
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

OSDA: Open service discovery architecture for efficient
cross-domain service provisioning

Noura Limam a,*, Joanna Ziembicki a, Reaz Ahmed a, Youssef Iraqi a,
Dennis Tianshu Li a, Raouf Boutaba a, Fernando Cuervo b

a University of Waterloo, 200, University Avenue West, Waterloo, Ont., Canada N2L 3G1
b Alcatel Internetworking, Inc. 600 March road, Ottawa, Ont., Canada

Available online 11 January 2006

Abstract

Emerging service-oriented architectures are pushing towards on-demand and ‘‘on the fly’’ composition of applications and business
processes. In order to support service composition, the underlying infrastructure must provide a facility for on-demand discovery of ser-
vices and service components. Discovery becomes challenging when services span heterogenous and independently administrated
domains. For inter-domain discovery to be achieved independently of domain-specific service discovery technologies, a middleware is
needed to interface between the different discovery systems. In this paper, we present a novel open service discovery architecture (OSDA)
designed to serve as an open, scalable and fault-tolerant middleware for cross-domain discovery. We demonstrate the implementation of
OSDA using a set of mature technologies.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Service discovery; Cross-domain service infrastructure; Peer-to-peer systems; XML-based communication; Web services

1. Introduction

The emergence of service-oriented architectures for
enabling the composition of applications, business process-
es and services, creates a rich breeding ground for widely
distributed applications that span heterogeneous networks
and administrative domains.

Composing services on the fly requires an underlying
service infrastructure that provides the facility of discover-
ing resources and service components. Service discovery
technologies (e.g., SLP, Jini, UPnP, etc.) are good potential
candidates to serve as a basis for such an infrastructure.

In our previous work [1] we have studied in detail vari-
ous current approaches to service discovery and have
defined a set of design requirements for a large-scale
cross-domain service discovery system. From these require-
ments we have derived evaluation criteria, against which
we have compared existing service discovery systems. The

comparison criteria include fault-tolerance, performance,
scalability, interoperability with other discovery systems,
platform independence, standardization and availability
of a mature implementation. Our study has revealed that
no existing discovery system satisfies all of the require-
ments, but many of them contain desirable characteristics.

The continuing proliferation of heterogeneous, inherent-
ly non-interoperable service discovery technologies creates
an incentive for providing a middleware that would enable
their interworking. Such a middleware would abstract
domain-specific service discovery systems at the inter-do-
main level, while allowing cross-domain publication and
discovery of services and resources.

Providing a common resource and service access inter-
face over heterogeneous environments has been demon-
strated by platform-independent middleware (e.g.,
CORBA, DCOM, Grid services, etc.). In this work, we
wish to apply a similar concept to service discovery. In par-
ticular, we aim to design a common middleware architec-
ture for seamless cross-domain service and resource
discovery.

0140-3664/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2005.11.017

* Corresponding author.
E-mail address: nlimam@bbcr.uwaterloo.ca (N. Limam).

www.elsevier.com/locate/comcom

Computer Communications 30 (2007) 546–563

Aut
ho

r's

pe
rs

on
al

co

py

Our proposal, the open service discovery architecture
(OSDA) provides a scalable and efficient model for cross-
domain service discovery by allowing service providers
and consumers to transparently discover services adver-
tised outside their own domain boundaries using their
domain-specific service discovery mechanisms. OSDA
achieves this goal by establishing an inter-domain distrib-
uted information storage and querying model and a unified
information representation.

OSDA incorporates some of the most useful elements of
existing discovery systems and service infrastructures in the
design of our proposed architecture. The flexibility and sca-
lability of our system is ensured by its stateless, modular,
loosely coupled components and the use of well-accepted,
web-based technologies.

The remainder of the paper is organized as follows. In
Section 2 we present the motivation behind the design of
OSDA and the contribution of our work. Section 3 sum-
marizes related works. In Section 4 we describe the high-
level architecture design and our unified message formats,
while Section 5 presents a detailed specification of the
OSDA components. In the following Section 6 we present
our choice of implementation technologies, demonstrate
the system flow using a case scenario, and report on the sta-
tus of our implementation. Section 7 concludes the paper,
discussing unsolved issues and future works.

2. Motivation and contribution

In the illustrated case scenario above (Fig. 1), an admin-
istrator desires to establish an optical link (lightpath)
between two campuses, University of Waterloo and Uni-
versity of Quebec, in order to link some workstations in
the former to a server in the latter. Given that there is no
direct path that links both campuses, an end-to-end light-
path must be composed across several domains, here
ORION, CA*NET and RISQ, by cross-connecting several
sub-paths. A highly desirable method of composing an
end-to-end path on the fly is to have a service discovery
mechanism that is capable of searching and retrieving every
single existing lightpath that could compose the end-to-end
path. This mechanism should operate over and across dif-
ferent networks and independently administered domains.

Moreover, given that domains may already locally use het-
erogeneous service discovery mechanisms and different
schemes to describe their deployed or owned lightpaths,
the inter-domain discovery system should be capable to
interoperate with domain-specific systems. Scalability and
interoperation with other discovery systems are hence hard
requirements for the envisioned system.

Over the past few years, many service discovery
approaches have been proposed by academia (INS [2],
INS/Twine [3], SSDS [4], Splendor [5] etc.) and industrial
standardization bodies (Bluetooth SDP [6], SLP [7], UPnP
[8], Jini [9], Salutation [10] and UDDI [11]). In our previous
work [1], we have evaluated the feasibility of applying cur-
rent discovery systems to our multidomain and large-scale
context based on a set of evaluation criteria we deem essen-
tial for such a context. Although, these systems provide the
same basic functionality of service discovery, they differ
significantly in architecture, message exchange pattern,
expected operating environment (e.g., mobile vs. stationary
services) and service representation/description. These dif-
ferences make their interoperation difficult. Besides, paying
closer attention to the scalability, performance, fault-toler-
ance and platform independence aspects of these mecha-
nisms, reveals most of the discovery systems are not
suitable for large-scale deployment.

Service Location Protocol (SLP) and Jini are aimed at a
single administrative domain, as found in enterprise net-
works. Both rely on dedicated directory entities for caching
service advertisements. Several directory entities can co-ex-
ist in the same network, but they do not communicate with
each other for routing queries, or for exchanging advertised
information. These approaches do not scale with increasing
number of discovery operations and suffer from central
points of failure. To avoid reliance on static configurations,
SLP and Jini use network-level multicasting for locating
directory components. Such reliance not only affects per-
formance, but also makes the systems network dependent.
Moreover, both Jini and SLP have their own way of defin-
ing service handles (service URLs [12]) for SLP and RMI
stub for Jini. These representations are too technology-spe-
cific, which makes interoperation difficult.

Universal Plug and Play (UPnP) and Salutation archi-
tectures aim to allow automatic joining and seamless

Fig. 1. Cross-domain lightpath composition.

N. Limam et al. / Computer Communications 30 (2007) 546–563 547

Aut
ho

r's

pe
rs

on
al

co

py

discovery of network-enabled devices. Neither of them uses
dedicated directory entities for advertisement caching,
instead, they rely on multicast to discover other services,
or to announce the presence of a service. Although, suit-
able for LAN operations, they do not scale well in large-
scale networks and have significant performance issues.
The benefit of UPnP is its use of standard web technologies
(like XML, SOAP, HTML and HTTP) for service repre-
sentation and communication, which could potentially
enable interoperation with other technologies. Salutation
uses an additional layer (i.e., the Salutation Manager) to
achieve transport independence.

INS [2] expresses service descriptions as a tree-like
hierarchy of descriptive attributes and values. Discovery
is performed using an application-level overlay of direc-
tory entities. Advertisements are disseminated using a
logical spanning tree topology, and replicated in each
directory. Although the replication strategy handles
fault-tolerance well, INS does not scale to large scale
networks. Twine [3] was introduced to solve this scala-
bility problem. Twine arranges directory entities in a
logical ring and uses the Chord [13] Distributed Hash
Table (DHT) to distribute advertisements over the direc-
tory entities. Because of the unique tree-like data repre-
sentation, interworking INS and Twine with other
service discovery protocols is difficult. However, we have
found Twine’s technique for creating index keys from
hierarchical service descriptions to be an elegant and
useful idea, and have taken advantage of it in the design
of OSDA.

