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Abstract-Fault localization is the core element in fault man-
agement. Symptom-Fault map is commonly used to describe
the Symptom-Fault causality in fault reasoning. For Internet
service networks, a well-designed monitoring system can effec-
tively correlate the observable symptoms (iLe., alarms) with the
critical network faults (e.g., link failure). However, the lost and
spurious symptoms can significantly degrade the performance
and accuracy of a passive fault localization system. For overlay
networks, due to limited underlying network accessibility, as
well as the overlay scalability and dynamics, it is impractical
to build a static overiay Symptom-Fault map. In this paper,
we firstly propose a novel Active Integrated fault Reasoning
(AIR) framework to incrementally incorporate active investi-
gation actions into the passive fault reasoning process based
on an extended Symptomn-Fault-Action (SFA) model. Secondly,
we propose an Overiay Network Profile (ONP) to facilitate the
dynamic creation of an Overlay Symptom-Fault-Action (called
O-SFA) model, such that the AIR framework can be applied
seamiessly to overiay networks (called 0-AIR). As a result, the
corresponding fault reasoning and action selection algorithms are
elaborated. Extensive simulations and Internet experiments show
that AIR and 0-AIR can significantly improve both accuracy
and performance in the fault reasoning for Internet and Overlay
service networks, especially when the ratio of the lost and
spurious symptoms is high.

Index Terms-Fault localization, symptom-fault map, fault
reasoning, overlay networks.

I. INTRODUCTION

F AULT localization is the core element in the fault man-
agement system, because it identifies the fault causes that

can best explain the observed network symptoms (i.e. alarms).
Most fault reasoning algorithms use a bipartite directed acyclic
graph to describe the Symptom-Fault correlation, which rep-
resents the causal relationship between each fault fi and a
set of its observed symptoms Sf, ([9]). The Symptom-Fault
causality graph provides a vector of correlation likelihood
measure p(s~ifi), to bind a fault f1' to a set of its symptoms
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For an Internet Service Provider (e.g., AT&T), a well-
designed network monitoring system can be deployed to con-
tinuously monitor the critical network elements (e.g., routers)
for certain network behaviors (e.g., link connectivity) and
raise alarms in the event of a failure. The corresponding
Symptom-Fault map can be used to reflect such an intrinsic
relationship between the symptoms (i.e., alarms) and the
corresponding faults (e.g., link failure). Two approaches are
commonly used in fault reasoning and localization: passive
diagnosis ([5], [8], [9], [12] and active investigation ([6],
[10], [11], [15]). In the passive approach, all symptoms are
passively collected and then processed to infer the root faults.
In the active approach, faults are detected by conducting a
set of investigation actions. The passive approach causes less
network intrusiveness; however, it may take a long time to
discover the root faults, particularly if the symptom loss ratio
(SLR) is high. Here, SLR = (S - So)/S, where So is the
observed symptoms and S is the total generated symptoms.
Although the active investigation approach is more efficient
to identify faults quickly, active investigation (e.g., probing)
might cause significant overhead particularly in large-scale
networks.

For an Overlay Service Provider (e.g., Akamai), because of
commercial reasons, critical information (e.g., network fault
statistics) from ISPs is not shareable to an OSP. Moreover,
due to the dynamics and scalability of overlay networks, it is
impractical for an OSP to construct a static Symptom-Fault
map to facilitate fault localization in overlay networks.

In this paper, we address the fault localization problem
for two common but different networks: Internet and Overlay
service networks. Firstly, we propose a novel fault localiza-
tion technique that integrates the advantage of both passive
and active fault reasoning into one framework, called Active
Integrated fault Reasoning or AIR. The goal of AIR is to
balance the use of active and passive measurements. Active
investigation actions are properly selected only if the passive
reasoning is not sufficient. If there are too many passive
symptoms that might explain most of the faults, then the
use of active measurements will be automatically reduced.
Secondly, to tackle the new challenges (e.g., inaccessible un-
derlying network information and overlay network dynamics)
in overlay fault localization, we propose to build an Overlay
Network Profile (ONP) to facilitate overlay fault localization.
Based on the ONP, we introduce a dynamic Overlay Symptom-
Fault-Action (O-SFA) model for overlay networks to incor-
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porate the AIR framework into the overlay fault localization
system (called 0-AIR). Our approach significantly improves
the performance of fault localization while minimizing the
intrusiveness of the active fault reasoning.

The paper is organized as follows. After discussing the re-
lated work in Section HI, we introduce our research motivation
and the problem formalization in section II. In section IV, we
describe the components and algorithms of AIR. In Section V,
we introduce the Overlay Network Profile and the dynamic
Overlay Symptom-Fault-Action model. Then we discuss the
overlay fault localization framework called 0-AIR. In Sec-
tion VI, we present our simulations and Internet experiments
to evaluate AIR and 0-AIR performance and accuracy for both
Internet and Overlay service networks. In section VII, we
conclude the paper and discuss our future work.

II. RELATED WORK

There is a significant amount of work has been done in the
area of fault localization, for both Internet and Overlay net-
works. Accordingly, we classify the corresponding solutions
into Administrator-Level and User-Level fault localization.

A. Administrator-Level Fault Localization.

For a single administratively controlled network such as an
ISP network, the Symptom-Fault causality model is commonly
used to infer the root faults based on the observation of
network disorders. In the following, we classify this type of
related work into two categories:

Passive Approach: Passive fault management techniques
typically depend on monitoring agents to detect and report
network abnormalities using alarms or symptom events. These
events are then analyzed and correlated in order to find the
root faults. Various event correlation models were proposed
including rule-based analyzing systems [171, case-based di-
agnosing systems, and model-based systems [181. Different
techniques were also introduced to improve the performance,
accuracy and resilience of fault localization. In [12], a model-
based event correlation engine is designed for multi-layer
fault diagnosis. In [5], the coding approach is applied to a
deterministic model to reduce the reasoning time and improve
the system resilience. A novel incremental event-driven fault
reasoning technique is presented in [8] and [9] to improve the
robustness of a fault localization system by analyzing lost,
positive and spurious symptoms.

The techniques above were developed based on the pas-
sively received symptoms. If the symptoms are collected cor-
rectly, the fault reasoning results can be accurate. However, in
real systems, the symptom loss or spurious symptoms (called
observation noise) are unavoidable. Even with a good strategy
([9]) to deal with the observation noise, those techniques still
only have limited resilience to such observation noise because
of the passive fault analysis, which might also increase the
fault detection time.

Active Approach: Recently, researchers have proposed sev-
eral active fault localization approaches. In [11], an active
probing fault localization system is introduced, in which pre-
planned active probes are associated with system status using
a dependency matrix. An on-line action selection algorithm

is studied in [10] to optimize action selection. In [15], a
fault detection and resolution system is proposed for large
distributed transaction processing systems. In [3], a Computing
Utility profit maximization problem is formulated as a Markov
Decision Process (MJ)P), which shows an useful model to
formalize comprehensive action selection problems.

The active approach is more efficient in locating faults in
a timely fashion and more resilient to the observation noise.
However, this approach lacks a scalable technique that can
deal with multiple simultaneous faults. It also cannot easily
isolate intermiittent network faults and performance-related
faults because it solely depends on the active probing model.
In this approach, the number of required probes might be
increased exponentially to the number of possible faults ([10]).

