
1

PS: A Policy Simulator
Issam Aib and Raouf Boutaba

David R.Cheriton School of Computer Science,
University of Waterloo, Ontario, Canada

{iaib;rboutaba}@uwaterloo.ca

Abstract— This paper presents PS , a Policy Simulator tool
intended to serve in the validation and performance evaluation
of policy-based management solutions. PS is a discrete process-
based simulation environment which allows the specification
of all major components required for a policy-based manage-
ment solution. These include the ability to specify management
policies, events, metrics, probes, service-level objectives, service-
level agreements (SLAs), as well as business-level objectives. We
describe the main components of PS and show how it has been
used to evaluate the performance of a policy-based management
solution for a web application hosting SLA.

I. INTRODUCTION

Although research in policy-based management has been
going on for more than a decade, it is still not easy to put
into practice. This owes much to the theoretical and practical
difficulties in proving not only the correctness but also the
efficiency of policy-based solutions when it comes to the
management of real scale systems with hundreds or even
millions of policies interacting in a dynamic way.

A number of policy languages and architectures were
proposed. However, effective techniques for refinement and
consistency/completeness analysis remain to be developed. It
is therefore reasonable that venturing into a full policy-based
solution for managing one’s enterprize infrastructure remains
difficult to justify.

With the current state of art in policy-based management,
it is possible to do some simple static analysis, mainly for the
detection and resolution of conflicts between security policies.
However, for the broader range of management policies,
including quality assurance policies, there is no established
theoretical basis for correctness analysis let alone efficiency
analysis. Furthermore, no work has been done on modeling
the dynamics of management policies at system runtime. A
policy-based solution should provide, in addition to correct
behavior, an adequate performance which justifies its adoption
in real scale management systems.

In this regard, resorting to simulation as a low cost testing
facility provides a sound alternative. Similar to network simu-
lation tools, which were introduced to cope with the difficulties
in modeling the dynamics of queueing systems, we developed
the policy simulator PS to serve as a tool for the simulation
and analysis of the dynamics of policy-based management
solutions.

The paper first presents the architectural components of
PS followed by more details on the implementation and usage
of the PS package. Section V presents a policy-based service-
level specification (SLS), which implements the SLA use case

given in section IV. The use case shows the importance of both
the refinement process and the efficient orchestration of policy
execution at runtime. Section VI presents several runtime
policy scheduling mechanisms which have been applied onto
the generated SLS. Simulation results of the performance of
each of those algorithms are then presented in section VIII.
We finally conclude by discussing related works and pointing
out possible enhancements to the PS functionality.

II. PS ARCHITECTURE

PS is designed in a way to support a business-driven
management that has policy support at its core. Figure 1 shows
the architectural components of PS. Policies are modeled
after the Event-Condition-Action (ECA) paradigm and are
conceptually stored into the policy repository (bottom-left of
figure 1) constituting a fast-access knowledge base of actions
to take at the occurrence of well specified events and system
conditions. The event service (bottom-right of figure 1) allows
event sources and event listeners to be registered and routes
events to their appropriate listener(s). Any PS component
can be an event source and/or listener. An active PS policy
is triggered when both its event and condition parts are
simultaneously satisfied. When this occurs, the policy state
switches from active to triggered and the policy is sent to
the triggered-policies queue (TPQ). There it will await for the
policy decision point (PDP) to decide of the actual time of the
execution of its action part.

The above cycle represents the typical behavior of a con-
ventional policy-based system. It is illustrated by the policy
control loop of figure 1. All the effectiveness and adaptiveness
that policy-based management promises lies in the appropriate
design of policies as well as the algorithms used by the PDP
in order to properly orchestrate the queue of triggered policies.

At an upper level, the PS architecture supports SLAs and
high-level business objectives. Low-level policies are gener-
ated, using the currently available refinement techniques and
domain specific expertise, in a way so as to enforce the set of
contracted SLAs and business-level objectives of the service
provider.

The cycle of observing SLA-level and business-level states
and deciding of what new low-level control actions or strate-
gies to follow in order to maximize the business profit of the
service provider is captured by the policy business loop at the
upper-level of figure 1. This loop is not as straightforward to
implement as the lower policy control loop.

