IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010 559

Assessing Software Service Quality
and Trustworthiness at Selection Time

Noura Limam and Raouf Boutaba, Senior Member, IEEE

Abstract—The integration of external software in project development is challenging and risky, notably because the execution quality
of the software and the trustworthiness of the software provider may be unknown at integration time. This is a timely problem and of
increasing importance with the advent of the SaaS model of service delivery. Therefore, in choosing the Saa$S service to utilize, project
managers must identify and evaluate the level of risk associated with each candidate. Trust is commonly assessed through reputation
systems; however, existing systems rely on ratings provided by consumers. This raises numerous issues involving the subjectivity and
unfairness of the service ratings. This paper describes a framework for reputation-aware software service selection and rating. A
selection algorithm is devised for service recommendation, providing SaaS consumers with the best possible choices based on quality,
cost, and trust. An automated rating model, based on the expectancy-disconfirmation theory from market science, is also defined to
overcome feedback subjectivity issues. The proposed rating and selection models are validated through simulations, demonstrating
that the system can effectively capture service behavior and recommend the best possible choices.

Index Terms—Software as a service (SaaS), software selection, service utility, review and rating, trust and reputation, risk

management, SLA monitoring.

1 INTRODUCTION

GROWING competition within the IT industry has created
a strong incentive for developing solutions to support
more agile and more competitive businesses. The long-term
success of commercial off-the-shelf (COTS) software as a
time-effective alternative to custom “in-house” developed
solutions is still being compromised by the involved cost of
ownership, installation and maintenance time, and effort.
Therefore, the IT industry has started to move toward a new
model for software delivery—one that is easy to deploy,
maintenance-free, and cost-effective.

The Software as a Service (SaaS) model, where software
is delivered on-demand and priced on-use, has been made
possible by the widespread adoption of fast Internet
access, combined with the widespread acceptance of SOA-
based solutions. By reducing the cost of ownership and
alleviating the burden of software installation and main-
tenance, SaaS has gained popularity in recent years. As
enterprises have started to outsource some of their
software infrastructure and development projects to SaaS
vendors, the number of SaaS offerings has expanded
dramatically, even among vendors of traditional on-
premises software.

However, integrating outsourced software into project
development can be challenging or even risky. In particular,

e N. Limam is with the Division of IT Convergence Engineering,
POSTECH—Pohang University of Science and Technology, San31, Hyoja
Dong, Nam Gu, Pohang, Gyungbuk 790-894, Republic of South Korea.
E-mail: noura.limam@gmail.com.

e R. Boutaba is with the D.R. Cheriton School of Computer Science,
University of Waterloo, 200 University Avenue West, Waterloo, Ontario,
N2L 3G1, Canada. E-mail: rboutaba@uwaterloo.ca.

Manuscript received 28 Mar. 2008; revised 3 Apr. 2009; accepted 30 Nov.
2009; published online 6 Jan. 2010.

Recommended for acceptance by A. Wolf.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2008-03-0120.
Digital Object Identifier no. 10.1109/TSE.2010.2.

0098-5589/10/$26.00 © 2010 IEEE

the performance or quality of the external software may not
be satisfactory at the time of execution. SaaS somewhat
lowers this risk due to its on-use pricing. While traditionally
acquired COTS may be prohibitively expensive to replace
despite unsatisfactory performance, the SaaS model pro-
vides consumers with a looser, more flexible relationship to
software or service providers. To some extent, SaaS
provides a low-risk alternative to large investments. Never-
theless, the success of SaaS integration depends on the
behavior of the provider. Since the software is being
delivered as a service, it is hosted at, and maintained by,
the provider, leaving the consumer with a low degree of
control on its performance. As long as the service provider
fulfills its obligations to the consumer—provides the
needed support, undertakes the required management
and maintenance tasks, and generally behaves well—then
the risks of failure remain low. However, the behavior of
service providers is unknown until the service is rendered.
The risk of bad behavior cannot be excluded and can have
adverse effects on the project outcomes.

An empirical study of the risk factors related to the
development using external software (COTS-like) compo-
nents along with associated risk reduction activities has
been reported in [1]. It showed that risk reduction at
software selection time is negatively correlated with
occurrences of most project development-related risks. In
fact, selection must be driven by quality constraints, with
selection time evaluation of component quality and choice
of appropriate service providers all essential to successful
integration. However, in practice, the evaluation of service
quality cannot be performed until the service is acquired.
Consequently, quality evaluation is typically limited to the
evaluation of quality offers by comparing the quality level
that providers promise to the quality requirements.
Compliance cannot be guaranteed at selection time, so it
is essential to choose a provider that is trusted to respect
its commitments.

Published by the IEEE Computer Society

560 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

The trustworthiness of service providers is commonly
measured by their reputations. Reputation systems not only
record and track providers’ behavior, but can create an
incentive for good behavior by providing consumers with
some control over market quality. However, existing
systems tend to rely on customers’ ratings of past service
experiences. This creates major issues in terms of sub-
jectivity and rating unfairness.

This paper introduces a framework for reputation-aware
software service selection and rating. The key characteristic
of the proposed framework is to automate both the selection
and the rating of software services, in this way not only
alleviating a potentially tedious and time-consuming task,
but also increasing the objectivity of the service quality
reports. The ultimate aim underlying the development of
the framework is to reduce at selection time the risk
associated with the utilization of external software services
in development projects. The service selection algorithm
acts as a user-centric and reputation-aware service recom-
mender while determining a service’s suitability to a
particular user’s preferences in terms of quality and cost.
As opposed to previous works on software service selection
where reputation is either neglected [2] or dealt with as any
quality parameter [3], service reputation is considered in
this work as a predictor for the conformance of service
offers to the resulting delivered service quality. In order for
a reputation mechanism to be fair and objective, it is
essential to compute reputation on the basis of fair and
objective feedbacks. While most of the works that addressed
this latter issue are on evaluating the fairness of existing
feedbacks [4], our work focuses instead on the process of
generating objective and fair feedbacks. Grounded on
works in the area of Service Level Agreement (SLA)
monitoring such as the one in [5], a computational model
is provided to objectively evaluate the delivered service
based on the actual measurement of the conformance of the
execution quality to the contracted SLA. A novel algorithm
is also devised to automate the rating process based on the
expectancy-disconfirmation theory from market science.

The remainder of the paper is organized as follows:
Section 2 discusses the motivations and the contributions of
this work. Our automated feedback and reputation computa-
tion models are described in Section 3, followed by our
automated service selection algorithm in Section 4. Section 5
presents the results of the simulation studies conducted to
evaluate the proposed system. Section 6 considers the
implications of these results and describes a number of topics
for future work. In Section 7, related works are studied and
compared to this work. Finally, Section 8 concludes the paper.

2 MOTIVATIONS AND CONTRIBUTIONS

Service selection is a multicriteria decision-making problem
whose resolution commonly involves a trade-off between
quality and cost. As explained before, there is no guarantee of
service quality at selection time; however, reputation can
help in predicting the likelihood of a quality offer to be met.
As a matter of fact, selection can translate into a three-criteria
decision-making problem involving reputation, quality, and
cost. This problem can be reduced to a single-criterion
decision-making problem provided that quality reputation

5 3

Service provider Consumer
l l J Score
SLA Preferences I .
Selection
function
L—\—o Cost I
Quality
{(dimension, value),...}
Monitoring
system Reputation
Service l T
Utility Reputation
measure system
Rating [
function Mo
Feedback

Fig. 1. Automated selection and rating framework.

and cost are aggregated into a single selection metric.
Although recent literature works agree on the necessity of
considering reputation for service selection, there is no
general consensus on the role of reputation in decision
support. Considering service reputation as the aggregation
of “arbitrary” consumers’ feedback makes it hard to clearly
define what exactly feedback refer to (credibility, reliability,
etc.) and what exactly reputation stands for.

Ensuring the veracity of reputation reports is also a
critical issue. First, feedback can be subjective since it is
based on consumers’ “personal” expectations and opinions.
Second, consumers may have an “obstructed” view of a
service and its performance, especially when the latter is
part of a composite service. Third, reputation systems are
prone to attacks by malicious consumers who may give
false ratings and subvert service reputation. Generally, it is
harder to maintain a per-consumer reputation system than
a per-service reputation system, mainly because services are
less versatile, more traceable, and come in a smaller
number. Moreover, it is harder to manage user identities—
especially for malicious users who are likely to change
theirs quite often (e.g., sybil attacks [6]). Finally, consumers
may have little incentive to leave feedback; they are often
more eager to leave negative feedback when they are
dissatisfied with the experienced service than to leave
positive feedback when they are satisfied. This introduces a
bias against positive ratings and leads to unfair reputation
reports. For all of these reasons, the first step toward
establishing the foundations of an automated reputation-
aware selection framework is to unambiguously define the
feedback as a computable nonarbitrary metric and to devise
an objective rating system.

