206

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 1, FEBRUARY 2012

ViNEYard: Virtual Network Embedding Algorithms
With Coordinated Node and Link Mapping

Mosharaf Chowdhury, Student Member, IEEE, Muntasir Raihan Rahman, Member, IEEE, and
Raouf Boutaba, Senior Member, IEEE

Abstract—Network virtualization allows multiple heterogeneous
virtual networks (VNs) to coexist on a shared infrastructure. Effi-
cient mapping of virtual nodes and virtual links of a VN request
onto substrate network resources, also known as the VN embed-
ding problem, is the first step toward enabling such multiplicity.
Since this problem is known to be NP-hard, previous research fo-
cused on designing heuristic-based algorithms that had clear sep-
aration between the node mapping and the link mapping phases.
In this paper, we present VINEYard—a collection of VN embed-
ding algorithms that leverage better coordination between the two
phases. We formulate the VN embedding problem as a mixed in-
teger program through substrate network augmentation. We then
relax the integer constraints to obtain a linear program and devise
two online VN embedding algorithms D-ViNE and R-VINE using
deterministic and randomized rounding techniques, respectively.
We also present a generalized window-based VN embedding algo-
rithm (WIiNE) to evaluate the effect of lookahead on VN embed-
ding. Our simulation experiments on a large mix of VN requests
show that the proposed algorithms increase the acceptance ratio
and the revenue while decreasing the cost incurred by the substrate
network in the long run.

Index Terms—Heuristics, network virtualization, online
algorithms, optimization, resource allocation, virtual network
embedding.

I. INTRODUCTION

UE TO the existence of multiple stakeholders with con-
flicting goals and policies, even the necessary alterations
to the present architecture of the Internet are now hard to
realize. To mitigate this impasse, network virtualization has
been propounded as a fundamental diversifying attribute of
the future internetworking paradigm that will allow multiple

Manuscript received May 24, 2010; revised November 15,2010 and February
22,2011; accepted May 16, 2011; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor C. Westphal. Date of publication July 14, 2011; date of
current version February 15, 2012. This work was supported in part by the Nat-
ural Science and Engineering Council of Canada (NSERC) under its Discovery
Program and by the World Class University (WCU) Program under the Korea
Science and Engineering Foundation funded by the Ministry of Education, Sci-
ence and Technology (Project No. R31-2008-000-10100-0). An earlier version
of this paper appeared in the Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), Rio de Janeiro, Brazil, April 19-25, 2009.

M. Chowdhury is with the Computer Science Division, University of Cali-
fornia, Berkeley, CA 94720 USA (e-mail: mosharaf@cs.berkeley.edu).

M. R. Rahman is with the Department of Computer Science, University of
Illinois, Urbana—Champaign, IL 61801 USA (e-mail: mrahman2@illinois.edu).

R. Boutaba is with the David R. Cheriton School of Computer Science, Uni-
versity of Waterloo, Waterloo, ON N2L 3G1, Canada, and also with the Division
of IT Convergence Engineering, Pohang University of Science and Technology
(POSTECH), Pohang 790-784, Korea (e-mail: rboutaba@cs.uwaterloo.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2011.2159308

heterogeneous network architectures to coexist on a shared
substrate [2], [3]. In a network virtualization environment,
multiple service providers (SPs) will be able to create hetero-
geneous virtual networks (VNs) to offer customized end-to-end
services to the end-users by leasing shared resources from one
or more infrastructure providers (InPs) without significant in-
vestment in physical infrastructure [3]-[5]. Similarly, network
virtualization will enable researchers to design and evaluate
new networking protocols on heterogeneous experimental
architectures [6], [7].

Each VN in a network virtualization environment is a col-
lection of virtual nodes connected together by a set of virtual
links. A virtual node is hosted on a particular substrate node,
whereas a virtual link spans over a path in the substrate net-
work. The VN embedding problem! deals with the mapping of
a VN request, with constraints on virtual nodes and links, onto
specific physical nodes and paths in the substrate network that
has finite resources. Since multiple VNs share the underlying
physical resources, efficient and effective embedding of online
VN requests is of utmost importance in order to increase the uti-
lization of substrate network resources and InP revenue.

However, the VN embedding problem is known to be
NP-hard even in the offline case. With constraints on virtual
nodes and links, the offline VN embedding problem can be
reduced to the N'P-hard multiway separator problem [8].
Even when all the virtual nodes have already been mapped,
embedding the virtual links with bandwidth constraints onto
substrate paths is still A"P-hard in the unsplittable flow
scenario [9], [10]. As a result, a number of heuristic-based
algorithms have appeared in the relevant literature [11]-[14].
Most of these proposals focused primarily on link mapping
(using shortest path, k-shortest paths, and multicommodity flow
algorithms) after employing greedy methods to preselect the
node mappings. However, preselecting node mappings without
considering its relation to the link mapping phase restricts the
solution space and can result in poor performance.

In this paper, we introduce better correlation between the
node mapping and the link mapping phases by presenting the
ViNEYard algorithms, which include Deterministic VN Embed-
ding (D-ViINE), Randomized VN Embedding (R-ViNE), and
their extensions. We map virtual nodes onto substrate nodes in
a way that facilitates the mapping of virtual links to physical
paths in the subsequent phase.

To this end, we extend the substrate network graph by intro-
ducing meta nodes for each virtual node and connect the meta

IThe words “embedding,” “mapping,” and “assignment” are used inter-
changeably throughout this paper.

1063-6692/$26.00 © 2011 IEEE

CHOWDHURY et al.: VINEYard: VIRTUAL NETWORK EMBEDDING ALGORITHMS WITH COORDINATED NODE AND LINK MAPPING 207

nodes to a selected subset of physical nodes. We then treat each
virtual link with bandwidth constraints as a commodity con-
sisting of a pair of meta nodes. As a result, finding an optimal
flow for the commodity is equivalent to mapping the virtual
link in an optimal way. By introducing additional binary con-
straints that force only one meta edge to be selected for each
meta node, we can effectively select exactly one substrate node
for each meta node corresponding to a particular virtual node.
We use mixed integer programming (MIP) formulation [15] to
solve the embedding problem with binary constraints on the
meta edges and linear constraints on actual substrate network
links. Since solving an MIP is known to be AP-hard [15],
finding an optimal VN embedding using MIP is computation-
ally intractable. Consequently, we relax the integer constraints
to obtain a linear programming formulation that can be solved
in polynomial time. We then use deterministic (in D-VINE) and
randomized (in R-ViNE) rounding techniques on the solution of
the linear program to approximate the values of the binary vari-
ables in the original MIP. Once all the virtual nodes have been
mapped, we use the multicommodity flow algorithm to map the
virtual links onto substrate network paths between the mapped
virtual nodes [14], [16]. This can also be solved in polynomial
time since we assume that path splitting is supported by the sub-
strate network [14].

Our findings from an extensive simulation study on a large
mix of VN requests and substrate network topologies indicate
that the proposed algorithms outperform their counterparts
in terms of acceptance ratio, revenue, cost, and resource
utilization.

In addition to the core ViNEYard algorithms (D-ViNE and
R-VINE), we present a generalized window-based VN embed-
ding mechanism (WiNE), which allows batch processing of VN
requests. We show that the proposed algorithms maintain their
dominance in terms of the performance metrics in this general-
ized setting.

Major contributions of this paper are summarized in the
following

* D-VINE and R-ViNE are two rounding-based VN embed-
ding algorithms that increase the VN request acceptance
ratio and InP revenue without incurring additional cost by
leveraging coordinated node and link mapping.

* D-VINE-LB and R-VINE-LB are extensions to D-ViNE
and R-ViINE that focus on balancing load across substrate
resources to improve the acceptance ratio, often causing
inflated link utilization across the substrate network.

* WINE is a generalized window-based VN embedding
mechanism for equipping any existing online VN embed-
ding algorithm with lookahead capabilities.

* The ViNEYard model presents a flexible and extensible
mathematical programming formulation of the VN embed-
ding problem.

The rest of this paper is organized as follows. Section II
formalizes the network model and the VN embedding problem.
In Section III, we provide the optimal MIP formulation for
the VN embedding problem using substrate network augmen-
tation. Section IV relaxes the MIP formulation to obtain a
linear program and presents D-VINE and R-ViNE using deter-
ministic and randomized rounding techniques. In Section V,

Substrate Network

Fig. 1. Mapping of VN requests onto a shared substrate network.

we present WiNE—a generalized window-based VN embed-
ding mechanism. Section VI presents simulation results that
evaluate the proposed algorithms. We discuss limitations and
possible workarounds in Section VII, summarize related work
in Section VIII, and conclude in Section IX.