Metrics and metric probes are used in PS as a means
to track the states of SLAs and business objectives. They

2

Fig. 1. Illustration of the PS architecture

represent a central building block for monitoring activities.
For this, PS provides support for the definition of simple as
well as compound (high-level) metrics. Several business-level
and service-level metrics can be defined. These metrics are
generally computed bottom-up from low-level resource met-
rics. At the top of the metrics pyramid lies the business-profit
function Ψ. This metric reflects the measure of profitability
of the business run by the service provider. In the general
case, Ψ is a function of several service and business-level pa-
rameters including: service profitability, raw financial benefit,
customer satisfaction, and market share. If carefully designed,
the maximization of this metric should be the ultimate goal of
the service provider. In the use-case presented in this paper,
we consider a very simplistic Ψ which accumulates the raw
monetary revenue gained from the running SLAs.

Although the goal of maximizing the business profit is clear
to state, it is actually domain and even use-case specific to
implement. The decoupling of the policy business and control
loops offers a high-level of adaptiveness and efficiency to
the system without loosing the critical reactive property of
a conventional policy-based solution.

The next section expands on the usage and implementation
of PS components.

III. PS IMPLEMENTATION AND USAGE

PS offers a discrete simulation environment based on the
process interaction world view. It builds on the base of the
open source package javaSimulation [6], which follows very
closely the SIMULA programming language.

Each component of PS is implemented as a JAVA class
and follows the life cycle automaton of figure 2-a. Life cycle

state transitions occur through primitive calls triggered by
components with the proper access rights. These primitives are
implemented as overridden JAVA methods and are represented
by the transition arrows in figure 2-a.

Right after it is constructed, a PS component is in an
idle state. This means that it does not reserve/consume any
system resources and has no responsiveness to events. The
compile() primitive refers to the subcomponent generation
process. The deployed state is that of a component which has
been completely installed into the system and is only awaiting
the green flag to start responding to events and interacting with
its environment. A component can only be terminated if it is
in the idle state. For example, an SLA instance can only be
terminated when all of its the low-level policies, metrics, and
other associated objects have been terminated.

The compile() primitive in PS is equivalent to the re-
finement process of high-level SLAs, service-level objectives
(SLOs), or business-level goals into intermediate or low-level
policy rules. In practice, this can be done online, off-line, or
in a hybrid way. In the online refinement case, an automated
or interactive refinement process is triggered at the time the
compile() method of the PS object is called. In the off-line
case, the refinement is done over the class (SLA, SLO, or
other high-level class) of the PS object. This results in the
generation of a hierarchy of components representing together
the low-level implementation of the initial class, in addition to
mapping code within each compile() method which indicates
how each sub-component of that hierarchy will be generated
at runtime. In the hybrid case, first an off-line refinement is
carried out to generate intermediate-level components. These
components are subsequently refined online whenever this is
needed at system runtime. At present, PS only supports the
off-line manual refinement because of the lack of existing off-
the-shelf refinement tools.

A. Policy rules

Policies are modeled according to the Event-Condition-
Action paradigm. As a PS component, a PS policy rule
follows the life cycle defined in figure 2-a. In addition to this,
when in the active state, the policy rule evolves within the
sub-automaton of figure 2-b so as to reflect the behavior of an
ECA rule.

At the interception of an event, and when the condition of
the policy is met, a policy triggered event is generated. By de-
fault, this event is intercepted by the policy decision point PDP
(core component of figure 1). After that, the policy enters the
triggered state whereby it “sleeps” waiting for the green light
to execute its actions part. The PDP proceeds by queuing it
(actually, a reference to it) into the TPQ. As long as the policy
is in the triggered policies queue it remains in the triggered
state. When the PDP decides to allow the policy to run, its
state changes to running and an asynchronous call to method
policy.policyActions() is made. This allows both the PDP and
the policy to evolve independently. Synchronization facilities
can be used in case the user wants to give more control to the
PDP over policy execution. Once the policyActions() method
returns, the policy returns back to the active state where it gets

3

Fig. 2. Life cycle automaton of a PS component

to process the next available event, if any, in its event queue.
It also generates an event to notify whether its actions part
has executed correctly or encountered problems.

