network are used as inputs for our experiment. We then
used the FPA to run the interfirewall policy analysis algorithm

on each network with a different number of rules (10–50 rules)
for each firewall. We measured, in each case, the processing time
required to produce the final policy analysis report. The results
are shown in Fig. 9(a). We noticed that for small and midsize
networks (such as Network 1 that has 8 subdomains and Net-
work 2 that has 12 subdomains), the processing time ranges
from 3 to 40 s. However, in case of large networks (such as
Networks 3 and 4 that have 18 and 27 subdomains, respectively),
the firewall anomaly discovery requires much higher processing
time ranging from 11 to 180 s depending on the rule complexity.
The increase in the processing time as the network size increases
is due to the fact that the complexity of our algorithm is depen-
dant on the total number of paths between subdomains in the
network. Fig. 9(b) shows the results when running the same ex-
periment using the tree-construction optimization discussed in
Section V-C. By applying this optimization, the processing time
for the different network topologies is reduced by 60%–90%
when each firewall has 50 rules. The results reflect significant

2082 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 10, OCTOBER 2005

improvement over the basic technique especially for large net-
work topologies (such as Networks 3 and 4). The high degree
of path overlapping in these networks enables the optimization
technique to significantly reduce the number of policy trees con-
structed during the analysis.

VIII. RELATED WORK

A significant amount of work has been reported in the
area of firewall and policy-based security management. In
this section, we focus our study on the related work that
intersects with our work in three areas: packet filter modeling,
conflict discovery and rule analysis, and distributed firewall
policy management.

Several models have been proposed for filtering rules. Or-
dered binary decision diagram is used as a model for optimizing
packet classification in [15]. Another model using tuple space
is developed in [27], which combines a set of filters in one
tuple stored in a hash table. The model in [29] uses bucket fil-
ters indexed by search trees. Multidimensional binary tries are
also used to model filters [22]. In [9], a geometric model is
used to represent two-tuple filtering rules. Because these models
were designed particularly to optimize packet classification in
high-speed networks, we found them too complex to use for fire-
wall policy analysis. Interval diagrams are used in [12] to com-
pact firewall rules. However, it requires preprocessing of fire-
wall rules to resolve any rule overlap and, therefore, it cannot
be used for our anomaly analysis. We can confirm from expe-
rience that the tree-based model we use is simple and powerful
enough for this purpose.

Research in policy conflict analysis has been actively growing
for many years. However, most of the work in this area ad-
dresses general management policies rather than firewall-spe-
cific policies. For example, authors in [18] classify possible
policy conflicts in role-based management frameworks, and
develop techniques to discover them. A policy conflict scheme
for IP-Security (IPSec) is presented in [11]. Although this
work is very useful as a general background, it is not directly
applicable in firewall anomaly discovery. On the other hand,
few research projects address the conflict problem in filtering
rules. Both [9] and [14] provide algorithms for detecting and
resolving conflicts among general packet filters. However, they
only detect what we defined as correlation anomaly because
it causes ambiguity in packet classifiers. Other research work
goes one step forward by offering query-based tools for fire-
wall policy analysis. In [20] and [30], the authors developed a
firewall analysis tool to perform customized queries on a set
of filtering rules and extract the related rules in the policy. A
similar approach using expert systems is presented in [10]. All
these tools can help in manual verification of the correctness
of firewall policies. However, they require high user expertise
in order to write the proper queries to identify different types
of firewall policy problems.

In the field of distributed firewalls, current research mainly
focuses on the management of distributed firewall policies. The
first generation of global policy management technology is pre-
sented in [13], which proposes a global policy definition lan-

guage along with algorithms for verifying the policy and gen-
erating filtering rules. In [4], the authors adopted a better ap-
proach by using a modular architecture that separates the se-
curity policy and the underlying network topology to allow for
flexible modification of the network topology without the need
to update the security policy. Similar work has been done in
[16] with a procedural policy definition language, and in [19]
with an object-oriented policy definition language. In terms of
distributed firewall policy enforcement, a novel architecture is
proposed in [17], where the authors suggest using a trust man-
agement system to enforce a centralized security policy at indi-
vidual network endpoints based on access rights granted to users
or hosts. We found that none of the published work in this area
addressed the problem of discovering anomalies in distributed
firewall environments.