Secure Service Discovery Service (SDS) is intended for
wide-area deployment and emphasizes security by allowing
user/service level authentication and authorization. Public
key and symmetric key encryption is used for communica-
tion privacy. SDS arranges directory entities into logical
hierarchies, using Bloom Filters [14] to aggregate advertise-
ment information. SDS can be used to perform service dis-
covery across administrative domains, but the system does
not address the tolerance to directory failures; SDS uses a
tree-like hierarchy for index distribution which makes the
system very sensitive to the failure of higher level nodes.
In addition, SDS uses proprietary protocols for messaging
and hence can hardly interoperate with other discovery
system.

Universal Description, Discovery and Integration
(UDDI) is a registry-based approach for Web Service dis-
covery. The UDDI specifications defines SOAP APIs for
querying and publishing service descriptions, an XML-
based representation of the registry data model and inter-
faces in the Web Service Description Language (WSDL).
The registry architecture is however left open. Although
UDDI is mainly designed for large-scale deployment, its
interoperation with current service discovery systems is
not obvious. In fact, the interface-oriented service represen-
tation scheme (WSDL) does not support the description of
generic service capabilities as opposed to all other discov-
ery systems.

From these observations we conclude that none of the
existing discovery systems match the requirements for
inter-domain discovery. This leaded us to further study
existing works on interworking discovery systems (see Sec-
tion 3), and finally, to design our architecture for inter-do-
main service discovery.

3. Related works

As shown in Fig. 2, a number of works ([15–20] and [21])
have been conducted to enable interoperation between two
different service discovery technologies. Each of these work
employs a kind of ‘‘bridge’’ for protocol and data
conversion.

Koponen and Virtanen [19] have presented an architec-
ture for Jini and SLP interoperability. At the core of this
architecture are a service broker and an adapter. The
adapter has twofold functionality: it acts as directory ser-
vice (i.e., directory agent for SLP and lookup service for
Jini) and it registers services in other domains with the local
directory service. An adapter captures local advertisements
and forwards them to the broker. The broker in turn regis-
ters these advertisements with the directory service of each
domain using the adapter in the respective domain. A client
can discover services in remote domains, simply by query-
ing its local directory service. This approach is not suitable
for networks with a large number of domains, due to two
reasons. First, all advertisements are mirrored in the direc-
tory service of each domain, which raises a scalability issue.
Second, the broker is a single point of failure and a perfor-
mance bottleneck.

Another work [18] presents an architecture for inter-
working Jini and UPnP, where virtual clients and services
are placed in each domain. For a service that is discovered
by a virtual client in one domain, a corresponding virtual
service is created in the other domain. The virtual service
registers itself to Jini Lookup Service (in Jini domain) or
multicasts its existence (in UPnP domain). A client can
discover and access a service in a remote domain using

Jini

UPnP SLP

Twine

Bluetooth Salutation

Fig. 2. Existing approaches for interworking service discovery technolo-
gies: (1) Bluetooth–UPnP [15], (2) Bluetooth–Salutation [16], (3) Blue-
tooth–Jini [17], (4) Jini–UPnP [18], (5) Jini–SLP [19], (6) Jini–Twine [20]
and (7) Salutation–SLP [21].

548 N. Limam et al. / Computer Communications 30 (2007) 546–563

Aut
ho

r's

pe
rs

on
al

co

py

the virtual service present in its own domain. This
approach is not efficient for connecting a large number of
domains since all the services of all domains are mirrored
in each domain.

A different approach [20] for interworking Jini and Twine
adds a proxy component between both domains. The proxy
acts as a lookup service in the Jini domain and both as a client
and service in the Twine domain. It forwards both advertise-
ments and queries coming form the Jini domain to the Twine
domain. Hence, Jini services are registered in the Twine
domain, and while queries coming from Jini clients are
solved both in the Jini and Twine domains, queries coming
from Twine clients are resolved only in the Twine domain.
Applying such an approach to different discovery systems,
for instance UPnP instead of Twine, would assume that both
domains are part of the same network, for instance local area
network. Such an assumption is not suitable for service dis-
covery in wide area networks.

In contrast to all the existing approaches to bridging ser-
vice discovery systems, OSDA can operate on multiple
domains with diverse discovery mechanisms, and can sup-
port a large number of services/users participating over a
wide area network. For cross-technology service discovery,
OSDA uses an open and interoperable service description
scheme. OSDA is designed to be platform-independent,
extensible and fault-tolerant and provides straightforward
ways to introduce access-control policies.

4. Open service discovery architecture

In the remainder of the paper, a ‘‘domain’’ is defined as
a federation of network components (users and services)
controlled by a single service discovery technology. The

main motivation of our work is the need to federate users
and services spanning different domains whether they
belong to the same or different networks. To this end, we
build on the existing domain-specific discovery systems
by providing the following facilities:

• As an alternative to mirroring shared services or broad-
casting queries in all the involved domains and networks
(which do not scale with an increasing number of domains
and services), a structured peer-to-peer overlay is created
as an inter-domain and inter-network space where shared
services are advertised and queries are solved.

• Programmable service brokers are deployed in domains
to act as an interface between the intra-domain and
inter-domain discovery systems.

• As an alternative to converting service advertisements to
all involved service description schemes, a Unified Ser-

vice Description scheme is used for the advertisement
of services in the inter-domain space.

In the following section, we will describe the high-level
architecture of OSDA. Later, we will introduce USD, the
Unified Service Description schema used to advertise and
query services in our framework.

4.1. High-level architecture

In Fig. 3 we present a high-level overview of OSDA. The
architecture assumes that the following local service discov-
ery components are in place:

User Agent: acts as an interface between the end user
and the discovery system. It is dependent of the domain-
specific discovery technology.

P2P Cross-Domain
Service Discovery

Domain C

Domain B

Domain A

P2P Indexing
Node

User Agent

Service
Broker

Peer
Communication

component
interaction

Service Agent

Policy Server

Service

Local Service
Registry

User

Domain-specific
component

Optional
component

Fig. 3. OSDA: high-level architecture.

N. Limam et al. / Computer Communications 30 (2007) 546–563 549

Aut
ho

r's

pe
rs

on
al

co

py

Service Agent: interfaces between the service provider
and the discovery system. It handles service advertisement,
advertisement renewals and/or de-registrations.

Local Service Registry: an optional component whose
presence depends on the intra-domain service discovery
mechanism. It is responsible for storing service records
and responding to service discovery requests.

It is worth noting that there can be zero or more service
registries in a domain depending on the service discovery
mechanism used in the domain.

• If the domain uses a fully decentralized local service dis-
covery mechanism (such as UPnP), then there may be
no Service Registry in the system.

• If a directory-based local service discovery mechanism is
used in the do main, then one or more than one service
registry can be used in the system.

Policy Server: is an optional component responsible for
providing discovery policies that control the publication of
service advertisements and service queries outside the
domain boundaries. These policies are domain-specific
and are implemented by domain administrators.

As stated before, we introduce in each domain one or
more than one service brokers and build a peer-to-peer
indexing network in the inter-domain space. The canonical
setup would involve one broker per domain and a one-to-
one association between brokers and indexing peer nodes,
however, the architecture supports multiple brokers per
domain and many-to-many association between brokers
and peers.

The following components are integral parts of our
system:

Service Broker: is responsible for handling and process-
ing cross-domain advertisements and queries. It acts as an
interface between the local discovery technology and the
inter-domain discovery system. The broker can be divided
into two layers; a technology-dependent lower layer and a
technology-independent upper layer.

The technology-dependent layer (referred to as an
Adapter) abstracts the local service discovery system. It
intercepts and processes requests coming from User Agents
and Service Agents and converts advertisements and
queries to a well-defined service description and query
language. It also processes requests coming from the
inter-domain system and executes them in the local discov-
ery system.

The technology-independent layer handles broker-to-
peer and broker-to-broker communication. It provides
the necessary interfaces for the broker to be accessed by
the entities involved in the inter-domain discovery process.

Note: Since there is a fairly clear separation between the
technology-dependent and the technology-independent lay-
ers of the broker, we will occasionally refer to them as two
separate entities: the Adapter and the Broker, respectively.

Peer-to-peer Indexing Node: is responsible for distribut-
ing the service information in the peer-to-peer discovery

network and allowing the discovery of services in multido-
main networks. The peer-to-peer network uses a Distribut-
ed Hash Table (DHT)-based architecture to store service
information and solve queries.