Some policies execute only once, such as the policy rule p1

in figure 4. Other policies can be designed to execute a limited
or even an unlimited number of times. For example, the policy
rule p2 (figure 4) runs each time its event and condition parts
are met. The explanation of what p1 and p2 actually do is
given in section V-B. When a policy reaches the maximum
number of executions, it switches to the idle (figure 2-b) state.

A PS user should derive his own policy class from
ps.PolicyRule then override the base methods event(), con-
dition(), and policyActions(). By default, event() returns true
and condition() returns false. The default dynamics of policy
activation are taken care of by PS.

B. SLA Model

PS offers an intuitive and generic SLA model (GSLA),
whereby an SLA is made up of a service package and a
set of parties, each of which plays a role in delivering or
consuming part or all of the service package. A Role defines
a set of duties of a party in the SLA. It can contain sets
of SLOs and high-level policies. An SLS is the result of
an SLA refinement process. This process is called using the
SLA.compile() primitive, which recursively calls the compile
primitives of its subcomponents. The result of this would be a
set of high-level metrics, such as SLO and SLA-level metrics,
in addition to a set of low-level policy rules which together
represent the compiled SLS.

C. Metric probes and Graphs

PS provides support for defining simple as well as com-
pound (high-level) metrics. Metrics are always enveloped
within metric probes, which are objects able to listen and react
to system events.

Basic data types are supported by the built-in ps.Metric
class. Users can specialize this class to define their own metric
types. A compound-metric probe listens to changes in sub-
metrics probes as well as to other system events. At the top of
the metrics pyramid (figure 1) lie business-level metrics which
give the state of the system at the business level. Service-level
metrics can also be defined and all of the Service, SLA, SLO,
and Role classes support the adjunction of metrics that are
needed to define their respective states. All possible data types
are supported as metric values. The change of a metric value
can be signaled to upper and lower metric probes so that they
can update their respective values accordingly.

In order to control the propagation of metric updates, six
propagation methods are supported: none, parents, children,
parentsThenChildren, childrenThenParent, and generic. The
generic method subsumes all of the previous ones and is to be
used with extra care. Allowing metric updates to propagate in
all possible directions is needed for the generic case, however
update propagation loops have to be avoided. To enable the
visualization, or simply the recording, of metrics evolution in
time, PS supports graph objects as special metrics which hook
on the top of other metrics and record all their new values,
time stamps, and any other required data. Graph objects can
also write all (time, value) pairs to persistent storage for future
analysis.

IV. WEB APPLICATION HOSTING SLA USE CASE

The following use case illustrates the importance of mea-
suring the performance of a policy-based solution or, at least,
having an understanding of how it would behave before it is
actually implemented within a real scale infrastructure.

We consider a generic application hosting service provider
AP which offers a set of SLA contracts. The AP has a pool of
server units of size sp.cp with fixed CPU capacity and which
he can allocate to different SLA instances. The advertised SLA
types are derived from the simple generic SLA of figure 3.

4

1) Customer C is provided a web application hosting service
with schedule sc

2) Max Capacity is of cpmax simultaneous connections
3) C is charged $ch = a× cpmax monthly
4) Monthly average availability of the hosted service ≥ avmin

• An ithsuccessive availability violation incurs a reward of
$ri × ch

• At the 3rdsuccessive availability violation the SLA is
considered void

5) Minimum average time to process customer service requests
is rt ms
• Otherwise, C is rewarded $rt.ref × rt

Fig. 3. Generic web application hosting SLA: AP SLA

This SLA states, in five clauses, that the AP offers a web
application hosting service supporting a load (capacity) of
cpmax simultaneous end client connections to the system, an
availability average of avmin, an average response time rt, all
with a monthly cost of ch monetary units.

Each instance of the tuple (sc,cpmax,a,avmin,r1, r2, r3, rt,
rt.ref) can generate an SLA type which the AP can advertise
to potential customers. In the following, slai denotes an SLA
type, and slai,j denotes SLA instance j of SLA type i, all of
which are derived from the generic SLA of figure 3.