Both passive and active approaches have their own good fea-
tures and limitations. Thus, incorporating active investigation
actions into the passive fault reasoning approach is an ideal
framework. AIR combines the good features of both passive
and active approaches and overcomes their limitations by
optimizing the fault reasoning result and the action selection
process.

B. User-Level Fault Localization.

Recently, more research has focused on user-level network
measurement and fault diagnosis tools/approaches, particularly
for overlay networks. In the following, we classify them as
diagnosis tools and frameworks.

Diagnosis Tools: Many end-to-end traffic measurement
tools were proposed for monitoring packet loss and other
path properties for problem diagnosis such as Sting, Cing and
Tulip. These tools are good for diagnosing a specific network
property but are not adequate as a general problem diagnosis
in overlay networks. Most of these techniques cause extensive
intrusiveness due to active probings. Moreover, they may not
discover intermittent problems.

Diagnosis Framework: One of the most interesting recent
works is the Tomography-based approach that estimates net-
work performance parameters based on traffic measurement
on a limited subset of overlay nodes [21], [22]. However,
similar to previous tools, it is still a purely active approach
that usually requires extensive probings in order to achieve
accurate results no matter whether the problems exist or not.
On the other hand, PlanetSeer( [23]), taking the Multiple
Vantage Point Approach locates Internet faults by selectively
and periodically invoking "traceroute" from multiple vantage
points. The measurement model is manually managed and only
matches the application domain directions of data flow.

To the best of our knowledge, our proposed 0-AIR is
the first comprehensive user-level probabilistic overlay fault
diagnosis framework that integrates active monitoring with
passive fault reasoning based on the dynamic generated Over-
lay Symptom-Fault-Action model.

III. MOTIVATION AND PROBLEM FORMULATION

For traditional Internet service networks, active fault man-
agement does not scale well when the number of nodes
or faults grows significantly in the network. In fact, some
faults, such as the intermittent reachability problem, may
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TABLE I
ACTIVE INTEGRATED FAULT REASONING NOTATION

Notation Definition
SA a set of all symptoms caused by the fault fi
Fi a set of all faults that might cause symptom si

So a set of all observed symptoms so far
So, a set of observed symptoms caused by fault fi
Su, a set of not-yet-observed (lost) symptoms caused by the fault fi
hi a set of faults that constitute a possible hypothesis that can explain So

4D a set of all different fault hypotheses, hi, that can explain So
SN a set of correlated but not-yet-observed symptoms associated with any fault in a hypothesis

SV a subset of SN, which includes symptoms the existence of which is confirmed
Su a subset of SN, which includes symptoms the non-existence of which is confirmed

.01 .02 .01

Fig. 1. Symptom-Fault-Action Model.

not even be identified if only active fault management is
used. However, this can easily be reported using passive fault
management systems because agents are configured to report
abnormal system conditions or symptoms, such as a high
average packet drop ratio. On the other hand, symptoms can
be lost due to noisy or unreliable communications channels,
or they might be corrupted due to spurious (untrue) symptoms
generated as a result of malfunctioning agents or devices.
This significantly reduces the accuracy and the performance
of passive fault localization. Only the integration of active
and passive reasoning can provide efficient fault localization
solutions.

To incorporate actions into a traditional Symptom-Fault
model, we propose an extended Symptom-Fault-Action (SFA)
model as shown in Fig. 1. In our model, actions are properly
selected probes or test transactions that are used to detect
or verify the existence of observable symptoms. Actions can
simply include commonly used network utilities, like ping
and traceroute; or some proprietary fault management system
(e.g., [6]. We assume that symptoms are verifiable, which
means that if the symptom ever occurred, we could verify the
symptom existence by executing some investigation actions
(e.g., probing) or checking the system status through, for
example, system logs.

In this paper, we use F I fl,,f2,. fI to denote the
fault set, and S ={Si, S2. ,Sm} to denote the symptom
set that can be caused by one or multiple faults in F. The
causality matrix PFF,s = {p(siIfj) } is used to define causal
certainty between fault fi (fi E F) and symptom si (8i E S). If
p(si Iff) = 0 or 1 for all (i, j), we call such a causality model
a deterministic model; otherwise, we call it a probabilistic

model. We also use A = jai,. .,ak}I to denote the list of
actions that can be used to verify symptom existence. We
describe the relation between actions and symptoms using
Action Codebook represented as a bipartite graph as shown
in Fig. 1. For example, the symptom si can be verified
using action a, or a2. The Action Codebook can be defined
by network managers based on symptom type, the network
topology, and the available fault diagnostic tools. The extended
Symptom-Fault-Action (SFA) graph is viewed as a 5-tuple
(S, F, A, Ei, E2), where fault set F, symptom set S, and
action set A are three independent vertex sets. Every edge in
El connects a vertex in S and another vertex in F to indicate
a causality relationship between symptoms and faults. Every
edge in E2 connects a vertex in A and another vertex in S
to indicate the Action Codebook. For convenience, in Table I,
we introduce the notations used in our discussion on Active
Integrated Fault Reasoning. The basic Symptomn-Fault-Action
model can be described as follows:

" For every action, associate an action vertex ai, ai e- A;
" For every symptom, associate a symptom vertex Si, Si E

" For every fault, associate a fault vertex fi, fi E F;
" For every fault fi, associate an edge to each si caused

by this fault with a weight equal to p(si Ifi);
* For every action ai, associate an edge of weight equal to

the action cost to each symptom verifiable by this action.
Performance and accuracy are the two most important fac-

tors for evaluating fault localization techniques. Performance
is measured by fault detection time T, which is the time
between receiving the fault symptoms and identifying the root
faults. The fault diagnostic accuracy depends on two factors:
(1) the detection ratio (a), which is the ratio of the number
of true detected root faults (Fd is the total detected fault
set) to the number of actual occurred faults Fh, formally
a = FdlFhJ ; and ()the false poiieratio (0,which is the]Fh () pstv /)
ratio of the number of false reported faults to the total number
of detected faults, formally 13=Fd- FdfFhl [9]. Therefore,
the goal of any fault management system is to increase a and
reduce 13 in order to achieve highly accurate fault reasoning
results.

The task of fault reasoning is to search for root faults in
F based on the observed symptoms So. Our objective is to
improve fault reasoning by minimizing the detection time, T
and the false positive ratio, /3, and by maximizing the detection
ratio, a.

In order to develop this system, we have to address the
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following three problems: (1) Given the Fault-Symptom cor-
relation matrix and the set of observed symptoms (So),
construct a set of the most possible hypotheses, qb =
{hlh, .. ., hp,}, hi C F, that can explain the current ob-
served symptoms; (2) Given a set of possible hypotheses,
find the most credible hypothesis h, that can give the best
explanation for the current observed symptoms; (3) If the se-
lected hypothesis does not satisfy the fidelity requirement, then
given the unobserved symptoms SN to select the minimum-
cost actions to search for an acceptable hypothesis.

Compared to Internet service networks, overlay networks
have emerged as a powerful and flexible platform for de-
veloping new disruptive network applications. We believe
the following new characteristics, challenges, and service
objectives suggest that overlay fault localization has to adopt
a new approach:

"Inaccessible underlying network information and incom-
plete network status observation: Overlay network in-
frastructure is owned and controlled by Internet ser-
vice providers (ISPs); however, overlay services are
provisioned, operated and monitored by overlay service
providers (OSPs). Overlay networks are formed by coor-
dinated overlay nodes on top of opaque underlying net-
works. It is infeasible to know the prior fault probability
of these underlying components and encode a probabilis-
tic relationship between underlying components and user-
level observations. An overlay fault diagnosis technique
must be developed based on incomplete and insufficient
user observations without relying on an underlying net-
work fault probabilistic model as in [7][4][9].