In conclusion, we could not find any published research work
that uses low-level filtering rules to perform a complete anomaly
analysis and guided editing of centralized and distributed fire-
wall policies.

IX. CONCLUSION AND FUTURE WORK

Firewall security, like any other technology, requires proper
management in order to provide proper security services. Thus,
just having firewalls on the network boundaries or between
subdomains may not necessarily make the network any secure.
One reason of this is the complexity of managing firewall rules
and the resulting network vulnerability due to rule anomalies.
The Firewall Policy Advisor presented in this paper provides a
number of techniques for purifying and protecting the firewall
policy from rule anomalies. The administrator may use the
firewall policy advisor to manage firewall policies without prior
analysis of filtering rules. In this paper, we formally defined
a number of firewall policy anomalies in both centralized and
distributed firewalls, and we proved that these are the only
conflicts that could exist in firewall policies. We then presented
a set of algorithms to detect rule anomalies within a single
firewall (intrafirewall anomalies), and between interconnected
firewalls (interfirewall anomalies) in the network. When an
anomaly is detected, users are prompted with proper corrective
actions. We intentionally made the tool not to automatically
correct the discovered anomaly but rather alarm the user because
we believe that the administrator should have the final call on
policy changes. Finally, we presented a user-friendly Java-based
implementation of Firewall Policy Advisor.

Using Firewall Policy Advisor was shown to be very effec-
tive for firewalls in real-life networks. In regards to usability,
the tool was able to discover filtering anomalies in rules written
by expert network administrators. In regards to performance, al-
though the policy analysis algorithms are parabolically depen-
dant on the number of rules in the firewall policy, our experi-
ments show that the average processing time in intrafirewall and
interfirewall anomaly discovery is very reasonable for practical
applications. Using our Java implementation of the anomaly dis-
covery algorithms, our results indicate that it, in the worst case,
it takes 10–240 ms of processing time to analyze a security
policy of 10–90 rules in a single firewall. However, in a con-
siderably large network (27 subdomains with 13 firewalls), it

AL-SHAER et al.:CONFLICT CLASSIFICATION AND ANALYSIS OF DISTRIBUTED FIREWALL POLICIES 2083

takes 20–180 s to analyze the filtering rules of all firewalls in
the network.

We believe that there is much more to do in firewall policy
management area. Our future research plan includes online au-
tomatic discovery and recovery of anomalies created as a result
of the rule editing, generation of test traffic for policy verifi-
cation, dynamic rule placement based on firewall performance,
and translation of low-level filtering rules into high-level textual
description and vice versa.

REFERENCES

[1] E. Al-Shaer and H. Hamed, “Modeling and management of firewall poli-
cies,” IEEE Trans. Netw. Serv. Manage., vol. 1-1, Apr. 2004.

[2] , “Discovery of policy anomalies in distributed firewalls,” in Proc.
IEEE INFOCOM, Mar. 2004, pp. 2605–2616.

[3] , “Firewall policy advisor for anomaly detection and rule editing,”
in Proc. IEEE/IFIP Integr. Manage. Conf. (IM’2003), Mar. 2003, pp.
17–30.

[4] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit,” in Proc. IEEE Symp. Security Privacy, May 1999,
pp. 17–31.

[5] T. Bu, N. Duffield, F. L. Presti, and D. Towsley, “Network tomography
on general topologies,” in Proc. ACM SIGMETRICS’02 Conf., Jun.
2002, pp. 21–30.

[6] D. Chapman and E. Zwicky, Building Internet Firewalls, 2nd ed. :
Orielly & Associates, 2000.

[7] W. Cheswick and S. Belovin, Firewalls and Internet Secu-
rity. Reading, MA: Addison-Wesley, 1995.