As shown in Fig. 1, our contributions range from feedback
computation to the derivation of the selection metric, and
include reputation calculation. The focus in this work is on
software services, contracted with monitorable Service Level

LIMAM AND BOUTABA: ASSESSING SOFTWARE SERVICE QUALITY AND TRUSTWORTHINESS AT SELECTION TIME 561

Service Level Agreement

Obligations

* 99.99 % uptime

* 600 ms response time

Compensations

» Percentage of total charges paid by customer
UPTIME CREDIT
(PER 15 MIN. CONTROL)
99.99% - 100.00% 0%
99.98% - 98.00% 5%
97.99% - 97.00% 10 %
96.99% - 95.00 20%
<95% 50%
RESPONSE TIME CREDIT
(MEAN PER 15 MIN. CONTROL)
Oms - 600 ms 0%
600ms - 633ms 5%
634ms - 666ms 10 %
666ms - 699ms 15%
>799ms 20%

Fig. 2. Example SLA: small subset of SaaS SLA.

Agreements (SLAs) [7]. Monitorable SLAs are a useful tool
that govern consumer-provider relationship. Fig. 2 shows a
short version of an SLA (say, for service GenericSaaS) as can
be found on the Web [8], [9], [10], [11] and in a more formal
representation [12]. From the customer’s perspective, the
SLA introduces a level of accountability and a means to
monitor service quality and performance. In this example,
two quality parameters are considered: uptime and response
time. The SLA also suggests that service uptime and response
time are estimated each 15-minute period in the billing cycle.
From the provider’s perspective, the SLA is used to set
realistic expectations (commitments in terms of service
quality—here uptime is set to 99.99 percent and response time
to 600 ms). SLAs also include methods of compensation
should the provider’s commitment not be met—in the
example, a credit defined as a percentage of total charges
paid by the consumer. Indeed, SLAs create an incentive for
good behavior among SaaS providers but still do not
guarantee any good behavior at service delivery time. For
this reason, we devise a proactive strategy for risk reduction
at selection time.

We introduce a rating function that makes use of quality
monitoring results and service cost to produce feedback.
Only measurable quality parameters are considered for
monitoring. Monitoring is achieved in compliance with the
SLA, i.e., the metrics used and the way measurements are
achieved must be the same as those described in the SLA.
Measurements are assumed to be conducted in a trustworthy
manner in order to be credible and accurate. Skene et al. [7]
suggest, for instance, the use of monitoring software
executing on trusted computing platforms or temper-proof

hardware. In addition to being possibly implemented on the
consumer’s and provider’s side, monitoring can also be
supported by third parties trusted by both the consumer and
the provider. Third parties will have to arbitrate any dispute
between the consumer and the provider. Third party
monitoring can be supported by the companies that manage
service directories since they are likely to be concerned with
the quality of the advertised services [13], or any specialized
companies hired to achieve QoS monitoring tasks [14]. The
trustworthiness of the monitoring system together with our
proposed rating function ensures the credibility of feedbacks.

We also propose a reputation derivation model that
aggregates all of the feedback into an overall rating (i.e.,
reputation) while taking into account the time factor for a
more realistic result. Finally, we devise a selection function
that derives a single selection metric out of the reputation of
the service as provided by the reputation system and the
offered quality and cost. In order for the selection metric to
be more compatible with the request of the consumer, we
allow the latter to define her/his preferences and priorities
in terms of the different aspects of the service offer.

3 AUTOMATED RATING AND REPUTATION
CoMPUTATION MODELS

The goal of the rating function is to provide objective
feedback on a delivered service without human interven-
tion. We define in the following a feedback forecasting model
that translates service execution quality into feedback so
that any quality monitoring system can be enhanced with
such a rating function.

3.1 Feedback versus Satisfaction

In essence, feedback is a measure of a user’s satisfaction with
the service. Thus, it is necessary that the automated rating
process provide feedback that corresponds to the level of
satisfaction/dissatisfaction with service delivery. The expec-
tancy-disconfirmation theory from market science [15] pro-
vides a conceptual framework for the study of consumer
satisfaction versus service quality. According to this theory,
consumer satisfaction is the outcome of the comparison
between consumers’ preconsumption expectation and postcon-
sumption disconfirmation, where confirmed expectations lead
to moderate satisfaction, positively disconfirmed (i.e., ex-
ceeded) expectations lead to high satisfaction, and negatively
disconfirmed (i.e., underachieved) expectations affect satis-
faction more strongly than positive disconfirmation and lead
to dissatisfaction. This theory has been extensively used to
investigate the antecedents and consequences of consumer
satisfaction, as well as the inferred relationship with
customer retention. As a matter of fact, several customer
satisfaction models have been devised in the literature; Xiao
and Boutaba [16], for instance, present a network service-
oriented customer satisfaction model that links network
service quality to customer satisfaction and then to provider
revenue and profit.

Existing customer satisfaction forecasting models rely
mainly on customer’s expectation and perception, which are
inherently subjective concepts. We found our feedback
forecasting model on the former models, however, to ensure
the objectivity of our model, objective, nonarbitrary, and

562

i Monitoring |)
i system : Perception
| SLA ‘| Expectation

Fig. 3. Feedback forecasting model.

measurable parameters are substituted for the subjective
concepts. Namely, SLAs are used to quantify quality
expectations and trusted quality measurements (i.e., quality
monitoring results) to quantify quality perceptions (see
Fig. 3).

3.2 Mathematical Formulation

We use a single scalar metric to quantify quality perception.
This metric is basically the utility function of the delivered
service. Utility expresses the conformance of service execu-
tion quality to the agreement. The utility function can be
considered as the distribution function of the probability
that the observed quality meets the agreed quality level
during service execution. Thus, the utility function can be
estimated from quality monitoring results.

We denote by v the utility function of the service. Service
quality can be defined as a vector of N dimensions, where
N represents the number of quality parameters QoSgm =
Q1,Q2,...,Qn-

The utility function v is defined in [17] as a weighted
product of the utilities associated with each parameter Q;.
Compared to a weighted mean, which moderates the
impact of low utility levels, a weighted product better
reflects the intense impact that a failure in a single quality
aspect may have on the overall performance of a QoS-
sensitive service. For instance, high server response time
may cause the client side application to time out before the
service is properly rendered. From the consumer’s perspec-
tive, the impact of a high response time (i.e., low levels in
the response-time-related utility) should not be moderated by
the permanent availability of the service (i.e., high levels in
the uptime-related utility) as it leads to the failure of the
service from the consumer’s perspective.

v is expressed as follows:

I

Qi€Q0Suim

v= Fol, (1)

where, for each QoS parameter Q; in QoS Fy, is a function
that gives the utility associated with the parameter ¢); and the
weight cg, € [0, 1] reflects how much the user cares about
the quality parameter Q;. ¢, is user specific; in our model,
we consider ¢g, = 1 for each parameter ();. We also define
the function Fy, as the probability for a measured value

Disconfirmation

Customer satisfaction forecasting model -

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

Satisfaction H Feedback]

'
I

o I

Feedback forecasting model .-

of Q; to meet the quality requirement. For instance, the
utility of a GenericSaaS is computed as follows:

v = Fuptimc * Frcspunse—ti'mc-

3.2.1 Utility Computation

For each quality parameter @);, dom(Q);) denotes the domain
of @i, (¢). the agreed (expected) value, and ¢; the
measured (perceived) value of Q;. We define the function
Accept; as follows:

dom(Q;) — 0,1

1 if ¢; better than or
equal to (g;),

0, otherwise.

Accept; i — Accepti(q;) =

(2)

The Accept; function follows a Bernoulli distribution. The
probability p; for a measured ¢ to meet the quality
requirement (g;), represents the utility of the quality
parameter Q).

Let n; be the number of trusted accurate measurements
conducted on the quality parameter g; (i.e., the measure-
ments that conform to an accuracy constraint if any has
been agreed upon [7]). For each trusted measurement £,
(¢;), denotes the measured quality value and (X;), the
associated Accepti((gi);). (Xi)y, (Xi)y, .-+, (Xi),, are inde-
pendent Bernoulli trials, identically distributed with success
probability p;, then

7

Y; = Z(Xj)k ~ Binomial(n;, p;). (3)
=1

Under certain conditions, an approximation to
Binomial(n;,p;) is given by the normal distribution
Normal(n;p;, nipi(1 — p;)). Because the normal approxima-
tion is not accurate for small values of n;, the normal
approximation is commonly used with the rule of thumb
n;p; > 10 and n;(1 — p;) > 10. It is worth noting that the
approximation does not apply well if the proportion of
successful measurements is too close to 0 or 1 and fails
when the proportion is equal to 0 or 1.

Let p; be the proportion of successful measurements. p; is
computed as follows:

LIMAM AND BOUTABA: ASSESSING SOFTWARE SERVICE QUALITY AND TRUSTWORTHINESS AT SELECTION TIME 563

(Xi)ye (4)

According to the central limit theorem, p; approximates
p; with a standard deviation

p; is within approximately two standard deviations, i.e.,
falls in the interval [p; — 2959 * 0, P; + 2959 *] with prob-
ability 95 percent.