II. NETWORK MODEL AND PROBLEM DESCRIPTION

A. Substrate Network

We model the substrate network as a weighted undirected
graph and denote it by G5 = (N5, ES), where N° is the set
of substrate nodes and > is the set of substrate links. Each
substrate node n° € NP is associated with the CPU capacity
weight value ¢(n”) and its location loc(n®) on a globally un-
derstood coordinate system. Each substrate link ¢3(4,5) € ES
between two substrate nodes ¢ and 7 is associated with the band-
width capacity weight value b(c>) denoting the total amount of
bandwidth.

We denote the set of all substrate paths by > and the set of
substrate paths from the source node s to the destination node ¢
by P3(s,t).

Fig. 1 shows a substrate network, where the numbers over the
links represent available bandwidths and the numbers in rectan-
gles represent available CPU resources.

B. VN Request

Similar to the substrate network, we model VN requests as
weighted undirected graphs and denote a VN request by GV =
(NY,EV). We express the requirements on virtual nodes and
virtual links in terms of the attributes of the nodes and links
of the substrate network. Each VN request has an associated
nonnegative value DV expressing how far a virtual node nV €
NV can be embedded from its preferred location loc(n"). DV
can be expressed naturally in terms of link delay or round-trip
time (RTT) from loc(n"). We assume a landmark-based ap-
proach for requesting virtual nodes in our model so that InPs
will not have to expose their network topologies?. Fig. 1 shows
two VN requests with node and link constraints.

2Given the secrecy of ISPs in the existing Internet, it is unlikely that InPs in
a network virtualization environment will be any more willing to expose their
network topologies.

208

C. Measurement of Substrate Network Resources

In order to quantify the resource usage of the substrate
network, we use the notion of stress. The substrate node
stress Sy (n°) is defined as the total amount of CPU capacity
allocated to different virtual nodes hosted on the substrate node
nS € NS

SN (n.s) =

Z e(n)

nV—nS

(1

where x — y denotes that the virtual node « is hosted on the
substrate node .

Similarly, the substrate link stress Sg(e%) is defined as the
total amount of bandwidth reserved for the virtual links whose
substrate paths pass through the substrate link ¢ € ES

Sg(e®) = Z b(eV)

S

2

eV —e

where 2 — y denotes that the substrate path of the virtual link x
passes through the substrate link y.

The definitions of node stress and link stress are similar to
that in [13] with the difference that we use the actual amounts
of CPU and bandwidth resources used by the embedded VNs
to measure substrate resource stresses, not just the number of
virtual nodes and links.

The residual or the available capacity of a substrate
node Ry(n%) is defined as the available CPU capacity of
the substrate node n° € N>

Rn(n®) = ¢(n®) — Sx(n®).

Similarly, the residual capacity of a substrate link Rg(e®) is de-
fined as the total amount of bandwidth available on the substrate
link e® € ES

Rp(e3) = b(e®) — Sp(e®).

The available bandwidth capacity of a substrate path P € P5
is given by

Rp(P) = min Rg(e®).
eceP

D. VN Assignment

When a VN request arrives, the substrate network has to de-
termine whether to accept the request or not. If the request is
accepted, the substrate network then determines a suitable as-
signment for the VN and allocates network resources on the
substrate nodes and paths selected by that assignment. The al-
located resources are released once the VN expires.

The assignment of a VN request GV onto the substrate net-
work can be decomposed into two major components.

1) Node Assignment: Each virtual node from the same VN
request? is assigned to a different substrate node by a mapping

3Even though multiple virtual nodes from different VN requests can be
mapped to the same substrate node.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 1, FEBRUARY 2012

My : NV — NS from virtual nodes to substrate nodes such
that for all nV', mY € NV

MN(W,V) € N®
MN(TI’LV) = MN(RV),

iffm" =n"
subject to

e(nV) < R:N (Mn(nV) Y .
dis (loc(n¥), loc (My(n¥))) < DV

(3a)
(3b)

where dis(%, j) measures the distance between the locations of
two substrate nodes ¢ and j.

In Fig. 1, the first VN request has the node mapping {a —
C.b — H,¢ — B}, and the second VN request has {d —
A,e — D,f — H}. Note that two virtual nodes b and f
from different VN requests are mapped onto the same substrate
node .

2) Link Assignment: Each virtual link is mapped to a sub-
strate path (unsplittable flow) or a set of substrate paths (split-
table flow) between the corresponding substrate nodes that host
the end virtual nodes of that virtual link. It is defined by a map-
ping Mg : EY — P3 from virtual links to substrate paths such
that for all ¢V = (m",nV) € EV

Me(mV,n¥) TP (My(mY), My(n"))

subject to

Rp(P) > b(eY).

>

PeMp(eV)

4)

The first VN request in Fig. 1 has been assigned the link
mapping {(a,b) — {(C7D)7(D7G)7(GvH)}f(av¢) -
{(C,A4),(A,B)},(b,c) — {(H F),(F.E)(E B)}}, and
the second VN request has the link mapping {(d,e) —
{(A7 C), (07 D)}a (67 f) - {(D G)v (G7 H)}}

E. Objectives

Our main interest in this paper is to propose online VN em-
bedding algorithms that map multiple VN requests with node
and link constraints. We also want to increase revenue and de-
crease cost of the InP in the long run, in addition to balancing
load across the substrate network resources.

Similar to the previous work in [13] and [14], we define the
revenue of a VN request as

RGY)= D be¥)+ Y enY).

eVeEY nYeNV

)

While revenue gives an insight into how much an InP will
gain by accepting a VN request, it is not very useful without
knowing the cost the InP will incur for embedding that request.
We define the cost of embedding a VN request as the sum of
total substrate resources allocated to that VN.

@)= 3 S acil Y e

eVEEY eSeES nVeNV

(6)

CHOWDHURY et al.: VINEYard: VIRTUAL NETWORK EMBEDDING ALGORITHMS WITH COORDINATED NODE AND LINK MAPPING 209

— - Metaedge

O Metanode
(D Cluster

oo\ /00

&

Fig. 2. Construction of an augmented substrate graph with meta nodes and
meta edges for a VN request.

wheren¥ — n° and f:: denotes the total amount of bandwidth

allocated on the substrate link ¢° for virtual link ¢V . s and 3,,s
are tuning parameters to set relative costs of substrate resources.

III. MIXED INTEGER PROGRAMMING FORMULATION
FOR OPTIMAL VN EMBEDDING

A. Augmented Substrate Graph Construction

In order to coordinate the node mapping and the link map-
ping phases, the base substrate network must be extended to
create an augmented substrate graph using the location require-
ments of virtual nodes as the basis for the extension. Since each
nY € NV has an associated constraint loc(n") on its possible
placement, we can create one cluster for each virtual node (| NV |
in total) in the substrate network—each with radius DV . We de-
note such a cluster by Q(n") and call it the €2 set of the virtual
node nV

Vy= {ns € N%|dis (1oc(nv),loc(ns)) < DV} .

In Fig. 2, substrate nodes B, E, and F' are within DV distance
of the virtual node ¢, hence Q(¢) = {B, E, I'}.

For each nV¥ € NV, we create a corresponding meta node
w(nY) and connect ,u(n) to all the substrate nodes belonging
to 2(n") using meta edges with infinite bandwidth. We will
sometimes write the €2 set as {2(m) instead of 2(n"), where
m = u(n"). We combine all the meta nodes and meta edges
with the substrate graph to create the augmented substrate graph
G = (NS/,ES’), where

N% =NSu{pm¥)|nY e NV}
ES = ESu{(u(n¥),n%)|n" e NV, n% € Q(nV)}.

An example of augmented graph construction is shown in Fig. 2.