For simplicity, Ψ is defined as the sum of the raw financial
profit gained from each contracted SLA. Consequently, the
violation of any SLO incurs a penalty to Ψ. Hence, the AP
needs to implement its policy-based solution so as to minimize
the impact of SLA penalties while maximizing the usage of
available system resources.

V. REFINEMENT PROCESS AND SLS GENERATION

There is currently no standard methodology for the refine-
ment of SLAs into low-level configuration and management
actions. A semi-formal refinement methodology has been
applied to the AP SLA in order to derive the SLS of figure 4
[2]. The generation of the SLS was based, in addition to the
input SLA, on the following business-level policy.

A. Enforcement strategy

In this use case, we assume that the service provider follows
a business strategy for resource allocation in which resources
should be allocated only when needed and released otherwise.
Applied to the AP SLA case, the SLS policies should request
server units on a per need basis in order to maximize server
resource utilization. At SLA instantiation time, a minimal
number of server units are allocated. When the load on the
allocated server units reaches a certain threshold thA of the
current SLA capacity, a request is submitted to the server pool
to get an additional server unit. Conversely, if a low threshold
thR is reached, an action is triggered to release a server unit
back to the pool of free server units. With this method, the
service provider aims at obtaining a higher business profit than
if it used a guaranteed enforcement approach.

B. AP SLS description

Figure 4 lists the AP SLS corresponding to the refinement
of the AP SLA (figure 3) using the lazy-enforcement business
policy. The details of this process do not fall within the focus
of this paper and can be found in [2].

The SLS is made up of two roles, the service provider
role AP , and the customer role C. The customer policy pC1

dictates to the customer to pay the AP on a monthly basis.
The AP role defines sets of metrics, event types, events, and
policies. Policies have been grouped into groups which share a
common task. The SLO-violation notification policies generate
an event when an SLO constraint is violated. These concern
the capacity, customer payment, availability, and response time
SLOs respectively.

The lazy resource allocation policies are composed of three
policies. p1 is a deployment-time policy which initializes the
newly deployed SLA by requesting one server unit from the
pool of server units. Policies p2 and p3 implement the lazy-
enforcement approach by tracking the load of the server units
available to the SLA instance and making the necessary actions
each time a threshold is crossed. p2 requests an additional
server unit when the load exceeds thA while p3 releases one
server unit when the load goes bellow thR.

Policies p4, p5, and p6 implement the availability violation
penalties specified in clause 4 of figure 3. p4 states that
on the occurrence of an event e1 of type sloav , that is, a
violation of the availability SLO, the action that needs to
be executed is to credit the customer account with r1. p5

and p6 implement the penalty clauses for the 2nd and 3rd

successive violations respectively. The where clause enforces
the one month “memory” on successive violations and makes
sure that only one of p4, p5 or p6 can be triggered at a time.

VI. POLICY SCHEDULING MECHANISMS

When a policy is triggered, it is logically queued into the
Triggered Policies Queue (TPQ) of the PDP. In order to
study how the performance of the AP SLS changes based
on the algorithm used by the PDP to schedule the TPQ, we
implemented the following five scheduling algorithms.

A. First Time to Degradation First (FTDF)

By degradation, we mean the time at which service avail-
ability starts declining. This occurs, for example, when a
triggered instance of policy p2 (figure 4) is delayed by the
PDP for a duration sufficient for the allocated server units to
reach full capacity.

The FTDF algorithm selects among the TPQ policies, of
type p1 or p2, the one with the nearest expected “first time to
degradation”.

B. First Time to Violation First (FTVF)

This algorithm is based on the prediction of the first time
of violation of service availability. That is, the time at which
availability drops bellow the minimum value specified in the
SLA (avmin in figure 3).

The formulae of the prediction functions used by the FTDF
and FTFV algorithms are given in [2].