Let Fy, be the lowest bound of p,—considering that
rating is part of a risk reduction strategy:

Fp, = max (ﬁl — Zosy *

Assume, for example, that a GenericSaaS service is
contracted with the SLA that appears in Fig. 2, and the
uptime is monitored and compared against the terms of
the SLA. Measurements are conducted repeatedly and the
uptime of the service is observed during 15 min each time as
requested by the SLA. The effective uptime is calculated by
subtracting from 100 percent the error rate experienced
during the 15 min observation period. If no error has been
detected, then the uptime at the end of the observation period
is 100 percent. Assuming, for example, that measurements
have been conducted 50 times (nypime = 50), and that no
error has been detected the first 49 measurements, i.e.,
(X'uzdtimc)l = (XUPti"w)z == (Xupl‘mw)@ =1. Assuming
that, during the last 15 min, 10 out of the 50 attempts to
connect to the service have returned internal service errors,
the service uptime at the 50th measurement is 80 percent.
This also means that the SLA has been violated within the
50th measurement, i.e., (Xuptime)so =0. This leads to
Duptime = 0.98 and

—— uptime (1 — Duptime
puptimc — Zosy * pu,ptnne(. puptlmf,) _ 094
nyptime

Duptime 18 t00 close to 1, and according to the rule of thumb,
Nuptime 1S Not large enough given that 50« (1 —0.94) =
3 < 10. This means that 0.94 is not a good approximation,
therefore, it is more accurate to set Fime to 0.98.

3.2.2 Feedback Computation

As shown in (6), customer satisfaction CSAT is defined in
[16] as a linear combination of a perception function and a
disconfirmation function. The former maps the perceived
utility to the customer’s “baseline” satisfaction, and the
perceived disconfirmation to the customer’s “referred”
satisfaction (i.e., considering customer’s expectation as a
reference point):

CSAT(s) = f,(v) + falv —v.), (6)

where v denotes the perceived utility, v. the expected utility,
fp the perception function, and f; the disconfirmation
function. The perception function is described as a concave
function considering that the customer is less sensitive to
changes in high utility values than to lower ones. The

disconfirmation function is expressed as a two-piece convex-
linear function grounded on the fact that customer satisfac-
tion increases mildly (linearly) when perceived utility
exceeds expectation and decreases significantly (exponen-
tially) when perceived utility falls below expectation.

We describe our feedback function FEEDBACK(s) as
an increasing function bounded between 0 and 1 and view
it as a combination of a perception function and a
disconfirmation function similarly to CSAT. According to
[16], customer expectation, ie., v, evolves over time
depending on the experienced disconfirmation, in the way
that positive disconfirmation increases future expectation
while negative disconfirmation has the opposite effect. For
the sake of objectivity, we consider that expectation is solely
governed by the quality agreement and does not evolve
over time. As a matter of fact, it is possible to consider v. as
constant; the customer expects the agreement to be
respected, thus, v, = 1. This also implies that the perceived
utility will not exceed the expected utility; the disconfirma-
tion function is strictly convex.

The feedback function can be formalized as follows:

FEEDBACK(s) = f,(v) + falv—1) = f(v), (7)

where f is an increasing function defined in [0,1] and
bounded between f(0) = 0 and f(1) = 1. f should combine
the characteristics of both the perception and disconfirma-
tion functions, in particular, the concavity of the perception
function and the convexity of the disconfirmation function.
We consider that f varies slightly for utility values close to 0
as well as for utility values close to 1. The concavity of f
changes at a particular utility value, say, Uy in [0, 1]. Those
assumptions can be formalized as follows:

f"(Uy) = 0,
f"(v) >0 for vel0,Up), (8)
/"(v) <0 for wve Uyl

Similarly to [16], we adopt a polynomial rate of change for
f. The above assumptions lead to the following expression:

f'(0) = u(Us = v)

After integration, and considering that f is an increasing
function with f(0) =0 and f(1) =1, we obtain the follow-
ing expression:

with p > 0. 9)

B 1o o L _Uo
=Ly 20 1 — 1
f(v) 6U+ > U+(+u(6 5) v (10)
with p respecting the following constraints:
U
1+ (70 — g) >0,
(11)

The equations in (11) define the relationship between the
parameters p and Uy. As shown in Fig. 4, Uj and p control the
shape and curvature, respectively, of the feedback function f.
For similar p values, U, delays the convexity of f—that is the
sensitivity of the feedback function to variations in utility—to
higher utility values. Fig. 4 shows how f turns from strictly
concave with Uj = 0 to strictly convex with Uy = 1, with p set

564 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36,

P S e, g

06F - N :

Feedback

04F -

—6— U0=0.0, mu=3

: —&— U0=0.5, mu=12
0.2 @ .

.................. U0 0, mu3
—+— U0=0.5, mu=6
_ : U0=0.5, mu=0
0 7 1 1 1
0 0.2 0.4 0.6 0.8 1

Utility
Fig. 4. Impact of U, and p on the feedback function.

to the same value. On the other hand, for similar Uj values,
softens or amplifies the curvature of f, hence, the impact of
variations in utility, nearby extreme utility values. When Uy is
set to 0.5, for instance, the curve reaches maximum (respec-
tively, minimum) curvature when (. is set to 12 (respectively,
0). More generally, maximum curvature is attained with y set
as follows:

6 1
u—;zm(m*%ehﬂ’ 12)
R TS
H_3U071 or Upc€ 5t

The impact of Uy on the feedback function suggests that
Up and the cost of the service could be inversely related. It is
common sense that cost has an impact on customer quality
expectation; the higher the cost of the service, the higher the
expectation and the more sensitive the customer is to
quality disconfirmation. In fact, the customer gets easily
dissatisfied with pricey services as soon as the utility drops
below the expected value. As opposed to U, the higher
(respectively, lower) the cost of the service, the more convex
(respectively, concave) the feedback function is at nearby
high utility values. This suggests that the higher the cost is,
the lower U, should be, and vice versa.

Let ¢ denote the cost of the service and ¢ the function that
relates service cost to Uy. ¢ is a positive increasing function
with a value in [0, 1]. Let ¢, be the lowest possible service
cost and ¢, the highest. We can simply define ¢ as follows:

Dom(c) — [0,1]

1 .

¢ . 5 if Cmaz — Cmin = 07

c— ¢(C) = C — Cmin

, else.
Cmaz — Cmin

(13)

This way, Uy =1 for ¢ = ¢pee, and Uy =0 for ¢ = cpp-
Fig. 5 shows how the shape of the feedback function evolves
from convex to concave with decreasing cost values.

NO. 4,

JULY/AUGUST 2010

o8 - -

06F -

Feedback

04

—6e—cost=0
—+=— cost = 50

02 -
—+—cost =35
—*—cost =100
! : cost =65
% S 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Utility
Fig. 5. Impact of cost on the feedback function.

In the following, we experiment with our automated
rating process and demonstrate that the design require-
ments have been properly implemented. To this end, we
consider 10 service instances S}, j = 1..10. Each comes with
a randomly generated cost value between 0 and 100, and an
SLA violation probability fail;. For each service instance, we
simulate 100 quality measurements. Each measurement
violates the SLA with the probability fail;. From the
measurement results, we estimate service utility v. The
probability the SLA is respected (1 — fail;) is referred to as
the effective utility, while estimated utility refers to v. Finally,
we compute the feedback for each service instance as
explained at the beginning of this section (see Table 1).

Fig. 6 shows the impact of utility and cost variations on
feedbacks. For equal perceived (i.e., estimated) utility
values, e.g., Ss and Sy, the higher the cost of the service,
the lower the feedback, whereas for equal costs, e.g., Sy and
Sy, the higher the perceived utility, the higher the feedback.
However, the impact of variations in cost remains lower
than variations in utility. We also observe that the higher
the cost of the service, the more important the impact of

TABLE 1
Experiment Settings and Results
Service | SLA violation | Cost | Estimated | Feedback

ID rate utility

S1 0.02 9 0.88 0.97
Sa 0.04 95 0.88 0.82
S3 0.13 79 0.81 0.75
Sa 0.05 95 0.70 0.56
Ss 0.11 9 0.70 0.87
Se 0.13 34 0.65 0.80
S7 0.51 6 0.42 0.59
Ss 0.43 91 0.37 0.18
Sy 0.51 10 0.37 0.52
S10 0.75 11 0.17 0.24

LIMAM AND BOUTABA: ASSESSING SOFTWARE SERVICE QUALITY AND TRUSTWORTHINESS AT SELECTION TIME 565

-100

n M i [Jcost
CJutiity [90
I Feedback
0.8 7 eedbacl 80
470
S
o6 4160
§ 3
o
i o
£ 04
5
0.2f

2 3 4 5 6 7
Service ID

Fig. 6. Feedback versus utility and cost.

variations in utility values on the feedback. For instance, S,
and S5 have equal low costs and high utilities, while S, and
Sy have equal high costs and have the same high utilities as
S1 and S5, respectively. However, we observe that the
deviation in feedbacks (A feedback) between S; and Sy is
almost three times as high as between 5} and S;. Variations
in Afeedback are in fact driven by variations in the
curvature of the feedback function.

3.3 Reputation Computation Model

As discussed previously, reputation is computed on the basis
of past feedbacks. It helps consumers predict the credibility of
the service offer and the trustworthiness of the service
provider prior to reaching an agreement.