" Multi-layer complexity and dynamic Symptom-Fault
causality: The flexibility and dynamics of overlay nodes
and links make the interaction (also correlation) be-
tween overlay and underlying networks unpredictable.
In overlay networks, observed symptoms are usually not
designed and collected for monitoring specific faults (e.g.,
malfunctioning network router interfaces). Symptom-
Fault causality relationship is dynamic and unpredictable
in overlay networks.

" Fault reasoning goal and granularity: The goal in tra-
ditional fault reasoning is to accurately locate the faulty
components and fix them. However, in overlay network, it
becomes more effective for overlay applications to avoid
detected faulty components instead of fixing them. Thus,
for overlay fault reasoning, coarse-grained fault reasoning
is acceptable and may be more preferable.

In the following, we will first discuss the solution for the
above three issues in the fault localization of Internet Service
Networks. Then, we will propose the solution to address the
new challenges in the fault localization of Overlay Service
Networks.

IV. ACTIVE INTEGRATED FAULT REASONING

The Active Integrated Fault Reasoning (AIR) process
(Fig. 2) includes three functional modules: Fault Reasoning
(FR), Fidelity Evaluation (FE), and Action Selection (AS).
The Fault Reasoning module takes passively observed symp-
toms So as input and returns the fault hypothesis set (P as

Fig. 2. Active Action Integrated Fault Reasoning

output. The fault hypothesis set 4)' might include a set of
hypotheses (hl, h2,.. . ., hJ, where each one contains a set
of faults that explains all observed symptoms up to that point.
Then, 'ID is sent to the Fidelity Evaluation module to check if
any hypothesis hi (hi E 4)) is satisfactory. If most correlated
symptoms necessary to explain the fault hypothesis hi are
observed (i.e., high fidelity), then the Fault Reasoning process
terminates. Otherwise, a list of unobserved symptoms, SN.
that contribute to explain the fault hypothesis hi of the highest
fidelity is sent to the Action Selection module to determine
which symptoms have occurred. As a result, the fidelity
value of hypothesis hi is adjusted accordingly. The conducted
actions return the test result with a set of existing symptoms
Sv and non-existing symptoms Su. The corresponding fidelity
value might be increased or decreased based on the action
return results. If the newly calculated fidelity is satisfactory,
then the reasoning process terminates; otherwise, So, Su are
sent as new input to the Fault Reasoning module to create a
new hypothesis. This process is repeated until a hypothesis
with high fidelity is found. Fidelity calculation is explained
later in this section. In the next section, we describe the three
modules in detail, then discuss the complete Active Integrated
Fault Reasoning algorithm.

A. Heuristic Algorithm for Fault Reasoning

In the Fault Reasoning module, we use a contribution
function, CQfi), as a criterion to find faults that have the
maximal contribution of the observed symptoms. In the prob-
abilistic model, symptom si can be caused by a set of faults
fi, (fi E F8) with different possibilities p(s I fi) E (0, 1].- We
assume that the Symptom-Fault correlation model is sufficient
enough to neglect other undocumented faults and symptoms
(i.e., prior fault/symptom probability is very low). Thus, we
can also assume that symptom si will not occur if none of the
faults in F8 i happened. In other words, if si occurred, at least
one f, (f. E F8,) must have occurred. However, conditional
probability p(sijfi) itself may not truly reflect the chance of
fault fi occurrence by observing symptom si. For example,
in Fig. 1, there are three possible scenarios that can result
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from observing si: f, can happen, f2 can happen or both
can happen. Based on the common heuristic assumption that
the possibility of multiple faults happening simultaneously
is low [9], one of the faults (f, or f2) should explain the
occurrence of sl. In order to measure the contribution of each
fault fi to the creation of si, we normalize the conditional
probability p(s~ilf) to the normalized conditional probability
7-(si fi) to reflect the relative contribution of each fault fi to
the observation of si.

T (SilIfi) - fEFps 1if 2)()

With T (si I fi), we can compute normalized posterior probabil-
ity A'(f~isi) as follows.

A Ui I~ SO T(Silfi)p(fi) (2)

tt(f ilsa) shows the relative probability of f1 happening by
observing si. For example, in Fig. 1, assuming all faults have
the same prior probability, then pz(fi is,) = 0.9/(0.9+0.3) -_
0.75 and its(f2 lsi) = 0.3/(0.9 + 0.3) = 0.25. The following
contribution function CQfi) evaluates all contribution factors

Aisi) siE So, with the observation So,, and decides
which ft is the best candidate with maximum contribution
value CQfi) to the currently not yet explained symptoms.

C(fi) = ZaE0  (3f)s,

Therefore, fault reasoning becomes a process of searching
for the fault (ft) with maximum CQfi). This process continues
until all observed symptoms are explained. The contribution
function C(f() can be used for both the deterministic and
probabilistic models.

In the deterministic model, the higher the number of symp-
toms observed, the stronger the indication that the correspond-
ing fault has occurred. Meanwhile, we should not ignore the
influence of prior fault probability p(fi), which represents
long-term statistical observation. Since p(s1ifj) = 0 or 1 in the
deterministic model, the normalized conditional probability
reflects the influence of prior probability of fault fi. Thus,
the same contribution function can seamlAessly combine the
effect of p(fi) and the ratio of ISO I together.

The fault reasoning algorith=is finds the fault candidate
set F0 , including all faults that can explain at least one
symptom Si (Si E SO); then it calls the function HUO to
generate and update the hypothesis set 'tD until all observed
symptoms So can be explained. According to the contribution
CQf,) of each fault fi (f, E F0 ), Algorithm 1 iteratively
searches for the best explanation (i.e. the fault with the highest
contribution) (lines 5-6) of SK, which are currently observed
symptoms not yet explained by the hypothesis hi (lines 4-12).
Here SK = SO - UfiEhSo, and initially SK = So. If mul-
tiple faults have the same contribution, multiple hypotheses
will be generated (lines 13-17). The searching process (HU)
will recursively run until all observed symptoms (i.e., SK,)

are explained (i.e., SK, = (0) (lines 18-24). Notice that only
those hypotheses with a minimum number of faults that cover
all observed symptoms are included into (D (lines 23-24).

Algorithm 1 Hypothesis Updating Algorithm HU(h, SK, Fc)
Input: hypothesis h, observed but uncovered symptom set SK, fault candidate
set F0
Output: fault hypothesis set 4)

1: cma.. = 0
2: for all fi E F0 do
3: if C(fi) > cma,,ý then
4: c... - C(A,)
5: FSi-0
6: Fs*-FsU ff,}
7: else
8: if C(f,) = c'max then
9: Fs - FsU Jf,}

10: end if
11: end if
12: end for
13: for all fi E Fs do
14: hi <--hu fIM
15: SK,4-SK -SO-
16: F0, -FC - { fil
17: end for
18: for all SK, do
19: if SK,= 0then
20: 4, +-45 U fhi}
21: end if
22: end for
23: if 4) :A 0 then
24: return < -)>
25: else
26: /* No hi can explain all So *I
27: for all hi do
28: HU(hi, SKi,,Fci)
29: end for
30: end if

The above Fault Reasoning algorithm can be applied to
both deterministic and probabilistic models with the same con-
tribution function CQf,) but different conditional probability
pAsijf,).