Our system supports the two main functions of a service
discovery system: advertisement and querying. Below, we
give a brief outline of these functions. We use the case
scenario described in Section 2 to better illustrate these
functions. A more detailed description can be found in
Section 5.

Advertisement: In the example, lightpaths are provided
in the ORION, RISQ and CA*NET domains and adver-
tised to users in each domain’s service discovery technolo-
gy. Upon the interception of a lightpath advertisement, the
adapter will look into the domain’s policies to see whether
or not the service can be advertised outside the domain
boundaries, and eventually to filter on the information that
will not be published (e.g., security-sensitive information
like the access point to the service).

Assuming that lightpaths can be leased to non-local
users, the adapter will first map the description of the light-
path service to a ‘‘public’’ lightpath service template. This
latter is either provided by the ORION domain, RISQ
domain, CA*NET domain or any other domain to service
as a template for describing lightpath services. The adapter
composes an inter-domain advertisement based on the
resulting lightpath description and additional meta-infor-
mation, like the expiry time of the service, and sends it to
the broker.

The broker will complement the advertisement with
additional meta-information, typically its URL and the
URLs of those brokers responsible for processing queries
that relate to the advertised service. The advertisement is
then sent to the peer-to-peer overlay, which distributes
the service information among selected nodes.

Querying: Querying in OSDA is a two-step process.
First, upon interception of the administrator’s query for
a lightpath service to connect both campuses, the adapter
in the UWaterloo network looks into the domain’s policy
in order to decide to publish or not the administrator’s que-
ry in the inter-domain space.

The administrator query is expressed in the UWaterloo
domain’s discovery technology and is meant to be mapped
against any advertisement that describes a lightpath service
with a specific (as apposed to any) template. Similarly to
advertisements, the query will be mapped to a ‘‘public’’
lightpath service template, converted to a well-defined for-
mat and then sent to the broker.

The broker forwards the query to a peer indexing node
so that it is resolved in the peer-to-peer overlay. It will
receive back the set of broker URLs that have been adver-
tised along with the lightpath services matching the query.
Later, this same broker contacts one or more brokers from
the received list in order to retrieve the whole information
about the offered lightpath service, especially its access
point. This second step involves the contacted broker to
execute queries in the local discovery system.

550 N. Limam et al. / Computer Communications 30 (2007) 546–563

Aut
ho

r's

pe
rs

on
al

co

py

Splitting up the querying process in this way allows the
domains to control which parts of service information are
advertised to the world at large, and which parts are made
available only to selected domains. It also allows the
domains to control the amount of data forwarded to the
peer-to-peer overlay by sending a single inter-domain
advertisement for a set of similar services (aggregation).

The resulting architecture acts as a unifying ‘‘glue’’ that
connects diverse local service discovery systems such as
SLP, Jini or Salutation. The multidomain service discovery
system does not depend on the local service discovery mech-

anism (i.e., both centralized and decentralized service dis-
covery approaches are supported). If a directory-based
local approach is used, then the service registry will be con-
tacted for local service discovery. Otherwise, multicast or
broadcast messages will be sent for local discovery.

4.2. Service naming, description and querying

Each service discovery system has its own way of
describing a service. Supporting interoperability among a
variety of service discovery systems needs some means of
vocabulary translation. Vocabulary translation can be car-
ried out directly from one technology to the other: a Jini
advertisement (or service description) can be converted to
an equivalent SLP advertisement and advertised in the
SLP system. However such a scheme would require
O(N2) mappings, where N is the number of supported ser-
vice discovery technologies. Clearly, the preferred method
would be to design an intermediate, unified scheme for
inter-domain advertisements. In this case, an advertisement
from a particular domain can be translated to the agreed
inter-domain format and can then be advertised in an other
technology after another step of conversion. Because of its
expressive power and acceptance in the Internet communi-
ty, XML seems to be most appropriate as a basis for such a
format, while the selection of appropriate elements for the
XML description needs more detailed analysis of the exist-
ing service discovery technologies.

To achieve this kind of interoperability, we propose the
Unified Service description (USD), a meta-service descrip-
tion schema that can interoperate with most of the major
service discovery systems.

As shown in Fig. 4, the USD scheme consists of two
major nested parts. The main envelope contains the
meta-information for the advertisement, such as the type,
location and expiry time of the service. The description

component specifies the properties and capabilities of the
service itself. Table 1 summarizes the fields contained in
the USD scheme.

For better understanding of the discovery process, let us
focus on two key fields of the Unified Service Description:
serviceID and description.

serviceID: In OSDA, a service identifier consists typically
of two parts: a globally unique domain identifier, and a
domain-unique service identifier. Together, these two parts
form a globally unique identifier for each service, obviating

the need for a central naming authority that assigns names
to each participating service. The format of the service iden-
tifier is left up to the domain administrator, giving each
domain discretion in naming its services. The domain identi-
fier is more difficult to define, since it must be globally
unique. In the case where ‘‘domain’’ means simply ‘‘the
administrative domain’’, we recommend the use of DNS
names [22]. In other cases, uniqueness can be accomplished
by using a Universal Unique Identifier (UUID) [23]. If a
non-human-readable domain identifier is used, such as the
UUID, we recommend the use of the domainName field to
include a human-readable domain name with the USD.

description: OSDA supports any description schema (or
service template) provided it is written in XML. Typically,
service templates are generated by service providers and
may be commonly used by a number of service providers
as the ‘‘standard’’ template for inter-domain advertisements.

In addition to the meta-service description scheme, we
also design two XML message formats: Unified Request

and Unified Response used, respectively, to wrap inter-do-
main advertisement or discovery requests, and discovery
responses.

Fig. 4. USD: Unified Service Description.

N. Limam et al. / Computer Communications 30 (2007) 546–563 551

Aut
ho

r's

pe
rs

on
al

co

py
5. Module specification

As described in Section 4, OSDA is comprised of several
components. Each of these components consists, in turn, of
a number of smaller modules. The high-level objective of
the design of OSDA modules is maximizing the system
modularity through a clean separation of responsibilities
between components and a clean identification of function-
alities for each component in order to reducing mainte-
nance effort and code duplication.

In the following section, we will examine the module-
level design of OSDA (see Fig. 5), by explaining the func-
tionalities and interfaces of the individual modules.

5.1. Adapter modules

The Adapter is composed of the following four modules:
the Registration Advertisement Handler, the Discovery

Request Handler, the Directory Handler and the Converter.

(1) Registration Advertisement Handler. The Registration
Advertisement Handler is responsible for processing
advertisement requests coming from local Service
Agents. Upon interception of an advertisement, the
Registration Advertisement Handler contacts the pol-
icy server (if present) so that related domain policies
are applied. If the advertisement is allowed to be

propagated in the inter-domain discovery system then
the Advertisement Registration Handler first converts
it to the USD format and then submits it to the Bro-
ker’s Advertisement Propagator.This process is illus-
trated in Fig. 6. Note that the policing step is omitted.

(2) Discovery Request Handler. This module is responsible
for intercepting and handling service discovery
requests. It steers queries either to the local or global
discovery systems according to the domain policies.
If a service discovery request is allowed to be propagat-
ed to the inter-domain discovery system, it is first con-
verted to the USD-based query format, and then
submitted to the Broker’s Global Discovery Handler
(see Fig. 7). Similarly, upon reception of a response
to a query, the response is first converted to the local
description format and then forwarded to the User
Agent that generated the query (see Fig. 8).

(3) Directory Handler. The Directory Handler is respon-
sible for handling Broker’s service discovery requests
in the second step of the querying process (see Section
4). It takes care of converting queries into the local
query format and generating discovery requests in
the local discovery system (see Fig. 8). The Directory
Handler implements a user agent interface; generated
queries are either sent to the service repository or
multicasted/brodcasted over the network depending
on the discovery mechanism deployed in the domain.