Past feedback reflects the past behavior of a service and
may give an indication of its future behavior; feedback may
be randomly distributed when a service’s behavior is not
deterministic; they may follow a trend, e.g., increasing
feedback may reflect an improvement in service quality, or
they may be cyclic when there is a periodicity in a service’s
behavior, e.g., quality may decrease in rush hours leading to
low feedback at those times.

When the feedback does not show any trend, it is
difficult to predict a service’s future behavior. However,
when feedback exhibits a trend, this should be taken into
account by the reputation function as it could help to
predict future behavior. Smoothing and forecasting techni-
ques, like Moving Average, Weighted Moving Average, or
Exponential Smoothing [18], can be used to predict near
future behavior from past behaviors. Other more specific
techniques like Holt’s Linear Exponential and Holt-Winters’
Forecasting are more suitable for long-term forecasting over
data showing a trend and periodicity, respectively.

In the following, we will evaluate some of the previously
mentioned techniques under different circumstances,
namely, moving average (MA), weighted moving average
(WMA), simple exponential smoothing (SES), and Holt's linear
exponential (HLE). We first consider a service with non-
deterministic behavior. Then, we assume that the quality of
the service is degrading. For the sake of simplicity, we make
the following assumptions: 1) Feedback is left each time
unit and 2) we want to predict the behavior of the service
for one time unit ahead.

We generate N utility values and compute the corre-
sponding feedbacks as explained in Section 3.2.2. We

compare the user’s feedback series f(t) against the reputa-
tion series R(t). The latter is computed as follows:

1Y, o f(7) with MA,
T)+ + g f(E =T+ 1) with WMA,

af(t)+ (1 —a)R(t—1) with SES,

L(t)+T(t) with HLE,

(14)

where L(t) = af(t) + (1 —a)R(t — 1) is the exponentially
smoothed estimate of the level of the series at time ¢ and
T(t)=06(L(t) —L(t—1))+ (1 —-p)T(t —1) is the exponen-
tially smoothed estimate of the trend of the series at time ¢.

To simulate nondeterministic behavior, we generate
randomly N utility values. We simulate the trend by
generating an exponentially decreasing distribution with a
certain amount of distortion. We have set the smoothing
period T for MA and WMA to 5, ie. the forecast
reputation value corresponds to, respectively, the mean
and weighted mean of the feedbacks collected in the last
5 time units.

Fig. 7 shows that the reputation is more smoothed with
the MA technique. Very recent variations in the feedback
series have a low impact on reputation. With a higher
smoothing period, the resulting series would be even
smoother and the reputation would be less sensitive to
variations in recent feedbacks.

Whereas in MA, past observations are weighted equally,
the WMA technique assigns decreasing weights as the
observation gets older. The reputation is more sensitive to
recent variations in feedbacks when WMA is used, yet
WMA—like MA—cannot be used until the first smoothing
period has elapsed. Similarly to MA, the longer the
smoothing period, the smoother the reputation series.

The SES technique is very simple to use and implement
compared to the other techniques. The smoothing factor «,
which must be between 0 and 1, acts as a weight for the
most recent observation but also acts recursively as an
aging factor for all past observations. In fact, each forecast
R(t) is computed as a weighted average of the latest
observation, i.e., last feedback f(¢t) and the previous
forecast R(¢t — 1). The closer « is to 1, the more responsive
the reputation series is to the latest changes in the feedback
series, while the closer « is to 0, the higher the smoothing
effect is. The choice of an appropriate smoothing factor is
purely judgmental. « can be adjusted in order to optimize
the gap between observations and forecast, e.g., a can be
determined such that 37 (R(t —1) — f(¢))* is minimized.
Fig. 7 shows that « set to 0.8 brings a visible smoothing
level while the recent trends in feedback variations are
still captured.

The HLE smoothing method adds to the SES technique a
trend component to create a linear trend in the forecast. HLE
is therefore more appropriate for forecasting when the
observations show an exponential growth or decline. By
setting the HLE parameters o and 5 to 0.7 and 0.6,
respectively, as shown in Fig. 7, we can see how quickly
the reputation function reacts to changes in the feedback

566 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

0.9r

0.8

0.7}

0.6

0.5F

0.4

Feedback vs. Reputation

0.3

0.2

01 i i i i i
0 2 4 6 8 10 12 14 16 18 20

Time

Feedback '+ 4+ '+ SES

HLE % MA —— WMA |

(a)

0.8
0.7}

0.6

Feedback vs. Reputation

0.5

0.4 i i i i i i i i i j
0 2 4 6 8 10 12 14 16 18 20

Time

Feedback '+ '+ SES

HLE - % - MA —x—WMA‘

(b)

Fig. 7. Reputation forecasting by smoothing. (a) Feedbacks without
trend and (b) feedbacks with a trend.

series and follows the recent trend. A smaller o would lead
to a more visible smoothing.

The simplicity, convenience, and adaptability of the
Simple Exponential Smoothing technique make it a good
candidate for reputation computation. However, the accu-
racy of any smoothing or forecasting technique depends on
the constancy of the observations; continuous and regular
feedbacks are required to accurately capture the behavior of
the service and help making more informed choices.

4 AUTOMATED SELECTION PROCESS

As outlined before, services are compared against three
criteria (quality, cost, and reputation) before any selection is
made. In the previous section, we have discussed the need
for fair reputation reports in order to make enlightened
choices, and to this end, devised a rating system that ensures
the objectivity of feedbacks. In this section, we focus on the
selection process. We investigate the ways in which quality,
cost, and reputation can be combined in support of decision
making. We devise an algorithm that aggregates the three
parameters into a single ranking metric. This algorithm
involves three steps: match making, evaluation, and ranking.

4.1 Match Making
This step consists of comparing service offers against user
requirements. All of the offers which do not meet user
requirements, commonly expressed in terms of quality and
cost constraints, are ignored. The QoS offer is commonly
defined as a vector of (Q;,¢;) pairs, where Q; refers to a
quality dimension and g; refers to the corresponding value
(e.g., (uptime, 99.99 percent),(response time, 600 ms)). Quality
dimensions may have properties [3] such as different
definition domains and evaluation rules. For instance,
service availability (uptime) is defined on [0,1] and obeys
the “more-is-better” evaluation rule, whereas service re-
sponsiveness (response time) is defined on [0,+o00[and, as
opposed to the availability dimension, obeys the “less-is-
better” evaluation rule. The evaluation of a QoS offer is
challenging, considering that it requires the knowledge of
such properties. In this perspective, it is essential to provide
a formal specification of quality dimensions. The definition
of QoS dimensions is a critical issue, which has received a lot
of attention over the last decade. However, only a few works
have provided quality dimension taxonomies. Among the
Web Services-related works, WSOL [19], WSLA [20], DAML-
QoS [21], OWL-S [22], and OWL-Q [23] provide some
attempts to formalize the description of QoS dimensions.

For each candidate service s, let gos be the offered quality
vector, R its reputation, and cost its cost. Let gos, =
(@), (2),,- -, (qn), be the vector of quality constraints.

We denote by QOS™ the subset of more-is-better-like
QoS parameters and QOS~ the subset less-is-better-like
parameters.

Let S be the set of preselected services,

if i € QOS5
ses if vieln{f @e@
if Q€ QOS*,

(15)

Similarly, restrictions on cost may apply; unaffordable
services are also ignored.

To illustrate the matchmaking step, consider four
instances of GenericSaaS, S;, So, S3, and S;, with the
respective offers:

S1(gos = {99.99%, 600 ms}, cost = 100),
Sa(gos = {98.99%, 699 ms}, cost = 90),
S3(gos = {97.99%, 600 ms}, cost = 90),
Si(gos = {96.0%, 699 ms}, cost = 70).

After the matchmaking step, only S;, S, and S5 are kept
for further evaluation when the QoS requirements are set to
gos, = {96.99%, 699 ms} given that the offer of Sy in terms of
uptime is lower than requested (96.0% < 96.99%) .

4.2 Evaluation

At this stage, all of the eligible services offer a quality level
that is equal to or higher than requested and come at
affordable costs. We will thus evaluate service offers in
terms of the gain in quality and cost that is proposed. Let @
and C be the evaluation metrics of gains in quality and cost,
respectively. We hereby define R,), and C as scalar values
between 0 and 1.

LIMAM AND BOUTABA: ASSESSING SOFTWARE SERVICE QUALITY AND TRUSTWORTHINESS AT SELECTION TIME 567

We first evaluate the gain in each quality dimension Q);.

For each Q;, we define two parameters (¢;),,,, and ().,
as follows:
[maxees gi(s) if Q; € QOST,
(9) oz = { (@), it Q; € QOS, 16
_ [mines gi(s) if Qi € QOST, 1o
() min, = (q), if Q;€QOS".

In the previous GenericSaaS example, uptime,,,, =
99.99%, uptime,,;,, = 96.99%, response-time,,,, = 699 ms,
and response-time,,;, = 600 ms.