B. Fidelity Evaluation of Fault Hypotheses

The fault hypotheses created by the Fault Reasoning algo-
rithm may not accurately determine the root faults because of
lost or spurious symptoms. The task of the Fidelity Evaluation
is to measure the credibility of the hypothesis created in the
reasoning phase given the corresponding observed symptoms.
Objectively evaluating the reasoning result is crucial in fault
localization systems.

We use the fidelity function FD(h) to measure the
credibility of hypothesis h given the symptom observation
So. We assume that the occurrence of each fault is
independent.

*For the deterministic model:

FD(h)=- Eih Si 11f

*For the probabilistic model:

D H) = liEUfiEhSi(' Hlfieh( - P(si I f)))
FDh) HSO(' H,,fEh(' _P(Sifi)))

(4)

(5)

Obviously in the deterministic model, if the hypothesis h is
correct, FD(h) must be equal to 1 because the corresponding
symptoms can be either observed or verified. In the proba-
bilistic model, if related symptoms are observed or verified,
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FD(h) of a credible hypothesis can still be less than 1 because
some symptoms may not happen even when the hypotheses
are correct. In either case, our fidelity algorithm takes into
consideration a target Fidelity Threshold, FDTH, that the user
can configure to accept the hypothesis. System administrators
can define the threshold based on long-term observation and
previous experience. If the threshold is set too high, even
correct hypothesis will be ignored; but if the threshold is too
low, then a less credible hypothesis might be selected.

The fidelity evaluation function is used to evaluate each
hypothesis and decide if the result is satisfactory by comparing
them to the pre-defined threshold value. If an acceptable
hypothesis that matches the fidelity threshold exists, the fault
localization process can terminate. Otherwise, the best avail-
able hypothesis and a non-empty set of symptoms (SN) would
be verified in order to reach a satisfactory hypothesis in the
next iteration.

C. Action Selection Heuristic Algorithm

The main reason to verify the existence of symptoms rather
than faults is that symptoms are noticeable/visible conse-
quences of faults and thus they are easier to track and verify.
The task of Action Selection is to find the least-cost actions
to verify SN (unobserved symptoms) of the hypothesis that
has the highest fidelity. As the size of SN grows very large,
the process of selecting the minimal cost action that verifies
SN becomes non-trivial. The Action-Symptoms correlation
graph can be represented as a 3-tuple (A, S, E) graph such
that A and S are two independent vertex sets representing
Actions and Symptoms respectively, and every edge e in E
connects a vertex aj E A with a vertex ,si E S with a
corresponding cost (ti3) to denote that aj can verify ,si with
cost tj= t(si, a3 ) > 0. If there is no association between
si and a3, then ti.j = 0. Because a set of actions might be
required to verify one symptom, we use a composite action
vertex, vj, to represent this case. The composite action vertex
vj is used to associate a set of conjunctive actions to the
corresponding symptom(s). However, if multiple actions are
directly connected to a symptom, then this means any of these
actions can be used disjunctively to verify this symptom. To
represent the relationship between the composite actions and
the corresponding symptoms using a bipartite graph, we (1)
set the cost of vj, t(s1 , v3), to the total cost of the conjunctive
action set; (2) then eliminate the associated conjunctive set to
the v3 ; and (3) associate vj with all symptoms that can be
verified by any action in the conjunctive action set.

The goal of the Action Selection algorithm is to select
the actions that cover all symptoms SN with a minimal
action cost. With the representation of the Symptom-Action
bipartite graph, we can model this problem as a weighted
set-covering problem. Thus, the Action Selection algorithm
searches for Ai such that Ai includes the set of actions that
cover all the symptoms in the Symptoms-Action correlation
graph with total minimum cost. We can formally define Ai
as the covering set that satisfies the following conditions: (1)
Vs5iE S, 3a E Ais.t. tij> 0, and (2) Za1iEAi,8j ESN t'i is
the minimum.

The weighted set-covering is an NP-complete problem.
Thus, we developed a heuristic greedy set-covering approx-

Algorithm 2 Active Integrated Fault Reasoning So
input: So
Output fault hypothesis h
1: SN *-SO
2: while SN # 0 do
3: b =FR(So)
4: < h, SN >= FEQIP)
5: if SN = 0then
6: return <h >
7: else
8: if IPP expired then
9: IPused to schedule active fault localization periodically*/

10: < Sv, Su >= AS(SN~)
11: end if
12: endlif
13: So -So USv
14: < h, SN >= FE({h})
15: If Sv= 0II1Sv = 0then
16: return <h >
17: end if
18: end while

imation algorithm to solve this problem. The main idea of the
Algorithm is simply to first select the action (ai or vi) that has
the maximum relative covering ratio, R, = IS- where

this action is added to the final set Af and rem'oved from the
candidate set A, that includes all actions. Here, Sai is the set
of symptoms that action ai can verify, Sai g SN. Then, we
remove all symptoms that are covered by this selected action
from the unobserved symptom set SN. This search continues
to find the next action ai (ai E A,,) that has the maximum
ratio R, until all symptoms are covered (i.e., SN is empty).
Thus, intuitively, this algorithm appreciates actions that have
more symptom correlation or aggregation. If multiple actions
have the same relative covering ratio, the action with more
covered symptoms (i.e., larger IS,,. I size) will be selected.
If multiple actions have the same ratio, Rj, and same Ia, ,
then each action is considered independently to compute the
final selected sets for each action and the set that has the

uminmumn cost is selected. Finally, it is important to notice
that each single action in the Af set is necessary for the
fault-determination process, because each one covers umique
symptoms.

D. Algorithm for Active Integrated Fault Reasoning

The main contribution of this work is to incorporate active
actions into fault reasoning. Passive fault reasoning could work
well if enough symptoms can be observed correctly. However,
in most cases, we need to deal with interference from symptom
loss and spurious symptoms, which could mislead fault local-
ization analysis. As a result of fault reasoning, the generated
hypothesis suggests a set of selected symptoms SN that are
unobserved but expected to happen based on the highest
fidelity hypothesis. If fidelity evaluation of such hypothesis
is not acceptable, optimal actions are selected to verify SN.
Action results will either increase fidelity evaluation of the
previous hypothesis or bring new evidence to generate a
new hypothesis. By taking actions selectively, the system
can evaluate fault hypotheses progressively and reach to root
faults.

Algorithm 2 illustrates the complete process of the AIR
technique. Initially, the system takes observed symptom So as
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input. Fault Reasoning is used to search the best hypothesis 4ý
(Line 3). Fidelity is the key to associate passive reasoning
to active investigation actions. Fidelity Evaluation is used
to measure the correctness of corresponding hypothesis h
(h E P~) and produce expected missing symptoms SN (Line
3). If the result h is satisfied, the process terminates with
the current hypothesis as output (Line 5 - 6). Otherwise,
AIR waits until the Initial Passive Period (IPP) has expired
(Line 8) to initiate actions to collect more evidence of verified
symptoms Sv and not-occurred symptoms SU (Line 10). New
evidence will be added to re-evaluate the previous hypothesis
(Line 13). If fidelity evaluation is still not satisfied, the new
evidence from previous observation is used to search for
another hypothesis (Line 3) until the fidelity evaluation is
satisfied. At any point, if either the fidelity evaluation does
not find symptoms to verify (SN is 0), or none of the verified
symptom had occurred (Sv is 0), the program will terminate
and return the current selected hypothesis. In either case, this
is an indication that the current selected hypothesis is credible.