Table 1
Unified Service Description

Field Description

usdVersion Specifies the USD version from which the service template was derived

serviceSchema Refers to the XML Schema Definition (XSD) which serves as a template for the service description
Version: specifies the version of the service template. It allows incremental upgrading of service descriptions with backward
compatibility
Type: a gross category of the service referring to the service template
Location: a URI specifying the location of the service template XSD document

serviceID The service identifier used to globally and uniquely identify a service. It contains the following information:
domainID: unique identifier for the domain (can be non-human-readable)
domainName: human-friendly domain name supplied by the system administrator
localID: the name used to uniquely identify a service within a domain

expiryTime The time when an advertisement expires. It consists of two fields:
goodAfter: time by which the advertisement starts to be valid
goodBefore: time by which the advertisement is no longer valid

scope May contain (a reference) the list of domains that are allowed to discover the service. It allows domain level access-control for
broker-to-broker communication

description The capability description of a service. It is a set of attribute–value pairs in a hierarchical relationship. We propose the use of
XML Schema Definition (XSD) for describing the capability template (analogous to the service template in SLP or UPnP)

accessInfo A URL that can be used to invoke a service. The URL may point to a static document (e.g., WSDL document) that describes
the interfaces to access the service, or embed the request needed for obtaining the service access point. The URL may also
point to an intermediate entity (e.g., proxy) that mediates the invocation syntax and semantics

payload Used to provide the client with the original description of a discovered service as advertised in its domain. The payload
information consists of two components:
technology refers to the local discovery technology (e.g., Jini, SLP, etc.)
advertisement the description of the service as advertised in its domain
The payload information may allow a client aware of a specific technology to perform technology-specific operations on the
discovered service

552 N. Limam et al. / Computer Communications 30 (2007) 546–563

Aut
ho

r's

pe
rs

on
al

co

py

(4) Converter. The Converter module is used to convert
queries and service descriptions into a USD-based
format, or from the USD-format to the local format.
A mapping between local service templates and USD
templates as well as a mapping between the local que-
ry format and the Unified Query format are both
required in the conversion process.

5.2. Broker modules

The Broker is responsible for handling cross-do-
main advertisement and service discovery requests. It
provides well-defined interfaces that are invoked to
post requests and responses. The broker is composed
of the following three modules: Advertisement Propa-

Service Registration
Advertisement

Handler

Index
Mapping
Module

Local Service
Registry

Broker
Request
Handler

Converter Advertisement
Propagator

Local service registration

.convert (localServiceDescription,code1)

relay

USD Conversion

.request (advertisement)

Put in the unified message
format, add Broker URI

Peering
Module

Peering
Module

Peer
Request
Handler

Extract indexing data

.index (data)

key hash

.request (key, advertisement)

…

Routing

.request (key, advertisement)

Generate
index record

Registration

Index Record
Database

.advertise (USD)

Peer 1 Peer 2

Fig. 6. Sequence diagram: service advertisement.

Advertisement

Registration
Advert. Handler

Directory
Handler

Discovery Request Handler

Converter

Query

Peer

Broker

Adapter

DA

UA SA
Policy Server

Bootstrap
ModuleIndex

Records

Advertisement
Propagator

2

Broker Request
Handler

4

Peering
Module

Index Mapping
Module

5

Peering
Module

6

Domain

Boundaries
1

Local Discovery
Handler

2

Local Discovery
Handler

2
Global Discovery

Handler
1Global Discovery

Handler

3
4

4

6

Query Interface

vertisement Interface

Generic Response Interface

Generic Request Interface

Indexing Interface

Peering Interface

Peer Request
Handler

6

Conversion Interface0

1

2

3

4

5

6

0

2

QueryResponse
Response

Optional Component

Fig. 5. OSDA: architecture specification.

N. Limam et al. / Computer Communications 30 (2007) 546–563 553

Aut
ho

r's

pe
rs

on
al

co

py

gator, Global Discovery Handler and Local Discovery

Handler.

(1) Advertisement Propagator. The Advertisement Propa-
gator is responsible for propagating advertisements
to a peer-to-peer indexing node (see Fig. 6).

(2) Global Discovery Handler. This module is responsible
for processing inter-domain service discovery requests.
As stated in Section 4, inter-domain service discovery is
achieved in two steps. In the first step (see Fig. 7), the
Global Discovery Handler is responsible of the propa-
gation of service discovery requests to the peer-to-peer

User

User

Discovery
Request
Handler

Index
Mapping
Module

Local Service
Registry

Broker
Request
Handler

Converter Global
Discovery
Handler

Local service discovery

.convert (serviceRequest,code2)
relay

USD-Query Conversion

.request (query)

Put in the unified message
format

Peering
Module

Peering
Module

Peer
Request
Handler

Extract indexing data

.index (data)

key hash

.request (key, query)

…

.request (key, query)
Convert to
expected query
format

Index Record
Database

.query (USD-Query,contactInformation)

Routing

.respond (response)

Wrap
Indexrecords

Query

Peer 1 Peer 2

Fig. 7. Sequence diagram: service discovery, step 1.

User Discovery
Request
Handler

Converter

.convert (USD,code4)

localServiceDescription

.request (query)

…

.query (USD-Query)

.convert (USD-Query,code3)

localQuery Conversion

.convert (LocalSrvDescription,code1)

USD

Local Query

Conversion

.respond (USD)

.respond (response)

Extract USD-Query

extract
(USD, contactInformation)

.respond (USD,contactInformation)

Local Response

Conversion

Global
Discovery
Handler

Broker 1
Local

Discovery
Handler

Directory
Handler

Converter Local Service
Registry

Broker 2

Put in the unified
message format

Extract Broker URI

Fig. 8. Sequence diagram: service discovery, step 2.

554 N. Limam et al. / Computer Communications 30 (2007) 546–563

Aut
ho

r's

pe
rs

on
al

co

py

network. In the next step (see Fig. 8), the Global Dis-
covery Handler sends the same request to one or more
than one broker listed in the response of the peer-to-
peer network. A selection mechanism over the received
list may be implemented. Responses from the contact-
ed brokers will contain the USD of services that match
the discovery request. As discussed in Section 6, the
Global Discovery Handler can also be contacted
directly, by services and clients, without having to go
through a pre-existing local discovery system.It is
worth noting that the number of contacted brokers
influences both the inter-domain query overhead and
the completeness of the query result.

(3) Local Discovery Handler. The Local Discovery Han-
dler is responsible for processing the requests sent by
remote Global Discovery Handlers. Queries embed-
ded in the received requests are sent to the Directory
Handler in order to be solved into the USD of match-
ing services. USDs are sent back to the Global Dis-
covery Handlers that generated the requests.

5.3. Peer node modules

The network of OSDA peer nodes forms a distributed
hash table. The nodes are responsible for storing index
records corresponding to previous inter-domain advertise-
ments, and for solving cross-domain queries. A peer node
is composed of a Broker Request Handler, an Index Map-
ping Module, a Peering Module, a Peer Request Handler

and a Bootstrap Module.

(1) Broker Request Handler. The Broker Request Han-
dler is the access point to the peer-to-peer network.
It intercepts and processes inter-domain advertise-
ment and query requests sent by Brokers and then
directs them in the peer-to-peer network. Given a ser-
vice advertisement or query, the Broker Request
Handler first internally extract from the capability
description section the data that will serve to index
the request. The data is then passed on to the Index
Mapping module, to convert it into one or more hash
keys. Each hash key, along with the original request,
is passed to the Peering Module in order to be routed
to the appropriate peer.

(2) Index Mapping Module. The Index Mapping Module
uses a hash function to convert the data received
from the Broker Request Handler to a key. The hash
is returned back to the Broker Request Handler.

(3) Peering Module. Each peer in the peer-to-peer overlay
is responsible for a set of keys. Upon receiving a key–
request pair, the Peering Module routes the request to
the appropriate peer. If the given key is one of this
peer’s own keys, the key–request pair is passed to
the local Peer Request Handler.

(4) Peer Request Handler. A peer-to-peer node maintains a
database which associates each hash key with one or
more than one index record.Upon receiving a

request–key pair, the Peer Request Handler either exe-
cutes the contained query or stores the contained
advertisement in the index record database within the
set of index records associated with the given key.
Before being executed, a query is first converted to
the format supported by the database.The advertise-
ments stored in the peer-to-peer network are soft-state:
each stored index record contains the information
about its lifetime. While the advertisement renewal
process is handled by the Discovery Request Handler
in the domain level, cleaning the peer database from
expired index records must be handled by the Peer
Request Handler if not supported by the used database
management system.

(5) Bootstrap Module. The Bootstrap Module is responsi-
ble for joining the peer-to-peer network. The join
process is specific to the DHT architecture used in
the peer-to-peer network.

