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Abstract Peer-to-peer (P2P) technology has triggered a wide range of distributed
applications including file-sharing, distributed XML databases, distributed comput-
ing, server-less web publishing and networked resource/service sharing. Despite of
the diversity in application, these systems share common requirements for searching
due to transitory nodes population and content volatility. In such dynamic environ-
ment, users do not have the exact information about available resources. Queries are
based on partial information. This mandates the search mechanism to be flexible. On
the other hand, the search mechanism is required to be bandwidth efficient to support
large networks. Variety of search techniques have been proposed to provide satisfac-
tory solution to the conflicting requirements of search efficiency and flexibility. This
chapter highlights the search requirements in large scale distributed systems and
the ability of the existing distributed search techniques in satisfying these require-
ments. Representative search techniques from three application domains, namely,
P2P content sharing, service discovery and distributed XML databases, are consid-
ered. An abstract problem formulation called Distributed Pattern Matching (DPM)
is presented as well. The DPM framework can be used as a common ground for
addressing the search problem in these three application domains.

1 Introduction

Peer-to-peer (P2P) technology has triggered a wide range of distributed systems
beyond simple file-sharing. Distributed XML databases, distributed computing,
server-less web publishing and networked resource/service sharing are only a few to

Reaz Ahmed
Bangladesh University of Engineering and Technlogy, Dhaka, Bangladesh,
e-mail: reaz@cse.buet.ac.bd

Raouf Boutaba
University of Waterloo, Ontario, Canada, e-mail: rboutaba@bbcr.uwaterloo.ca

X. Shen et al. (eds.), Handbook of Peer-to-Peer Networking, 427
DOI 10.1007/978-0-387-09751-0 16, © Springer Science+Business Media, LLC 2010

reaz@cse.buet.ac.bd
rboutaba@bbcr.uwaterloo.ca


428 Reaz Ahmed and Raouf Boutaba

name. Despite of the diversity in applications, these systems share a common prob-
lem regarding search and discovery of information. This commonality stems from
the transitory nodes population and volatile information content in the participating
nodes. In such dynamic environment, users are not expected to have the exact infor-
mation about the available objects in the system. Rather queries are based on partial
information, which requires the search mechanism to be flexible. On the other hand,
to scale with network size the search mechanism is required to be bandwidth effi-
cient. High levels of content and node dynamism in modern large scale distributed
systems, including P2P content sharing, service discovery and P2P databases, im-
pose additional requirements on the search mechanism. Flexibility in query expres-
siveness and fault-resilience of the search mechanism become more important in
such environments.

Since the advent of P2P technology experts from industry and academia have
proposed a number of search techniques to provide satisfactory solution to the
conflicting requirements of search efficiency and flexibility in distributed environ-
ment. This chapter will present the challenges in distributed search and the existing
search techniques in three well-known P2P application domains: content sharing,
service discovery, and distributed XML databases. A generic formulation, namely
Distributed Pattern Matching (DPM) problem, will also be presented. The DPM
construct can be used as a generic framework for addressing the search require-
ments in different P2P applications. Two known solutions to the DPM problem will
be highlighted as well.

This chapter is organized as follows. Common properties of large scale dis-
tributed systems from three application domains, namely, content sharing, service
discovery and distributed XML databases, are presented in Section 2. Desirable
characteristics of a distributed search mechanism are presented in Section 3, while
the components of a distributed search system are identified in Section 4. Repre-
sentative search techniques form the above mentioned three application domains
are investigated in Sections 5–7, respectively. The DPM abstraction is presented in
Section 8. Finally, concluding remarks are placed in Section 9.

2 Large Scale Distributed Systems

Networks of tens or hundreds of thousands of loosely coupled devices have be-
come common in today’s world. The interconnection networks can exist in physical
or logical dimensions as well as wired and wireless domains. The Internet is the
largest distributed system that connects devices through TCP/IP protocol stack. On
top of this network there exists many logical overlay topologies, where networked
nodes federate to achieve a common goal. Examples of such federations include,
the Domain Name resolution System (DNS), the World Wide Web (WWW), con-
tent sharing P2P systems, world wide service discovery systems and emerging dis-
tributed XML database systems. Among these systems, the WWW and the DNS
are mature enough and are characterized by relatively static population of hosts.
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Content dynamism is also much lower in these two systems, compared to P2P sys-
tems. Centralized and clustered search techniques (e.g., web crawlers and proxy
caches) work well for a network of relatively stable hosts (or web sites) or do-
main name resolvers. Decentralized (control) and distributed (workload) search
techniques are required for a network composed of transient populations of nodes
having intermittent connectivity and dynamically assigned IP addresses.

Content sharing, service discovery and distributed XML databases are three rep-
resentative P2P application domains that can be taken as the representatives of mod-
ern large scale distributed systems. The identifying properties that separate these ap-
plication domains from contemporary large scale networks, like WWW and DNS,
can be summarized as follows:

Population dynamism: Transient population of nodes mandates the routing mech-
anism to be adaptive to failures. Redundant routing paths and replication can
improve availability and resilience in such environments.

Content dynamism: Frequent arrival of new content, relocation (e.g., transfer) of the
existing contents and shorter uptime of peers (compared to internet hosts) are the
main causes of content dynamism in these systems. Users in these systems often
do not have the exact information (e.g., exact filename, or Service Description)
about the content they are willing to discover. Rather most of the queries are
partial or inexact, which requires the search mechanism to be flexible.

Heterogeneity: In these systems participating population of nodes display wide vari-
ation in capacity, e.g., computing power, network bandwidth and storage. This
mandates the index information and routing traffic to be distributed based on
nodes’ capacities.

2.1 Content Sharing

Content (e.g., file) sharing is the most popular P2P application. A classification of
the topologies adopted in various P2P content sharing systems can be found in [20].
In [7], a survey and taxonomy of content sharing P2P systems are presented. All
content sharing P2P systems offer mechanisms for content lookup and for content
transfer. Although content transfer takes place between two peers, the search mech-
anism usually involves intermediate entities. To facilitate effective search, an object
is associated with an index file that contains the name, location, and sometimes a
description (or keywords) of the content. Search for a content typically involves
matching a query expression against the index files. P2P systems differ in how this
index file is distributed over the peers (architecture) and what index scheme is used
(i.e., index structure). From an architectural point of view (see Fig. 1), content shar-
ing P2P systems can be centralized, decentralized, or partially-decentralized [7].
Centralized P2P systems are characterized by the existence of a central index server,
whose sole task is to maintain the index files and facilitate content search. Napster
belongs to this category. Centralized P2P systems are highly effective for partial
keyword search, but the index system itself becomes a bottleneck and a single point
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Fig. 1 Content sharing P2P architectures

of failure. Decentralized architectures remedy this problem by having all peers in-
dex their own local content, or additionally cache the index of their direct neighbors.
Content search in this case consists in flooding the P2P network with query mes-
sages (e.g.,through TTL-limited broadcast in Gnutella). A decentralized P2P system
such as Gnutella is highly robust, but the query routing overhead is overwhelming in
large-scale networks. Recognizing the benefit of index servers, many popular P2P
systems today use partially-decentralized architectures, where a number of peers
(called superpeers) assume the role of index servers. In systems such as KaZaA and
Morpheus, each superpeer has a set of associated peers. Each superpeer is in charge
of maintaining the index file for its peers. Content search is then conducted at the
superpeer level, where superpeers may forward query messages to each other using
flooding. The selection of superpeers is difficult in such a scheme, as it assumes that
some peers in the network have high capacity and are relatively static (i.e., available
most of the time). A newer version of Gnutella [71] also uses this approach.

The indexing scheme used by content sharing P2P systems can be categorized as
unstructured, semi-structured, or structured [7]. Unstructured P2P systems use flat
index files, where a index file has no relation to other index files. Napster, Gnutella
and KaZaA/Morpheus belong to this category. Semi-structured P2P systems, such
as Freenet [21] and JXTA [15], use a local routing table at each peer. A search is
based on filenames that are hashed to binary keys. The query is routed at each peer
to the closest matching key found on the local routing table. To prevent infinite
querying, a time-to-live (TTL) value is used. Such mechanism is effective when the
content is well replicated over many peers. However, it is virtually impossible to
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enforce data consistency for file updates. Structured P2P systems are specialized in
exact matching queries using fully distributed routing structure. Examples of this
approach include P2P systems that use distributed indexing and querying schemes,
such as Chord [64], CAN (Content Addressable Network) [54] and Tapestry [72].