V. ACTIVE OVERLAY FAULT LOCALIZATION

In contrast to an Internet Service Provider (ISP) that has full
control over its own networks, An Overlay Service Provider
(OSP) provides overlay services via a logical overlay network
infrastructure, which is built on top of underlying networks
controlled by different ISPs. As a service provider, an OSP
can monitor its overlay networks by collecting end-to-end
symptoms either passively from overlay users or via end-
to-end monitoring actions. It is impractical for an OSP to
associate all observed overlay symptoms with the underlying
network components, and further, to encode the conditional
probabilistic causality relationship between them. However,
please note that from an overlay application standpoint, there
are two types of faults: overlay faults (F0 ) and underlay faults
(FU). In this paper, we call the overlay nodes related problems
overlay faults and the underlying network related problems
underlay faults. An overlay application usually needs to take
different countermeasures to tackle the above different types
of faults. For example, if an overlay multicast application
detects that the cause of performance degradation is due to
an overloaded overlay node, it can simply replace that faulty
overlay node with another one in the same network; however,
if the problem is due to the underlying network components
(e.g., malfunctioned network routers), the overlay application
has to choose another overlay node from different networks
so that it can reroute the application traffic to avoid faulty
underlying network components. Thus, one important design
objective of the overlay fault diagnosis system is to effectively
distinguish overlay faults from underlay faults.

Considering the above objective as well as the challenges
and requirements in overlay fault diagnosis discussed in Sec-
tion II, we believe an overlay fault diagnosis system has to
be designed accordingly to aim at the following objectives. It
should:

* diagnose faults across multiple layer abstraction and
effectively distinguish overlay faults from underlay faults;

* dynamically create Symptom-Fault correlation;
" deal with insufficient user observations.

TABLE II
OVERLAY ACTIVE INTEGRATED FAULT REASONING NOTATION

Notation Definition
L a set of overlay links

P. an overlay link between overlay node i and i. 19. EL
P0  

a set of overlay path
NMj the underlying network between the overlay nodes i and j
o a set of overlay path symptoms {o},

o an overlay symptom between the overlay nodes i and j
S a set of overlay link symptoms
A a set of overlay actions

5ýý7-----------tl'ýý-- 
-- ----

N.

EUN

b

Nr,

-d

ISP - - - oi Link - Physical Link

Fig. 3. Overlay Multi-layer Illustration and 3-tuple Model

In the following, we first propose an approach to construct
an Overlay Network Profile (ONP) to facilitate overlay fault
diagnosis. Then, we introduce how to dynamically build
an Overlay Symptom-Fault-Action (0-SEA) model. Finally,
we discuss the process of Overlay Active Integrated fault
Reasoning (0-AIR). We list in Table HI the relevant notations
used in 0-AIR discussion.

A. Overlay Network Profile

There are two types of networks or Autonomous Systems
(ASes) in the Internet: Internet Service Provider (ISP) net-
works and End-User Networks (EUN). An overlay network
consists of a set of overlay nodes (NI) and a set of logical
overlay paths (PI). Each overlay path p9' (p? E P') consists
of one or multiple overlay links 19 (19' E LO, L0 is the set of
overlay links). Each overlay link (lig) is a direct network path
between a pair of overlay nodes. An overlay link, the basic el-
ement in overlay networks, involves at least three components
(source and destination overlay nodes, the underlying network
between them), and can be abstracted as a 3-tuple model. For
example, in Fig.3, there are two overlay paths: P'ab between
overlay nodes (a, b); and po between overlay nodes (c, d).
The overlay path P'ab consists of three overlay links as follows:
ae between overlay nodes (a, e); 10 between (e, f); and 1

fb

between (f, b). Each overlay link (e.g., 10,) can be represented
as a 3-tuple model (a, Nae, e). Here, a and e are overlay nodes
and Nae represents the logical underlay network component
between a and e. Please note, the granularity of the abstracted
3-tuple model of an overlay link is adjustable and depends on
the availability information from different ISPs. In this paper,
we use 3-tuple model and assume no collaboration from ISPs.

In this overlay fault diagnosis framework (0-AIR), we
assume that every overlay node can have multiple slices (e.g.,
Planet-Lab [2]) for hosting multiple overlay applications si-
multaneously. One of the slices on each overlay node is called
the administration slice and is controlled by the Overlay Net-
work Operation Center (OvNOC). Multiple overlay applica-
tions can run independently and simultaneously. Each overlay
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Fig. 4. Overlay Monitoring Infrastructure

application may have a dedicated monitoring agent (denoted
as oAgent) to monitor various problems (e.g., unreachability or
performance degradation) and send the corresponding end-to-
end overlay path symptom (denoted as oi) with the information
of corresponding overlay links as a notification to OvNOC
(Fig.4). We assume each oAgent has the knowledge of its
overlay application topology. For example, as shown in Fig.3,
if the oAgent observes an abnormal network behavior between
overlay nodes a and b, it sends 0

,,b = (Saei Sef, iSfb) to
OvNOC. Here, sij is an overlay link symptom related to M~.
If sij is negative, it means that at least one component in the
corresponding 3-tuple model (i, j, Nij) is faulty. Understand-
ing the overlay profile is challenging; However, we believe
that an overlay service provider can easily obtain statistical
information for overlay node faults and observe end-to-end
(i.e., overlay link) network symptoms. If we monitor the given
overlay link (e.g., 1,,,) for a long enough period, we could
obtain the prior fault probabilities of each component of 3-
tuple model: p(fa),p(fae),p(fe); and the corresponding con-
ditional probabilities: paef)paea)p(af).Such
information could be aggregated into a central or distributed
overlay knowledge system such that a query regarding the
prior/conditional fault probabilities for a specific 3-tuple model
could be answered. We call such an overlay knowledge system
Overlay Network Profile (ONP).

B. Dynamic Overlay Symptom-Fault-Action Model

As shown in Fig. 4, the task of the OvNOC is to correlate
received end-to-end symptoms (foil) and identify the root
causes ({f t}). However, because the observed symptoms may
not necessarily be sufficient to identify the existing network
problem, the OvNOC may have to conduct a set of monitoring
actions to determine the problems real-time with minimum
cost. Overlay actions (also denoted as A) are used to verify
the existence of the corresponding faults.

The observed symptoms could be positive or negative.
Positive symptoms can be used to quickly narrow down
the search space of root faults by removing all components
explained by positive symptoms. Thus, in the following, we
only assume all received symptoms are negative ones.

Based on received overlay symptoms (os) and ONP, we can
dynamically construct an Overlay Symptom-Fault-Action (0-
SFA) model (e.g., Fig.5) as the following:

o For every observed overlay path (pi) related symptom,
associate a vertex oi (oi E 0);

J O.=t0.j'0'0 0ý)
< 9AJ" P,
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Fig. 5. Overlay Symptom-Fault-Action Model

" For every overlay link li (li E pi) related symptom,
associate a vertex si (Si E S);

" For each component in the 3-tuple model of each involved
overlay link, associate a vertex fi (fi E F);

" For every overlay action, associate an action vertex ai of
weight 1, ai E A;

al For every component in F, associate an edge to its
corresponding overlay link symptom vertex with a weight
equal to P(s~ifj), which is obtained from ONP;

" For every overlay link symptom vertex si, associate an
edge to all relevant overlay path symptom vertex oj that
contains si

" For every overlay action in A, associate an edge to its
corresponding component in F with a weight equal to the
administrative action cost, which is specified by OvNOC
administrators.