5

sls SLS = {
• // SLS overall schedule

schedule sch;
• // Service Provider Role

role AP = {
double thA, thR, avw = 1 month;
constraint 0 < thR < thA

2
, 0 < thA ≤ 1;

metric mWSCP = ws.cp, mAv = ws.av
metric mMonthlyFee = payment.sum(month)
metric mWSLD = ws.load, mRT = ws.rt;
eventType slocp, sloch, sloav , slort;
event sloav e1, e2, e3; // events of type sloav

• // SLO-violation notification policies
policy pmWSCP = {

on (mWSCP > cpmax) do generate(slocp)}
policy pmMonthlyFee = {

on (mMonthlyFee < ch) do generate(sloch)}
policy pmAv = {

on (mAv < avmin) do generate(sloav)}
policy pmRT = {

on (mRT < rt) do generate(slort)}

• // Lazy resource allocation policies
policy p1 = {

at sc.deployT ime do ws.add(1)}
policy pmP2ThAdd = {
on (mWSLD ≥ thA) do generate(mWSLDEv) }

policy p2 = {
on mWSLDEv do ws.add(1)
where (ws.cp ≤ cpmax)}

policy pmP2ThRem = {
on (mP3ThRem ≥ thR) do generate(mWSLDEv) }

policy p3 = {
on mWSLDEv do ws.free(1)
where (|ws.su| > 1} }

• // Penalties for the violation of the availability SLO
policy p4 = {

on e1 do c.credit(r1)
where not(p5 ∨ p6)}

policy p5 = {
on (e1 → e2) // e1 followed by e2
do c.credit(r2)
where ((time(e2)− time(e1) < avw) ∧ not(p6))}

policy p6 = {
on (e1 → e2 → e3) do {c.credit(r3); SLA.terminate()}
where ((time(e3)− time(e1) < avw))}

• // Penalty for the violation of the response time SLO
policy prtv = {

on slort do c.credit(rt.ref) }
}

• // Customer Role
role C = {
policy pC1 = {

on every month do SP .credit(ch)
start at sc.activationTime

}
}

Fig. 4. The AP SLS

C. Highest First Penalty First (HFPF)

This algorithm is based on prioritizing the policy which
is expected to engender the highest first penalty. In the SLS
of figure 4, runtime penalty values are computed based on
policies p4, p5, and p6.

D. First Come First Served (FCFS)

This is basically the classical FCFS algorithm which serves
policies in the order of their arrival.

E. Random scheduling (RND)

In this algorithm, the PDP picks the next policy to run at
random from the set of runnable triggered policies.

It is interesting to notice that, for the majority of simulation
instances, the same set of input SLSs produced significant
differences in the overall system performance based on the
TPQ scheduling algorithm employed. The use of PS helped
us in identifying the behavior of the different algorithms. In
the next section we summarize the simulations conducted and
the results obtained.

VII. THE AP SLA SIMULATION PACKAGE

This package was built as a simulation instance which
we run over PS. The AP generic SLS of figure 4 was
implemented as a single class descendent of PS class GSLA.
The class contains two instances of class Role implementing
the AP and C roles respectively. The same hierarchy is
constructed for policies, metrics, and events. Each AP role
has a serverGroup instance which manages a set of server
units acquired from a serverPool component. A Poisson traffic
source is attached to each serverGroup and is used to simulate
session requests of end users. At the reception of each session
request, the severGroup object tosses an exponential random
number to simulate an exponential service time.

Almost all communications between the simulation com-
ponents are done via events. The event service allows any
component to register as a source of a given event type.
Time events (timeout counters) are also supported as a special
event type. The event service also allows other components
to register as listeners to the same event type from that event
source.

Finally, graph components have been hooked to several
metrics to report their evolution in time. Matlab was used
as a graph plotter because of the significantly large size of
the generated graph files. For example, each SLA instance
lasted for six months in simulation time units (seconds). With
an availability probe every five minutes, a number of 51840
tuples were hence recorded for the availability metric alone.

VIII. SIMULATION RESULTS

We conducted a number of 200 simulations grouped into
batches of five, for each of the five TPQ scheduling algorithms.
Several Windows and Sun-Ultra machines were used. The
simulations run in a total CPU time of ∼86 days.

The initial aim in conducting these simulations was to get
tangible data concerning how the scheduling of runtime policy

6

actions can affect the performance of the same policy solution.
This section shows summarized results of the conducted
simulations, in addition to values related to the performance
of PS itself.