Advertisements in these systems mostly contain the filename and author-name.
For example a movie file can be advertised as “The Lord of the Rings – The Two
Towers – 2002 (Extended Edition) DVDrip.avi”. For a user it is very unlikely to
know the exact name of the advertised file. Rather the user specifies some keywords
that may be present in the advertised file name. For example a typical query for the
above movie would be “Lord of the Ring Two Tower”. Note the keywords “Ring”
and “Tower”; they do not contain the “s” as contained in the advertised keywords.
This mandates the support for partial keyword matching in P2P content sharing
systems.

2.2 Service Discovery
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Fig. 2 Service discovery: Generic architecture and steps

Service discovery is an integral part of any service infrastructure. A large-scale
service infrastructure requires a service discovery system that is open, scalable, ro-
bust and efficient. Most of the service discovery systems rely on a three-party archi-
tecture, composed of clients, services and directory entities. Directory entities gather
advertisements from service providers and resolve queries from clients. The generic
service discovery mechanism can be viewed as a five-step process (see Fig. 2) [5];
(1) bootstrapping, where clients and service providers attempt to initiate the discov-
ery process via establishing the first point of contact within the system, (2) service
advertisement, where a service provider publishes information (a Service Descrip-



432 Reaz Ahmed and Raouf Boutaba

tion containing a list of property-value pairs) to a directory entity about the provided
service (3) querying, where a client looks for a desired service by submitting a query
(usually a partial Service Description) to a directory entity, (4) lookup, where the di-
rectory entity searches the network of directory entities for all Service Descriptions
matching the query and (5) service handle retrieval, the final step in the discov-
ery mechanism, where a client receives the means to access the requested service.
Some of these steps may be omitted in various discovery approaches. Some of the
discovery approaches are based on two-party (client-server) architecture without
any directory infrastructure.
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Fig. 3 Taxonomy of the directory architectures

Directory architectures adopted by different service discovery approaches can
broadly be classified as centralized and decentralized (see Fig. 3) [5]. In a central-
ized architecture, a dedicated directory entity or registry maintains the whole direc-
tory information (as in centralized UDDI [69]), and takes care of registering services
and answering to queries. In decentralized architectures, the directory information
is stored at different network locations. Decentralized systems can be categorized
as replicated, distributed or hybrid. In the replicated case, the entire directory in-
formation is stored at different directory entities (as in INS [2]). In the distributed
case, the directory information is partitioned, and the partitions are either stored in
dedicated directory entities (DA) (as in SSDS [24], SLP [30] and Jini [65]) as per
a three-party model or cached locally by the service providers in the system (e.g.,
UPnP [47] and SLP in DA-less mode), according to a two-party model. Finally, in
the hybrid case, the system stores multiple copies of the entire directory information
without assigning the entire registry to a single directory entity (as in Twine [11]).

In large-scale networks, a centralized directory becomes a performance bottle-
neck and a single point of failure. Consistency of the replicas is a major issue in
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the replicated architecture (like INS), since maintaining consistent replicas is usu-
ally bandwidth-consuming. On the other hand, when the directory information is
distributed, e.g., partitioned among dedicated directory entities, the failure of one of
them leads to the unavailability of part of the directory information. The fully dis-
tributed two-party architecture attempts to remedy all these issues, however these
systems generally do not scale well, since they use multicast-like communications
which are expensive in terms of bandwidth. Hybrid architectures seem to offer the
best compromise between bandwidth consumption, scalability, and fault-tolerance.

Advertisement
Service-type=service:print

Scope-list=staff, grad

Location=DC3335

color=true

language=PS

Paper-size= legal, A4, B5

URL=diamond.uwatreloo.ca/PCL8

Query
Service-type=service:print

Scope-list=grad

Paper-size=A4

Fig. 4 Example advertisement and query in service discover systems

An example of a generic advertisement and a query in service discovery systems
is presented in Fig. 4. In these systems a service is advertised using a list of de-
scriptive property-value pairs, called a Service Description. A Service Description
typically contains service type (e.g., Service-type=service:print), service invocation
information (e.g., URL=diamond.uwatreloo.ca/PCL8) and service capabilities (e.g.,
Paper-size= legal, A4, B5). In most cases a Service Description is instantiated from
a Service Schema, which contains meta-information regarding the Service Descrip-
tions for a given class of service (e.g., print service or service:print). A Service
Schema governs the allowable properties and their types (e.g., string, integer, float,
etc.) within the Service Descriptions of a given class of services. In most service
discovery systems it is assumed that the available Service Schemas are globally
known.

Queries in these systems (see Fig. 4) usually contain the requested service type
and a list of required capabilities of the service (e.g., Paper-size=A4). The list of
capabilities provided in a query is a subset of the capabilities list provided in the
advertisements it should match against. The result of a query consists of a list of
Service Descriptions matching the query.

2.3 Distributed XML Databases

Distributed XML databases on P2P systems, or P2P Databases Systems (PDBS) in
short, have been investigated, more recently, following the success of P2P content
sharing. A P2P database system can be thought of as a data sharing network built on
top of a P2P overlay. Search in PDBS demands more flexibility than that required
by the P2P content sharing systems. This requirement stems from the existence of
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semantic (schema) information associated with the shared data. Most of the research
works focus on building an additional layer on top of the existing P2P search tech-
niques.

Though PDBSs evolved as a natural extension of Distributed Database Systems
(DDBS), they have a number of properties that distinguish them from the DDBS
and traditional Database Management Systems (DBMS). Unlike DDBS, PDBS has
no central naming authority, which results into heterogenous schemas in the sys-
tem. Due to the absence of any central coordination and the large-scale evolving
topology, a peer knows about only a portion of the available schemas and data. This
mandates a mechanism (e.g., ontology) for unifying semantically close schemas. In
a DDBS, arrival or departure of nodes is performed in a controlled manner, which is
not true for PDBSs. Finally, in contrast to DDBS, a peer in a PDBS has full control
over its local data.

In PDBS, semantic mapping of schema is a challenging problem. It requires inter-
operation between heterogenous data models. XML [63] is used as the defacto stan-
dard for this purpose. A survey on the use of XML in PDBS can be found in [39].
In PDBS, XML is used in two ways. Firstly, XML is used for representing data and
data models (i.e., schema information). Secondly, XML is used to represent seman-
tic relationships among heterogeneous data models at three different levels: schema
level, element level and data level. These levels of granularity also influence the
indexing mechanism adopted in these systems.

Local Data Model

Semantic Mapping

ElementSchema Data

Indexing

P2P routing

1

2

3

4

Fig. 5 Functional layers in a PDBS system

Figure 5 presents the possible functional layers in a PDBS. Each peer in the
system has its own local data model independent of the other peers’ data models.
The process of translating a local query to other peers’ data models is performed
by the semantic mapping layer at different granularities. The third layer is optional,
and can maintain indices at different granularities. Finally, the fourth layer is usually
one or a combination of the routing mechanisms present in traditional file sharing
P2P systems.

Many research works on PDBS assume the existence of an underlying P2P sub-
strate for efficient and flexible query routing, and concentrate on higher level issues
including semantic mapping between heterogenous schemas and distributed query
processing and optimization.
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Fig. 7 XPath query examples

Advertisement and query in PDBS are more complicated than that in P2P content
sharing and service discovery systems. Figure 6 depicts an example of an XML
advertisement which contains information about two books and one magazine. A
tree representation of the corresponding XML Schema [26] has been presented in
Fig. 6b. Analogous to Service Schema, an XML Schema contains meta-information
regarding a class of XML documents. However, the syntax used for describing XML
documents and XML Schema are standardized and widely used, compared to the
variations in Service Description and Service Schema definition syntaxes used by
different service discovery systems.

The most popular query syntax used in PDBS is XPath. Figure 7 presents two
examples of XPath queries based on the advertisement presented in Fig. 6. The first
query finds all authors having at least one award. The second example finds all
books for which last-name of the author is Bob.