Please note, in an overlay network, all the potential faults
being considered are directly observable via some actions (i.e.,
the up/down state of every overlay node and network path
between them could be independently and directly measured).
0-AIR uses passively obtained symptoms to determine which
potential faults to test first, as a cost optimization. Therefore,
the overlay fault diagnosis task can be further defined as the
following two sub-tasks: (1) Given a set of received overlay
end-to-end symptoms 0 = foil, find a fault hypothesis h that
is comprised of a set of faults (h = {f. }) that can best explain
overlay symptoms 0; (2) If h can not be verified after taking
verification actions, find a set of actions with the least cost
that can lead to find the root faults.

The overlay fault diagnosis (0-AIR) process includes three
functional modules: Symptom Mining (SM), Fault Reasoning
(FR), and Action Selection (AS). The Symptom Mining
module uses observed overlay symptoms (0) to dynamically
create O-SFA based on ONP. The Fault Reasoning module
takes 0-SFA as input and returns a fault hypothesis h as output.
The fault hypothesis h contains a set of faulty components
that explains all observed symptoms so far. The corresponding
overlay actions are selected to verify the hypothesis. If all
faults in h are verifiable, the overlay fault diagnosis process
can terminate. Otherwise, the action results will be used to
update previously constructed 0-SFA by removing explained
overlay symptoms, as well as irrelevant components, and
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adding new symptoms and related components. This process
is repeated until a verifiable hypothesis is found.

C. Overlay Fault Localization

In the following, because of the similarity with the corre-
sponding nodules in AIR discussed in Section IV, we will
introduce a new overlay contribution function used in the
Fault Reasoning (FR) module, and briefly discuss Symptom
the Mining (SM) and the Action Selection (AS) Modules.

1) Overlay Symptom Mining: The overlay Symptom-Fault-
Action model (O-SFA) needs to be dynamically created and
updated. There are two basic functions conducted in the
overlay Symptom Mining (SM) module: (1) to collect overlay
symptoms (0) and query ONP; (2) to construct/update O-SFA.
The input of SM can be from different overlay application
monitoring agents (oA gent), or from the return results of active
investigation actions.

2) Overlay Fault Reasoning: Given O-SFA, the next task
is to find the most likely root causes from F, which can
best explain all observed overlay path symptoms 0. In the
Overlay Fault Reasoning module, we use a Overlay Con-
tribution Function, C0 (fj), as a criterion to find faults that
have the maximum indications of the observed symptoms.
In O-SFA, overlay link symptom si is introduced because
of the observation of 0. si can be caused by at least one
component fi, (fi E F,,) in the 3-tuple model with different
possibilities p(sj I fi) E (0, 1]. We assume that the Symptom-
Fault correlation model in O-SFA is sufficient enough to
neglect other undocumented faults (i.e., prior fault probability
is very low). Thus, we can also assume that symptom si will
not occur if no component in 3-tuple model F5j is faulty.

However, conditional probability p(sjiAf) itself may not
truly reflect the chance of fault fi occurrence by observing
symptom si. For example, in Fig. 5, by observing se,f in
order to measure the indication for each fault (f, fef, ff) to
the creation of sef, we normalize the conditional probability
p~si I f) to the normalized conditional probability -r(s I fi), the
same as Eq. 1, in order to reflect the relative indication of each
fault fi to si.

Similarly, we use Eq. 2 to calculate IL~fijsi), the relative
probability of ft happening by observing si. For example, in
Fig. 5, assuming overlay components (i.e., overlay node E
and F) have much higher prior probability (e.g., 20%) than
underlay components (e.g., Ne1 with prior fault probability
10%), then i~f. 1.5f) = 0.8 * 0.2/(0.8 * 0.2 + 0.5 * 0.1 + 0.7*
0.2) = 0.45, pA(fe1Ise) = 0.14, and I'(ff Ise~) = 0.41.

Thus, we can measure the prior fault probability of each
related overlay link (represented as si) given an overlay path
symptom oi (si E oi) as the following:

o(s~Ioz) = ZfEF~j Tr(S~IfiW)P~~
ZsiESo, >ZfiEF~j T(Silfi)p~fj)

(6)

In 0-AIR, we developed the following Overlay Contribution
Function C0 (fr) to evaluate all contribution factors tt(fi si)
(si E Sj,) and decide which ft is the best candidate with
maximum indication value C0(fi) to the currently not yet
explained overlay path symptoms. Here, Of. is the set of
overlay symptoms that could be caused by fi.

C (fh) = 1: ,t(filsi)o(siloi)
8i ESfj, ,oiE~f

(7)

Therefore, overlay fault reasoning becomes a process of
searching for the fault (ft) with maximum C0 (f) such that it
can be included in the corresponding fault hypothesis h. This
process continues until all observed symptoms are explained.
We omitted the details of the overlay fault reasoning algorithm,
which is similar to Algorithm 1. However, in the overlay fault
localization process, it is impossible to evaluate the fidelity of
the hypothesis because of incomplete symptom observation.
Instead, the corresponding verification actions need to be taken
in order to verify the correctness of the hypothesis.

3) Overlay Action Cost Estimation: There are different
ways to choose the action cost. We here provide an intuitive
idea on how to estimate the cost in an overlay environment.
The action cost is a function of "benefit" minus the "over-
head". The benefit of an action is determined by the criticality
and impact of the associated fault. The criticality reflects the
severity of this fault on business value and SLA which could
be estimated from previous history or business policies. The
fault impact is used to estimate the magnitude of the damage
caused by this fault (e.g., like number of users/customers has
been effected by this fault). The overhead of an action is
estimated in term of bandwidth, delay (number of overlay
component and underlay links), and labor cost. These factors
can be converted to real cost (e.g., dollars) based on business
practices and policies and then aggregated to calculate the total
cost of an action. In our approach, the total cost is assumed
as a weighted sum of number of normalized cost factors as
explained. We also assume that the cost factors and weights
can be provided by the network administrators, as the action-
symptom association.

4) Overlay Action Selection: Depending on the verified
overlay faults (e.g. end-to-end packet loss), the corresponding
overlay actions can be selected using simple utilities such as
ping and traceroute, user scripts of individual tools such as
sting, sprobe and IMerf, or customized existing measurement
framework such as ScriptRoute. Once an overlay fault hy-
pothesis is generated, the corresponding overlay actions can
be remotely invoked from a management workstation to verify
the corresponding monitored overlay faults. As multiple tools
(actions) can be used to verify the same type of overlay fault
but with different cost (e.g. running time, intrusiveness, etc.),
we developed an Action Selection module for 0-AIR similar
to the one described in Section IV-C to search for a set of
overlay actions with minimal administrative action cost.