B. MIP Formulation

The VN embedding problem can now be formulated as
a mixed integer |EV|-commodity flow problem. We con-
sider each virtual link ¢ (1 < i < |EV]|) as a commodity
with source and destination nodes s; and ¢;, respectively
(Vi, s;,t; € NS \ N®). In this setting, each flow starts from
a meta node and ends in another meta node. By introducing
restrictions on the meta edges, each meta node u(n") can

be forced to choose only one meta edge to connect itself to
an actual substrate node in 2(n"). This effectively selects a
substrate node for each meta node, i.e., maps the virtual node
corresponding to that meta node to a substrate node. At the
same time, all the virtual links (i.e., flows) are also mapped
efficiently inside the substrate network with the help of path
splitting. We present the MIP formulation in the following.
VNE_MIP
VariableS°
. A flow variable denoting the total amount of flow from
u to v on the substrate edge (u, v) for the ith virtual edge.
* Tyt A binary variable, which has the value “1” if
S (fi, + fi.) > 0; otherwise, it is set to “0.”
Objective:

minimize Z mz fi.

uv€ES

i Z RV (w) +(‘) Tonw (M), (7)

>

mENS'\ NS

Constraints:
— Capacity Constraints:

2 (

i

By (w) > wpwe(m)

ot Fl) < Re(u,v)7 4, Yau,v € N¥ ®)

Vi € N3 \ N vw € NS, (9)
— Flow-Related Constraints:

Z fuu Z f’l’il'[lr = 0

Vi, Yu € N3\ {s;,4;}

weEN= s/ wE]VS,
(10)
Z fs w Z fus,) Vi (11)
weNS' weNS’
ST fiw Y fi=-b(e) Vi (12)
'1116]\"5/ we N’
— Meta and Binary Constraints:
Z Cmw = 1 Ym € NS, \NS (13)
weN(m)
Y Fmw<l Vwe N (14)
mENS\ N5
Tyv = Lyu VU, v E 17\75,. (15)
— Domain Constraints:
o 2> 0 Yu, v € NS (16)
Ty € {0,1} Yu,v € NS 17)

Remarks:

* The objective function of the MIP (7) tries to minimize
the cost of embedding the VN request as well as balance
the load. By dividing the cost with the residual capacity,
it is ensured that the resources with more residual capaci-
ties are preferred over the resources with less residual ca-
pacities. In this paper, we use o, € {1, Rg(u,v)} and
Buv € {1,Rx(u,v)} to control the importance of load
balancing while embedding a request. § — 0 is a small

210

positive constant to avoid dividing by zero in computing
the objective function.

» Constraint sets (8) and (9) enforce the capacity bounds of
substrate nodes and edges. Summing up f?, and fi, in
(8) ensures that the summation of flows on both directions
of the undirected edge (u,v) remains within its available
bandwidth.

* Constraint sets (10)—(12) refer to the flow conservation
conditions, which denote that the net flow to a node must
be zero except for source nodes s; and sink nodes %;.

» Constraint sets (13) and (14) are related to the augmented
portion of the substrate graph. Constraint set (13) makes
sure that only one substrate node is selected for each meta
node, whereas constraint set (14) ensures that no more than
one meta node is placed on a substrate node.

* Constraint set (15) together with (4) ensures that ., is
set whenever there is any flow in either direction of the
substrate edge (u, v).

* Finally, constraint sets (16) and (17) denote the real and
binary domain constraints on the variables fm and % ..,
respectively.

IV. LP RELAXATION AND ROUNDING-BASED ALGORITHMS

Since solving an MIP is known to be computationally in-
tractable [15], simultaneous node and link embedding using
VNE_MIP is practically infeasible. Hence, we relax the integer
constraints (17) of the MIP and obtain the following linear
program (VNE_LP_RELAX). Once we have the LP solution,
we use deterministic and randomized rounding techniques to
obtain integer values for z and embed VN requests.
VNE_LP_RELAX

Objective:
Cxll’l
minimize
i z ZREUU+(SZf
uvEE
+ Z IRV Z L (). (18)
wENS \ meNS \ NS
Constraints:
— Domain Constraints:
0<wu <1 Yu,ve N, (19)

Remarks:
e The domain constraint set (19) on the x,,, variables has
been relaxed.
* The rest of the constraints are the same as in VNE_MIP.

A. Deterministic Rounding-Based Virtual Network Embedding
Algorithm (D-ViNE)

D-VINE (Fig. 3) takes online VN requests as inputs and maps
them onto the substrate network one at a time. Since the integer
domain constraints (17) have already been relaxed, we no longer
get integer values for - from the solution of VNE_LP_RELAX.
Instead, we employ deterministic rounding technique. We intro-
duce ¢ : N¥ — {0,1}, which is initially set to zero for all
nS € NS, signifying that all the substrate nodes are initially un-
used. Whenever a virtual node is mapped to a particular physical

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 1, FEBRUARY 2012

1: procedure D-VINE(GY = (NV,EY))

2: Create augmented substrate graph G° ‘= (N s’ ES /)
3: Solve VNE_LP_RELAX

4 for all n° € N° do

5 o(n%) <0

6: end for

7. foralln € NV do

8: if Q(n)\ {n° € N%p(n®) =1} = () then
9: Reject GV

10: return

11: end if

12: for all z € Q(n) do

13: = (Zz fZL(n)z + f;u(n))xﬂ(n)z

14: end for

15: Let Zmae = argmax,eqm){pz|¢(2) = 0}
16: set My (n) < Zmaz

17: ©(Zmaz) < 1

18: end for

19: Solve MCF to map virtual links
20: if MCF succeeded then

21: Update residual capacities of substrate resources
22: else

23: Reject GV

24: end if

25: end procedure

Fig. 3. D-VINE: Deterministic rounding-based virtual network embedding
algorithm.

node n>, we set ¢(n°) to 1 to ensure that no substrate node is
used twice for the same VN request.

1) Description and Discussion: The procedure begins by
creating an augmented substrate graph G5 = (NS ES)
for the VN request GV = (NV,EVY) using the augmen-
tation method described in Section III-A. Next, it solves
VNE_LP_RELAX to get a fractional solution that is at least
as good as the integer solution of VNE_MIP. For each virtual
node, D-ViINE first checks whether there are any unmapped
substrate nodes within its 2 set. If any of the 2 sets is empty,
D-VINE stops the embedding process immediately and rejects
the VN request. Otherwise, the deterministic rounding proce-
dure is initiated in Line 12.

For each virtual node n, D-VINE calculates a value p, for
each substrate node z € (n) in its cluster. p, is calculated
as the product of the value x,(,). and the total flow passing
through the meta edge 4:(n)z in both directions. The intuition
behind using the product instead of just z,,(,,). is as follows.

In the MIP solution, z,,, is set to binary values based on the
presence of flows in either direction in the edge (u, v). When
the binary constraint z: is relaxed, one might expect that the frac-
tional values of x,,, would also be proportional to the total flow
in the edge (u, v). However, during the LP relaxation process,
the correlation between the flow variable f and the binary vari-
able x is lost. It is because a linear program tries to optimize
the objective function without violating the constraints; it does
not care about the values as long as they are within their per-
mitted domains. As a result, in the relaxed linear program, it is
possible that the f values are very high and the corresponding

CHOWDHURY et al.: VINEYard: VIRTUAL NETWORK EMBEDDING ALGORITHMS WITH COORDINATED NODE AND LINK MAPPING 211

x values are very low, or vice versa. Multiplying the f and x
values thwarts the possibility of selecting a substrate node based
on high x value but very low f value on its corresponding meta
edge, and vice versa. The ones that have better values for both
the variables f and z are more likely to be in the solution of
the MIP than others. D-ViINE maps the virtual node n onto the
unmapped substrate node z (i.e., ¢(z) = 0) with the highest p,
value, breaking ties arbitrarily.

Once all the virtual nodes have been mapped to different sub-
strate nodes, D-VINE applies the multicommodity flow (MCF)
algorithm to map the virtual links in £V onto substrate paths.
One can also use k-shortest path algorithms [17] when path
splitting is not supported by the substrate network. Finally,
D-VINE updates the residual capacities of substrate nodes and
links to prepare for the next request.

2) Time Complexity: An important aspect of D-ViNE is that
the multicommodity flow algorithm is executed twice: first,
during the node mapping phase (since VNE_LP_RELAX is
a linear programming relaxation of the original mixed integer
multicommodity flow problem), and second, during the link
mapping phase. Since we can solve linear programs in polyno-
mial time using either the ellipsoid algorithm or Karmarkar’s
interior point algorithm for linear programming [15], D-VINE
is a polynomial-time algorithm.

We can now formally express the time complexity of
D-VINE. We can create the augmented substrate graph in Line 2
in time proportional to O(|NV|). VNE_LP_RELAX in Line 3
can be solved in time O((|ES'|(1 4+ [EV|))35L2In Linln L),
where L denotes the desired input precision in terms of
the number of bits required to specify inputs to the linear
program VNE_LP RELAX [18]. The for loop in Line 7
runs in time O(|NV|). Finally, the MCF (Line 19) runs
in time O((|ES||[EV])*®L?InLinlnL). The dominating
factor in the running time of D-VINE is the time to solve
VNE_LP_RELAX, which is the overall time complexity of
D-ViNE.

B. Randomized Rounding-Based Virtual Network Embedding
Algorithm (R-ViNE)

R-VINE (Fig. 4) is quite similar to D-ViNE except that it uses
randomized rounding instead of deterministic rounding. Once
the p. values are calculated as in D-VINE, R-ViNE normalizes
those values to restrict them within the 0 to 1 range. The normal-
ized values for each z € 2(n) correspond to the probabilities of
n being mapped to z by the optimal MIP. R-ViNE selects a sub-
strate node z € (n) to map a virtual node n with probability
p.. The remainder of this algorithm is similar to its determin-
istic counterpart, and it also runs in polynomial time.