It is worth noting that, the inter-component communica-
tion is asynchronous and the modules are stateless, i.e., they
do not keep track of current requests. This enhances the sys-
tem’s tolerance to ‘‘short’’ failures or disconnections. For
example, if multiple brokers are known by an adapter, they
can be used interchangeably if one of them fails. Moreover,
since information about the source of the query is embedded
in each request, a broker can be restarted or replaced
between sending the query and receiving the responses. If a
broker goes down while waiting for query responses to
arrive, those responses can be sent to an alternate broker
(if known), or to the originating broker, if it becomes acces-
sible in the meanwhile.

All OSDA components, and most of the modules are
designed to be loosely bound. Contingent on access-control
policies, an adapter can communicate with any broker in its
domain (allowing several adapters per broker, or vice versa),
while a broker can communicate with any peer indexing
node. Such flexibility and degree of fault-tolerance is manda-
tory, since OSDA is designed to be a core supporting func-
tion for an Internet-scale network of resources and services.

6. Implementation and validation

The design of OSDA meets the main requirements for
an inter-domain service discovery middleware.

• Scalability: the filtering and aggregation features of the
service broker allows OSDA to scale with an increasing
number of advertised services. In addition, the use of a
structured peer-to-peer overlay, as opposed to unstruc-
tured systems, reasonably bounds advertisement and
query routing at the inter-domain layer, and hence min-
imize the communication overhead.

• Openess: service brokers make OSDA a pluggable solu-
tion that does not require any change in the local discov-
ery systems and that is extensible to new participating
domains.

N. Limam et al. / Computer Communications 30 (2007) 546–563 555

Aut
ho

r's

pe
rs

on
al

co

py

• Fault-tolerance: service registration in the peer-to-peer
overlay is soft-state; advertisements are evicted if the
corresponding services are not re-advertised. This way
OSDA guarantees the consistence of query responses
and is tolerant to service failures. In addition, given that
brokers an peers are stateless and loosely coupled,
OSDA is able to recover their failures.

The implemented OSDA prototype maximizes these fea-
tures. In fact, in addition to choosing open and well-accept-
ed technologies, we have designed standard interfaces and
asynchronous messaging protocols. The resulting system
has been tested an validated through some case scenarios.

6.1. Implementation technologies

As the name of our architecture would imply, its main
goal is to be as open and universal as possible. We used this
motivation as a guide in our choice of tools and technolo-
gies that would implement our system. We focussed on
well-known, tested, freely available and open-source com-
ponents such as JXTA [24], Chord [25], JBoss [26], INS/
Twine [27], Jetty [28] and web-based technologies such as
SOAP. Because of the need for platform independence,
we used Java as the programming language, HTTP as the
transport protocol for broker-to-broker and broker-to-
peer communications and XML as the format for all
communications. In addition to greatly simplifying the
implementation process (in comparison to re-inventing
the communication/data format wheel), using primarily
web-based technologies allowed us to create a flexible
and modular system. If needed, many of the components,
such as the index record database, or the peer-to-peer rout-
ing mechanism can be relatively easily replaced with other
technologies. Moreover, because of the loose coupling
between components, the individual parts of the system
can be flexibly deployed on separate systems or even all
on the same machine, allowing OSDA to scale gracefully
in face of increasing load.

• Broker: The broker functions as a standalone Enterprise
Java server. The broker modules are implemented as
stateless-session Enterprise Java Beans (EJBs) running
in the JBoss application server, and deployed as Web
Services. This way, the broker components may be
invoked either using RMI/IIOP or SOAP/HTTP. Cur-
rently, Local and Global Discovery Handlers are
accessed by peers and other brokers, cross-domain
boundaries, through SOAP/HTTP which offers many
attractive advantages like the support of security mech-
anisms and the ability to work through firewalls.One of
the most interesting advantages of this implementation
is that it does not require a local service discovery sys-
tem to be deployed in a domain. Because the Global
Discovery Handler is implemented as a Web Service, a
web client can be easily created and then used to discov-
er services in other domains.

• Peer Nodes:
(1) Broker Request Handler: The Broker Request Han-

dler is implemented as a SOAP service and runs on
top of the lightweight Jetty HTTP server. We use
INS/Twine libraries to extract from advertisements
and queries the data that will be used to generate
indexing keys. The service capabilities part of adver-
tisements is split into strands, using the INS/Twine
model, and all strands are hashed into keys by the
Index Mapping Module (see Fig. 13). Advertise-
ments are routed to and then stored/replicated in
each peer corresponding to one of the resulting hash
key. On the other hand, queries are forwarded to
the peer that is associated to the key resulting from
the longest strand.

(2) Index Mapping Module: The Index Mapping Mod-
ule uses an MD5 [29] hash to turn strands into hash
keys later used for routing.

(3) Peering Module: The Peering Module is implement-
ed as a JXTA peer to take advantage of the boot-
strapping, authentication, and secure
communication facilities of the JXTA environment.
Peering Modules are organized in a Chord ring,
where Chord is used to route requests between
peers.We chose Chord as a base for peer-to-peer
network because of its fault-tolerance and self-sta-
bilizing properties as well as its effective method
of evenly distributing information and query pro-
cess load. This design is necessary in dealing with
the large volume of advertisement messages and
query operations expected in an Internet-scale net-
work. Below, we provide a short analysis of the que-
ry costs in the OSDA implementation.Unlike
broadcast-based approaches, the Chord DHT guar-
antees an upper bound of O(log N) hops between
peers for each routed request, where N is the num-
ber of peers in the overlay. After being advertised
locally, each advertisement generates k strands,
and hence k keys to be distributed among the
peer-to-peer nodes, resulting in O(k logN) messages.
The advertisement overhead therefore combines the
cost local advertisement with the peer-to-peer
advertisement overhead. Additionally, since the
peer-to-peer layer uses a soft-state approach, each
advertisement must be periodically re-advertised
to remain valid, which makes the total overhead
dependent on the frequency of advertisement
renewal. Because a query generates a single strand,
the peer-to-peer query overhead is lower at O(log N)
messages.

(4) Peer Request Handler: The Peer Request Handler
stores and retrieves XML-based index records to
and from a database. For this purpose, we used
the eXist [30] open-source native-XML database.
Like JXTA, and our SOAP interfaces, eXist relies
on the lightweight Jetty HTTP server [28], and
includes many useful features such as a web inter-

556 N. Limam et al. / Computer Communications 30 (2007) 546–563

Aut
ho

r's

pe
rs

on
al

co

py

face and XPath/XQuery [31] processing. While the
canonical INS/Twine search would return all ser-
vice descriptions corresponding to the given key,
the Peer Request Handler goes a step further by
converting the original query (possibly containing
complex predicates – currently, XSet [32] range
predicates are supported) into an XQuery. The
XQuery is then performed against the index records
corresponding to the given key, returning only the
relevant set of matching documents.

6.2. Testbed and implementation

Currently, our testbed consists of 2 Linux PCs, each
running a broker and an SLP daemon, and 3 Sun Solaris
8 machines each running a peer indexing node. We have
implemented an SLP adapter which acts as a virtual SLP
Directory Agent for intercepting advertisements and que-
ries coming respectively from users and services. The inter-
cepted messages are then forwarded to both the real
Directory Agent and the broker. The SLP adapter also
runs a process which intercepts queries coming from the
broker at the second step of inter-domain queries.
Responses to queries coming both from the local Directory
Agent and from the broker are grouped and then forward-
ed to users. We have also implemented a web portal for
issuing advertisements and queries directly to the broker,
and some java beans that act as an adapter between the
portal JSP pages and the broker. We use the portal for sim-
ulating a non-SLP domain. Using this setup, we have suc-
cessfully validated the advertisement and inter-domain
query processes.

Because cross-domain service discovery is such a com-
plex topic, we were clearly not able to address all the related
issues in the current implementation. For example, in the
current implementation of OSDA a broker is statically con-
figured to contact a specific peer in the peer-to-peer net-
work. We intend to work on implementing a mechanism
that allows brokers to dynamically find a peer node in the
peer-to-peer network. Moreover, we are searching the prob-
lem of including more sophisticated hash function in the
peer-to-peer network that would enable complex and simple
advertisements/queries to be handled equally. Currently,
complex advertisements and queries are simplified, for exist-
ing hash functions do not provide any mapping between the
hash of a range-value and the hash of values contained in
the range. For example, our DHT does not support match-
ing a query containing attribute > x to a previous advertise-
ment containing attribute = x + 1. This functionality is
instead provided at the database level, by converting the
previously ignored range query predicates into an XQuery,
and using it to narrow down search results.