3 Distributed Search Requirements

Search is an essential functionality offered by any distributed system. A search
mechanism in a distributed system can be either centralized or distributed. For
Centralized Search there exists a central core of one or more machines respon-
sible for indexing the contents distributed across the network and for responding
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to user queries. For networks with lesser degree of dynamism, centralized search
mechanisms prove to be adequate. Google, Yahoo, Alta vista, etc. are the living
examples of centralized search mechanisms, where a set of crawlers running on a
cluster of computers index the Webpages around the globe. Compared to the life-
time of the contents shared in P2P networks, Webpages are long lived. Centralized
search techniques do not prove to be efficient in large scale distributed systems due
to content and population dynamism (as explained in Section 2). Distributed Search
mechanisms assume that both indexing mechanism (analogous to crawlers) and in-
dexed information are distributed across the network. Consequently the design re-
quirements for Distributed Search techniques are different from that for Centralized
Search techniques. In the following is a list of the most important design require-
ments for a Distributed Search mechanism.

• Decentralization: For a Distributed Search mechanism to be successful, decen-
tralization of control and data are necessary. Decentralization of control refers to
the distribution of the index construction process among the participating nodes.
There should not be any central entity governing the index construction process
in different nodes. Unlike web search engines, the index itself should be dis-
tributed across the participating nodes for achieving uniform load distribution
and fault-resilience.

• Efficiency: The search mechanism should be able to store and retrieve index infor-
mation without consuming significant resource: mainly storage and bandwidth.
In a large scale distributed system advertisements are frequent due to the arrival
of new documents and relocation of existing documents. The large user base
generates queries at a high rate. This mandates both advertisement and search
process to be bandwidth efficient.

• Scalability: Efficiency of the search mechanism should not degrade with increase
in network size. In addition the number of links per node should not increase a lot
with growth in network size. Join and topology maintenance overhead depends
largely on the number of links that a node has to maintain, especially in dynamic
environments.

• Flexibility: Due to content dynamism, users do not usually have the exact infor-
mation about the advertised objects. The query semantics offered by the search
mechanism should be flexible to support inexact or subset queries. The scalability
and efficiency requirements should not be sacrificed for achieving the flexibility
requirement.

• Search completeness: Search completeness is measured as the percentage of
advertised objects (matching the query) that were discovered by the search.
Required level of search completeness varies from application to application.
A search mechanism should have guarantee on the discovery of rare objects. In
the case of popular or highly replicated objects, only a predefined number of
matches would suffice for most cases. For specific queries, the number of match-
ing objects would be low and all of them should be discovered by the search.
Broad queries, on the other hand, would match a large number of advertised ob-
jects. In this case search result may be restricted within a predefined limit to avoid
high bandwidth consumption.
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• Fault-resilience: In large scale distributed systems, participating nodes connect
autonomously without administrative intervention. Nodes depart from the net-
work without a priori notification. The search mechanism is expected to adver-
tise and discover objects in a continuously evolving overlay topology, resulting
from the frequent arrival and failure of nodes. In many cases index replication
and pair-wise, alternate routing paths are used to improve availability.

• Load distribution: Heterogeneity in nodes’ capabilities, including processing
power, storage, bandwidth and uptime, is prominent in large scale distributed sys-
tems. To avoid hot spots and to ensure efficiency, the advertisement and search
mechanisms should distribute routing, storage and processing loads according to
the capabilities of the participating nodes. In other words, uniform distribution of
load may result into poor system performance in a large scale distributed system.

In addition to the above mentioned design requirements, a number of other re-
quirements of secondary importance may arise in different scenarios. For example,

• autonomy of index placement and routing path selection may be required for
security and performance reasons;

• anonymity of the advertising, indexing and searching entities may be required in
censorship resistance systems;

• ranking of search results may be required for full-text search or information re-
trieval systems; etc.

4 Components of a Distributed Search System

In a large scale distributed system, a distributed search mechanism can be composed
of three components as depicted in Fig. 8 and presented in following list.

1. Query semantics refer to the expressiveness of a query and the allowed level of
semantic heterogeneity in queried and advertised information.

2. Translation is a function governing the transformation of semantic information
present in a query to a form, suitable for query routing.

3. Routing refers to the mechanism of forwarding a query to the nodes suitable for
answering the query.

Each of these components are explained in greater detail in the following subsec-
tions.

4.1 Query Semantics

Any visible (e.g., shared or advertised) object in a distributed system is associated
with a set of properties describing the behavioral and functional aspects of that ob-
ject. Meta information on a set of related properties associated with a class of objects
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Fig. 8 Components of a distributed search system

is defined as the schema for that class of objects. In a distributed search system,
structure and scope (temporal and spatial) of the available schemas influence the
query language capability and underlying routing mechanism. The rest of this sec-
tion highlights two aspects of query semantics: schema and query expressiveness.

4.1.1 Schema

Based on the temporal and spatial scope of the schema, large scale distributed sys-
tems can be classified as follows:

• Static schema: Most of the file sharing P2P systems have been designed to share
one or more specific types of files, e.g., song, movie, software etc. For each type
of file a specific set of properties is defined that remain unchanged throughout
the life of the system. Essentially these systems have one or more static schemas
that are globally known.

• Quasi-static schema: Most of the service discovery systems fall into this cate-
gory. Unlike file sharing P2P systems, service discovery systems allow dynamic
creation of schema for describing services. Each service instance is advertised
as a Service Description governed by a predefined Service Schema (or template).
All schemas in a given service discovery system have to contain a minimal set
of predefined properties to comply with the specific system under consideration.
Though schema can be created dynamically, the rate of such events is very low
and the number of available schemas in a given system is much lower than that
in PDBS. Furthermore, it is assumed that all the existing schemas in the system
are globally known.

• Dynamic schema: Most of the PDBSs fall into this category. In these systems
heterogeneous schemas exist. Temporal scope of a schema is often bounded by
the lifespan of the peer advertising data with that schema. Spatial scope is lo-
cal to the originating peer and its neighbors; no global knowledge is assumed.
In such systems, Automating the process of semantic mapping between similar
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schemas is a challenging problem, which may require additional support from
the underlying routing mechanism.

4.1.2 Expressiveness

Query expressiveness refers to the capability of the query language in expressing
information retrieval requirements. Exiting research works focus on a wide variety
of query expressiveness ranging from simple keyword-based queries to complex
queries, such as LDAP filter [34] and XPath [38]. Below is a non-exhaustive list of
the different levels of query expressiveness commonly found in distributed search
techniques.

• Exact keyword match is the minimum level of query expressiveness supported by
any search mechanism, and is present in most of the file sharing P2P systems,
especially the ones based on DHT techniques. For this level of expressiveness, a
globally known fixed schema (with a limited number of properties) is assumed.

• Partial keyword match is supported by most of the unstructured techniques as
well as some extensions to the DHT techniques. Two major variants in this cat-
egory can be found. Most extensions to DHT techniques support partial prefix
matching and unstructured techniques support true partial matching.

• Property-value list is used by many service discovery techniques. Service De-
scriptions are specified as a property-value list, and queries are specified as a
subset of the advertised property-value list. Most service discovery techniques
assume a flat list of property-value pairs and do not support wildcard-based par-
tial matching in property names or values.

• Complex queries involve logical and relational operators (i.e., range queries),
and hierarchical relations between properties. Complex queries are supported by
a few service discovery approaches and most of the distributed XML database
systems. As a means of expressing a distributed query forml query languages,
such as LDAP filters, XQuery [18], XPath [38] and SPARQL [51] are used.

4.2 Translation

In most distributed systems the query expression specified by a user is not used as
is by the underlying routing mechanism. Instead, the query expression goes through
some kind of transformation before it is fed to the routing process. The translation
function works as a bridge between user specified queries and the routing mecha-
nism. The domain of the translation function is governed by the query semantics as
discussed in the previous section. The range of the translation function, on the other
hand, depends on the routing mechanism used by the underlying overlay. Based on
the particular combination of query semantics and routing mechanism, this function
can exhibit a wide variation. Translation functions can be broadly classified into the
following three categories:
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• Flat: This type of translation functions do a very little (e.g., filtering) or no
change to the query expression and associated semantic information. Such func-
tions are usually used by unstructuredand semi-structured routing mechanisms,
and most of the industrial approaches to service discovery.