[8] S. Cobb, ICSA Firewall Policy Guide V2.0, ser. NCSA Security White
Paper Series, 1997.

[9] D. Eppstein and S. Muthukrishnan, “Internet packet filter management
and rectangle geometry,” in Proc. 12th Annu. ACM-SIAM Symp. Discrete
Algorithms, Jan. 2001, pp. 827–835.

[10] P. Eronen and J. Zitting, “An expert system for analyzing firewall rules,”
in Proc. 6th Nordic Workshop Secure IT-Syst., Nov. 2001, pp. 100–107.

[11] Z. Fu, F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C. Xu,
“IPsec/VPN security policy: Correctness, conflict detection and resolu-
tion,” in Proc. Policy Workshop, Jan. 2001, pp. 39–56.

[12] M. Gouda and X. Liu, “Firewall design: Consistency, completeness, and
compactness,” in Proc. 24th IEEE Int. Conf. Distrib. Comput. Syst., Mar.
2004, pp. 320–327.

[13] J. Guttman, “Filtering posture: Local enforcement for global policies,”
in Proc. IEEE Symp. Security Privacy, May 1997.

[14] B. Hari, S. Suri, and G. Parulkar, “Detecting and resolving packet filter
conflicts,” in Proc. IEEE INFOCOM, Mar. 2000, pp. 1203–1212.

[15] S. Hazelhusrt, “Algorithms for analyzing firewall and router access
lists,” Dept. Comput. Scie., Univ. Witwatersrand, South Africa, Tech.
Rep. TR-WitsCS-1999, 1999.

[16] S. Hinrichs, “Policy-based management: Bridging the gap,” in Proc.
15th Annu. Comput. Security Applicat. Conf., Dec. 1999, pp. 209–218.

[17] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith, “Implementing a
distributed firewall,” in Proc. 7th ACM Conf. Comput. Commun. Secu-
rity, Nov. 2000, pp. 190–199.

[18] E. Lupu and M. Sloman, “Conflict analysis for management policies,”
in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage., May 1997, pp.
430–443.

[19] I. Luck, C. Schafer, and H. Krumm, “Model-based tool assistance for
packet-filter design,” in Proc. Workshop Policies Distrib. Syst. Netw.,
Jan. 2001, pp. 120–136.

[20] A. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall analysis engine,”
in Proc. 2000 IEEE Symp. Security Privacy, May 2000, pp. 177–187.

[21] R. Panko, Corporate Computer and Network Security. Englewood
Cliffs, NJ: Prentice-Hall, 2003.

[22] L. Qiu, G. Varghese, and S. Suri, “Fast firewall implementations for soft-
ware and hardware-based routers,” in Proc. 9th Int. Conf. Netw. Proto-
cols, Nov. 2001, pp. 344–345.

[23] S. Luis and M. Condell, “Security policy protocol,” IETF, Internet Draft
draft-IETF-IPSPSPP-01, 2002.

[24] R. Smith and S. Bhattachayra, “Firewall placement in a large network
topology,” in Proc. 6th Workshop Future Trends Distrib. Comput., Oct.
1997, pp. 40–45.

[25] , “A protocol and simulation for distributed communicating fire-
walls,” in Proc. 23rd IEEE Int. Comput. Softw. Applicat. Conf., Oct.
1999, pp. 74–79.

[26] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvoge, “Fast and scalable
layer four switching,” in Proc. ACM SIGCOMM Conf., Sep. 1998, pp.
191–202.

[27] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple
space search,” Comput. ACM SIGCOMM Commun. Rev., pp. 135–146,
Oct. 1999.

[28] J. Wack, K. Cutler, and J. Pole, “Guidelines on firewalls and firewall
policy,” NIST Recommendations, SP 800-41, 2002.

[29] T. Woo, “A modular approach to packet classification: Algorithms and
results,” in Proc. IEEE INFOCOM, Mar. 2000, pp. 1213–1222.