V. VN EMBEDDING WITH LOOKAHEAD

In a realistic network virtualization scenario, VN requests
may not always arrive one after another in regular intervals. This
can occur, for example, if multiple SPs request VNs almost at
the same time. In that case, the InP can queue all the requests and
then optimize resource allocation by processing them together.
In this section, we study the effect of lookahead for VN embed-
ding algorithms. The pertinent issue is to analyze performance
gains that can be achieved when the VN embedding algorithms

1: procedure R-VINE(GY = (NV,EV))

2 Create augmented substrate graph G*° ‘= (N s' S /)
3 Solve VNE_LP_RELAX

4 for all n° € N do

5 o(n%) <0

6 end for

7 for all n € NV do

8 if Q(n) \ {n® € N9|¢p(n®) =1} = 0 then
9 Reject GV

10: return

11 end if

12: for all z € Q(n) do

13: P < (O f;ll,(n)z + f;u(n)>xu(n)z
14: end for

15: Psum < ZZEQ(n) Dz

16: for all z € Q(n) do

17: Dz pz/psum

18: end for

19: set My (n) < z with probability p,
20: ©(z) < 1 with probability p,
21: end for

22: Solve MCF to map virtual links
23: if MCF succeeded then

24: Update residual capacities of substrate resources
25: else

26: Reject GV

27: end if

28: end procedure

Fig. 4. R-VINE: Randomized rounding-based virtual network embedding
algorithm.

not only know the current VN request to be served, but also a
finite number of future requests.

The ViNEYard algorithms have been developed for the pure
online intradomain VN embedding problem. However, VN re-
quests with longer lifetimes can be expected to allow certain
waiting periods before they must be processed. Such a model
will necessitate designing of algorithms with lookahead capa-
bilities. We can extend the ViNEYard algorithms with similar
capabilities using window-based batch processing of VN re-
quests. Our approach will be to store incoming VN requests for
a certain period of time depending on their permissible waiting
periods and then process them in batches based on some priority
metric like revenue.

WIiNE is a generalized mechanism for extending a pure online
VN embedding algorithm with lookahead capabilities. It dis-
cretizes time into consecutive windows, and instead of making
individual embedding decisions for each VN arrival, it collects
the requests to batch process them at the end of a window period.
In this setting, each VN request comes with an additional piece
of information known as the maximum waiting period t(-),
which sets a deadline on how long WiNE can defer making an
embedding decision for that VN request. The basic workflow of
WINE is presented using pseudocode in Fig. 5 and described in
the following.

WINE collects the arriving VN requests within the current
window period in W,,;. At the end of the window, all the re-

212
1: procedure WINE(Online VN embedding algorithm .A)
2 Woia < {}

3 loop

4: Wcur < Wold

5: Woid < {}

6 repeat

7 Add new VN GV = (NV EY) to W,
8 until Current window expires

9: Sort W, according to revenue

10: T,ur < Current time

11: for all G¥ € W,,, do

12: if t,,(G") expired before T, then
13: Reject GV

14: else
15: Embed G" using A
16: if A failed to embed GV then
17: Add GV to W4

18: end if
19: end if

20: end for

21: end loop

22: end procedure

Fig. 5. WINE: A generalized window-based mechanism for virtual network
embedding.

quests in W,.,,; are sorted based on their revenues, so that the VN
with the maximum revenue is considered first for embedding.
Then, for each VN in W...,, WINE first checks if its maximum
waiting period has already expired or not. If yes, WiNE rejects
the VN request outright. Otherwise, it attempts to embed the re-
quest using any VN embedding algorithm under consideration
(e.g., D-VINE or R-ViNE). If the embedding is not successful,
the VN request is postponed and added to W,i4 to be consid-
ered in the next window period (W,.,,; is set to W14 at the start
of each window period, and W4 is initialized to be an empty
collection).

VI. PERFORMANCE EVALUATION

In this section, we describe the simulation environment fol-
lowed by the main evaluation results. Our evaluation focused
primarily on quantifying the advantage of coordinating node
and link mapping phases in terms of acceptance ratio, revenue,
and cost. We examined the competitive advantages of the pro-
posed algorithms against selected existing ones by varying the
VN request arrival rate on different network topologies. We also
evaluated the effect of lookahead by varying window sizes and
maximum waiting periods of VN requests.

A. Simulation Environment

We have implemented a discrete event simulator to eval-
uate the proposed algorithms and used the open source linear
programming toolkit glpk [19] to solve VNE_LP_RELAX
and MCFs.

Since network virtualization is an emerging field, the actual
characteristics of substrate networks and VN requests are still
not well understood. Therefore, we used synthetic network
topologies to evaluate the proposed algorithms.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 1, FEBRUARY 2012

Substrate network topologies in our experiments were ran-
domly generated with 50 nodes using the GT-ITM tool [20] in
(25 x 25) grids.4 Each pair of substrate nodes were randomly
connected with probability 0.5. The CPU and bandwidth re-
sources of the substrate nodes and links were real numbers uni-
formly distributed between 50 and 100.

We assumed that VN requests arrived in a Poisson process
and evaluated the algorithms by varying arrival rates from four
VNs per 100 time units to eight VNs per 100 time units. Each
VN request had an exponentially distributed lifetime with an av-
erage of y = 1000 time units. In each VN request, the number
of virtual nodes was randomly determined by a uniform distri-
bution between 2 and 10, following similar setups in the existing
work [13], [14]. The average VN connectivity was fixed at 50%.
The CPU requirements of the virtual nodes were uniformly dis-
tributed between 0 and 20, and the bandwidth requirements of
the virtual links were uniformly distributed between 0 and 50.
Virtual nodes were also located on (25 x 25) grids.

We ran each simulation for 50 000 time units and used trun-
cation for initial transient removal [21] to present steady-state
performance throughout the rest of this section.

B. Performance Metrics

We used the following five metrics in our evaluations to mea-
sure the performance of our algorithms against the existing ones.
1) Acceptance ratio: The acceptance ratio of an algorithm
measures the percentage of total VN requests accepted by
that algorithm over a given period. While it gives a sense
of how well an algorithm is performing, it cannot com-
pletely capture the performance when the ultimate goal of
an InP is to increase its revenue. An algorithm can accept
many smaller or less profitable VN requests to increase this
ratio without actually maximizing the overall revenue and
leaving the resources underutilized.

2) Generated revenue (R): We also measured the generated
revenue [defined in (5)] of an embedding algorithm over
time. An algorithm can be considered to be performing
better than its counterparts when it generates more revenue
in addition to a higher acceptance ratio.

3) Provisioning cost (C): We measured the cost [defined in
(6)] that an algorithm incurs in order to embed a particular
VN request. This is particularly useful for calculating the
cost—revenue ratio of an embedding, which can later be
used for admission control purposes.

4) Average node utilization: The average node utilization of
the substrate network is measured by averaging the stress
[defined in (1)] of all the substrate nodes.

5) Average link utilization: Similarly, the average link utiliza-
tion is the average of the link stresses [defined in (2)] of all
the substrate links.

C. Compared Algorithms

We compared six algorithms that combine different node
mapping and link mapping strategies including our contribu-
tions and algorithms from previous research [13], [14] modified
to fit into our model (i.e., no reassignment). Notations for

4For any substrate node 7%, loc(r®) is a point on the 2y plane with a coor-
dinate (x.y) € {{0,1,...,24} x {0.1,...,24}}.

CHOWDHURY et al.: VINEYard: VIRTUAL NETWORK EMBEDDING ALGORITHMS WITH COORDINATED NODE AND LINK MAPPING 213

}‘% 0.85 T T T T T T T D-VINE ——
& 0.8 G-SP

= < D-VINE-SP -------
§ 0.75 1= G-MCF

s o7 D-ViNE-LB —-—~-
8 oesf R-VINE

g " _|R-VINE-SP

< . J R-VINE-LB -~~~ .
3 055 S]

o 0.45 - =

§ 0.4 1 1 1 1 1 1 1

4 45 5 55 6 65 7 75 8

Arrival Rate
Fig. 6. VN request acceptance ratio.

g
c
o
=3
& T e
[0] e +R-VINE-SP
D e FEVINE BF aesce 3
o} 2r 7]
z

15 | -

1 1 | 1 1 | 1 |
4 45 5 55 6 65 7 75 8
Arrival Rate
Fig. 7. Time average of generated revenue.
TABLE 1
COMPARED ALGORITHMS
Notation Algorithm Description
D-VINE Deterministic node mapping with MCF link mapping
R-ViNE Randomized node mapping with MCF link mapping
G-SP [13] Greedy node mapping with shortest path link mapping
G-MCF [14] | Greedy node mapping with MCF link mapping
VINE-LB Deterministic or randomized node mapping with MCF
link mapping, where ayy = By = 1,Vu,v,w € N
VINE-SP Deterministic or randomized node mapping with shortest
path link mapping

different algorithms are enumerated in Table I along with short
descriptions of their characteristics. We have included VINE-SP
algorithms for completeness.