• Hash : Hashing is mostly used by structured and semi-structured search mecha-
nisms. A wide variety of hashing techniques have been proposed for distributed
search systems. However, the major problem with this type of translation func-
tions is that they loose semantic information during the hash transformation pro-
cess. As a result only exact or prefix matching is supported by the search mech-
anisms that adopt hashing as translation function.

• Hash-summary: This type of translation enables efficient query routing while
preserving query semantics. Variants of Bloom filters are the most popular means
of representing hash summaries. Hash summaries are mostly used by unstruc-
tured and semi-structured search mechanisms.

4.3 Routing

In overlay networks, routing refers to the process of forwarding a message from a
source node to a destination node. The source and the destination nodes are usu-
ally at a number of hops away from each other on the overlay. Routing algorithms
in overlay networks can be broadly classified into two categories: uninformed and
informed. Uninformed routing algorithms do not use the knowledge of query seman-
tics or target node’s address in making routing decisions at each hop. Flooding [1],
Random walk [45] and Iterative deepening [71] are the representative algorithms in
this category. These algorithms are not efficient in terms of the generated volume of
search traffic, but the robustness is good in highly dynamic environment. Based on
the nature of information used for next hop selection, Informed routing algorithms
can be classified into the following three categories:

• Content routing (CR): Content routing algorithms utilize the semantic informa-
tion, embedded in user query, for making routing decisions at each hop. Hence,
the associated translation function should be from the flat category. Examples of
such routing strategy include, selective flooding [22] and hint based routing [68].
Content-routing allows partial match and complex queries, but the offered query
routing efficiency is low. Moreover, there exists no guarantee on search com-
pleteness or the discovery of rare objects.

• Address routing (AR): Address routing is adopted in DHT-based structured
P2P overlays, such as Chord [64], CAN [54], Pastry [57] and Kademlia [46].
Different hash techniques are used to transform a query into a virtual address
on the overlay, and this address is used to route the query to a responsible node.
Routing algorithms in this category are efficient in terms of query routing traffic,
but they are not appropriate for semantic laden search (e.g., partial matching and
complex queries).
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• Signature routing (SR): A number of distributed search techniques, including
[3, 24, 42] construct a signature (usually a Bloom filter) of the target object and
routes queries based on this signature. These techniques strive to combine the
merits of both content-routing and address-routing strategies. Signatures retain
(part of or the whole) query semantics and allow aggregation for efficient in-
dexing. However, search completeness and robustness are not as good as that in
address-routing and content routing, respectively.

5 Search Techniques in Content Sharing P2P Systems

5.1 Structured Techniques

Majority of the structured search techniques rely on Distributed Hash Tables (DHT).
In general DHT-based techniques, like Chord [64], CAN [54], Tapestry [72], are
not adequate for supporting flexibility requirement for content sharing P2P sys-
tems, which warrant minimum flexibility of partial keyword matching. This inad-
equacy stems from mainly for two reasons. Firstly, DHT-techniques use numeric
distance based clustering of hashed keywords which is not suitable for partial key-
word matching. Secondly, DHT-techniques cannot handle common keywords prob-
lem well. Popular keywords can incur heavy load on the peers responsible for these
keywords; as a result, the distribution of load will become unbalanced among the
participating peers.

Inability to support partial keyword matching is considered a handicap for DHT-
techniques. In the last few years a number of research efforts have focused on ex-
tending DHT-techniques for supporting keyword search. Most of these approaches
adopted either of the following two strategies:

• Build an additional layer on top of an existing DHT routing mechanism. The aim
is to reduce the number of DHT lookups per search by mapping related keywords
to nearby peers on the overlay. This strategy is proposed in a number of research
works including [37, 44, 61, 67] .

• Combine structured and unstructured approaches in some hierarchical manner to
gain the benefits of both paradigms. Few research works, including [28, 36, 66],
focus on this strategy.

A generic inverted index [31] on top of a DHT-based routing can be used for
achieving an expressiveness level of partial-keyword matching. In this approach, a
keyword is translated into a routing key in two steps. First, the keyword is frag-
mented into η-grams. Then each η-gram is hashed and stored at the responsible
peer on the DHT overlay. The hashed η-grams form an inverted index, where an
advertised η-gram can be discovered by specifying its hash value. This approach
will solve partial keyword matching problem in O(ω logN) time, where ω is the
number of η-grams in a query and N is the number of peers in the system, assuming
that the underlying DHT network has logarithmic routing efficiency.
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Keyword fusion [44] is another inverted indexing mechanism on top of Chord
routing. Supported level of query expressiveness is keyword search only. A docu-
ment advertised with keywords {k1,k2, . . . ,kt} is routed to peers responsible for keys
h(k1),h(k2), . . . ,h(kt), where h(·) is the DHT hash function. To reduce the num-
ber of DHT-lookups per search, a system-wide dictionary of common keywords is
maintained. A query is routed using the most specific keyword and then filtered us-
ing the more common keywords specified in the query. Thus the translation function
filters out common keywords and then applies hashing. This strategy suffers from
two problems. Firstly, the advertisement overhead is significant and proportional to
the number of keywords. Secondly, maintaining the global dictionary for common
keywords is not suitable for large, dynamic networks.

Joung et al. [37] proposed a distributed indexing scheme, build on a logical,
d-dimensional hypercube vector space over Chord routing. In this scheme each ad-
vertisement is translated into a d-bit vector according to its keyword set (similar to
Bloom filter construction). They treat d-bit vectors as points in d-dimensional hy-
percube. No restriction on the mapping of a d-dimensional point to a 1-dimensional
key space (required for Chord) has been specified. An advertisement is registered
to the peer responsible for the d-bit advertisement vector. A query vector (say Q) is
computed in the same manner as the advertisement vector. A query is routed to all
the peers in the Chord ring that are responsible for a key (say Pi) that is a superset
of the query vector Q. Number of DHT lookups per search and query is significant
for this approach.

The work by Joung et al. [37] and the inverted indexing method used in Key-
word Fusion [44] represent the two extremes of advertisement and query traffic
trade off. In [37], an advertisement is registered at one peer (responsible for the ad-
vertised key) and a query is routed to all possible peers that may contain a matching
advertisement. On the other hand, in Keyword Fusion[44] an advertisement is regis-
tered at all the peers responsible for the advertised keywords and the query is routed
to the peer responsible for the most uncommon keyword specified in the query.

pSearch [67] utilizes Information Retrieval (IR) techniques to construct the trans-
lation function on top of CAN routing for facilitating content-based full-text search.
Keywords associated with an advertised document (or query) are represented as unit
vectors. IR techniques like vector space model (VSM) and latent semantic indexing
(LSI) are used to compute a unit vector from the keyword list specified in an adver-
tisement (or a query). Similarity between a query and an advertisement (or between
two advertisements) is measured using the dot product of the vector representation
of the corresponding advertisement and query. Semantically close advertisements
and queries are expected to be translated to geometrically close point vectors in the
Cartesian space. Now the semantic point vectors from LSI or VSM are treated as
geometric points in the Cartesian space of CAN. CAN partitions a d-dimensional,
conceptual, Cartesian space into zones and assigns each zone to a peer. However this
mapping technique (from LSI/VSM to d-dimensional CAN space) uses the same di-
mensionality for LSI space and CAN. Thus it needs to have a priori knowledge of
the possible keywords (or terms) in the whole system. In reality there can be thou-
sands of possible keywords, and CAN performance degrades at higher dimensions.
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Squid [61] has been designed to support partial prefix matching and range queries
on top of DHT-based structured P2P networks. It uses Hilbert Space-filling Curve
(HSFC) [58] for translating keywords to keys on top of Chord routing mechanism.
HSFC is a special type of locality preserving hash function that can map points
from a d-dimensional grid (or space) to a 1-dimensional curve in such a way that
the nearby points in d-dimensional space are usually mapped to adjacent values on
the 1-dimensional curve. Squid converts keywords to base-26 (for alphabetic char-
acters) numbers. A d-dimensional point is constructed from d keywords specified
in the query or advertisement. Then a d-dimensional HSFC is used to translate a
d-dimensional region (i.e., set of points) specified by the query into a set of curve
segments in 1-dimension. Finally, each segment is searched using a Chord-lookup
followed by a local flooding. Squid supports partial prefix matching (e.g., queries
like compu* or net*) and multi-keyword queries; however, Squid does not have
provision for supporting true inexact matching of queries like *net*. Another major
problem is that the number of (partial) keywords specified in a query or advertise-
ment is bounded by the dimensionality d of the HSFC in use.