[30] A. Wool, “Architecting the lumeta firewall analyzer,” in Proc. 10th
USENIX Security Symp., Aug. 2001, pp. 381–420.

Ehab Al-Shaer is an Associate Professor and the
Director of the Multimedia Networking Research
Laboratory (MNLAB) in the School of Computer
Science, Telecommunications and Information
System, DePaul University, Chicago, IL. He also
was a Co-Editor of number of books including Man-
agement of Multimedia on the Internet published by
Lecture Notes in Computer Science and Monitoring
Internet Traffic and Services (Piscataway, NJ: IEEE).
His primary research areas are network security,
Internet monitoring, fault management in overlay

networks, and multimedia transport protocols. He has more than 50 refereed
publications in premier journals and conferences in his area.

Prof. Al-Shaer was awarded the Best Paper Award at the Integrated Man-
agement Conference (IM03) and NASA fellowship in 1997. He was the Con-
ference Program Co-Chair for the Fourth IEEE/IFIP International Conference
on Management of Multimedia Networks and Services (MMNS) in October
2001 and the TPC Co-Chair for IEEE End-to-End Monitoring Techniques and
Services (E2EMON) in 2003, 2004, and 2005, respectively. He was Guest Ed-
itor for number of journals including the Journal of High Speed Networking
and the Journal of Computer Communications. He also served as conference
invited speaker, panelist, tutorial presenter, poster chair, workshops chair, and
program committee member for many major IEEE and ACM conferences in-
cluding INFOCOM, ICNP, IM, NOMS, ICDCS, CCNC, GLOBECOM, ICC,
MMNS DSOM, and E2EMON.

Hazem Hamed received the B.Sc. degree in com-
puter and systems engineering and the M.Sc. degree
in computer engineering from Ain-Shams Univer-
sity, Cairo, Egypt, in 1994 and 1999, respectively.
He is currently working towards the Ph.D. degree in
the School of Computer Science, Telecommunica-
tions and Information Systems, DePaul University,
Chicago, IL.

He is also working as a Teaching and Research
Assistant in the Computer Science Department,
DePaul University. His main research is directed

to the management of network security policies including firewall and IPSec
policies. His other research interests include network security, differentiated
services, and reliable multicasting.

Mr. Hamed was awarded the Best Paper Award at the Integrated Management
Conference (IM 2003).

2084 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 10, OCTOBER 2005

Raouf Boutaba is an Associate Professor in
the School of Computer Science, University of
Waterloo, Waterloo, ON, Canada. Before that he
was with the Department of Electrical and Computer
Engineering of the University of Toronto. Before
joining academia, he founded and was the Director
of the Telecommunications and Distributed Systems
Division, Computer Science Research Institute of
Montreal (CRIM). He has published more than
150 papers in refereed journals and conference
proceedings. He conducts research in the areas of

network and distributed systems management and resource management in
multimedia wired and wireless networks.

Dr. Boutaba is the recipient of the Premier’s Research Excellence Award,
the NORTEL Networks Research Excellence Award, and several Best Paper
Awards. He is a Fellow of the Faculty of Mathematics, University of Waterloo,
and a Distinguished Lecturer of the IEEE Computer Society. He is the Chairman
of the Working Group on Networks and Distributed Systems of the International
Federation for Information Processing (IFIP), the Vice Chair of the IEEE Com-
munications Society Technical Committee on Information Infrastructure, and
the Director of the Standards Board of the IEEE Communications Society. He
is the Founder and acting Editor-in-Chief of the IEEE eTransactions on Net-
work and Service Management, on the Advisory Editorial Board of the Journal
of Network and Systems Management, on the Editorial Board of the KIKS/IEEE
Journal of Communications and Networks, on the Editorial Board of the Journal
of Computer Networks, and the Journal of Computer Communications. He has
also served as a Guest Editor of several special issues of the IEEE JOURNAL