6.3. Case scenario

As a proof of concept of our system, we have simulated
on our testbed the following case scenario (see Fig. 9)
inspired by the cross-domain lightpath establishment use
case (Section 2).

In this scenario, the CA*NET domain consists in one of
the Linux PCs running an SLP daemon and a broker. The
UW domain consists in the second Linux PC that runs a
broker, on which we have installed the web portal to sim-
ulate a non-SLP domain.

Bootstrap
Module

Index
Records

Broker Request
Handler

Peering
Module

Index Mapping
Module

Peer Request
Handler

Registration
Advert. Handler

Directory
Handler

Discovery Request Handler

Converter

DA

UA

Advertisement
Propagator

Local Discovery
Handler

Global Discovery
Handler

1

QueryResponseAdvertisement

Registration
Advert. Handler

Directory
Handler

Discovery Request Handler

Converter

Service

Advertisement
Propagator

b

a

Local Discovery
Handler

Global Discovery
Handler

Bootstrap
Module

Index
Records

Broker Request
Handler

Peering
Module

Index Mapping
Module

Peer Request
Handler

Bootstrap
Module

Index
Records

Broker Request
Handler

Peering
Module

Index Mapping
Module

Peer Request
Handler

CA*NET Domain with SLP UW Domain non-SLP

Query / Response

c

d

2

3

4

5
6

78

9

9

10

P1

P3

P2

5

Fig. 9. Implementation use case.

N. Limam et al. / Computer Communications 30 (2007) 546–563 557

Aut
ho

r's

pe
rs

on
al

co

py

We have designed an SLP template for the lightpath ser-
vice that will be used by the CA*NET domain to advertise
a number of lightpaths with different descriptions (see
Fig. 10), i.e., offering different bandwidth, linking different
optical switches, etc. For simplicity, we will closely follow
the SLP template in creating the USD template of the light-
path service (see Fig. 11).

In the remainder of this section, we will describe the
message flow involved in both the advertisement and dis-
covery processes.

6.3.1. Advertisement

Upon intercepting (step (a)) the SLP advertisement, the
adapter converts it to the USD format as shown in Fig. 12.

As we can see, there is a clear mapping between a num-
ber of USD tags and SLP advertisement fields. For exam-
ple, the LocalID field of USD template is mapped to the
URL field of the SLP advertisement message, and the value
associated to goodBefore is calculated based on the current
time, which is given to the goodAfter field, and the value
associated to the Lifetime field of the SLP advertisement.
Note that here we have considered a simple advertisement,
i.e., an advertisement that does not contain any complex
value (no ranges or enumerations).

In step (b) the AdvertisementPropagator EJB is invoked
and the USD-based description of the lightpath service is
sent. The description part of the USD is extracted along
with the service type, domainID and expiryTime, all are
wrapped in a Unified Request.

In step (c), the Unified Request is sent to the peer. The
Broker Request Handler is invoked to process the request.
Since the advertisement is not complex, it is directly turned
into a tree and split into INS/Twine-like strands (see
Fig. 13). Note that the USD service type is always set as
a root in the strands. This is done on purpose so that every
generated key is more likely to belong exclusively to a spe-
cific service type.

In step (d) keys along with the corresponding Unified
Request are routed in the Chord ring. Here, the peer node
P3 is responsible of K1 (Fig. 13), it will extract the index
record from the Unified Request and store it in the
database.

6.3.2. Query

On request from the administrator, the web portal
will load the USD template of the lightpath service to
assist the administrator in formulating the query (see
Fig. 14).

Version = 2.0
Function = srvReg
XID = 78643
Language = en-US
URL = service:lightPath:http://marakech.uwaterloo.ca:8888/axis/lightPathManager.jws
Lifetime = 10800
Scope = DEFAULT
Attributes =

(source = OS1),
(destination = OS2),
(bandwidth = 524288),
(owner = CA*NET),
(lease-expiry-time = 2005-11-01T00:00:00.000-0500),
(bidirection = true)

Fig. 10. SLP advertisement for the lightpath service.

Fig. 11. USD template for the lightpath service.

558 N. Limam et al. / Computer Communications 30 (2007) 546–563

Aut
ho

r's

pe
rs

on
al

co

py

In step (2) the query is wrapped into a Unified
Request. Note that the request will contain the set of
access points needed to route back the query response;
namely the endpoint of the Global Discovery Handler

(being deployed as a Web Service), followed by the
access point to the Discovery Request Handler and a ref-
erence to the bean that is in charge of receiving the
response to the query.

<?xml version="1.0" encoding="UTF-8" ?>
- <Usd>

<UsdVersion>1.0</UsdVersion>
- <ServiceSchema>

<version>1.0</version>
<type>service:lightPath</type>
<location>http://marakech.uwaterloo.ca:8080/Portal/service:lightPath-v1.0.xml</location>
</ServiceSchema>

- <ServiceID>
<domainID>UUID:58f202ac-22cf-11d1-b12d-002035b29092</domainID>
<domainName>CA*NET</domainName>
<localID>OS1-OS2-lp0</localID>
</ServiceID>

- <ExpiryTime>
<goodAfter>2005-05-01T00:00:00.000-0500</goodAfter>
<goodBefore>2005-05-02T00:00:00.000-0500</goodBefore>
</ExpiryTime>
<Scope>default</Scope>

- <ServiceDescription>
<source>OS1</source>
<destination>OS2</destination>
<bandwidth>524288</bandwidth>
<owner>CA*NET</owner>
<lease-expiry-time>2005-11-01T00:00:00.000-0500</lease-expiry-time>
<bidirection>true</bidirection>
</ServiceDescription>
<accessInfo>http://marakech.uwaterloo.ca:8888/axis/lightPathManager.jws?wsdl</accessInfo>
</Usd>

Fig. 12. USD of the CA*NET lightpath service.

<ServiceDescription>
<source>OS1</source>
<destination>OS2</destination>
<bandwidth>524288</bandwidth>
<owner>CA*NET</owner>
<lease-expiry-time>
2005-11-01T00:00:00.000-0500

</lease-expiry-time>
<bidirection>true</bidirection>

</ServiceDescription>

root

type
Service:lightPath

source

OS1

K1

Strands hashed into keys
(Ki)

type
Service:lightPath

source

OS1

service:lightPath

524288 2005-11-01T00:00:00.000
-0500

Type

K

6

K1

1

Conversion in tree-like
description destination

bandwidth

owner

lease-expiry-time

bidirection

OS2 CA*NET true

type
Service:lightPath

source

type
Service:lightPath

destination

OS2

K2

K

7

type
Service:lightPath

destination

type
Service:lightPath

bandwidth

524288

K3

K

8

type
Service:lightPath

bandwidth

type
Service:lightPath

owner

CA*NET

K4

K

9

type
Service:lightPath

owner

type
Service:lightPath

Lease-expiry-time

2005-11-01T00:00:00.000-
0500 K5

K1

0

type
Service:lightPath

Lease-expiry-time

type
Service:lightPath

bidirection

true

K1

K4

type
Service:lightPath

bidirection

Fig. 13. Advertisement stranding.

N. Limam et al. / Computer Communications 30 (2007) 546–563 559

Aut
ho

r's

pe
rs

on
al

co

py

At the peer level (step (3)), the Broker Request Handler
splits the query into strands; since the query does not con-
tain any complex predicates such as ranges or enumera-

tions, no intermediary query simplification is needed. The
longest strand is chosen to be turned into a key. Assuming
that the generated key K is equal to K1 (see Fig. 13), the
Unified Request is then routed to P3 (step (4)) where it is
resolved. As a result to the query, the database returns
the Index Record of the lightpath service advertised by
the CA*NET SLP domain. The Index Record along with
the original Unified Request are wrapped in a Unified
Response (see Fig. 15) and sent back to the Global Discov-
ery Handler (step (5)). The same request is sent to the Local
Discovery Handler whose endpoint is specified by the
BrokerURL field of the received response, i.e., to the
CA*NET SLP domain’s broker (step (6)).