MKey [36] is a hybrid approach to keyword search. Architecturally there exists a
DHT (here Chord) backbone. A backbone node in the Chord ring works as a head
for a cluster of nodes, organized in an unstructured fashion. Search within a cluster is
based on flooding. On the other hand, Bloom filter is used as index in the backbone.
But DHT techniques do not allow Hamming distance based indexing as required
for matching Bloom filters. For allowing pattern matching on Chord, the following
strategy is used. Nodes on the Chord ring are allowed to have an ID with at most two
1-bits. An advertisement pattern, say 01010111, is advertised to peers 01010000,
00000110 and 00000001; i.e., DHT-keys are obtained from an advertisement pattern
by taking pairs of 1-bits in sequential order from left to right. To construct DHT-
keys from a query pattern, say 01010011, only the leftmost three 1-bits are used. In
this example the 1-bits at 2nd,4th and 7th positions. The DHT-keys are obtained by
taking the 1-bit in center position (here 4th) and another bit within the left position
(here 2nd) and the right position (here 7th). Hence for the query pattern 01010011,
generated DHT-keys are 01010000, 00110000, 00011000, 00010100 and 00010010.
Evidently the number of DHT-lookups per search or advertisement depends linearly
on the number of keywords and the size of the used Bloom-filter. This can be more
inefficient than a generic inverted indexing mechanism for inappropriate parameter
settings. Besides, the nodes on Chord ring may become performance bottlenecks for
the system.

There exists only a few non-DHT structured approaches to the search problem
in P2P networks. SkipNet [32] and SkipGraph [9] are prominent among them. Both
of these approaches use Skip List [52] for routing. A skip List is a probabilistic
data structure consisting of a collection of ordered linked lists arranged into levels.
The lowest level (i.e., level 0) is an ordinary, ordered linked list. The linked list in
level i skips over some elements from the linked list at level (i− 1). An element
in level i linked list can appear in level (i + 1) linked list with some predefined,
fixed probability, say p. Storage overhead can be traded for search efficiency by
varying p. Search for an element say Q starts at the topmost level. Level i list is
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sequentially searched until Q falls within the range specified by current element and
next element in the list. Then the search recurs to level i− 1 list from the current
element until level 0 is reached. In both SkipGraph and SkipNet, nodes responsible
for the upper level elements of the Skip List become potential hot spots and single
points of failure. To avoid this phenomena, additional lists are maintained at each
level.

5.2 Un-structured and Semi-structured Techniques

Unstructured systems identify objects by keywords. Advertisements and queries are
expressed in terms of the keywords associated with the shared objects. Structured
systems, on the other hand, identify objects by keys, generated by applying one-
way hash function on keywords associated with an object. Key-based query routing
is much efficient than keyword-based unstructured query routing. The downside of
key-based query routing is the lack of support for partial-matching semantics as dis-
cussed in the previous section. Unstructured systems, utilizing blind search meth-
ods such as Flooding and Random-walk, can easily be modified to support partial-
matching queries. But, due to the lack of proper routing information, the generated
query routing traffic would be very high. Besides, there would be no guarantee on
search completeness.

Many research activities are aimed at improving the routing performance of un-
structured P2P systems. Different routing hints are used in different approaches. In
GIA [19], routing is biased by peer capacity; queries are routed to peers of higher
capacity with higher probability. In APS [68, 71], peers learn from the results of
previous routing decisions and bias future query routing based on this knowledge.
In Associative Search [22], peers are organized based on common interest, and re-
stricted flooding is performed in different interest groups. Many research works
(GIA [19], NSS [42, 71], etc.) propose storing index information from peers within
a radius of 2 or 3 hops on the overlay network. All of these techniques reduce the
volume of search traffic to some extent, but none provides guarantee on search com-
pleteness.

Bloom filters are used by a few unstructured P2P systems as translation function
for improving query routing performance. In NSS [42] each peer stores Bloom fil-
ters from peers one or two hops away. Experimental results presented in this work
show that logical OR-based aggregation of Bloom filters is not suitable for indexing
information from peers more than one hop away. In PLR [55] each peer stores a list
of Bloom filters, named Attenuated Bloom filter, per neighbor. The ith Bloom filter
in the list of Bloom filters for neighbor M summarizes the resources that are i− 1
hops away from neighbor M. A query is forwarded to the neighbor with a matching
Bloom filter at the smallest hop-distance. This approach aims at finding the closest
replica of a document with a high probability.
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5.3 Summary

Table 1 summarizes the query semantics, translation functions and routing mecha-
nisms as observed in different search techniques in P2P content sharing domain as
discussed in this section.

Table 1 Components of selected search techniques in P2P content sharing

P2P content sharing

References Name Query Translation Type Routing Mecha-
nism

[44] Keyword
fusion

Multi-keyword Inverted index AR Chord

[37] Joung et al. Multi-keyword Query superset AR Chord

[67] pSearch Full text, multi-
keyword

VSM/LSI AR CAN

[61] Squid Prefix match Hilbert SFC AR Chord

[36] MKey Subset match Query superset AR Chord +Flooding

[32] SkipNet Prefix match Flat AR Skip List

[19] GIA Partial keyword Flat CR Capacity bias

[68] APS Partial keyword Flat CR Result bias

[42] NSS Multi-keyword Bloom filter (BF) SR Controlled flood

[55] PLR Multi-keyword Attenuated BF SR Hint bias

6 Search Techniques in P2P Service Discovery

Many service discovery systems rely on a three-party architecture, composed of
clients, services and directory entities. Directory entities gather advertisements from
service providers and resolve queries from clients. Major protocols for service dis-
covery from industry, like SLP [30], Jini [65], UPnP [47], Salutation [59], etc.,
assume a few directory agents, and do not provide any efficient mechanism for
locating Service Descriptions. Solutions from academia, like Secure Service Dis-
covery Service (SSDS) [24] and Twine [11], target Internet-scale service discovery
and face the challenge of achieving efficiency and scalability in locating Service
Descriptions based on partial information.

Secure Service Discovery Service (SSDS) [24] arranges directory entities in a
tree-like structure and uses hierarchy routing. It uses Bloom filters for translating
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service descriptions into routing signatures. Bit-wise OR-base aggregation scheme
is adopted for reducing the volume of index information at higher level directory
entities in directory tree. In SSDS an advertisement can be discovered by speci-
fying a subset of the advertised property-value list in the query expression. SSDS
suffers from load-balancing problem and is vulnerable to the failure of higher level
directory entities along the directory tree.

Twine [11] uses a hierarchical naming scheme and relies on Chord as the un-
derlying routing mechanism. A resource is described using a name-tree, composed
of the properties and values associated with the resource. Hierarchical relations be-
tween properties are reflected in the tree, e.g., while describing the location of a
resource, “room no.” appears as a child of the “building” in which it resides. The
translation function in Twine generates a set of strands (substrings) from the adver-
tisement or query (which are expressed in XML format), computes keys for each
of these strands, and finally uses these keys for the search or advertisement pro-
cess. The stranding algorithm in Twine is designed to support partial prefix match-
ing within a name-tree. The number of DHT-lookups increases with the number of
property-value pairs in the advertisement (or query) and consequently the amount
of generated traffic becomes high. Load-balancing is another major problem in this
system. Peers responsible for small or popular strands become overloaded, and the
overall performance degrades.