The scaling function Scal; is defined on dom(Q;) and
takes values in [0, 1]. Scal; is increasing for @; € QOS™ and
decreasing for Q; € QOS™:

i = ()i :
LT if ;€ QOST,
(Qi)mal‘ - (qi)min
Scali(gi) = § _ (@mar — 4 if Qi eQOS
(Qf)maw - (Qf)mm 7

if (Qi)max - (Qi)m'in =0.
(17)

We can easily show that, for all ¢ = 1..N, Scal;((¢;),) = 0.

For instance, the scaled quality parameters of the above
GenericSaaS services are as follows: gos(S1) = {1,1},
qos(S2) = {0.5,0} and qos(S3) = {0, 1}.

We now derive the scalar metric () from the vector
(Seal;(q;)). W = (wy), (ws), . .., (wy) denotes the consumer’s
quality preferences, where 0 <w; <1 and Y w; = 1.
(Scali(g;));_; y represent the coordinates of the candidate
service s in the N-dimensional euclidean space, where the
origin is sy(Scal;((¢i),),—; n- We compute Q as the weighted
euclidean distance @ = ||s — sy as follows:

(18)

Q= \J ZwiScali(qi)Q(s),

where @) also represents the weighted root-mean-square of

(Scali(gi))i—y..n-
Finally, C is computed as follows:

_ M
C - C‘rna:]j - Cm,in '

In the previous GenericSaaS example, assuming that the
quality parameters uptime and response time are equally
weighted, the scaled QoS and cost (Q,C) offers of the
preselected service instances S, S», and S; are, respectively
(1,0), (0.47,1), and (0.74,1).

4.3 Ranking

This is the final step, where R, @), and C' are combined into
SCORE(s), the ultimate selection metric. The service with
the highest SCORE(s) is then selected. In [3], a weighted
mean-like aggregation function on all quality parameters
including cost and reputation is used, where weights are
user-defined constants. We believe that reputation should
not be considered as a quality parameter, but instead, as a
moderator between service quality and quality guarantees.
Moreover, a weighted mean-like score function implies that

—o6— lambda=1, gamma=1

H —+— lambda=1, gamma=2

—&— lambda=2, gamma=1

—<— lambda=1, gamma=4
lambda=4, gamma=1

—+— lambda=4, gamma=1.2

lambda=4, gamma=1.05

0.8H

0.6

Score

041

0 0.2 0.4 0.6 0.8 1
Reputation

Fig. 8. Impact of A and v on the SCORE function.

the score is evenly sensitive to variations in reputation.
Although we can agree that the score function should be
evenly sensitive to variations in @ or C, we believe that it
should be less sensitive to variations in “low” reputation
values than to variations in higher values. In fact, we
observe that under a reputation threshold, consumer’s
“trust” in the service is lost, which means that the service is
no longer believed to deliver the expected quality.

According to the above observations, SCORE(s)
should increase linearly with @ and C and exponentially
with R; this would emphasize the insensitivity of
SCORE(s) to variations in low R values. We also
consider that SCORE(s) takes values in [0,1]. We denote
by SCOREg(s), SCORE((s), and SCORE¢(s) the partial
derivatives of SCORE(s) with respect to R, @, and C,
respectively. We obtain the following;:

SCORER(s) = A SCORE(s),
SCORE((s) = a,

SCORE(s) = B, (19)
A>0 and «a, B €[0,1].
We also have
SCORE(s)=1 if R,Q,C=l, (20)
SCORE(s)=0 if R,Q,C=0. (21)

We integrate the partial derivatives of SCORE(s) from
(19), obtaining

SCORE(s) = M) 4 aQ + 5C + 4. (22)

With v > 1 and ¢ = —e™ (from (21)). a and 3 weight
the impact of the quality and the cost attributes, respec-
tively, on the score function. As shown in Fig. 8, A and ~
control the impact of reputation on the score function; A
controls the growth rate and ~ the function’s range. We
observe that the higher) is, the more convex the function is,
while the closer « is to 1, the larger the function’s range is. A
high A value and a y value close to 1 are more compliant
with the desired characteristics of the score function.

568 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

—©&— lambda=1, gamma=1
|| —=— lambda=2, gamma=1
lambda=4, gamma=1

0.8r

06F -

Score

04_ R Zo L L

theta=31, R0=0.4

=== "7 _| theta=9, R0=0.2 :
0 : : i i '
0 0.2 0.4 0.6 0.8 1
Reputation

Fig. 9. The SCORE function: X versus 6 and Rj.

Moreover, we obtain a very desirable simplification of
SCORE(s) by setting «y to 1:

SCORE(s) = MY 4 e e’ Q + peC — 1). (23)

From (20), we obtain

aet 4 Bet = 1. (24)

In the remainder of the paper, the relative weights w. and
w, will denote Be* and ae”, respectively:

SCORE(s) = MV 4 e Mw,Q + w0 —1). (25)

We denote by R, the threshold under which a reputation
value is considered unsatisfactory, i.e., the value under
which SCORE(s) is much less sensitive to variations in R.
Ry should be the point at which the score function’s growth
rate turns from “low” to “high,” i.e., graphically speaking,
the point at which the tangent angle gets sharper. We
denote by 6§ the tangent angle at Ry. § is defined as follows:

0 = arctan(SCORER(Ry))- (26)

Due to the convexity of the SCORE function, the higher
Ry is, the lower 6 will be. Fig. 9 also shows that § decreases
with an increasing A. By choosing R, and the tangent angle
6 € [0,%] that we consider sharp enough, we can derive A
from the following equation:

Aexp(A(Ry — 1)) — tan(f) = 0. (27)

It is worth noting that the choice of Ry should depend on
the properties of the service. Subscribers to pricey or
mission critical services have higher expectations with
respect to service quality; Ry should be set to the higher
side for those kinds of services.

Assuming that Ry is set to 0.3, A to 2.6, w. and w, to 0.6 and
0.4, respectively, and that the reputations of the GenericSaaS
instances S, Sy, and S; are, respectively, 1, 1, and 0.9, then
the score of S is 0.95, the score of S, is 0.98, and the score of
S; is 0.76. Given that score(Sy) > score(Sy) > score(Ss), the

outcome of the selection process is S;. Now if reputations
were setto 0.2,0.2,and 0.1, respectively, service scores would
be 0.08, 0.1, and 0.089, respectively. S» would still be selected,
but we notice that, this time, S is ranked second as opposed
to third in the previous setting. This is due to the fact that the
QoS and cost offer of S5 are more attractive than S;’s.

5 SIMULATION AND EVALUATION

In a previous work [24], simulation experiments were
conducted to evaluate the responsiveness of the system to
permanent changes in service behavior. The experiments
showed that the user ends up selecting the service instance
that delivers the highest utility almost 83 percent of the
time, and that she/he would not have been more satisfied
with a service other than with her/his choice more than
87 percent of the time.

In the following, a new simulation setting is established
to evaluate the system under a more realistic environment
(Section 5.1). Additional experiments have also been
conducted (Section 5.2) to assess the impact of service
behavior on the effectiveness of the selection system.

5.1 Analysis of System Behavior

Consider a set of 20 software services S;, i = 1..20, say, for
instance, 20 storage services, with 20 different QoS offers
(uptime ranging from 97.99 to 99.99 percent) and different
costs (price ranging from 70 to 90). All services are assumed to
have successfully passed the matchmaking test (Section 4.1).

Commonly, new services are constantly introduced into
the market. In order to reproduce this feature, services are
assigned a randomly generated parameter Arrival Time to
Market (ATTM) that refers to the time at which the service
starts being available. The time at which services get their
first customers, and more importantly, their first feedback
at Time to First Feedback (TTFF), where TTFF > ATTM.

We assume in this evaluation study that services have a
similar “overall” good behavior. In other words, we assume
that service providers respect their commitments to their
customers most of the time. Failures may occur from time to
time and services recover shortly after. Two more randomly
generated simulation parameters are defined for each
service instance: Time Between Failures (TBFs), which
refers to the shortest time that separates two consecutive
failures, and Time to Recovery (TTR), which refers to the
longest time the service will take to recover from any failure.
At each failure, the recovery time is randomly generated
with TTR as an upper bound (the upper bound for all TTRs
being set to 50), and the next failure will take place after a
randomly generated time, not shorter than T'BF' (the lower
bound for TBFs being set to 50 and the upper bound to 400).
As long as the service is operational, its utility is equal to 1.
During failures, the utility will vary between 0 and 1.

Feedback is derived according to our rating function.
Discontinuity is introduced in the feedback series assuming
that reports are not provided each single time unit. The
reputation series is then derived using the SES technique.
Scores are computed and selection is made every time unit
according to our selection algorithm. The system’s behavior
is observed for 400 units of simulation time.