In step (7) the query is converted to the SLP query for-
mat (LDAP-filter) based on the mapping between the USD
template of the lightpath service and the SLP service:light-

Path template. The converted query is executed by the
Directory Agent and, as a result, the exact service descrip-
tion that is shown in Fig. 10 is returned back. The conver-
sion of this advertisement leads to the same USD as
described in Fig. 12 (step (8)).

In step (9) the USD of the printing service is wrapped in
a Unified Response along with the original Unified
Request. The response is sent back to the Global Discovery

Fig. 14. Query for a lightpath service.

<?xml version="1.0" encoding="UTF-8" ?>
- <UnifiedResponse>
- <UnifiedRequest>
<Command>query</Command>
<MessageID>753792144</MessageID>

- <Source>
<ContactInfo>http://shanghai.uwaterloo.ca:8088:jboss-net/services</ContactInfo>
<ContactInfo>shanghai.uwaterloo.ca:33636</ContactInfo>
</Source>

- <Content>
- <ServiceDescription>
<Type>service:lightPath</Type>
<source>OS1</source>
<destination>OS2</destination>
<bandwidth>524288</bandwidth>
<bidirection>true</bidirection>
</ServiceDescription>
</Content>
</UnifiedRequest>

- <Results>
- <Content>
<DomainID />
<ExpiryTime>2005-05-02T00:00:00.000-0500</ExpiryTime>
<BrokerURL />

- <ServiceDescription>
<Type>service:lightPath</Type>
<source>OS1</source>
<destination>OS2</destination>
<bandwidth>524288</bandwidth>
<owner>CA*NET</owner>
<lease-expiry-time>2005-11-01T00:00-00.000-0500</lease-expiry-time>
<bidirection>true</bidirection>
</ServiceDescription>
</Content>
</Results>
</UnifiedResponse>

Fig. 15. Unified Response: response from peer nodes.

560 N. Limam et al. / Computer Communications 30 (2007) 546–563

Aut
ho

r's

pe
rs

on
al

co

py

Handler. Upon receiving this response, the Global Discov-
ery Handler forwards the embedded USD to the user (here
a binding bean of the web portal) whose access point
appears in the source field of the request.

7. Conclusions

In this paper, we have presented OSDA, a novel cross-
domain service discovery architecture. It allows the service
providers and consumers seamless access to service and
resource discovery across domains using local discovery
mechanisms. We have used our previous in-depth study
[1] of the existing service discovery technologies and the
requirements for a large-scale, inter-domain service discov-
ery system, as guideline to the design of OSDA.

The proposed architecture is designed to be scalable,
extensible, efficient and robust. Its interoperation with local
discovery mechanisms is enabled through programmable
components (message interceptors and translators) and
standalone brokers. Because of the loosely coupled nature
of OSDA components, the system is able to evolve over
time and gracefully recover from faults. The use of DHT-
based peer-to-peer overlay for cross-domain discovery
guarantees a bounded query response time and can manage
large volumes of service advertisement and discovery
operations.

In our initial system prototyping, we have succeeded in
incorporating a set of mature technologies in an end-to-end
OSDA implementation. Although the full implementation
is not yet complete, the results are promising. Using well-
defined standard interfaces (i.e., EJBs, Web Service and
JXTA), communication protocols (i.e., SOAP and JXTA
end-point communication pipes), and unified data repre-
sentation (i.e., XML for messages and service descriptions),
we can successfully bridge the differences among heteroge-
neous local discovery systems to provide cross-domain ser-
vice discovery.

In addition to working on completing the OSDA system
implementation, we are currently exploring the use of
ontologies in defining and integrating service description
vocabularies. Using Semantic Web tools such as Resource
Description Framework (RDF) [33] and Web Ontology
Language for Services (OWL-S) [34] at the cross-domain
discovery-layer we aim to improve search correctness (by
ensuring that the search terms are relevant to the domain
of discourse through the use of URIs instead of keywords)
and search completeness (by exploiting the use of syn-
onyms and ontological relationships between search
terms). Finally, we plan to exploit these ontological rela-
tionships to create a semantic peer-to-peer cross-domain
overlay which would improve search performance.

Acknowledgements

This work has been sponsored in part by Alcatel Inc.
and the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC).

References

[1] R. Ahmed, R. Boutaba, F. Cuervo, Y. Iraqi, D. Li, N. Limam, J.
Xiao, J. Ziembicki, Service Discovery Protocols: A Comparative
Study, in: Proceedings of IM 2005 (Application Session), May 15–18,
2005, Nice, France. URL: <http://bcr2.uwaterloo.ca/ãlcatel/publica-
tions/IM05/IM05-discovery.pdf/>.

[2] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, J. Lilley, The
Design and Implementation of an Intentional Naming System, in:
Symposium on Operating Systems Principles, 1999, pp. 186–201.
URL: <citeseer.nj.nec.com/adjie-winoto99design.html/>.

[3] Balazinska M., Balakrishnan H., D. Karger, INS/Twine: A scalable
peer-to-peer architecture for intentional resource discovery, in:
Proceedings of the First International Conference on Pervasive
Computing, Springer-Verlag, 2002, pp. 195–210.

[4] S.E. Czerwinski, B.Y. Zhao, T.D. Hodes, A.D. Joseph, R.H. Katz,
An architecture for a secure service discovery service, Mobile
Computing and Networking (1999) 24–35, URL: <citeseer.ist.psu.
edu/czerwinski99architecture.html/>.

[5] F. Zhu, M. Mutka,, L. Ni, Splendor: A secure, private, and location-
aware service discovery protocol supporting mobile services, in:
Proceedings of the First IEEE International Conference on Pervasive
Computing and Communications (PerCom03), 2003, pp. 235–242.
URL: <http://www.cse.msu.edu/z~hufeng/splendor.pdf/>.

[6] Bluetooth SIG, Specification of the Bluetooth System, Vol. 1, Core,
Rev. 1.1, Tech. rep., Bluetooth SIG, 2001.

[7] E. Guttman, C. Perkins, J. Veizades, M. Day, RFC 2608: Service
location protocol, version 2, status: Proposed Standard, 1999. URL:
<http://www.ietf.org/rfc//>.

[8] UPnP Forum, UPnP device architecture 1.0 (May 2003). URL:
<http://www.upnp.org/resources/documents/CleanUPnPDA101-
20031202s.pdf/>.

[9] Sun Microsystems, Jini Technology Architectural Overview, Tech.
rep., Sun Microsystem, Inc., 1999. URL: <http://wwws.sun.com/
software/jini/whitepapers/architecture.pdf/>.

[10] Salutation Consortium, Salutation architecture specification (part-1),
June 1999. URL: <ftp://ftp.salutation.org/salute//>.

[11] UDDI Consortium, UDDI Technical White Paper, 2002. URL:
<http://www.uddi.org/pubs//>.

[12] E. Guttman, C. Perkins, J. Kempf, RFC 2609: Service Templates and
Service: Schemes, June 1999.

[13] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan,
Chord: A scalable peer-to-peer lookup service for internet applica-
tions, in: Proceedings of the ACM SIGCOMM 2001 Conference, San
Diego, CA, 2001, pp. 149–160. URL: <http://www.pdos.lcs.mit.edu/
chord/papers/paperton.pdf/>.

[14] B. Bloom, Space/Time Trade-offs in Hash Coding with Allowable
Errors, Communications of ACM 13 (7) (1970) 422–426.

[15] B. r. c. Palowireless, Extended service discovery profile for universal
plug and play. URL: <http://www.palowireless.com/infotooth/tuto-
rial//>.

[16] B. Miller, Bluetooth whitepaper, mapping salutation architecture apis
to bluetooth service discovery layer, document number 1.C.118/1.0,
version 1.0, 1999. URL: <http://www.salutation.org/whitepaper/
BtoothMapping.PDF/>.

[17] S. Kasper, L. Bhrer, Jini discovers Bluetooth, semester Thesis SA-
2002.30, Institut fr Technische Informatik und Kommunikationsnetze,
2002. URL: <http://www.tik.ee.ethz.ch/beutel/projects/sada//>.

[18] J. Allard, V. Chinta, S. Gundala, G.R. III, Jini meets upnp: An
architecture for jini/upnp interoperability, Department of Computer
Science, University of New Orleans.