Web Services (WS) [14] provide a standard way of interoperating between differ-
ent software applications, running on a variety of platforms and/or frameworks. Uni-
versal Description, Discovery and Integration (UDDI) [69] is the defacto standard
for WS discovery. Many research activities are devoted to enhancing and overriding
the legacy UDDI specification thriving for efficiency, scalability and flexibility in
the discovery mechanism. A detailed survey of such activities can be found in [29].
Table 2 summarizes some of the proposed architectures for WS discovery. Based on
the use of WS ontologies, these approaches can be broadly classified as semantic-
laden and semantic-free. Semantic-laden approaches rely on WS ontology map-
ping techniques like OWL (Web ontology language) [8] or DAML (DARPA Agent
Markup Language) [16] for incorporating intelligence to the discovery process, i.e.,
for intelligently mapping conceptually related terms in queries and advertisements.
Semantic-free approaches, on the other hand, do not utilize WS ontology mapping
techniques. These approaches are closely related to the traditional service discov-
ery systems. A number of research work in this category rely on locality preserving
hash techniques for translating queries to semantically close advertisements.

6.1 Summary

Table 3 summarizes the query semantics, translation functions and routing mech-
anisms as observed in different search techniques in service discovery domain as
discussed in this section.
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Table 2 Summary of Web service discovery architectures

C
en

tr
al

iz
ed Registry Authoritative, centrally controlled store of service descrip-

tions, e.g., UDDI registry [69]
Index Non-authoritative, centralized repository of references to ser-

vice providers; see [14] for details. Web crawlers are used for
populating an index database

D
ec

en
tr

al
iz

ed

Federation Publicly available UDDI nodes collaborate to form a federa-
tion and act together as a large scale virtual UDDI registry [56]

P2P-based
Semantic-
laden

In [60] peers are arranged into a hypercube topol-
ogy [25] and ontology [70] is used to facilitate
efficient and semantically-enabled discovery. An
agent-based approach is proposed in [48]. It uses
DAML [16] representation for ontology and re-
lies on unstructured search techniques.

Semantic-
free

Both [43, 62] use Chord overlay for indexing and
locating service information. Reference [43] ex-
tracts property-value pairs from service descrip-
tions and uses MD5 hashing. Reference [62] uses
Hilbert Space Filling Curves for mapping simi-
lar Service Descriptions to nearby nodes in the
Chord ring. These two approaches are similar to
Twine [11] and Squid [61], respectively. In [35],
another Chord based solution has been proposed.
Here, the ID-space is partitioned in numerically
ordered subspaces, and each peer in the Chord-
ring maintains links to one peer in each subspace
in addition to the regular Chord links.

Table 3 Components of selected search techniques in service discovery

Service discovery

References Name Query Translation Type Routing

[30] SLP LDAP filter Flat CR Flooding

[24] SSDS Subset/PV-list Bloom filter SR Global hierarchy

[11] Twine Subtree match Stranding + hash CR Chord

[43] PWSD XML path prefix Stranding + hash CR Chord

[62] Schmidt et al. Prefix match Hilbert SFC CR Chord

[60] Schlosser et al. Semantic match Ontology con-
cept → d-coord.

CR+ AR 2-tier hypercube
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7 Search Techniques in Distributed XML Databases

Several research works on distributed XML databases have adopted DHT tech-
niques, such as Chord [64], CAN [54] and Hypercube [60], for routing. A num-
ber of these proposals, including [13, 17, 27], rely on Chord as the underlying P2P
substrate. Hypercube topology has been used in [49].

XP2P [13], uses XML data model for schema representation, and provides sup-
port for resolving XPath [38] queries. Any XML document can be represented as a
tree, and an XPath query is used to specify a subtree using a prefix-path originat-
ing from the root of the document. For supporting partial prefix-path matching, all
possible paths, originating from the root, have to be registered with the Chord ring.
To reduce the number of paths to be hashed in the Chord ring during the advertise-
ment and query process, XP2P adopts a fingerprint construction technique presented
in [53]. In this technique, the fingerprint of a binary string A(t) = (a1,a2, . . . ,am) =
a1× tm−1 + a2× tm−2 + · · ·+ am is computed as f (A) = A(t)%P(t), where P(t) is
an irreducible polynomial. A useful property of the fingerprint function, utilized by
XP2P, is that f (A�B) = f ( f (A)�B), where � is the concatenation operator.

Galanis et al. [27] presented a framework for supporting XPath queries on top
of Chord routing. XPath queries of the form /a1[b1]/a2[b2]/. . ./an op value and
queries containing relative path operator (i.e., //) are supported. Here, ai is an ele-
ment in an XML document, bi is an XPath expression relative to element ai, op is an
XPath operator like = or <, and value is an atomic element in the XML document.
The core idea is to build a distributed catalog, where a peer in the Chord ring stores
all the prefix-paths for a given element in any XML document stored in the network.
In other words, if E is an element in some XML files, then the peer responsible for
the key hash(E) stores all the absolute paths (i.e., /a1/a2/. . ./E) leading to E in
any document stored in the network and the contact information of the peers stor-
ing those documents. An XPath query of the form /a1/a2/. . ./ak//E is routed to
the peer (say N) responsible for the key hash(E) and the list of all peers containing
XML documents matching the query are extracted. Finally the query is forwarded
and executed in the corresponding peers.

RDFPeers [17] uses Resource Description Framework (RDF) [41] for docu-
ment representation and Chord for routing. An RDF document is contains many
< Resource, Property, Value > triples presented in XML format. A triple, say
< R,P,V >, is stored in three peers (in the Chord ring) responsible for the keys
hash(R), hash(P) and hash(V ), respectively. For string literals SHA1 hash function
is used. For numeric values (in the value component of a RDF-triple) locality pre-
serving hash function is used. A query can be constructed by specifying any of the
three components in a triple. In RDFPeers each document has to be indexed at three
peers, which results into increased increased advertisement and update traffic.

PeerDB [50] uses an agent-based framework on top of unstructured P2P over-
lay to achieve distributed data sharing. To accommodate heterogeneity in schema
definitions from autonomous peers in the system, PeerDB associates keywords as
synonyms with each schema and elements under that schema. These keywords are
used as a means of semantic mapping and for finding semantically similar schemas
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using P2P keyword search techniques. Mobile agents are sent to appropriate peers
and a query is executed locally at the target peer, which helps in reducing the volume
of network traffic.

A hybrid technique, named Humboldt discoverer, has been presented in [33].
RDF [41] has been used for describing an advertised resource. SPARQL (Simple
Protocol and RDF Query language) [51] has been used for constructing query ex-
pressions. SPARQL is a query language for RDF documents that allows formation
of complex queries involving relational and logical operators. Routing is done us-
ing a three tier architecture, where peers are classified as bottom, middle or top tier
peers. Bottom tier peers provide information sources. These peers are clustered into
many groups based on the similarity of used ontologies. A middle tier peer is re-
sponsible for an ontology and manages a single cluster of bottom tier peers. Middle
tier peers advertise their existence to top tier peers, which are organized in a Chord
ring and are addressed by the hash of the URIs of the ontologies. In effect, middle
tier peers covering the same ontology are grouped under the same top level peer.
To resolve a query, all the required ontologies are first determined. For a given on-
tology, the set of responsible middle tier peers can be reached through the top tier
Chord network. Finally, the query is forwarded to each of the middle-tier peers that
are responsible for the ontology.

7.1 Summary

Table 4 summarizes the query semantics, translation functions and routing mecha-
nisms as observed in different search techniques in distributed XML database do-
main as discussed in this section.

Table 4 Components of selected search techniques in PDBS

P2P databases

Ref Name Query Translation Type Routing

[13] XP2P XPath(absolute) Fingerprint AR Chord

[27] Galanis et al. XPath(relative) XML element hash AR Chord

[17] RDFPeers Partial RDF triple RDF element hash AR Chord

[50] PeerDB SQL Synonym/flat CR Flooding

[33] Humboldt Dis-
coverer

SPARQL/RDF URI-hash+Flat AR+CR Chord+ Controlled
flooding
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8 The DPM Abstraction

It is evident from the foregoing survey that flexibility in query expressiveness is
essential for a search mechanism in all three domains, considered so far. This section
presents an abstraction for the search problems in different application domains into
a generic framework or problem formulation, called Distributed Pattern Matching
(DPM).