ON SELECTED AREAS IN COMMUNICATIONS (JSAC), the Journal of Computer
Networks, the Journal of Computer Communications, and the Journal of Net-
work and System Management. He acted as the Program Chair for the IFIP Net-
working Conference and the IEEE Consumer Communications and Networking
Conference (CCNC), and a Program Co-Chair for the IEEE/IFIP Network Op-
eration and Management Symposium (NOMS), the IFIP/IEEE Conference on
Management of Multimedia Networks and Services (MMNS), the IEEE Fea-
ture Interaction Workshop, the IEEE Autonomic Computing and Communi-
cations (ACC), and two IEEE International Conferences on Communications
(ICC) Symposia.

Masum Hasan is a Senior Technical Leader at
Cisco Systems, San Jose, CA. Prior to joining Cisco
Systems, he was a Principal Investigator at Bell Lab-
oratories Research, and a Research Associate at the
University of Toronto, Toronto, ON, Canada. He has
worked in industry and academia in Bangladesh and
Canada. He has presented tutorials and participated
as invited speaker and on invited panels on network
management and control plane issues of QoS, IP
VPN, traffic engineering, GMPLS, optical/ASON
networks, and grid networking. He has published

extensively in a number of areas of computer science discipline, including
network management, active, temporal, and text database systems, computer
languages and environments, distributed and parallel programming systems,
grid networking, and structured data visualization. His current R&D focus is on
control and management issues of autonomic grid networking, [G]MPLS and
optical networks, network QoS, VPN, traffic engineering, and configuration.

Mr. Hassan is on the committees of a number of IFIP and IEEE international
conferences, including IM, NOMS, IPOM, MMNS, and AGNM. He is on the
Editorial Board of the Journal of Network and Systems Management. He also
participates and contributes to international standard bodies, such as Global Grid
Forum (GGF), ITU-T, Optical Internetworking Forum (OIF), and IETF.

	toc
	Conflict Classification and Analysis of Distributed Firewall Pol
	Ehab Al-Shaer, Hazem Hamed, Raouf Boutaba, and Masum Hasan
	I. I NTRODUCTION

	Fig.€1. Example for centralized firewall setup.
	II. F IREWALL B ACKGROUND
	III. M ODELING AND R EPRESENTATION OF F IREWALL P OLICIES
	A. Formalization of Firewall Rule Relations
	Definition 1: Rules R_{x} and R_{y} are completely disjoint
	Definition 2: Rules R_{x} and R_{y} are exactly matching if
	Definition 3: Rules R_{x} and R_{y} are inclusively matching
	Definition 4: Rules R_{x} and R_{y} are partially disjoint (
	Definition 5: Rules R_{x} and R_{y} are correlated if some f
	Theorem 1: Any two k -tuple filters in a firewall policy are r
	Proof: Intuitively, we can show that the intersection between an

	Theorem 2: The union of these relations represents the universal
	Proof: In [1], we first prove that the relation between any tw

	B. Firewall Policy Representation

	Fig.€2. Policy tree for the firewall policy in Fig.€1 .
	IV. A NALYSIS AND D ISCOVERY OF I NTRAfIREWALL A NOMALIES
	1) Shadowing Anomaly: A rule is shadowed when a previous rule ma
	2) Correlation Anomaly: Two rules are correlated if they have di
	3) Generalization Anomaly: A rule is a generalization of a prece
	4) Redundancy Anomaly: A redundant rule performs the same action
	5) Irrelevance Anomaly: A filtering rule in a firewall is irrele

	Fig. 3. Cascaded firewalls isolating domains D_{x} and D_{y}
	V. A NALYSIS AND D ISCOVERY OF I NTERfIREWALL A NOMALIES
	A. Interfirewall Anomaly Definition

	Fig.€4. Example for a hierarchical distributed firewall setup.
	B. Interfirewall Anomaly Classification
	1) Shadowing Anomaly: A shadowing anomaly occurs if an upstream
	2) Spuriousness Anomaly: A spuriousness anomaly occurs if an ups
	3) Redundancy Anomaly: A redundancy anomaly occurs if a downstre
	4) Correlation Anomaly: A correlation anomaly occurs as a result
	Theorem 3: The set of conditions presented above represent all p
	Proof: Based on the rule relations defined in Section€III-A, the