[19] T. Koponen, T. Virtanen, A service discovery: A service broker
approach, in: Proceedings of the 37th Hawaii International Confer-
ence on System Sciences, 2004. URL: <http://csdl.computer.org/
comp/proceedings/hicss/2004/2056/09/205690284b.pdf/>.

[20] S.R. Livingstone, Service Discovery in Pervasive Systems, The School
of Information Technology and Electrical Engineering, University of

N. Limam et al. / Computer Communications 30 (2007) 546–563 561

Aut
ho

r's

pe
rs

on
al

co

py

Queensland, Autralia, 2003, URL: <http://innovexpo.itee.uq.edu.au/
2003/exhibits/s370816//>.

[21] P.S. Pierre, T. Mori, Salutation and SLP, the Salutation Consortium.
URL: <http://www.salutation.org/techtalk/slp.htm/>.

[22] P.V. Mockapetris, RFC 1035: Domain names – implementation and
specification (November 1987). URL <http://www.ietf.org/rfc/
rfc1035.txt/>.

[23] P.J. Leach, R. Salz, UUIDs and GUIDs, status: Internet-Draft,
February 1998. URL: <http://hegel.ittc.ukans.edu/topics/ı̃nternet/
internet-drafts/draft-l/draft-leach-uuids-guids-01.txt/>.

[24] Project JXTA, JXTA J2SE 2.2.1, 2004. URL: <http://platform.
jxta.org/java/release/2004Q1Churrasco/releasenote.html/>.

[25] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, H. Balakrishnan, Chord: a scalable peer-to-peer lookup
protocol for internet applications, IEEE/ACM Transactions on
Networking (TON) 11 (1) (2003) 17–32.

[26] JBoss Inc., Professional Open Source from JBoss Inc., 2004. URL:
<http://www.jboss.com//>.

[27] MIT, INS/Twine v2, 2002. URL: <http://nms.lcs.mit.edu/software/
instwine/ins-2-0.tgz/>.

[28] Jetty java http servlet server. URL: <http://jetty.mortbay.org/jetty//>.
[29] R. Rivest, RFC 1321: The MD5 Message-Digest Algorithm, 1992.
[30] eXist: Open source native xml database. URL: <http://exist.source-

forge.net//>.
[31] W.W.W.C. W3C, Xquery, 2004. URL: <http://www.w3.org/XML/

Query/>.
[32] B. Zhao, The Xset XML search engine and XBench XML query

benchmark, Tech. Rep. UCB/CSD-00-1112, University of California,
Berkeley, 2000. URL: <citeseer.ist.psu.edu/zhao00xset.html/>.

[33] G. Klyne, J.J. Carrol, Resource description framework (RDF):
Concepts and abstract syntax, February 2004. URL: <http://www.
w3.org/TR/rdf-concepts//>.

[34] D. Martin et al., OWL-S: Semantic markup for web services. URL:
<http://www.daml.org/services/owl-s/1.1/overview//>.

Fernando Cuervo is currently a Product Manager
in Alcatel’s IP Network Management division, he
has transitioned from Research & Innovation
where he was for the past two years a Senior
Researcher for the Next Generation Network and
Service Management strategic project. Within this
project Fernando was the Chief Architect for the
Alcatel Policy Architecture and the Cross
Domain Integration Project. These projects
address the needs of operators to be more efficient
providing flexible network services and service

management. Fernando’s experience covers a wide range of management
topics, including, information modelling, performance of management
systems, management process re-engineering, workflow integration and
integration of management and control. Fernando has also contributed to
standards and industry fora such as IETF and MSForum. Fernando has a
bachelor degree in electrical engineering from Universidad de Los Andes,
Colombia, and a master of science in computer science from the Univer-
sity of Western Ontario.

Joanna Ziembicki received a B. Math degree in
Pure Mathematics and Computer Science (Co-op)
from University of Waterloo, Canada, in 2003.
She is now working towards her M. Math degree
at the School of Computer Science at the Uni-
versity of Waterloo. Her research interests include
web semantics, service discovery, peer-to-peer
networking and large-scale network management.

Noura Limam received the B.S. degree from the
National School of Computer Science, Tunisia, in
2001, and M.S. degree in networking from the
University of Paris VI, France, in 2002. In 2003, she
was with Ucopia Communications Inc., France, at
the R&D Department where she was involved in
the development of a management tool for enter-
prise wireless networks. She is working towards the
Ph.D. degree and is currently a Research Assistant
at the University of Waterloo, Canada. Her
research interests include network and service

management, service discovery and service-oriented architectures.

Reaz Ahmed is a Ph.D. student at the School of
Computer Science at University of Waterloo,
Canada. His interests include service discovery
architectures, distributed indexing schemes and
peer-to-peer networks.

Tianshu Li received his Master’s degree in
Computer Science from the University of
Waterloo, Canada. Before that, he received a
B.Sc degree in Computer Science from the
University of Victoria, Canada. He was a
Research Associate in the group of Networking
and Distributed Computing in the school of
Computer Science, University of Waterloo,
where his research interests span across Dis-
tributed Computing, Resource and QoS man-
agement in the Internet, Network and Service

management. During this period, he was involved in several projects
including the grid-based User Controlled LightPath (UCLP) system,
which had been deployed on the fourth generation of Canadian
Research and Education optical Network (CA*Net4). He joined Kit-
ware Inc. in September 2004. His current research interests include: grid
computing, web-based computing, parallel computing, and applying
distributed computing techniques in large scale scientific computing and
visualization.

Dr. Raouf Boutaba is an Associate Professor in
the School of Computer Science of the University
of Waterloo. Before that he was with the
Department of Electrical and Computer Engi-
neering of the University of Toronto. Before
joining academia, he founded and was the direc-
tor of the telecommunications and distributed
systems division of the Computer Science
Research Institute of Montreal (CRIM). Dr.
Boutaba conducts research in the areas of net-
work and distributed systems management and

resource management in multimedia wired and wireless networks. He has
published more than 150 papers in refereed journals and conference
proceedings. He is the recipient of the Premier’s Research Excellence
Award, the NORTEL Networks research excellence Award and several
Best Paper awards. He is a fellow of the faculty of mathematics of the
University of Waterloo, has served as a distinguished lecturer of the IEEE
Computer Society and is currently a distinguished lecturer of the IEEE
Communications Society. Dr. Boutaba is the Chairman of the Working
Group on Networks and Distributed Systems of the International Fed-
eration for Information Processing (IFIP), the Vice Chair of the IEEE

562 N. Limam et al. / Computer Communications 30 (2007) 546–563

Aut
ho

r's

pe
rs

on
al

co

py

Communications Society Technical Committee on Information Infra-
structure, and the Director of standards board of the IEEE Communi-
cations Society. He is the founder and acting editor in Chief of the IEEE
Transactions on Network and Service Management published electroni-
cally, on the advisory editorial board of the Journal of Network and
Systems Management, on the editorial board of the KIKS/IEEE Journal
of Communications and Networks, the editorial board of the Journal of
Computer Networks and the Journal of Computer Communications. He
has also served as a guest editor of several special issue of IEEE Journal of
Selected Areas in Communications (JSAC), the Journal of Computer
Networks, the Journal of Computer Communications and the Journal of
Network and System Management. He acted as the program chair for the
IFIP Networking conference and the IEEE Consumer Communications
and Networking Conference (CCNC), and a program co-chair for the
IEEE/IFIP Network Operation and Management Symposium (NOMS),
the IFIP/IEEE Conference on Management of Multimedia Networks and
Services (MMNS), the IEEE Feature Interaction Workshop, the IEEE

Autonomic Computing and Communications (ACC) and two IEEE
International Conference on Communications (ICC) symposia.

Youssef Iraqi received the B.Sc. in Computer
Engineering, with high honors, from Mohamed V
University, Morocco, in 1995. He received his
M.S. and Ph.D. degrees in computer science from
the University of Montreal in 2000 and 2003. He
is currently a research assistant professor at the
School of Computer Science at the University of
Waterloo. From 1996 to 1998, he was a research
assistant at the Computer Science Research
Institute of Montreal, Canada. His research
interests include network and distributed systems

management, resource management in multimedia wired and wireless
networks, and peer-to-peer networking.

N. Limam et al. / Computer Communications 30 (2007) 546–563 563