Among the requirements of a search mechanism discussed in Section 3, flex-
ibility deals with query language semantic and the rest relate to system perfor-
mance and thus are implementation specific. The DPM construct encapsulates the
flexibility requirement, and any solution to the DPM problem should focus on the
performance specific requirements.

8.1 Distributed Pattern Matching (DPM)

The DPM problem can be considered as a distributed version of the traditional
pattern matching problem or more specifically the subset matching problem. The
generic pattern matching problem and its variants have been extensively studied
in Computer Science literature. Given a text (or raw data) P and a pattern Q, the
generic problem of pattern matching is to locate (all) the occurrences of Q in P.
The definition of text, pattern and occurrence depends on the application domain.
The text and pattern are two dimensional arrays in Image Processing applications,
strings in Text Editing systems, trees in tree pattern matching [40], and arrays of
sets in subset matching [23]. Variations in the definition of occurrence include exact
matching, parameterized matching [10], approximate matching and matching with
“don’t cares” [6].

The variant of the pattern matching problem considered in this work is closely
related to the subset matching problem. In subset matching, pattern Q =
{Q1,Q2 . . .Qm} and text P = {P1,P2 . . .Pn} are collections of sets of characters
drawn from some alphabet ∑. A pattern Q occurs at text position i if the set Q j

is a subset of the set Pi+ j−1, for all 1≤ j ≤ m.
The Distributed Pattern Matching (DPM) problem is defined as a variant of the

subset matching problem with the following restrictions:

• The pattern Q has a single element in its array, i.e., m = 1 and Q = Q.
• The n elements of P are distributed across a large number of networked nodes.

In many cases, bit-vectors of length |∑ | are used to present texts (i.e., Pi) and
pattern (i.e., Q), where a 1 (or 0) at the ith bit of a bit vector resembles the presence
(or absence) of the ith symbol in ∑. In the DPM formulation it is assumed that each
element of P (i.e., Pi) summarizes the identifying properties (e.g., keywords, service
description) of a shared object (e.g., a file or a service). One possible form of such
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a pattern is a Bloom filter [12] obtained by hashing the properties associated with a
shared object.

P2P network

P3:1011 0010 1010

P4:0101 0100 0101
P1:1001 0111 1100

P2:1101 1010 0110

P5:1110 1000 1010

P6:0100 1011 0101

P7:1000 1100 0010

Q:0100 1010 0100

Query

P2:1101 1010 0110

P6:0100 1011 0101

Result

content messageLink

Fig. 9 The distributed pattern matching (DPM) problem. (|∑ |= 12)

Figure 9 presents a pictorial view of the DPM problem. In this figure, Pi rep-
resents an advertised pattern and Q stands for a search pattern. The properties of
shared objects are encoded in the advertisement pattern, P1 −P7 in Fig. 9. On the
other hand, a query (Q in Fig. 9) is constructed by encoding the desired properties
in a bit vector. The encoding technique must ensure that if the desired properties
specified in a query is a subset of the properties of an shared object then the 1-bits
of the corresponding query pattern must be a subset of the 1-bits in the advertised
pattern. In other words, the result of a search should contain all the advertised pat-
terns (P2 and P6 for the example in Fig. 9) that are supersets of the search pattern (Q
in Fig. 9).

8.2 Mapping to DPM Framework

This section describes possible ways of encoding advertisements and queries for the
three application domains.
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8.2.1 P2P Content Sharing

An advertisement in a P2P content sharing system consists of a number of keywords
describing the content being shared. For a file-sharing P2P system, it is unusual for a
user to know the exact name of an advertised file. Instead, queries are based on a sub-
set of the (partial) keywords that may be present in the advertisement. Bloom filters
can be used for encoding advertised and queried keywords in the following manner.
An advertisement Bloom filter can be constructed using the trigrams extracted from
the keywords associated with an advertised document. Similarly, a query Bloom fil-
ter can be computed from the keywords presented in the query string. Thus there
will be one Bloom filter per advertisement or query. Subset relationship between
advertised and queried trigrams will hold for advertisement and query Bloom fil-
ters. For example, in Fig. 10 trigrams for the first query constitute a subset of the
advertised trigrams; as a result query pattern Q1 is a subset of the advertisement pat-
tern P. On the other hand, trigrams from the second query do not correspond to any
subset of the advertised trigrams, and with high probability Q2 will not be a subset
of P.

Lord of the Ring Two Tower

Keywords: The Lord of the Rings - The Two Towers - 2002 (Extended Edition)

Lord of War

Trigrams: the, lor, ord, of, rin, ing, ngs, two, tow, owe, wer, ers, 2002, 02, …

lor, ord, of, the, rin, ing, two, tow … lor, ord, of, war

Subset
(match)

0 0 1 0 1 0 1 0 0 0 1 1

Not subset
(mismatch)

1 0 0 0 1 0 1 0 1 0 0 0

1 0 1 1 1 0 1 1 1 0 1 1Advertisement Bloom Filter:

Query

Trigrams:

Query
Bloom Filter:

Q1 Q2

P

Fig. 10 Partial keyword matching using DPM

8.2.2 Service Discovery

For most service discovery systems a service description is advertised as a set of
property-value pairs and a query for a service consists of a subset of the advertised
property-value pairs. All of the decentralized techniques for (Web) Service discov-
ery are aimed at achieving flexibility (i.e., partial matching capability) without sacri-
ficing efficiency in the search mechanism. The basic problem of service description
matching and semantic matching in a distributed environment can be mapped to the
DPM problem in different ways. A few possibilities are listed below.
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• The simplest way of mapping a service description to a Bloom filter is to treat
each property-value pair as set elements, see Fig. 11. Query pattern can be con-
structed in a similar fashion.

• While generating an advertisement pattern from a Service Description, multi-
ple synonyms of the properties and values can be hashed and inserted into the
Bloom-filter. This will require larger Bloom-filters, yet will enable one to dis-
cover a service by specifying any of the synonyms of a property (or value) spec-
ified in the advertisement.

• It is also possible to use ontologies during Bloom filter construction, rather than
using simple synonym list. Use of Ontology can be more efficient than synonym
list if there exists a global Ontology in the system.

8.2.3 Distributed XML Databases

Distributed search in distributed XML databases faces two new challenges, in addi-
tion to the ones present in P2P content sharing and service discovery: continuously
changing schemas in the system and the requirement for semantic mapping. It is
possible to cope with these challenges using the DPM construct.

For P2P database systems, as shown in Fig. 11, XML documents are used as
advertisements and XPath [38] is the most commonly used query language. Fig-
ure 11 presents an XPath query of the form /a1[b1]/a2[b2] . . ./an[bn]. Here, ai is an
element in an XML document, bi is an XPath expression relative to element ai. In
this case, path prefixes from an XML document or the XPath expression (e.g., /a1,
/a1/b1, /a1/a2 . . .) can be used as the set elements for Bloom filter construction.

In order to accommodate continuously changing schemas, advertised patterns
should be constructed from both the descriptive properties and values of a shared ob-
ject. Thus, schema information gets incorporated within each advertisement. The re-
quirement for semantic mapping can be satisfied in few ways, including the ones dis-
cussed in the previous section. It is also possible to reserve a pre-specified number of
bits in the advertisement/query pattern, and use these bits as a separate Bloom-filter
for storing the ontologies used by the advertisement/query. Query routing mech-
anism can use this additional information for making semantic laden decisions at
each hop.

8.3 Known Solutions to the DPM Problem

An efficient solution to the DPM problem is expected to satisfactory solve the search
problem in the three important application domains discussed so far. In this sec-
tion two solutions to the DPM problem, namely DPMS [3] and Plexus [4], are
presented.
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Fig. 11 Mapping different problems to DPM framework

8.3.1 DPMS: Distributed Pattern Matching System

In DPMS a peer can act as a leaf peer or indexing peer. Leaf peers reside at the
bottom level of the indexing hierarchy and act as the document source for the sys-
tem. An indexing peer, on the other hand, stores indices from other peers (leaf peers
or indexing peers). A peer can join different levels of the indexing hierarchy and
can simultaneously act in both the roles. Indexing peers get arranged into a lattice-
like hierarchy for indexing and disseminating advertised patterns from the leaf peers
using repeated aggregation and replication.