	Fig.€5. State diagram for interfirewall anomaly discovery for ru
	C. Interfirewall Anomaly Discovery Algorithm
	1: for each $field$ in $rule.fields$
	2: if $field \ne$ ACTION then $\{$ find
	3: $relation \leftarrow $ UNDETERMINED
	4: if $branch = field$ then
	5: if $relation=$ UNDETERMINED then
	6: $relation \leftarrow $ EXACT
	7: end if
	8: else if $field \supset branch$ then
	9: if $relation \in\{$ SUBSET, CORRELATED $\}$
	10: $relation \leftarrow $ CORRELATED
	11: else if $relation \ne$ DISJOINT then
	12: $relation \leftarrow $ SUPERSET
	13: end if
	14: else if $field \subset branch$ then
	15: if $relation \in\{$ SUPERSET, CORRELATED $\}$
	16: $relation \leftarrow $ CORRELATED
	17: else if $relation \ne$ DISJOINT then
	18: $relation \leftarrow $ SUBSET
	19: end if
	20: else
	21: $relation \leftarrow $ DISJOINT
	22: end if
	23: $field \leftarrow field.next$
	24: $branch \leftarrow branch.next$
	25: else $\{$ find termination state $\}$
	26: if $relation=$ EXACT then
	27: if $field =$ accept and $branch =$ deny
	28: $anomaly=$ SHADOWING
	29: else if $field=$ deny and $branch=$
	30: $anomaly=$ SPURIOUSNESS
	31: else if $field=$ deny and $branch=$
	32: $anomaly=$ REDUNDANCY
	33: end if
	34: else if $relation=$ SUBSET then
	35: if $field=$ accept and $branch=$
	36: $anomaly=$ SHADOWING
	37: else if $branch=$ accept then
	38: $anomaly=$ SPURIOUSNESS
	39: else if $field=$ deny and $branch=$
	40: $anomaly=$ REDUNDANCY
	41: end if
	42: else if $relation=$ SUPERSET then
	43: if $field =$ deny then
	44: $anomaly=$ SPURIOUSNESS
	45: else if $field =$ accept then
	46: $anomaly$ = SHADOWING
	47: end if
	48: else if $relation=$ CORRELATED then
	49: $anomaly=$ CORRELATION
	50: end if
	51: end if
	52: end for
	VI. R ULE E DITING IN D ISTRIBUTED F IREWALL P OLICIES
	A. Rule Placement and Insertion Algorithm
	1: for each $domain \in topology$ do
	2: if $domain\! \subset\! rule.src_ip$ or $domain\! \supset \!r
	3: Append($src_domains$, $domain$)
	4: else if $domain \subset rule.dst_ip\!\!$ or
	5: Append($dst_domains$, $domain$)
	6: end if
	7: end for
	8: for each $src_domain \in src_domains$ do
	9: for each $dst_domain \in dst_domains$ do
	10: $path \leftarrow \{ f_1, f_2,\ldots, f_i: f_i$ is a firewall
	11: Append(src - dst_paths, $path$)
	12: end for
	13: end for
	14: for each $path \in src$ - dst_paths do
	15: for each $firewall \in path$ do
	16: if $edit_action =$ insert then
	17: Invoke Algorithm 3 to insert $rule$
	18: else if $edit_action =$ remove then
	19: Remove $rule$ from $firewall$
	20: end if
	21: if $rule.action =$ deny then
	22: break
	23: end if
	24: end for
	25: end for
	1: $min_order, max_order \leftarrow$ UNDERTERMINED
	2: $node % \leftarrow tree.root$
	3: for each $field \in rule.fields$ do
	4: if $field \neq$ ACTION then
	5: $target \leftarrow$ nil
	6: for each $branch \in node.branches$ do
	7: if $branch = field$ then
	8: $target \leftarrow branch$
	9: else if $field \subset branch$ then
	10: if $max_order >$ MinOrder($branch$) then
	11: $max_order \leftarrow$ MinOrder($branch$)-1
	12: $target \leftarrow branch$
	13: end if
	14: else if $field \supset branch$ then
	15: if $min_order <$ MaxOrder($branch$) then
	16: $min_order \leftarrow$ MaxOrder($branch$)+1
	17: end if
	18: end if
	19: end for
	20: if $target \neq$ nil then $\{$ browse target
	21: $node \leftarrow target.next$
	22: else $\{$ create new branch $\}$
	23: $node \leftarrow$ NewBranch($node$, $field$)
	24: end if
	25: else if $target \neq$ nil then $\{$ and action
	26: $anomaly \leftarrow$ NOANOMALY
	27: if $min_order=$ UNDERTERMINED and
	28: if $field = branch$ then $\{$ similar
	29: $anomaly \leftarrow $ REDUNDANCY
	30: else $\{$ different actions $\}$
	31: $anomaly \leftarrow $ SHADOWING
	32: end if
	33: else if $max_order \!\neq$ UNDERTERMINED
	34: $anomaly \leftarrow $ REDUNDANCY
	35: end if
	36: end if
	37: end for
	B. Rule Removal Algorithm