Figure 5-a summarizes the relative performance of each of
the studied TPQ scheduling algorithms. The performance of
an algorithm is equal to the business profit Ψ it generates.
Each slice gives the percentage of times a TPQ scheduling
algorithm performed best compared to the other ones. There
is no algorithm which performed best at all times. HFPF
performed best 43% of the time, which is a considerable
percentage. Second in the rank was FTVF with 18% then
FCFS with 14%, RND 13%, and finally FTDF performing
best in 12% of the total number of conducted simulations.

Figure 5-b traces, for all simulation batches, the relative
performance gain of the best scheduling algorithm compared
to FCFS. A 0% value means an equal performance with
FCFS, which occurs 13% of the time (5-a). The highest
difference was in batch 39 in which FTVF performed best
and produced 1900% better performance than FCFS. In batch
5 HFPF performed best and did 1000% better than FCFS. It
is worth noting that graphs similar to 5-b were found when
comparing the other scheduling algorithms. For example, in
batch 39 FTVF performs 1900% better than HFPF, and in
batch 33 HFPF performs 9000% better than FTVF!

Given the number of parameters to tune, even for this simple
SLA case, it was computationally infeasible to determine a-
priori the best parameters which yield the highest business
profit. However, given a certain initial set of SLA types that
the AP intends to advertise and a hardware configuration of
the servers pool, it is possible to conduct extensive simulations
to determine which scheduling algorithm is best and what
maximum number of SLA instances it is advisable to accept
for each SLA type.

We conclude with a note on the number of events that were
required for running a single simulation instance. Figure 5-c,
column 1, shows that it is in the order of 105 to 106 with a
maximum of 5.7 × 106 and an average of 2.2 × 106 events
per simulation instance. Figure 5-c, colum 3, shows that the
number of distinct event objects that were actually needed by
each simulation has been lower by an order of magnitude.
This was possible thanks to the event reuse and event sharing
capabilities of PS.

IX. RELATED WORK

Although no tool was developed for the discrete simula-
tion of policy-based management solutions, there has been
important efforts related to the modeling, specification, and
refinement of policies, all of which can be useful to combine
with the functionality offered by PS.

Policy Management for Autonomic Computing (PMAC) [1]
is a generic middleware platform developed by IBM to provide
software components that can be embedded in software appli-
cations to reduce the cost of writing applications capable of
taking input from a policy-based management system. PMAC
supports the system model adopted by the IBM autonomic
computing architecture. It is implemented in JAVA and offers

the right balance in the specification of policies by providing
two different policy languages: ACEL which is based on XML,
hence verbose, and SPL which is concise and human friendly,
making it easily editable in a text editor. In [1], PMAC is used
to enhance configuration checking of storage area networks.
However not too much is said about the implementation
details.

First introduced in 1993, Cfengine [4] is perhaps one of
the earliest policy-based configuration management solutions.
It is fully specialized in the configuration of Unix-like and
Windows networked computers. In Cfengine, a policy specifies
what a healthy system state is using a declarative language.
Cfengine then takes care of keeping the system always near to
the healthy state by taking appropriate actions each time the
system drifts to a sick state. Policies in Cfengine are similar
to service-level objectives or high-level goals in the sense that
they only specify the state to achieve but not how to actually
do it. However, Cfengine is not common purpose and does
not provide a generic policy-based platform as is the case, for
example PMAC.

In another respect, policy refinement, although a difficult
research problem, represents a key component in enabling
policy-based management in the sense that it automates the
implementation of high-level declarative specifications into
low-level configurations and management rules. Recently, the
refinement of management policies, using event calculus and
abduction, has been addressed in [3] with a use case for
quality-of-service management in differentiated services (Diff-
Serv) networks. The paper stresses the need of application
specific policy refinement patterns and presents a tool that
is being developed for that purpose. The refinement tool
is proposed as an add-on to the Ponder policy toolkit [5].
[7] considers a similar refinement use case and present a new
methodological approach to the policy refinement problem by
addressing the temporal execution of goals instead of using
event calculus.