LIMAM AND BOUTABA: ASSESSING SOFTWARE SERVICE QUALITY AND TRUSTWORTHINESS AT SELECTION TIME 569

TABLE 2
Service Parameters
ID | Cost | Uptime (%) | ATTM | TTFF | TBF | TTR
0 74.0 97.99 0 0 165 14
1 98.0 97.99 86 130 184 25
2 81.0 99.99 44 59 133 43
3 71.0 98.99 83 103 151 47
4 98.0 97.99 71 97 105 11
5 75.0 99.99 43 43 177 26
6 76.0 97.99 28 64 182 42
7 | 100.0 99.99 92 125 156 44
8 77.0 99.99 46 70 116 16
9 81.0 99.99 82 118 188 32
10 | 74.0 99.99 89 89 123 26
11 | 75.0 98.99 71 82 111 48
12 | 98.0 97.99 63 92 186 17
13 | 81.0 97.99 66 109 142 34
14 | 81.0 99.99 65 76 180 42
15 | 73.0 98.99 73 119 120 44
16 80.0 99.99 10 10 149 29
17 81.0 99.99 6 6 176 20
18 88.0 97.99 6 39 102 30
19 92.0 97.99 41 89 185 14

Service parameters are listed in Table 2. The other
simulation parameters (including the SES smoothing para-
meter «, Ry, A, w,, and w,) are set as indicated in Table 3.

Fig. 10 shows the utilities and reputations of a
representative set of service instances. Utility functions
start at different times according to the ATTM of the

1 1
08 08
s
0.6 = 06
z g
5 2
04 2 o4
02 0.2
0
0 100 200 300 400 0 100 200 300 400
Time Time
(@)
1 1
08 0.8
s
0.6 = 06
£ E
= a
04 & 04
0.2 0.2
)
0 100 200 300 400 0 100 200 300 400
Time Time
(©)
1 1
0.8 0.8
s
>06 £ 06
g :
04 2 o4
02 02
0
0 100 200 300 400 0 100 200 300 400
Time Time

(e)

TABLE 3
Simulation Parameters
Parameter Definition Value
o SES smoothing parameter 0.8
A SCORE function convexity parameter 2.6
Ro Satisfactory reputation threshold 0.3
Wy Relative quality weight 0.4
We Relative cost weight 0.6

corresponding service. At ATTM, the reputation of the
service is set to Ry and stays so until the first feedback is
reported (see Fig. 10f).

Fig. 10 also shows how fast the reputation system reacts
to changes in service behaviors. However, it is worth noting
that the more frequently the service fails and the longer the
service takes to recover, the longer it takes for its reputation
to get back to higher values.

The simulation results show that the system adapts to
the market dynamics. Five service instances (Sy, Si7, Sis, S5,
and S¢) are respectively considered for selection during the
first 200 time units, whereas only two services (S;p and S5),
particularly Sio out of the former five, are considered later
on (see Fig. 11). In fact, during the first 200 time units, new
services with potentially better quality and/or cost offers
are constantly coming into the market. Provided that new
services have behavior at least as good as the older ones,
they are considered as better choices. As soon as the market
reaches a stable state, the selection converges toward the

1 1
08 08
206 £ 06
z
0.4 04
02 02

Reputation

0 100 200 300 400 0 100 200 300 400
Time Time
1 1
0.8 08
s
06 £ 06
5 2
04 & 04
0.2 0.2
0 0
0 100 200 300 400 0 100 200 300 400
Time Time
1 1
0.8 0.8
s
> 06 £ 06
: d
04 & o4
02 02
0
100 200 300 400 0 100 200 300 400
Time Time

Fig. 10. Utility and reputation evolution of (a) Sy, (b) Ss, (c) S5, (d) Sio, (€) Sis, and (f) Sy7, respectively.

570 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

18 18
4 H
16 - 16 |-
o 14 o 14
© 12 o 12
Q Q
S 10 > 10 - -
< 5 s
A8 37
6
4 4 —_— -
2 2
0 00 200 300 400 < 0 100 200 300 400
1 1
0.8 o 08
2
> :_,_;0.6
;:; 0.6 =
=)
0.4 e e 0.4
0.2 0.2
0 : 0
0 200 400 0 200 400
1 1
0.8 0.8
< 0.6 0.6
8 S
Q @
3 3
8 04 B P . $0.4
L w
02 ...] . 02 [
0
00 200 400 0 200 400
Time Time

(@ (b)

Fig. 11. Selected services, experienced utility, and customer
satisfaction. (a) Without reputation awareness and (b) with reputation
awareness.

services which offer the best quality/cost ratio and
reputable behavior.

As shown in Fig. 11, users experience better utility and
better satisfaction with the delivered service when reputa-
tion is considered in decision support. More generally, users
experience the best possible utilities and leave the highest
possible feedbacks most of the time when our devised
selection mechanism and automated rating system are used.
It is worth noting that the most selected service during
market stability, Sip, comes at a low cost (third lowest cost),
high quality (the highest quality offer), relatively sparse
failures, and low recovery times (see Fig. 11).

This experiment has been repeated 100 times in order to
evaluate more accurately the success rate of the system. Two
parameters have been observed: the mean absolute success
rate, i.e., how often the user experiences maximum satisfac-
tion, and the mean relative success rate, i.e., how often user’s
satisfaction with the selected service is enhanced when
reputation is considered in decision support. As shown in
Table 4, the mean absolute success is on the very high side
(around 99 percent) both in dynamic and stable environ-
ments. However, it is worth noting that the satisfaction of
the user is only slightly enhanced (5.61 to 7.58 percent) by
considering reputation in decision support. This is due to
the fact that all candidate services behave relatively well,

TABLE 4
Simulation Results

Stable market
99.41%
7.58%

Dynamic market
99.37%
5.61%

Absolute success

Relative success

here with the lower (respectively, upper) bound of all TBFs
set to 100 time units (respectively, 200 time units) and the
upper bound of all TTRs set to 50. In the following section,
we will evaluate the impact of service behavior on the
enhancement induced by reputation awareness.

5.2 Impact of Service Behavior on System

Performance
In order to evaluate the impact of service behavior on the
effectiveness of our system, we have run additional
experiments with variable TBFs. We have varied the upper
bound of TBFs from 20 to 390 (the lower bound of TBFs and
the upper bound of TTRs are set at 20 this time). The
outcome of the experiments is shown in Fig. 12.

The absolute success rate of the system is consistently on
the higher side (more than 96 percent most of the time). It
drops slightly under extremely variable utility conditions,
i.e., when the TBF upper bound is close to 20. The drop is
more meaningful when the market is stable (success rate
below 90 percent). On the other hand, the relative success
rate is perceptibly higher when the market is stable
compared to when the market is dynamic. Under extremely
variable utility conditions, we notice that the satisfaction of
users can be significantly enhanced when reputation is
considered in decision support. For instance, Fig. 12 shows

1 L
q) 08'
©
g 08/ —+— relative success
@Q
S 04l absolute success
j
w
0.21 :
. M”\(\W—W.
0 50 10 150 200 250 300 350 40
TBF
(@)
1,
o 08}
©
@ 06 —— relative success
@Q
S 04} absolute success
@
0.2¢
0 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400
TBF

(b)

Fig. 12. Success rate versus TBF in (a) dynamic market and (b) stable
market.

LIMAM AND BOUTABA: ASSESSING SOFTWARE SERVICE QUALITY AND TRUSTWORTHINESS AT SELECTION TIME 571

that enhancement in user satisfaction can reach 40 percent
when the market is stable (13 percent otherwise).

The conducted experiments show that the overall
system evolves well over time. Furthermore, the obtained
results demonstrate that our automated selection system,
in conjunction with our automated rating mechanism,
succeeds in capturing service behavior and providing the
best possible choice.

6 DISCUSSION

With the quasi-globalization of fast Internet access, the
success of SOA infrastructures, and the growing interest in
cloud computing, enterprises as well as software vendors
are increasingly adopting the SaaS on-demand delivery
model. The unknown quality of the service and the
unknown reliability of the provider at selection time are
risks that need to be considered before an SaaS is acquired.
Because the software is hosted by its provider, the consumer
needs guarantees that the service will perform as expected
and that the provider will maintain the service—to prevent
failures—and provide support on request.

In this work, we have identified risk management at
selection time as essential to the long-term success of the
SaaS model. In this perspective, a reputation-aware selec-
tion mechanism and an automated rating system have been
designed. The simulation results have demonstrated that
the devised system has successfully met our primary
objectives and can be an important component in a risk
management strategy for software development with SaaS.

The designed system can be configured so that it can
adapt to the needs of service integrators, to the particula-
rities of each service, and to market dynamics. It does not
involve any heavy implementation or complex infrastruc-
ture; the selection algorithm can be implemented easily, and
it can make use of any reputation system using a patch to
any monitoring system to provide the rating functions.

In developing this system, several design choices were
made. Although the conducted simulations have shown
successful results, there are a number of areas that could
provide room for improvement. The following discusses the
impact of several key design decisions and highlights points
for future investigation.

6.1 Reputation versus Feedback versus Utility
versus Performance Reports

The lack of governance in today’s Internet and the wide-
spread growth of the service market have led to the
popularity of reputation systems. The use of reputation
systems in risk reduction is motivated by the need for
project managers to 1) make more informed service
selections, 2) trace the behavior of contracted service
providers in order to anticipate performance degradation,
and 3) trace the behavior of competing providers, in case a
substitute service is required. The choice of using feedback
and reputation to measure the behavior of the service
instead of plain monitoring reports is in part based on the
widespread acceptance of reputation systems, and the
corresponding maturity of related protocols and infrastruc-
tures. However, it is worth noting that feedback is more
storage-effective and easier to maintain, while reputations
are easier to retrieve. Using monitoring reports would have

necessitated extra effort in investigating and designing
description schemes and management protocols.