	Fig.€6. Average percentage of discovered anomalies in a man-writ
	VII. F IREWALL P OLICY A DVISOR: I MPLEMENTATION AND E VALUATION

	Fig.€7. Average percentage of discovered anomalies in a man-writ
	Fig.€8. Processing time for (a) intrafirewall anomaly discovery,
	Fig.€9. Interfirewall processing time for (a) basic technique an
	VIII. R ELATED W ORK
	IX. C ONCLUSION AND F UTURE W ORK
	E. Al-Shaer and H. Hamed, Modeling and management of firewall po
	Y. Bartal, A. Mayer, K. Nissim, and A. Wool, Firmato: A novel fi
	T. Bu, N. Duffield, F. L. Presti, and D. Towsley, Network tomogr
	D. Chapman and E. Zwicky, Building Internet Firewalls, 2nd ed.:
	W. Cheswick and S. Belovin, Firewalls and Internet Security . Re
	S. Cobb, ICSA Firewall Policy Guide V2.0, ser. NCSA Security Whi
	D. Eppstein and S. Muthukrishnan, Internet packet filter managem
	P. Eronen and J. Zitting, An expert system for analyzing firewal
	Z. Fu, F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C. Xu,
	M. Gouda and X. Liu, Firewall design: Consistency, completeness,
	J. Guttman, Filtering posture: Local enforcement for global poli
	B. Hari, S. Suri, and G. Parulkar, Detecting and resolving packe
	S. Hazelhusrt, Algorithms for analyzing firewall and router acce
	S. Hinrichs, Policy-based management: Bridging the gap, in Proc.
	S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith, Implement
	E. Lupu and M. Sloman, Conflict analysis for management policies
	I. Luck, C. Schafer, and H. Krumm, Model-based tool assistance f
	A. Mayer, A. Wool, and E. Ziskind, Fang: A firewall analysis eng
	R. Panko, Corporate Computer and Network Security . Englewood Cl
	L. Qiu, G. Varghese, and S. Suri, Fast firewall implementations
	S. Luis and M. Condell, Security policy protocol, IETF, Internet
	R. Smith and S. Bhattachayra, Firewall placement in a large netw
	V. Srinivasan, G. Varghese, S. Suri, and M. Waldvoge, Fast and s
	V. Srinivasan, S. Suri, and G. Varghese, Packet classification u
	J. Wack, K. Cutler, and J. Pole, Guidelines on firewalls and fir
	T. Woo, A modular approach to packet classification: Algorithms
	A. Wool, Architecting the lumeta firewall analyzer, in Proc. 10t