D. Comparative Performance

We evaluated and compared the algorithms in Table I by
changing the VN request arrival rates from four requests per 100
time units to eight requests per 100 time units while keeping the
average VN lifetime fixed. Our key observations for any fixed
arrival rate are summarized in the following.

1) Coordinated node and link mapping leads to a higher
acceptance ratio and larger revenue. Figs. 6 and 7 depict that
the proposed algorithms led to better acceptance ratio as well as
higher revenue than the existing algorithms (G-SP and G-MCF)
through coordinated node and link mapping. Higher revenue
along with better acceptance ratio imply that the proposed
algorithms actually embedded VN requests that generate more
revenue, instead of embedding smaller VN requests just to
increase the acceptance ratio.

- L L L D-VINE ——
- i G-SP —-----

210 D-ViNE-SP -------
B 200 - o al G-MCF: swresserveen
3 ! D-ViNE-LB ———-
o 190 P R-ViNE
g 180 _]R-VINE-LB -—-—- -
X 170 :

160

150 IR YT NN N

4 45 5 55 6 65 7 75 8
Arrival Rate

Fig. 8. Average cost of accepting VN requests.

2) Load balancing further increases the acceptance ratio
and the revenue. From Figs. 6 and 7, we observe that both
D-VINE-LB and R-VINE-LB generated more revenue and
accepted more VN requests than D-VINE and R-ViINE, re-
spectively. In D-VINE-LB and R-ViNE-LB, the value of the
objective function (18) of VNE_LP_RELAX depends on the
residual capacity of the network resources in addition to the
provisioning cost (« and (3 values are set to 1 here). The lower
the residual capacity of a particular node or link, the higher the
value of the objective function. As a result, they tried to avoid
highly utilized nodes and links as much as possible, leaving
those critical resources available for future VN requests.

3) Randomization is often as effective as a deterministic
solution. It is well established in the algorithm design liter-
ature that randomization allows efficient solutions to many
intractable problems in polynomial time with low probability of
error. Our experiments showed that the randomized version of
the proposed VN embedding algorithms performed similar to,
and often better than, their deterministic counterparts in terms
of acceptance ratio and revenue generation (Figs. 6 and 7).

Additionally, for networks with large numbers of nodes,
randomization has been shown to be effective for load bal-
ancing [22]. This phenomena can also be observed in our exper-
iments since R-ViNE often performed similarly to D-ViNE-LB,
while R-VINE-LB further improved the performance.

4) Load balancing slightly increases the average provi-
sioning cost. Although load balancing increases revenue and
acceptance ratio by avoiding highly utilized resources, it runs
the risk of increasing the average provisioning cost as shown
in Fig. 8. While trying to avoid highly utilized resources,
D-VINE-LB and R-VINE-LB might embed virtual links on
longer substrate paths resulting in slightly higher average
provisioning cost in the long run.

5) Coordination increases resource utilization. Fig. 9(a)
and (b) depicts the average utilization of substrate nodes and
substrate links for different VN embedding algorithms. Since
VINE-LB algorithms had the highest acceptance ratios, they
also demonstrated the highest node and link utilizations.

However, VINE-LB algorithms had a relatively higher in-
crease in link utilization over their counterparts than in node
utilization. We believe that the reason behind this is their dis-
tributive nature. In order to avoid links with lower residual ca-
pacities, D-VINE-LB and R-ViNE-LB used longer paths con-
taining more substrate links with higher residual capacities to
embed virtual links.

214

0.4 T

0.35 - oy =
fg s
S 03 - AT e, ST AR A D-VINE-LB
o] s ___,--A‘___ _____ " . —ansasis
= / T) R-VIiNE
B 025 [zeemtl e . -1 R-VIiNE-SP
5 = R-VIiNE-LB -—-—- *
fo 02 | -1
z

0.15 - 1

0‘1 1 1 1 1 1 1 1

4 45 5 55 6 65 7 75 8
Arrival Rate

(a)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 1, FEBRUARY 2012

075 T T T T T T T D V|NE C—
0.7 G-SP
L D-ViNE-SP -------
g 0.65 G-MCF -
=z 06 D-ViNE-LB ———-
N 055 R-VigE
= R-ViNE-SP
=2 03 R-VINE-LB -—-— =
£ 045~
- o4l -
0.35 | e
03 1 1 1 1 1 1 1
4 45 5 55 6 65 7 75 8
Arrival Rate

(b)

Fig. 9. Average resource utilization in the substrate network for varying VN request arrival rates. (a) Average node utilization. (b) Average link utilization.

2400 ‘
1 2200 | D-VINE-SP -------
o 2000 - G:MCF: ssssssssssss
z “| D-VINE-LB ———--
S 1800 RVINE
3 R-ViNE-SP
'?é R0 R-ViNE-LB -—-—- =
8 1400 | _
<
T 1200 i
o
= 1000 Y T R N R

4 45 5 55 6 65 7 75 8

Arrival Rate

Fig. 10. Total number of accepted VN requests.

E. Effect of Increasing Load on VN Embedding Algorithms

We summarize the behavior of the proposed algorithms
under increasing load (expressed in terms of arrival rate) in the
following.

1) Dominance of the proposed algorithms is not diminished
by load. 1t is evident from Figs. 6-9 that the proposed algo-
rithms maintained their relative superiority in terms of accep-
tance ratio, revenue, cost, and average resource utilization with
increasing load. As before, D-VINE and R-ViNE maintained a
close resemblance, while D-VINE-LB and R-VINE-LB accrued
more revenue without any significant changes with load.

2) Increasing load leads to slightly better cost-revenue
ratio. With increasing load, all the algorithms achieved better
cost-revenue ratios (Figs. 7 and 8). However, the proposed
algorithms had steeper decreases in their average costs with
similar increases in their revenues, resulting in higher cost-rev-
enue improvements than the existing algorithms.

3) Relative link utilizations of the VINE-LB algorithms
worsen with load. As the arrival rate increased from four to
eight VN requests per 100 time units, average link utilizations
of D-VINE-LB and R-VINE-LB increased more quickly than
the total number of VN requests accepted by them in compar-
ison to D-VINE and R-ViINE.

For example, in terms of the total number of accepted VN re-
quests, D-ViINE-LB’s advantage over D-VIiNE diminished when
the arrival rate was increased from four to eight requests in
100 time units (Fig. 10), while the extra link resource usage
increased [Fig. 9(b)]. This negative correlation suggests that
D-VINE-LB is susceptible to running out of resources faster
than D-VINE when the load (i.e., the arrival rate) is too high.

TABLE II
COMPARATIVE PERFORMANCE ON HUB-AND-SPOKE TOPOLOGIES

Acceptance Revenue Cost Node Link

Ratio Util. Util.

D-VINE 0.756 2.672 167.084 0.284 0.449
G-SP 0.613 1.917 201.611 0.195 0.451
G-MCF 0.725 2.496 183.658 0.239 0.482
D-VINE-LB 0.772 2.702 175.493 0.283 0.495
R-ViNE 0.745 2.622 169.057 0.284 0.463
R-VINE-LB 0.796 2.748 182.673 0.271 0.499

F. Performance on Specific VN Topologies

So far, we have focused only on random VN request topolo-
gies. However, some classes of topologies can be expected to
be more prevalent than others due to their use in popular appli-
cations. For example, hub-and-spoke topologies are commonly
used to connect distributed sites to a centralized server (e.g., in
content distribution networks).

In this section, we evaluate the performance of the proposed
algorithms on two specific classes of topologies: hub-and-spoke
and full mesh. We used the same simulation settings described in
Section VI-A for this set of experiments. None of the algorithms
included any topology-specific modifications.

1) Hub-and-Spoke Topologies: We ensured that all the
VN requests had hub-and-spoke topologies instead of random
graphs. Table II summarizes the results of the compared al-
gorithms for an arrival rate of four VNs per 100 time units.
As seen in Table II, relative performance of the compared
algorithms were unchanged for hub-and-spoke topologies.
Note that relevant observations for VN requests with random
topologies also held true in this case.

2) Mesh Topologies: In this case, we made sure that all the
VN requests form full mesh topologies. Simulation results for
the unmodified algorithms in steady states are summarized in
Table III for an arrival rate of four VNs per 100 time units.
The most noticeable change in this case was the overall perfor-
mance degradation across the board. This was expected because
the natural dense formation of mesh topologies often called for
more resources than the substrate network could provide. How-
ever, relative performance of the compared algorithms were
mostly unchanged.