VI. SYSTEM EVALUATION

In this section, we describe system evaluation in Action In-
tegrated fault Reasoning (AIR) and Overlay Action Integrated
fault Reasoning (0-AIR) frameworks via extensive simulation
studies and Internet experiments on the Planet-lab [2]. The
evaluation study considers fault detection time (T) as the
performance parameter and the detection rate (a) and false
positive rate (/3) as the accuracy parameters.
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A. Evaluation on AIR via Simulations
In our simulation, the number of network objects varies

between [60,600]. Each network object generates different
faults, and each fault is associated with [2, 5] symptoms. Thus,
the total symptoms vary from 120 to 3,000. We use fault cardi-
nality (FC), symptom cardinality (SC) and action cardinality
(AC) to describe the Symptomn-Fault-Action matrix, such that
FC defines the maximal number of symptoms that can be
associated with one fault; SC defines the maximal number of
faults to which one symptom might correlate; and AC defines
the maximal number of symptoms that one action can verify.
We set p(fi) and p(s~if 3) in ranges [0.001, 0.01] and (0, 1],
respectively. Our simulation model also considers the follow-
ing parameters: Initial Passive Period (IPP); Symptom Active
Collecting Rate (SACR); Symptom Passive Collecting Rate
(SPCR); Symptom Loss Ratio (SLR); Spurious Symptom
Ratio (SSR); and Fidelity Threshold FDTH.

The major contribution of this work is to offer an efficient
fault reasoning technique that provides accurate results even in
the worst cases (e.g., SLR and 551? are high). We show how
these factors affect the performance (T) and accuracy (a and
/3) of our approach and a passive fault reasoning approach.

1) The Impact of the Symptom Loss Ratio: Symptom loss
hides fault indications, which negatively affects both the
accuracy and performance of the fault localization process.
In this simulation, we set SSR = 0; IPP = l0sec;
SACR = SPCR = 100 symptoms/sec; and vary SLR from
10% to 30%. With the increase of SLR, the passive fault
reasoning system may become infeasible. In this case, we have
to reduce the fidelity threshold so that the passive reasoning

process can converge in a reasonable time. In Fig. 6(a), we
can see that, in contrast to the passive approach, the AIR
system always reaches a relatively high fidelity threshold with
average performance improvement of 20% to 40%. In addition
to the performance improvement, the AIR system also shows
high accuracy. With the same settings, Fig. 6(b) and (c) show
that the active approach gains 20-50% improvement of the
detection rate and 20-60% improvement of the false positive
rate, even with much higher fidelity criteria over the passive
reasoning approach.

2) The Impact of Spurious Symptoms: The spurious symp-
toms are also regarded as the observation noise, which could
seriously affect fault reasoning because they provide mis-
leading information rather than losing information. In this
simulation, we set SLR = 0; IPP = 10s; SACR = 100
symptoms/sec. The relative signal-noise ratio can be calculated
as SNI? = 1-SSR if SLR = 0. Fig. 7(a) shows that
on average AIR shows 10-20% better performance than the
passive approach, even with high fidelity value. With the same
experiment settings, in Fig. 7(b) and (c), AIR shows accuracy
improvement of 10-50% for the detection rate and 10-40% for
the false positive rate over the passive approach.

3) The Impact of Network Size: In this section, we examine
the scalability of AIR when the network size and the number
of symptoms significantly increase. To show this, we measure
AIR detection time under different scenarios: (1) without
symptom loss and spurious symptom (Fig. 8(a)); (2) with
symptom loss only (Fig. 8(b)), and (3) with spurious symp-
toms only (Fig. 8(c)). In all three cases, when the network
size increases 10 times (from 100% to 1000%), the detection
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time slowly increases by 1.7 times (170%), 3.7 times (370%),
and 5.8 times (580%) in Fig. 8(a), (b) and (c), respectively.
This shows that even in the worst case scenario (Fig. 8(c)),
the growth in network size causes a slow linear increase of
AIR performance.

4) The Impact of Symptom Loss on AIR Intrusiveness:
AIR intrusiveness is measured by the number of total actions
performed to localize faults. As shown in Section IV, the
intrusiveness of AIR is algorithmically minimized by (1)
considering the fault hypothesis of high credibility, and (2)
selecting the minimum cost actions based on the greedy
algorithm described in Section P1-C. We conducted experi-
ments to assess the intrusiveness (i.e., action cost) when the
symptom loss ratio increases. In this simulation, we set Action
Cardinality (AC) to 3. Apparently, the higher the AC, the
more symptoms can be verified by taking a single action and
thus the less the total required actions. For comparison, we
also implemented an Active Fault Reasoning algorithm called
AFR. AFR takes the observed symptoms (So) as the input
to find all related faults (i.e., Fs,,). Then, APR selects the
actions to verify all possible symptoms that can be caused
by F3 0 . Fig. 9 shows that, with a different scale of network
sizes and the prior fault probability as high as 10%, the
number of actions required for AIR increases slowly linearly
(from 1 - 22) even when the symptom loss ratio significantly
increases (from 2%-35%). However, compared to AIR, APR
may take up to 200% more actions to find the satisfactory
fault reasoning result. For example, in a large-scale network

of 600 objects, the number of actions performed by AIR did
not exceed the 0.37 action/fault ratio, but exceeded the 1.19
action/facult ratio in APR.

B. Evaluation of 0-AIR via Simulations

In the following, we describe our simulations of 0-AIR

1 ......... framework. 0-AIR can be applied to locate various network
fults, such as delay, loss, and jitter. In our simulations, we
assume the same type of overlay symptoms are collected.

30 3 40 e consider the following dimensions and parameters for
simulations and experiments.

" Underlying Network Topology and Size: We use a syn-
thetic topology generator BRJTE [19] with three types
of topology models. In addition, we import to BRITE
using real network AS topology data from Skitter [20]
with each set more than 20,000 ASes for the evaluation.

" Overlay Network Topology: For given N overlay nodes,
we create F1O%N1 number of overlay applications. Each
overlay application constructs a tree with 10 overlay
paths. The number of overlay links in each overlay path
is uniformly distributed between [2,6].

" User Observation Ratio: For each overlay application, it
can decide how many critical overlay paths are moni-
tored.

" Fault Ratio: The prior fault probability of the overlay
nodes and underlay networks are uniformly distributed in
[0.01, 0.2] and [0.001, 0. 1]. Here we assume the underlay
nodes (e.g., network routers) are more reliable than the
overlay nodes (e.g., user workstations).

1) The Impact of Network Topology and Size: We use
BRITE [19] to create four types of topologies with different
network sizes from 100 to 30,000 network objects: (1) AS-
level Waxman model; (2) AS-level Barabasi-Albert model;
(3) Hierarchical model; (4) Skitter [20]. As shown in Fig.10,
when the network size increased 300 times, the corresponding
detection time increased only 11 times (approximately from
5 to 55 seconds). For the detection rate and the false positive
rate, the change rate is within 10% of the increase in network
size.

2) The Impact of Overlay Symptom Loss: The identification
and explanation of power laws has become an increasingly
dominant theme in the recent body of network topology
research [ 19]. In the following simulation, we use only BRITE
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Hierarchical Topology with the ASBarabasiAlbert and Router-
Waxman model, which can properly represent power law node
distribution. In this simulation, we simulate three different
scenarios: (1) small-size network (100 nodes); (2) medium-
size network (1,000 nodes); (3) large-scale network (10,000
nodes). For all generated network faults, we choose an Overlay
Symptom Loss Ratio increased from 10% to 100% with a
increase of 10%. Obviously, with the increase of the Over-
lay Symptom Loss Ratio, the detection time is significantly
increased (can be 50 times higher) as shown in Fig. 11. One
cause is insufficient symptom observation, thus we need take
more actions to collect the relevant information. Also, the
incomplete observation can result in an uncredible hypothesis,
which requires further actions to enhance the reasoning result.
However, the detection rate is relatively stable, even decreased
with the increase in the symptom loss ratio. The false positive
ratio is also effectively controlled because of the integration
of the active actions.