We believe that PS is complementary to the above efforts
and is useful whenever simulations are appropriate to validate
a policy-based solution before its implementation and or
deployment. It would also be beneficial to extend the PS’
front end with some of the already existing specification and
refinement solutions.

X. CONCLUSION AND FUTURE WORK

This paper presented the architectural components of PS, a
discrete event-based Policy Simulator tool which we developed
for benchmarking policy-based solutions. All the ingredients
required for simulating a policy-based management solution
are supported by PS. These include the specification of SLAs,
SLOs, roles, metrics, events, as well as policy rules.

The presented use case served two purposes with different
levels of emphasis. First, it showed how PS can be used to im-
plement a detailed policy-based SLS specification and validate
its correctness through simulation. The relative complexity of
the output SLS compared to the simplicity of the input SLA
shows how important simulations can be in providing factual
data about the feasibility (runnability, validity) of the resulting

7

Fig. 5. Summarized performance results of the AP use case over PS

SLS. Second, it showed the significant impact different policy
selection mechanisms can have on the overall performance of
a policy-based solution.

Several features can be added to PS in order to enhance its
operation and usability. For instance, there is a need for a pol-
icy editor front end to facilitate the specification of PS com-
ponents: SLSs, SLOs, metrics, events, and policy rules. The
development of add-on tools to assist in the refinement process
would be of great value. Also, providing PS with a more
sophisticated event service, which supports more than simple
event reuse, would allow the specification of a wider range of
policy rules. Finally, the current PS implementation supports
only one PDP. A possible extension to PS is to include other
PDP architectures with distributed policy decision and policy
enforcement functions.

REFERENCES

[1] D. Agrawal, K.-W. Lee, and J. Lobo. Policy-based management of
networked computing systems. IEEE Communications Magazine, 43(10),
October 2005.

[2] I. Aib and R. Boutaba. Business-driven optimization of policy-based
management solutions. In IFIP/IEEE 10th International Symposium on
Integrated Network Management (IM 2007), Munich, Germany, May 16-
19 2007.

[3] A. K. Bandara, E. C. Lupu, A. Russo, N. Dulay, M. Sloman, P. Flegkas,
M. Charalambides, and G. Pavlou. Policy refinement for diffserv quality
of service management. IEEE eTransactions on Network and Service
Management (eTNSM), 3(2):12, 2nd quarter 2006.

[4] M. Burgess. A tiny overview of cfengine: Convergent maintenance agent.
In the 1st International Workshop on Multi-Agent and Robotic Systems
(MARS/ICINCO), Barcelona, Spain, Sept 13-14 2005.

[5] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy
specification language. In POLICY ’01: Proceedings of the International
Workshop on Policies for Distributed Systems and Networks, pages 18–38,
London, UK, 2001. Springer-Verlag.

[6] K. Helsgaun. Discrete event simulation in Java. Technical Report
1-1, Department of Computer Science, Roskilde University, DK-4000
Roskilde, Denmark, March 2004.

[7] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, and G. Pavlou.
A methodological approach toward the refinement problem in policy-
based management systems. IEEE Communications Magazine, 44(10),
October 2006.

XI. BIOGRAPHIES

Issam Aib is a PhD candidate at the University of Paris
6 in France. He is currently a visiting researcher at the
University of Waterloo in Canada. He received his M.Sc
degree in Networking from the University of Paris 6 in 2002;
and Ingnieur d’Etat and Magister degrees from the University
of Constantine, Algeria, in 1999 and 2001 respectively. His
research focuses on policy-based and business-driven manage-
ment of networks and distributed systems.

Raouf Boutaba is an Associate Professor of Computer
Science at the University of Waterloo. His research interests in-
clude network, resource and service management in wired and
wireless networks. He is the founder and Editor-in-Chief of the
IEEE Transactions on Network and Service Management and
on the editorial boards of several other journals. He is currently
a distinguished lecturer of the IEEE Communications Society,
the chairman of the IEEE Technical Committee on Information
Infrastructure and the IFIP Working Group 6.6 on Network
and Distributed Systems Management. He has received several
best paper awards and other recognitions such as the Premier’s
research excellence award.