In this work, feedback is derived from service utility,
exclusively measuring the performance of the service in
terms of the delivered quality level. However, more
aspects could be considered in the feedback computation.
For example, the cost and sensitivity of the service to
quality degradation could be considered in order to
penalize expensive and misbehaving services. It is worth
noting that the feedback computation (10) is configurable;
the value of 11 can be chosen, with setting 1 to 0 resulting
in feedback = utility.

6.2 Feedback Computation

In this work, the feedback is computed as a forecast of the
consumer’s satisfaction with the service’s execution qual-
ity. Alternatively, classical as well as Bayesian forecasting
techniques could be applied to the consumer’s past
feedback on the same service (feedback time series), or on
other consumers’ feedback on the same service (feedback
samples) to predict or infer future feedback. These options
have been considered and evaluated at an early stage of
this work and withdrawn because of the subjectivity and
bias issues. Generally, applying forecasting techniques on
time series introduces a bias toward past feedback and
past service behavior. Furthermore, forecasting on feed-
back samples does not solve the issue of feedback
subjectivity since there is no guarantee that the sampled
feedback is objective and fair. In order for the feedback
forecast to be objective, fair, and unbiased, the forecasting
technique must be solely applied to the current experience
with the service. None of the above forecasting techniques
meets this requirement.

The expectancy-disconfirmation theory form market
science has been widely used for explaining or predicting
the acceptance or rejection of marketed products. It is a well-
accepted and tried theory from which a number of customer
satisfaction models have been derived and empirically
validated. According to these models, in particular the
model presented in [16], the satisfaction of a customer with a
delivered service can be inferred from her/his expectation
and perception of the service utility. Customer satisfaction
models fit well in our framework indeed.

6.3 Reputation Computation

Several techniques for reputation computation have been
investigated in this work. Our primary goal was to find an
alternative to using simple mean of feedback, which would
not take short-term fluctuations in feedback into considera-
tion. We have focused on forecasting and smoothing-based
techniques due to their desirable features. Which technique
is more appropriate is a matter of judgment. Other aspects
could also be considered in this decision, for instance, it is
desirable that the chosen technique be easy to implement,
work effectively with a small number of feedbacks, and be
configurable. The Simple Exponential Technique fulfills
these requirements as outlined in Section 3.3. Choosing an
appropriate smoothing parameter is also discretional. A high
smoothing level prevents reputation from dropping signifi-
cantly when a failure occurs. However, it also prevents the
reputation from recovering rapidly. Sensitivity versus
tolerance to failures is a trade-off that must be decided on.

572 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

6.4 Discontinuity in Feedback

A major discontinuity in feedback (period without any
feedback) may affect the accuracy of the reputation as a
predictor for future service behavior. In this situation, it
may be risky to maintain a high reputation when no activity
has been reported for a while. To prevent such risks, it is
essential to age reputations. One option worthy of con-
sideration is to reset reputations to a neutral value (Rj)
when there is an interval without feedback. However, this
provides an opportunity for misbehaving service providers.
If their reputation falls below Ry, it may be advantageous
for them to leave the market temporarily in order for their
reputation to be reset.

In order to prevent such behaviors, the required period
of discontinuity must be long enough to dissuade providers
(by interrupting revenue). However, longer discontinuities
can negatively affect the accuracy of reputations. An
alternative would be to institute a multilevel aging function;
while high reputation values could be reset to Ry, low
reputations are reset to 0. Further investigations of these
solutions are planned for the near future.

7 RELATED WORKS

Service selection and rating is a research topic that emerged
recently with the advent of SOA and SaaS. A literature
survey reveals that the few works in this area have
addressed different facets of the topic, such as the
assessment of service quality at selection time, the evalua-
tion of the credibility of quality reports, the computation
and management of service reputation, and the measure-
ment of service quality at execution time.

For example, [3], [25], and [2] focused on service
composition with end-to-end QoS constraints. Zeng et al.
[3] consider two models for service selection. The first
model promotes the selection of those services that present
the optimal service-level quality offers. We have adapted
this model to our service-level quality-constrained selection
problem. Unlike this model, the second model promotes
service selection with global planning. In this perspective,
Integer Linear Programming (ILP) is used to determine the
optimal solution. Considering the complexity of ILP
optimization, Yu et al. [25] propose heuristics to find
near-optimal solutions in polynomial time. Similarly,
Anselmi et al. [2] provide a Mixed Integer Linear Program-
ming (MILP)-based formulation of the selection problem
and consider a greedy heuristic to find near-optimal
solutions. The above works consider service selection as a
multicriteria constraint satisfaction problem but ignore the
fact that services may not deliver, at execution time, the
promised quality at selection time. Although the reputation
factor is considered in [3], it is defined as a quality
parameter and used as any other quality parameter in the
ranking function.

Similarly to our work, Wu et al. [26] address the issue of
predicting the capability of a service to deliver the level of
quality that would meet user’s requirements. In this
perspective, a Bayesian network-based QoS assessment
model is used along with a fuzzy logic-based reasoning
approach for inferring service capability under various
combinations of users QoS requirements. The performance
of the service is tracked and recorded while the service is

being executed and the compliance between the user’s QoS
requirements and the service’s delivered QoS is computed.
Based on these compliance values, a fuzzy reasoning
approach is introduced to infer the service’s overall
capability and the corresponding Bayesian network is
updated with the assessment outcome. Similar to [26], we
address the need for an automated service recommender to
evaluate the suitability of a service to users’ preferences.

Yang et al. [27], Ali et al. [28], and Wishart et al. [29]
promote the use of trust and reputation to rate candidate
services in the selection process, and focus on the repre-
sentation and computation aspects of service reputation.
Yang et al. [27] use, for instance, a multidimensional trust
model to evaluate service and service provider’s properties
like credibility, quality, and reliability. A “trust” vector
describes users” experience with those service aspects. The
trustworthiness of the service, referred to as the confidence
in the service, is estimated using the Hypothesis Evaluation
theory, whereas in [28], service reputation is linked to an
execution context: Services are evaluated with regard to a
specific execution context (application domain or user type).
Reputation is then computed as a weighted mean of time-
decaying feedback within the desired context. A time-
decaying factor, called the “forgetting” factor, is also used
in [29], along with a Bayesian estimation model to compute
the reputation of a service on the basis of past users’
testimonials. As apposed to the above works, we consider a
more general reputation computation model where the
trustworthiness of a service provider is evaluated with
conformance to the terms enclosed in the offer (i.e., SLA) and
do not only consider the timeliness of service ratings but also
take into account the trend they may show.

Vu et al. [4] consider the assessment of the credibility of
quality reports. Few trusted parties are assumed to provide
credible reports on the conformance of the delivered quality
to the offered one. These reports are used to evaluate the
credibility of other reports. False reports are then detected
and ignored in the selection process. The future confor-
mance of the delivered quality to the offer is predicted
using a linear regression method on past QoS conformance
reports, each weighted by its evaluated credibility. Indeed,
false quality reports may jeopardize the selection process.
However, the report evaluation system in [4] raises a critical
issue. User reports cannot be objectively and fairly
compared to reports made by trusted monitoring agents
unless both monitoring measurements are achieved under
the same circumstances. If trusted monitoring agents can be
deployed within the same context as users, then user
reports are no longer needed. Our solution has similarities
with the above works in that we are also concerned with the
credibility of service ratings. However, we focus on the
process of generating credible feedbacks and promote a
trustworthy automated rating process instead.

Our work has been in part grounded on literature works
in the area of SLA monitoring like [7], [30], and [5]. In
particular, Skene et al. [7] present a comprehensive frame-
work for the monitorability of SLAs and the assessment of
measurement credibility and accuracy. This work is com-
plementary to ours in that we build our automated rating
system on the assumption that SLAs are monitorable and
that SLA monitoring is conducted in a trusted and accurate
fashion. Findings in [7], [30], and [5] validate this funda-
mental assumption indeed.

LIMAM AND BOUTABA: ASSESSING SOFTWARE SERVICE QUALITY AND TRUSTWORTHINESS AT SELECTION TIME 573

8 CONCLUSION

In this paper, the issue of risk management has been
addressed in the context of project development using
external software service components. In this perspective,
we have presented an automated quality and reputation-
based framework for service rating and selection. Although
a few previous works have considered quality and
reputation for service selection, none have considered the
automation of the service rating process.

The proposed service rating allows feedback to be
assigned to a delivered service that objectively reflects the
satisfaction or dissatisfaction with the rendered perfor-
mance and quality. To this end, the compliance of the
rendered quality with the quality agreed upon is monitored
and translated into a utility metric. A feedback computation
model, derived from the expectancy-disconfirmation theory
from market science, is then proposed to generate a
feedback from service utility and cost. A reputation
derivation model has also been proposed to aggregate
feedback into a reputation value that better reflects the
behavior of the service at selection time.