C. The Experiments on Planet-Lab

We experimented with the 0-AIR system on the Planet-Lab
testbed. In the following, we elaborate the major steps.

1) Creating an OSP: The Planet-Lab nodes are mainly
distributed in five geographic zones: North America, South
America, Europe, Asia and Oceania zones. North America
nodes can be further classified as EDU and non-EDU nodes.
Thus, the Planet-Lab nodes can be classified into six categories
as shown in Table IV. We create an OSP using the following
parameters:

*the total number of overlay nodes and their distribution:
Based on the industrial OSP infrastructure and the avail-
able resource from the Planet-Lab as shown in Table II,

TABLE III
OVERLAY NETWORK DISTRIBUTION

Overlay Service Providers
Panet-Lsaba

Nodes -800 '-.25,000
Networks '-400 '-1l,000
Countries '-30 7
Applications CoDeeN, CoMon Yahoo, Facebook

TABLE IV
EXPERIMENTAL OVERLAY TOPOLOGY

PlIanet-Lab Node Dist OSP Infratructure
N. America (edu) (346) 40
N. America (ooon-edu) (28) 10
S. America (18) 8
Europe (230) 20
Asia (138) 20
Oceania (9) 2

we select 100 well-distributed Planet-Lab nodes, each
from a different organization/network to construct an
experimental OSP as shown in Table IV.

" the total number of overlay links: Technically, for 100
overlay nodes, we can construct 100 x 99 =9,900
overlay links. (Here, we regard la' as different from
l Ib.) For simplicity without losing generality, in our
experiments we randomly select 3, 000 overlay links.

" the total number of overlay paths: Each overlay path
consists of a sequence of overlay links. From the above
selected 3, 000 overlay links, we construct 500 overlay
paths, and each overlay path consists of 3-6 acyclic
overlay links.
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2) Building the ONP: In this experiment, we use Packet
Loss as the monitored object. We built the ONP in different
periods of one, two and four weeks, respectively, and denoted
the corresponding ONP as ONP 1, ONP2 and ONP4. When
constructing the 0NP, each overlay node sends a 40-byte UDP
packet every 30s to the corresponding overlay nodes that are
on the same selected overlay links. In order to monitor the
status of the selected overlay nodes (e.g., when an overlay
node is down), from the same network of each node, we
choose another 100 overlay nodes as the mirrored overlay
nodes to ping their peers and log the test results. In practice,
there is potentially a scalability issue in constructing ONP if
the number of overlay nodes and the corresponding overlay
links is significantly increased. Clustering overlay nodes based
on their network properties (e.g., the nodes on the same
network or using the same ISP can be clustered together)
could be an effective approach to overcoming this problem.
We leave this as our future work. For all 3, 000 overlay links
during the period of constructing QNP 1, ONP2 and ONP4 ,
the overall link loss ratio is 1%, 4% and 7% respectively.
Moreover, for all lossy links in each ONP, 37%, 33% and
29% lossy links were caused by overlay node failures. The
ONP information is aggregated to a management workstation
(MW) and updated periodically. In our experiment, construct-
ing the ONP is a continuous process and the corresponding
network measurement is conducted at a fixed rate (i.e., once
every 30s). The monitoring results can be used to later verify
the fault reasoning results. In practice, the network sampling
period in constructing ONP can be significantly increased over
time to reduce the network intrusiveness.

3) Monitoring Overlay Paths: An end-to-end overlay path
is represented as a sequence of overlay links. In practice, the
overlay paths are formed and can be tracked by the corre-
sponding overlay applications. In our experiment, a source
overlay routing table, which contains the corresponding se-
quence of overlay links for each overlay path, is assigned to
every source overlay node of each constructed overlay path.
A source node sends UDP testing packets to the next overlay
node according to the source overlay routing table, until the
last one along this overlay path. Once received the testing
packets, the last overlay node sends an acknowledgement
packet with the corresponding sequence number of each test
packet directly to the source overlay node without following
the reverse source overlay routing table. At the same time, a
log is also saved and sent to the management workstation
(MW) in order to later verify if a symptom is a false
alarm due to the loss of the acknowledgment packets. If a
source node cannot receive the expected acknowledgements
before timeout, a symptom will be generated and sent to the
management workstation (MW) with an NTP timestamp and
the corresponding overlay path information (e.g., the sequence
of overlay links).

4) Overlay Fault Reasoning via 0-AIR: For all received
symptoms within the same observation window (we use 15
minutes, which is a reasonable estimated average fault pe-
riod [13]), we dynamically construct an O-SFA model based
on an existing overlay network profile (i.e., ONP1 , ONP!2 or
ONP!4). In this experiment, the overlay actions are designed,
based on 3-tuple overlay model of each overlay link, to check
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5) Experiment Results: We consider an experiment result
(also called an experiment snapshot) valid only if there are
more than 100 overlay components (i.e., IFs0 I > 100) related
to the observed overlay symptoms within the same observation
window (i.e., 15 minutes). Since the fault rate is relatively
low in the real network, in our experiments we collected
five snapshots in total from the same overlay experimental
environment as described above. Firstly, we evaluate the
intrusiveness (i.e. the total number of verification actions)
of 0-AIR with the different ONP. Fig.12 shows that 0-AIR
presented very promising results regarding its intrusiveness
factor, with an average of four, eight and 11I verification
actions when using ON.!4, ON.!2 and ON.! 1, respectively.
The detection time of five experiments based on different
ONPs is distributed between five to 25 seconds, which is
proportional to the number of required actions. Please note
that by using a ONE' built up within a shorter period (e.g.,
ONPD), 0-AIR may take much more actions because of
lacking enough statistic information of the overlay network.
For example, if an overlay link is first time reported with some
observed symptoms (i.e., no related record can be found in the
ONP), exhaustively taking all verification actions on every
related 3-tuple component is inevitable. This could explain
why using ONP4 can reduce the required verification actions.

It is also interesting to note how an 0NP impacts the
accuracy of 0-AIR. Accordingly, for each of the experiments
discussed above, let 0-AIR adopt ON.! 1, ON.! 2 and ON.!4,
respectively, to analyze the root causes. As shown in Fig. 13,
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there are no obvious differences in the fault reasoning accuracy
by using ONPI and QNP 2. However, the reasoning accuracy
based on QNP4 outperforms both ONPI and ONP2. This
result seems to show that the statistics based on the long-
term network monitoring results can provide a more reliable
reference to get a more accurate reasoning result.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a novel technique called Active
Integrated fault Reasoning or AIR. AIR is designed to minimize
the intrusiveness of investigation actions (e.g., probings) via
incrementally enhancing the fault hypothesis and optimizing
the investigation action selection process. With the advent
of the overlay service model, how to effectively managing
overlay service networks becomes a significant challenge.
In this paper, we also propose a novel end-to-end user-
level overlay fault diagnosis framework (called 0-AIR). 0-
AIR creates the correlation matrix dynamically as 0-SFA and
seamnlessly integrates the passive and active fault reasonings.
The results of our simulation and Internet experiments show
that both AIR and 0-AIR are efficient and accurate.

In our future work, we will investigate the automatic cre-
ation of the Symptom-Fault-Action correlation matrix from
the network topology and high-level service specifications,
especially for dynamic overlay networks.
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