CHOWDHURY et al.: VINEYard: VIRTUAL NETWORK EMBEDDING ALGORITHMS WITH COORDINATED NODE AND LINK MAPPING 215

T T T T
D-VINE
G-SP memmsm 3
G-MCF memmmm —
D-VIiNE-LB s
R-VINE n—
08 B

09

25 -

07 _

Average Revenue
n

0.6 - _
15

VN Request Acceptance Ratio

No 50 75 100 125

50
Window

No
Window

Window Size

(a)

0.34 B
032 B
03 B
0.28 - B
0.26 - B
0.24 B
0.22 - B
02 B
0.18 - B
0.16 - B

Node Utilization

No 50 75 100 125

Window Window Size

(d)

Average Cost
©
o
T
1

75 100 125 No 50 75 100 125
Window Size Window Window Size
©
0.65 T T T T T
0.6 - u
0.55 - -
c
S
E 0.5 - -
5
- 045 -
IS
-
0.4 | -
0.35 - -

No 50 75 100 125

Window Window Size

(e)

Fig. 11. Effect of lookahead extent on compared VN embedding algorithms in terms of (a) VN request acceptance ratio, (b) revenue, (c) provisioning cost,
(d) average node utilization, and (e) average link utilization. Maximum waiting period of each VN request is fixed at 1/2 its lifetime.

TABLE III
COMPARATIVE PERFORMANCE ON MESH TOPOLOGIES

Acceptance Revenue Cost Node Link

Ratio Util. Util.

D-VIiNE 0.592 2.381 207.976 0.202 0.488
G-SP 0.483 1.633 235.847 0.135 0.444
G-MCF 0.517 2.061 227.605 0.154 0.467
D-ViNE-LB 0.601 2.481 224.087 0.203 0.539
R-VINE 0.548 2.178 205.749 0.189 0.463
R-VINE-LB 0.604 2.471 225.373 0.198 0.531

G. Effect of Lookahead on VN Embedding

This section evaluates the performance of the algorithms in
the generalized window-based VN embedding setting intro-
duced in Section V. We evaluated the proposed algorithms by
varying the window size and the maximum waiting period.

In Fig. 11, we present the performance metrics for window
sizes 50, 75, 100, and 125 time units, while keeping the max-
imum waiting period of a VN request fixed at 1/2 of its life-
time. In Fig. 12, we kept the window size fixed at 50 time units
and varied the maximum waiting period of a VN request among
1/2,1/4,1/5, 1/8, and 1/10 times of its intended lifetime. In both
Figs. 11 and 12, we present the results from experiments without
any lookahead for reference. Key observations from our simu-
lations are summarized in the following.

1) Lookahead does not change the ranking of the algorithms.
The ViNEYard algorithms maintained their relative superiority
in terms of all the performance metrics. This was expected be-
cause WINE does not affect the order of arrival of the VN re-
quests, and a VN request that would have been accepted in the
online version will always be accepted in WiNE unless there is
a more profitable alternative.

2) Lookahead increases the acceptance ratio. We also noticed
that lookahead resulted in increase of the acceptance ratios and
the revenues of all the algorithms. This was also expected be-
cause a window-based algorithm allows an initially rejected VN
request with sufficient waiting period to be embedded in subse-
quent window periods.

3) Finding an optimal window size is nontrivial. We observed
that finding the optimal window size (the one that will maximize
the performance metrics) depended on the maximum waiting
period. For the simulation results presented in Figs. 11 and 12,
the optimal window size for the maximum waiting period of 1/2
of VN lifetimes was 50 time units, and vice versa. However, it
can vary for different maximum waiting periods.

4) Selecting an appropriate maximum waiting period is a
tradeoff. We observe in Fig. 12 that for a window period of 50
time units, the highest acceptance ratio was achieved when all
the VN requests intended to wait as long as half their lifetimes.
If VN requests do not wait long enough, the overall accep-
tance ratio suffers because many VN requests leave the system
even before they are processed. In a practical scenario, how-
ever, waiting 1/2 of a VN’s lifetime would be too long for most
VN requests. Instead, a tradeoff must be made between a longer
waiting period and the increased risk of not getting embedded.
For Fig. 12, this tradeoff point would be 1/4 or at least 1/5 of
lifetime.

VII. DISCUSSION

This section discusses some of the major challenges toward
theoretical analysis and efficient implementation of the ViNE-
Yard algorithms and considers possible solutions.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 1, FEBRUARY 2012

216
1 T T T T 3.5 T T
D-ViNE
2 G-SP mmmsm
s 09 G-MCF memmm - 3L
< D-ViNE-LB
3 R-VINE emm—]
= 0.8 - - c
8 8 L5l
o > o
Q [0
8 07 | i
< S
3 g o2
S 0.6 . g
E <
z 05 E 157
>
1
No 1/2 1/4 15 18 110 No 12

Window provimum Waiting Period

(a)

0.34 B
032 B
03 B
0.28 - B
0.26 - B
0.24 B
0.22 - B
02 B
0.18 - B
0.16 - B
110

Node Utilization

No 12 1/4 1/5 1/8
Window Maximum Waiting Period

(d)

| 14 15 18
Window Maximum Waiting Period

(b) (©)

Average Cost

110

1110 No y (2 4 15 18
Window 1ovimum Waiting Period

0.65 T T T T T T

0.6 1
0.55 - B
05 _

0.45 - B

Link Utilization

04| -

0.35 - B

No 12 1/4 1/5 1/8
Window Maximum Waiting Period

110

(e)

Fig. 12. Effect of maximum waiting period on compared VN embedding algorithms in terms of (a) VN request acceptance ratio, (b) revenue, (c) provisioning
cost, (d) average node utilization, and (e) average link utilization. Window size is fixed at 50 time units.

A. Execution Time

While the VINEYard algorithms outperform their counter-
parts across a large mix of VN requests, they do fall short in
terms of their running times. This is expected because they
need to solve two linear programs to embed a VN request,
whereas G-MCF requires solving only one during embedding
links, and G-SP requires none. On average, to embed each VN
request across experiments, G-SP took 35 ms, G-MCF 417 ms,
and D-VINE, R-VINE, VINE-LB, and ViNE-SP algorithms
took 1.413, 1.483, 1.656, and 1.014 s, respectively. Note that
the execution times reported here depend on the linear pro-
gram solver (glpk) and the machine used for the experiments
(Ubuntu 8.04 VM on top of a Windows Vista host).

We also observed that solving the first linear program on the
augmented graph took at least twice as much time as solving
the second on the actual VN request graph. This is because our
technique inflates the substrate graph by introducing meta nodes
and meta edges, which in turn increases the number of variables
and constraints in the linear program.

B. Challenges in Theoretical Analysis

1) Approximation Ratio Analysis: Both online and of-
fline versions of the VN embedding problem is known to be
N'P-hard and, therefore, we do not expect to be able to compute
an optimal solution efficiently. To the best of our knowledge,
for the general version of the problem, theoretical upper or
lower bounds do not exist.

Since our algorithms are based on rounding techniques, a
standard approximation ratio analysis to bound the performance
of the proposed algorithms seems reasonable. The goal is to
compare the cost of the optimal MIP and the cost of DVINE.
Recall that we have location constraint sets for the virtual nodes

in our problem formulation. If we assume that these location
sets are disjoint and bounded, then the approximation ratio of
D-ViNE can be expressed as a function of the {2(-) set given
that the f:g variables remain unchanged during relaxation and
rounding (Appendix). However, as explained in Section IV-A,
f;: variables do not retain their original values from the MIP
solution after relaxation. If we can modify the algorithms so
that the f:: variables remain unchanged through relaxation and
rounding, we can obtain the desired bound.5

2) Analysis of Window-Based VN Embedding: 1t seems log-
ical that a window-based VN embedding algorithm should have
better performance compared to a pure online algorithm. How-
ever, this can be contradicted with a simple worst-case coun-
terexample [23]. Allowing an online algorithm to see the next &
VNs would not yield any advantage in the worst case since any
sequence of n VN requests can be replaced by a new nk-size
sequence of VN requests, where each VN is replicated & times.
However, this example is only a worst-case scenario, and tradi-
tional competitive ratio analysis does not deal with average case
analysis, which is required in our case to approximate the best
window size.

Online algorithms with lookahead have been investigated ex-
tensively for paging and bin packing [23], [24]. A similar result
for online VN embedding could help us to approximate the op-
timal window size in the worst case. Competitive analysis with
lookahead assumes a finite number of instantaneous online re-
quests, so it is not directly applicable for potentially infinite
number of VN requests with waiting periods.