The selection algorithm has been designed to assist
customers in selecting the most appropriate service offering
considering quality and cost constraints. Reputation is used
to predict the credibility of the quality offer and the
conformance of this offer to the delivered quality. We
devised a service ranking function that aggregates the
quality, cost, and reputation parameters into a single metric
that is used to evaluate service offerings against each other.

Simulation studies have been conducted in order to
evaluate the proposed rating and selection algorithms. We
have considered several services with different offers and
utility functions. Our rating algorithm was run on each
service over a long period of time, while simultaneously
conducting service selection on behalf of the virtual
customers. The results show that the overall system evolved
well over time, with misbehaving services being detected
quickly. Customers can then avoid these services—in fact,
we show that the system selects services that the customer
could not have been more satisfied with. Our rating and
selection systems succeeded in capturing the service
behaviors and translating them into the best possible
choices for customers.

This work contributes to a framework that aims to design
an infrastructure that supports the integration of software
services in application development and provisioning
projects. Interesting avenues for future research include
the generalization of our selection mechanism to composite
services with global quality constraints and the investiga-
tion of advanced algorithms for multicriteria decision
making and multiobjective optimization such as multi-
objective evolutionary algorithms.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Science and
Engineering Council of Canada (NSERC) Discovery pro-
gram and in part by the WCU (World Class University)
program through the Korea National Research Foundation

funded by the Ministry of Education, Science and Technol-
ogy (Project No. R31-2008-000-10100-0). The authors would
like to express their gratitude to Brent K. Ishibashi for
helping with paper editing and proofreading, and to the
associate editor and anonymous reviewers for their en-

couragements and insightful comments.

REFERENCES

[1] J.Li, R. Conradi, O.P. Slyngstad, M. Torchiano, M. Morisio, and C.
Bunse, “A State-of-the-Practice Survey of Risk Management in
Development with Off-the-Shelf Software Components,” IEEE
Trans. Software Eng., vol. 34, no. 2, pp. 271-286, Mar./Apr. 2008.

[2] J. Anselmi, D. Ardagna, and P. Cremonesi, “A QoS-Based
Selection Approach of Autonomic Grid Services,” Proc. Workshop
Service-Oriented Computing Performance: Aspects, Issues, and Ap-
proaches, 2007.

[3] L.Zeng, B. Benatallah, A.H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “QoS-Aware Middleware for Web Services Composi-
tion,” IEEE Trans. Software Eng., vol. 30, no. 5, pp. 311-327, May
2004.

[4] L.-H. Vu, M. Hauswirth, and K. Aberer, “QoS-Based Service
Selection and Ranking with Trust and Reputation Management,”
Proc. 13th Conf. Cooperative Information Systems, 2005.

[5] J. Skene, F. Raimondi, and W. Emmerich, “Service-Level Agree-
ments for Electronic Services,” IEEE Trans. Software Eng., vol. 36,
no. 2, pp. 288-304, Mar./Apr. 2010, http://doi.ieeecomputer
society.org/10.1109/TSE.2009.55.

[6] J.R. Douceur, “The Sybil Attack,” Proc. First Int'l Workshop Peer-to-
Peer Systems, 2002.

[7]1 J. Skene, A. Skene,]J. Crampton, and W. Emmerich, “The
Monitorability of Service-Level Agreements for Application-
Service Provision,” Proc. Sixth Int’l Workshop Software and
Performanc, pp. 3-14, 2007.

[8] BelGOnet, “Service Level Agreement,” http://www.belgonet.
com/website/UK/Service_Level_Agreement_UK.pdf, 2008.

[9] EZSM, “EZSM Service Level Agreement,” http://www.easy
servermanagement.com/sla.php, 2008.

[10] Amazon, “Amazon s3 Service Level Agreement,” http://aws.
amazon.com/s3-sla/, 2007.

[11] Intacct, “Intacct Buy with Confidence,” http://us.intacct.com/
downloads/08datasheets/DS_Buy_with_Confidence.pdf, 2008.

[12] H. Ludwig, RP. King, and A. Keller, “Web Service Level
Agreements,” http://www.research.ibm.com/wsla/sample-
outsourced.wsla, 2002.

[13] Y. Wang and]. Vassileva, “A Review on Trust and Reputation for
Web Service Selection,” Proc. 27th Int’l Conf. Distributed Computing
Systems Workshops, 2007.

[14] T. SaaS, “Trust Saas: Putting the Trust in Software as a Service
(SaaS),” http://trustsaas.com/, 2008.

[15] R.L. Oliver, “A Cognitive Model of the Antecedents and
Consequences of Satisfaction Decisions,”]. Marketing Research,
vol. 17, pp. 460-469, Nov. 1980.

[16] J. Xiao and R. Boutaba, “Assessing Network Service Profitability:
Modeling from Market Science Perspective,” IEEE/ACM Trans.
Networking, vol. 15, no. 6, pp. 1307-1320, Dec. 2007.

[17] V. Poladian, J.P. Sousa, D. Garlan, and M. Shaw, “Dynamic
Configuration of Resource-Aware Services,” Proc. 26th Int’l Conf.
Software Eng., 2004.

[18] P. Brockwell and R. Davis, Introduction to Time Series and
Forecasting. Springer-Verlang, 2002.

[19] V. Tosic, K. Patel, and B. Pagurek, “Wsol—Web Service Offerings
Language,” Proc. Workshop Web Services, e-Business, and the
Semantic Web, 2002.

[20] A.Keller and H. Ludwig, “The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services,”
J. Network and System Management, vol. 11, no. 1, pp. 57-81, 2003.

[21] C.Zhou, L.-T. Chia, and B.-S. Lee, “DAML-QoS Ontology for Web
Services,” Proc. IEEE Int’l Conf. Web Services, 2004.

[22] M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, S. Mcilraith, S.
Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N.
Srinivasan, and K. Sycara, “OWL-S: Semantic Markup for Web
Services,” http:/ /www.w3.org/Submission/2004/SUBM-OWL-
S-20041122/, 2004.

574 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

[23] K. Kyriakos and P. Dimitris, “A Semantic QoS-Based Web Service
Discovery Algorithm for Over-Constrained Demands,” Proc. Third
Int’l Conf. Next Generation Web Services Practices, 2007.

[24] N. Limam and R. Boutaba, “Assessing Service Quality and
Trustworthiness at Selection Time,” Proc. 11th IEEE/IFIP Network
Operations and Management Symp., 2008.

[25] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient Algorithms for Web
Services Selection with End-to-End QoS Constraints,” ACM Trans.
Web, vol. 1, no. 1, 2007.

[26] G. Wu,]. Wei, X. Qiao, and L. Li, “A Bayesian Network Based QoS
Assessment Model for Web Services,” Proc. IEEE Int'l Conf.
Services Computin, 2007.

[27] SJ.H. Yang,].S.F. Hsieh, B.C.W. Lan, and J.-Y. Chung, “Composi-
tion and Evaluation of Trustworthy Web Services,” Proc. IEEE Int’l
Workshop Business Services Networks, 2005.

[28] A.S. Ali, S. Majithia, O.F. Rana, and D.W. Walker, “Reputation-
Based Semantic Service Discovery,” Proc. 13th IEEE Int’l Workshops
Enabling Technologies: Infrastructure for Collaborative Enterprises,
2004.

[29] R. Wishart, R. Robinson, J. Indulska, and A. Josang, “Super-
stringrep: Reputation-Enhanced Service Discovery,” Proc. 28th
Australasian Conf. Computer Science, 2005.

[30] F. Raimondi, J. Skene, and W. Emmerich, “Efficient Online
Monitoring of Web-Service SLAs,” Proc. 16th ACM SIGSOFT Int’l
Symp. Foundations of Software Eng., pp. 170-180, 2008.

Noura Limam received the BS degree from the

National School of Computer Science, Tunisia,

in 2001, and the MSc and PhD degrees from the

a University of Paris VI, France, in 2002 and 2007,

”5 respectively. She is currently a postdoctoral

E — fellow in the Division of IT Convergence En-

gineering at POSTECH, Republic of South

Korea. Formerly, she was a researcher at

- Ucopia Communications, Inc., France, and a

= " research assistant at the School of Computer

Science at the University of Waterloo, Canada. She received the

Fred W. Ellersick Prize IEEE Communications Society Award in 2008.

Her research interests include service management, service engineer-
ing, and service-oriented architectures.

—

Raouf Boutaba is a professor of computer
science and a Cheriton Faculty Fellow at the
University of Waterloo (Canada). His main
research interests are in network, resource and
service management. He is the founding Editor-
in-Chief of the IEEE Transactions on Network
and Service Management and is on the editorial
boards of other journals. He served as a
distinguished lecturer of the IEEE Communica-
tions and the IEEE Computer Societies. He also
served as the chairman of the IEEE Technical Committee on Information
Infrastructure and the IFIP Working Group on Network and Distributed
Systems Management. He has received several recognitions, such as
the Premiers research excellence award, the IEEE Harold Sobol,
Fred W. Ellersick, and Joe LoCicero awards, and the Don Stokesburry
award. He is a senior member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