The structure of the indexing hierarchy and the amount of replication are con-
trolled by two system-wide parameters, namely replication factor R and branching
factor B. Patterns advertised by a leaf peer are propagated to Rl indexing peers at
level l. On the other hand, an indexing peer at level l contains patterns from Bl leaf
peers. Due to repeated (lossy) aggregation, information content of the aggregates
reduces while climbing up the indexing hierarchy.

Indexing peers at level l arrange into Rl groups, numbered from 0 to (Rl − 1)
(see Fig. 12). In the ideal case, all the indexing peers in a single group (at any
level) collectively cover all the leaf peers in the system. A peer at level l and group
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g (0≤ g < Rl) is responsible for transmitting its aggregated information to R parents
at level (l +1). Each parent belongs to a different group in range [g×R,(g+1)×R),
respectively.

A B C … …

Level 0 - Leaves

…
…

…
…

…
…

E LGF J… …

Level 1 - Index

S T… … … …

Level 2 - Index

Branching factor, B = 3 Replication factor, R = 2

0 1

3210

0

H

For peer E
Child-list : {A,B,C}

Replica-lis {L}
Parent-lis {S,T}

Neighbor-list :
t :

t : {H,J}

Fig. 12 Index distribution architecture. All the peers interacting with peer E are labelled. Group
number is printed at the bottom right corner of each box

Peers at level l and group g organize into subgroups (referred to as siblings) of
size B to forward their aggregated information to the same set of parents. Thus each
group in range [g×R,(g + 1)×R) at level (l + 1) will contain a peer replicating
the same index information. This provides redundant paths for query routing and
increases tolerance to peer failure.

A don’t care based aggregation is used in DPMS. While aggregating to patterns
(or aggregate) a don’t care (“X”) is inserted in the bit-positions at which the con-
stituent patterns disagree. The resulting aggregates retain parts from the constituent
patterns or aggregates. A 1-bit (or 0-bit) in such an aggregate indicate that all of the
patterns contributing to this aggregate had 1 (or 0) at the corresponding position.
However incorporating this extra information (i.e., X’s) incur some space overhead,
which can be minimized by compressing the aggregates using huffman coding or
run length encoding during transmission through the network.

A query is executed in three phases: ascending phase, blind search phase and
descending phase. In ascending phase the query message climbs the indexing hi-
erarchy until a match is found or it reaches the highest level. If no match is found
int he ascending phase the query enters blind search phase, where the query mes-
sage is flooded in one of the groups at the topmost level. If any match exists then
it will be discovered in this phase. Finally, in descending phase the query message
is forwarded to the target leaf peer(s) using the aggregation trail along the indexing
hierarchy.
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8.3.2 Plexus

Plexus has a partially decentralized architecture involving superpeers. It adopts a
structured routing mechanism derived from the theory of Linear Covering Codes.1

Indexing and routing in Plexus is based on the Hamming distance between the adver-
tised and queried patterns, in contrast to the numeric distance based routing adopted
in traditional DHT-approaches. This property makes subset matching capability in-
trinsic to the underlying routing mechanism. Plexus achieves better resilience to
peer failure by utilizing replication and redundant routing paths. Routing efficiency
in Plexus scales logarithmically with the number of superpeers.

In Plexus, advertisements and queries are routed to two different sets of peers
in such a way that the queried set of peers and the advertised set of peers have at
least one peer in common, whenever a query pattern constitute a subset of the 1-bits,
as present in an advertised pattern. As explained in Fig. 13, a linear covering code
partitions the entire pattern space F

n
2 into Hamming spheres. The codeword at the

center of each Hamming sphere is selected as unique representative for that cluster.
Now the basic concept is to map a query pattern Q to a set of codewords (Q(Q)⊂C )
and to map an advertised pattern P to another set of codewords (A (P) ⊂ C ), such
that Q(Q) and A (P) has at least one codeword in common whenever the 1-bits of
Q constitute a subset of the 1-bits in P. Mathematically,

Q⊆ P =⇒ Q(Q)∩A (P) �= /0 (1)

Advertisement, P Query, Q
advSet(P) ⊂ C qSet(Q) ⊂ C

C= { ci } = set of all codewords

Fig. 13 Hamming distance based indexing in plexus

Any codeword in a linear covering code can be generated by using bit-wise
XOR operation of any combination of specially chosen k codewords, labelled

1 A linear covering code (n,k,d) f , over a linear space F

n
2, is a subspace C ⊂ F

n
2. Each element in

C is called a codeword. Here, |C |= 2k and d is the minimum Hamming distance between any two
codewords. The covering radius f is the smallest integer such that every vector P ∈ F

n
2 is covered

by at least one B f (ci). Here, B f (ci) = {P ∈ F

n
2|d(P,ci) ≤ f} is the Hamming sphere of radius f

centered at codeword ci.
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G = [g1,g2, . . .gk]. In other words, any codeword Y can be generated from any other
codeword X as follows: Y = (X⊕gi1 ⊕gi2 ⊕ . . .⊕git ), where gi1 ,gi2 , . . .git ∈G and
⊕ is bitwise XOR operation. For a simple implementation each superpeer in the
network is assigned a codeword. A superpeer with codeword X links to k other su-
perpeers with codeword Xi = X ⊕gi, (1≤ i≤ k). The routing process in Plexus can
be best explained by the example in Fig. 14, which shows the possible routes from
the superpeer with codeword X to the superpeer with codeword Y = g2⊕ g3⊕ g3.
Superpeer X will forward the message to any of X2(= X ⊕ g2), X3(= X ⊕ g3) or
X5(= X⊕g5), who are one hop nearer to Y than X . If the message is forwarded to say
X2 then X2 can route the message to Y via X23(= X⊕g2⊕g3) or X25(= X⊕g2⊕g5).
Number of hops required for routing in this mechanism is logarithmic on the number
of superpeers in the network.

X Y

X2g2

X3

X5

g3

g5

X23

g3

g5

X25

g3

g5

X35 g2

g3

g5

g2

g2

X1=X⊕g1

X2=X⊕g2
…

Xk=X⊕gk

X21=X2⊕g1
…
X23=X2⊕g3
…
X2k=X2⊕gk

X231=X23⊕g1
…
X235=X23⊕g5
…
X23k=X23⊕gk

532 gggXY ⊕⊕⊕=

Fig. 14 Possible paths of routing from peer X to peer Y

8.3.3 Summary

Table 5 summarizes the query semantics, translation functions and routing mecha-
nisms as observed in DPMS and Plexus.

9 Conclusion

Large scale distributed systems including P2P content sharing, service discovery
and distributed XML data require flexible, efficient and robust search mechanism
due to the volatility in node population and dynamism in advertised objects. Based
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Table 5 Components of selected search techniques in service discovery

Distributed pattern matching

References Name Query Translation Routing

[3] DPMS Subset
matching

Feature extraction+Bloom
filter

Hierarchical +selective flood-
ing

[4] Plexus Subset
matching

Feature extraction+Bloom
filter

Structured – Linear code
based

on routing mechanism contemporary search techniques can be broadly classified as
content routing, address routing and signature routing. Content routing techniques
preserves query semantics and thus provide better search flexibility; but routing traf-
fic is high for these techniques. Address routing techniques, on the other hand are
efficient in routing traffic but offered flexibility in query expressiveness is inade-
quate. Signature routing can be a good candidate for balancing the trade off between
efficiency and flexibility requirements.

The Distributed Pattern Matching (DPM) framework provides an abstract formu-
lation for pattern matching in large scale distributed systems. Keyword search for
content-sharing P2P systems, partial Service Descriptions matching for service dis-
covery systems and semantic laden data retrieval for for distributed XML databases
can be mapped to the DPM abstraction. DPMS and Plexus are two solutions for the
DPM problem. DPMS is a hierarchical signature routing technique, while Plexus
is a hamming distance based address routing technique. Routing efficiency in both
DPMS and Plexus scales logarithmic on network size. These two solutions as well
as future solution to the DPM problem can be tuned to resolve the search problem
in the three application domains discussed in this chapter.
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