51t should be noted that the approximation ratio is only related to the cost
metric and not to other metrics like acceptance ratio or node and link utilization.
The reason for this is that our MIP formulation only considers cost explicitly in
the objective function, whereas acceptance ratio and node and link utilization
are computed statistically during our simulation experiments.

CHOWDHURY et al.: VINEYard: VIRTUAL NETWORK EMBEDDING ALGORITHMS WITH COORDINATED NODE AND LINK MAPPING 217

3) Stochastic Analysis: A simple M/M/1 queue would not
suffice to model the VN embedding problem using queueing
theory. Although we have assumed memoryless Poisson arrivals
and exponential lifetime for VN5, a simple queue of VNs is not
adequate to accurately model the system. The system churn (in
terms of arrival and departure of VNs over time) affects each
substrate node and link. As a result, an interdependent system
of queues, with separate queues for each substrate node and
link, would be required to model the system. The complexity
of this multidimensional system model prohibits queueing the-
oretic performance analysis [25]. Similarly, a Markov model of
this problem becomes infeasible due to state explosion.

C. Pricing Model

In the absence of a real-world marketplace, it is nontrivial to
come up with a pricing model that can capture the interactions
between buyers, sellers, and brokers in a network virtualization
environment. We have used a simple pricing model based on the
existing literature [13], [14], where revenue and cost are linear
functions of requested and allocated resources. In practice, there
could be many different pricing models, and VN embedding al-
gorithms need to be optimized for each one individually. The
ViNEYard algorithms can also incorporate new pricing models
by updating their cost and revenue functions. For example, em-
bedding algorithms for a pricing model that prioritizes some
critical resources over others must include resource prioritiza-
tion while making an embedding decision. We provide limited
support for prioritization through the parameters « and /3 and
tune them to devise D-ViNE-LB.

Lifetime of a VN request should ideally be an important
factor in pricing it. However, in our current model, the rev-
enue and cost functions are independent of VN lifetime. If
we include lifetime in the form of multiplying the allocated
resources by it, the decision of selecting a VN request from a
mixed workload of requests consisting of short-lived expensive
VNs and long-lived cheap VNs becomes nontrivial and policy
dependent. Similarly, if a VN request has a really long lease
time and the market price of resources allocated to that request
keep fluctuating over the lease period, inclusion of time in the
revenue function requires modeling a full-fledged economic
model for the network virtualization environment.

VIII. RELATED WORK

Existing research on assigning virtual private net-
works (VPNs) in a shared provider topology [26], [27] is
similar to the VN embedding problem. However, a typical
VPN request consists only of bandwidth requirements that are
specified in terms of a traffic matrix without putting constraints
on its nodes. Consequently, most VPN design algorithms boil
down to finding paths for source/destination pairs. In addition,
VPNs usually have standard topologies like full mesh and
hub-and-spoke [28]. We have demonstrated through simulation
that VINEYard algorithms can provide improved embedding
for standard as well as arbitrary VN request topologies.

VN embedding is also related to the network test-bed map-
ping problem [29]. The Assign algorithm used in the Emulab test
bed [29] considers bandwidth constraints alongside constraints

on exclusive use of nodes (i.e., different VNs cannot share a
substrate node). However, sharing of substrate nodes and links
by multiple VNs is one of the core principles of network virtu-
alization [5], and VN embedding algorithms must support these
objectives. Emulab itself is aligning its resource mapping poli-
cies with that of network virtualization [30].

In order to reduce the hardness of the VN embedding problem
and to enable efficient heuristics, existing research has been re-
stricting the problem space in different dimensions, which in-
clude the following:

1) considering offline version of the problem (i.e., all VN re-

quests are known in advance) [12], [13];

2) ignoring either node or link requirements [11], [12];

3) assuming infinite capacity of substrate nodes and links to
obviate admission control [11]-[13];

4) focusing on specific VN topologies [12].

Yu et al. [14] considered all these issues, except for the loca-
tion constraints on virtual nodes, by envisioning support from
the substrate network through node and link migration as well
as multipath routing. We do not restrict the problem space by as-
suming infinite capacity of the substrate network resources nor
do we assume any specialized VN topologies.

Contrary to the algorithms proposed in this paper, all the ex-
isting algorithms can be separated into two basic phases:

1) assigning virtual nodes using some greedy heuristics (e.g.,
assign virtual nodes with higher requirements to substrate
nodes with more available resources [13], [14]);

2) embedding virtual links onto substrate paths using shortest
path algorithms [13] in case of unsplittable flows, or using
multicommodity flow algorithms in case of splittable
flows [14], [16].

Lischka et al. [31] proposed a backtracking-based VN embed-
ding algorithm using subgraph isomorphism detection that ex-
tensively searches the solution space in a single stage. While
completely combining the two phases is A”P-hard, coordinating
them does improve embedding performance as evinced by the
proposed algorithms through extensive simulation over diverse
workloads. Houidi et al. [32] presented a distributed algorithm
that simultaneously maps virtual nodes and virtual links without
any centralized controller.

Throughout this paper, we assumed that the substrate net-
work is always operational. In practice, however, not only can
components in the substrate network fail, a single failure of
a physical resource can disrupt operations of multiple VNs.
Rahman et al. [33] extended the ViNEYard model with a fast
rerouting strategy that utilizes preallocated backup quota on
each physical link to ensure survivability from individual
substrate link failures. Yeow et al. [34] enabled recovery from
both substrate node and link failures while minimizing backup
resources through pooling.

Over time, as VN requests arrive and leave the system, sub-
strate network resources become fragmented and cause under-
utilization of resources. In addition, at different points in time,
different substrate nodes and links can become more important
than others (e.g., due to bottleneck shifts or price fluctuation).
Butt et al. [35] extended the VINEYard model with support for
resource prioritization and dynamic reoptimization and reem-
bedding to make it more responsive.

218

The integer and mixed integer programming approaches
had been applied to a number of resource allocation and opti-
mization problems in the networking area. Kuman et al. [36]
proposed an integer programming model to solve the VPN tree
computation problem for bandwidth provisioning in VPNs.
Techniques of randomized rounding for linear programming
relaxations to obtain approximation algorithms was first in-
troduced in [37]. In this paper, we take a formal approach to
solve the online VN embedding problem using a mixed integer
programming formulation. To the best of our knowledge, this
is the first attempt to create a mathematical programming
formulation for this problem.

The effect of lookahead on online algorithms have been thor-
oughly investigated in the algorithm design literature [23], [38].
Yu et al. [14] used batch processing to improve the performance
of VN embedding. We propose a generalized window-based VN
embedding mechanism that is based on a fixed window size and
prespecified maximum waiting periods for VN requests and can
extend any existing purely online VN embedding algorithm.

IX. CONCLUSION

We argued in this paper that coordinating node and link map-
ping phases during VN embedding significantly increases the
solution space and improves the quality of embedding heuris-
tics. VINEYard algorithms proposed in this paper outperform
their counterparts in terms of acceptance ratio, revenue, and pro-
visioning cost. We also developed a window-based extension
for VN embedding that can incorporate existing VN embedding
algorithms and demonstrated the dominance of the proposed al-
gorithms in this generalized setting.

A number of issues still remain unresolved, however. We are
specially interested in extending intradomain ViNEYard algo-
rithms to support VN embedding across multiple administrative
domains [39]. Designing advanced economic models to replace
the simple revenue model used in the existing literature for VN
pricing also requires further attention. Available approaches to
directly solve integer and mixed integer programs (e.g., using
column generation) can be employed to develop efficient algo-
rithms to obtain optimal or near-optimal solutions for the orig-
inal mixed integer formulation without any relaxation. Finally,
finding the optimal window size for window-based VN embed-
ding is an open problem. A possible approach to find the optimal
window size would be to express our performance metrics as
functions of the window size and the maximum waiting period,
which would require explicit expressions for the performance
metrics. One way to address this would be to find the best-fitting
curves from the performance graphs and use them as approxi-
mate functions.

APPENDIX
APPROXIMATION RATIO FOR D-VINE WITH INDEPENDENT
f ASSUMPTION

We assume that ¢ variables do not change during rounding
and relaxation (RR) and ignore them in the approximation ratio
calculation®. Consequently, the objective function in (7) can be

This analysis only holds for VN Embedding without window support.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 1, FEBRUARY 2012

reduced to the following:

minimize F = E a(m, W)X mae

™m,w

where a(m, w) is a function of all the coefficients of &y
Let, «}, ., denote the relaxed value for ., and 7}, be the

maximum among the relaxed values. Consequently, we have

T > m Let 7* be the approximate value of the ob-

2K
max —

jective function. Therefore

Z a{m, w)x,,

m,w

1
> — (m,
Z 0] 7g;ﬂa(m w)

,7:*

1
> = Ly W)L
Z] 2

1

[Q2(m)]

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for their
insightful comments and to the associate editor for handling the
review process. The authors would also like to thank M. Young
and Q. Zhang for their suggestions.

REFERENCES

[1] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual
network embedding with coordinated node and link mapping,” in Proc.
IEEE INFOCOM, Apr. 2009, pp. 783-791.

[2] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
internet impasse through virtualization,” Computer, vol. 38, no. 4, pp.
34-41, 2005.

[3] J. Turner and D. Taylor, “Diversifying the internet,” in Proc. IEEE
GLOBECOM, 2005, vol. 2, pp. 755-760.

[4] N. Feamster, L. Gao, and J. Rexford, “How to lease the internet in your
spare time,” Comput. Commun. Rev., vol. 37, no. 1, pp. 61-64, 2007.

[5] N. M. M. K. Chowdhury and R. Boutaba, “A survey of network virtu-
alization,” Comput. Netw., vol. 54, no. 5, pp. 862—-876, 2010.

[6] “GENI: Global environment for network innovations,” [Online]. Avail-
able: http://www.geni.net/

[7] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In
VINI veritas: Realistic and controlled network experimentation,” in
Proc. ACM SIGCOMM, 2006, pp. 3—14.

[8] D. Andersen, “Theoretical approaches to node assignment,” 2002
[Online]. Available: http://www.cs.cmu.edu/~dga/papers/andersen-
assign.ps

[9] J. Kleinberg, “Approximation algorithms for disjoint paths problems,”
Ph.D. dissertation, MIT, Cambridge, MA, 1996.

[10] S.Kolliopoulos and C. Stein, “Improved approximation algorithms for
unsplittable flow problems,” in Proc. IEEE FOCS, 1997, pp. 426-435.

[11] J. Fan and M. Ammar, “Dynamic topology configuration in service
overlay networks—A study of reconfiguration policies,” in Proc. [EEE
INFOCOM, 2006, pp. 1-12.

[12] J. Lu and J. Turner, “Efficient mapping of virtual networks onto a
shared substrate,” Washington University, Seattle, WA, Tech. Rep.
WUCSE-2006-35, 2006.

[13] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in Proc. [EEE INFOCOM,
2006, pp. 1-12.

[14] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual net-
work embedding: Substrate support for path splitting and migration,”
Comput. Commun. Rev., vol. 38, no. 2, pp. 17-29, Apr. 2008.

[15] A.Schrijver, Theory of Linear and Integer Programming. New York:
Wiley, 1986.

[16] W. Szeto, Y. Iraqi, and R. Boutaba, “A multi-commodity flow based
approach to virtual network resource allocation,” in Proc. IEEE
GLOBECOM, 2003, pp. 3004-3008.

[17] D. Eppstein, “Finding the k shortest paths,” SIAM J. Comput., vol. 28,
no. 2, pp. 652-673, 1998.

[18] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proc. ACM STOC, 1984, pp. 302-311.

[19] “GNU linear programming kit,” Free Software Foundation, Boston,
MA, 2008 [Online]. Available: http://www.gnu.org/software/glpk/

[20] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an inter-
network,” in Proc. IEEE INFOCOM, 1996, pp. 594-602.

[21] R. Jain, The Art of Computer Systems Performance Analysis. New
York: Wiley, 1991.

[22] M. Mitzenmacher, A. W. Richa, and R. Sitaraman, “The power of two

random choices: A survey of techniques and results,” in Handbook of

Randomized Computing. Norwell, MA: Kluwer, 2001, pp. 255-312.
[23] S. Albers, “On the influence of lookahead in competitive paging algo-
rithms,” Algorithmica, vol. 18, no. 3, pp. 283-305, 1997.
[24] E.F.Grove, “Online bin packing with lookahead,” in Proc. ACM-SIAM
SODA, 1995, pp. 430-436.

[25] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of

Deterministic Queuing Systems for the Internet. Berlin, Germany:
Springer-Verlag, 2001.

[26] A. Gupta, J. M. Kleinberg, A. Kumar, R. Rastogi, and B. Yener, “Pro-
visioning a virtual private network: A network design problem for mul-
ticommodity flow,” in Proc. ACM STOC, 2001, pp. 389—398.

[27] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakr-
ishnan, and J. E. van der Merwe, “Resource management with hoses:
Point-to-cloud services for virtual private networks,” [EEE/ACM
Trans. Netw., vol. 10, no. 5, pp. 679—-692, Oct. 2002.

[28] S. Raghunath, K. K. Ramakrishnan, S. Kalyanaraman, and C. Chase,
“Measurement based characterization and provisioning of IP VPNs,”
in Proc. ACM IMC, 2004, pp. 342-355.

[29] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed
mapping problem,” Comput. Commun. Rev., vol. 33, no. 2, pp. 65-81,
Apr. 2003.

[30] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack, K.
Webb, and J. Lepreau, “Large-scale virtualization in the Emulab net-
work testbed,” in Proc. USENIX ATC, 2008, pp. 113-128.

[31] J. Lischka and H. Karl, “A virtual network mapping algorithm based
on subgraph isomorphism detection,” in Proc. ACM VISA, 2009, pp.
81-88.

[32] I. Houidi, W. Louati, and D. Zeghlache, “A distributed virtual network
mapping algorithm,” in Proc. IEEE ICC, 2008, pp. 5634-5640.

[33] M. R. Rahman, I. Aib, and R. Boutaba, “Survivable virtual network
embedding,” in Proc. IFIP Netw., 2010, pp. 40-52.

[34] W.-L. Yeow, C. Westphal, and U. Kozat, “Designing and embedding
reliable virtual infrastructures,” in Proc. ACM VISA, 2010, pp. 33—40.

[35] N.F. Butt, M. Chowdhury, and R. Boutaba, “Topology-awareness and
reoptimization mechanism for virtual network embedding,” in Proc.
IFIP Netw., 2010, pp. 27-39.

[36] A.Kumar, R. Rastogi, A. Silberschatz, and B. Yener, “Algorithms for
provisioning virtual private networks in the hose model,” JEEE/ACM
Trans. Netw., vol. 10, no. 4, pp. 565-578, Aug. 2002.

[37] P.Raghavan and C. D. Tompson, “Randomized rounding: A technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365-374, 1987.

CHOWDHURY et al.: VINEYard: VIRTUAL NETWORK EMBEDDING ALGORITHMS WITH COORDINATED NODE AND LINK MAPPING 219

[38] S. Albers, “A competitive analysis of the list update problem with
lookahead,” Theor. Comput. Sci., vol. 197, no. 1-2, pp. 95-109, 1998.

[39] M. Chowdhury, F. Samuel, and R. Boutaba, “Poly VINE: Policy-based
virtual network embedding across multiple domains,” in Proc. ACM
VISA, 2010, pp. 49-56.

Mosharaf Chowdhury (S’09) received the B.Sc.
degree in computer science and engineering from
Bangladesh University of Engineering and Tech-
nology, Dhaka, Bangladesh, in 2006, and the
M.Math. degree in computer science from the
University of Waterloo, Waterloo, ON, Canada, in
2009, and is currently pursuing the Ph.D. degree in
computer science at the University of California,
Berkeley.
His research interests are primarily in large-scale
data-parallel systems, data center networking, and
clean-slate designs for the future Internet architecture.

Muntasir Raihan Rahman (M’10) received the
B.Sc. degree in computer science and engineering
from Bangladesh University of Engineering and
Technology, Dhaka, Bangladesh, in 2006, and the
M.Math. degree in computer science from the
University of Waterloo, Waterloo, ON, Canada, in
2010, and is currently pursuing the Ph.D. degree
in computer science at the University of Illinois at
Urbana—Champaign.

His research interests include algorithmic and ex-
perimental aspects of distributed systems, cloud com-
puting, and algorithmic game theory.

Raouf Boutaba (M’93-SM’01) received the M.Sc.
and Ph.D. degrees in computer science from the Uni-
versity Pierre & Marie Curie, Paris, France, in 1990
and 1994, respectively.

He is currently a Professor of computer science
with the University of Waterloo, Waterloo, ON,
Canada. His research interests include network,
resource, and service management in wired and
wireless networks.

Prof. Boutaba is the founding Editor-in-Chief
of the IEEE TRANSACTIONS ON NETWORK AND
SERVICE MANAGEMENT, serving from 2007 to 2010, and has served on the
Editorial Boards of other journals. He has received several best paper awards
and other recognitions such as the Premier’s Research Excellence Award, the
IEEE Hal Sobol Award in 2007, the Fred W. Ellersick Prize in 2008, and the
Joe LociCero and the Dan Stokesbury awards in 2009.

