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Abstract—Cloud computing promises to provide on-demand computing, storage, and networking resources. However, most cloud

providers simply offer virtual machines (VMs) without bandwidth and delay guarantees, which may hurt the performance of the

deployed services. Recently, some proposals suggested remediating such limitation by offering virtual data centers (VDCs) instead of

VMs only. However, they have only considered the case where VDCs are embedded within a single data center. In practice,

infrastructure providers should have the ability to provision requested VDCs across their distributed infrastructure to achieve multiple

goals including revenue maximization, operational costs reduction, energy efficiency, and green IT, or to simply satisfy geographic

location constraints of the VDCs. In this paper, we propose Greenhead, a holistic resource management framework for embedding

VDCs across geographically distributed data centers connected through a backbone network. The goal of Greenhead is to maximize

the cloud provider’s revenue while ensuring that the infrastructure is as environment-friendly as possible. To evaluate the effectiveness

of our proposal, we conducted extensive simulations of four data centers connected through the NSFNet topology. Results show that

Greenhead improves requests’ acceptance ratio and revenue by up to 40 percent while ensuring high usage of renewable energy and

minimal carbon footprint.

Index Terms—Green computing, energy efficiency, cloud computing, virtual data center, distributed infrastructure
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1 INTRODUCTION

CLOUD computing has recently gained significant popu-
larity as a cost-effective model for hosting large-scale

online services in large data centers. In a cloud computing
environment, an infrastructure provider (InP) partitions the
physical resources inside each data center into virtual
resources (e.g., virtual machines (VMs)) and leases them to
service providers (SPs) in an on-demand manner. On the
other hand, a service provider uses those resources to deploy
its service applications, with the goal of serving its customers
over the Internet.

Unfortunately, current InPs like Amazon EC2 [1] mainly
offer resources in terms of virtual machines without
providing any performance guarantees in terms of band-
width and propagation delay. The lack of such guarantees
affects significantly the performance of the deployed
services and applications [2]. To address this limitation,
recent research proposals urged cloud providers to offer
resources to SPs in the form of virtual data centers (VDCs)
[3]. A VDC is a collection of virtual machines, switches, and
routers that are interconnected through virtual links. Each
virtual link is characterized by its bandwidth capacity and
its propagation delay. Compared to traditional VM-only

offerings, VDCs are able to provide better isolation of
network resources, and thereby improve the performance of
service applications.

Despite its benefits, offering VDCs as a service intro-
duces a new challenge for cloud providers called the VDC
embedding problem, which aims at mapping virtual
resources (e.g., virtual machines, switches, routers) onto
the physical infrastructure. So far, few works have
addressed this problem [2], [4], [5], but they only
considered the case where all the VDC components are
allocated within the same data center. Distributed embed-
ding of VDCs is particularly appealing for SPs as well as
InPs. In particular, an SP uses its VDC to deploy various
services that operate together to respond to end-users
requests. As shown in Fig. 1, some services may require to
be in the proximity of end users (e.g., web servers), whereas
others may not have such location constraints and can be
placed in any data center (e.g., MapReduce jobs).

On the other hand, InPs can also benefit from embedding
VDCs across their distributed infrastructure. In particular,
they can take advantage of the abundant resources available
in their data centers and achieve various objectives
including maximizing revenue, reducing costs and improv-
ing the infrastructure sustainability.

In this paper, we propose a management framework able
to orchestrate VDC allocation across a distributed cloud
infrastructure. The main objectives of such framework can
be summarized as follows:

- Maximize revenue. Certainly, the ultimate objective of
an infrastructure provider is to increase its revenue
by maximizing the amount of leased resources and
the number of embedded VDC requests. However,
embedding VDCs requires satisfying different con-
straints, namely, the capacity and location con-
straints. Obviously, the embedding scheme must
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ensure that the capacity of the infrastructure is never
exceeded. In addition, it must satisfy location
constraints imposed by SPs.

- Reduce backbone network workload. To cope with the
growing traffic demand between data centers,
infrastructure providers tend to build their proprie-
tary wide-area backbone network to interconnect
their facilities (e.g., Google G-scale network [6]). In
this context, one key objective when embedding
VDCs is to minimize the traffic within the backbone
network. Indeed, it has been reported recently that
the cost of building an inter-data center network is
much higher than the intra-data center network cost
and it accounts for 15 percent of the total infra-
structure cost [7]. In addition, according to several
studies [8], wide-area data transport is bound to be
the major contributor to the data transport costs.
Hence, it is crucial to reduce the backbone network
traffic and place high-communicating VMs within
the same data center whenever possible.

- Reduce data center operational costs. Reducing data
centers’ operational costs is a critical objective of any
infrastructure provider as it impacts its budget and
growth. This can be achieved through minimizing
energy costs, which constitutes a significant portion of
the total operational expenditure. To this end, two key
techniques can be adopted: 1) placing more workload
into the most energy-efficient data centers, and 2)
taking advantage of the difference in electricity prices
between the locations of the infrastructure facilities. In
particular, energy-efficient data centers can be identi-
fied by their power usage effectiveness (PUE), and
favored to host more virtual machines.

Furthermore, InPs can achieve more savings by
considering the fluctuation of electricity price over
time and the price difference between the locations of
the data centers. Hence, VMs can be efficiently placed
such that the total electricity cost is minimized.

- Reduce the carbon footprint. Recent research has
reported that, in 2012, the carbon footprint of data
centers around the world accounted for 0.25 percent

of the worldwide carbon emission, which constitutes
10 percent of information and communication
technologies (ICT) emissions [9]. As a result, InPs
are facing a lot of pressure to operate on renewable
sources of energy (e.g., solar and wind power) to
make their infrastructure more green and environ-
ment-friendly. Based on these observations, an
efficient VDC embedding scheme should maximize
the usage of renewables and take into account their
availability, which depends on the data center
geographical location, the time of the day (e.g., day
and night for solar power) as well as the weather
conditions (e.g., wind, atmospheric pressure).
Furthermore, whenever the power from the electric
grid is used, the VDC embedding scheme has to
minimize the infrastructure carbon footprint. In that
case, the placement of the VMs is critical since the
carbon footprint per watt of power varies from
location to location.

In this paper, we propose Greenhead, a resource
management framework for VDC embedding across a
distributed infrastructure. Greenhead aims at maximizing
the InP’s revenue by minimizing energy costs, while
ensuring that the infrastructure is as environment-friendly
as possible. To reduce the complexity of the problem, we
propose a two-step approach. We first divide a VDC
request into partitions such that the interpartition band-
width demand is minimized and the intrapartition band-
width is maximized. The aim of such partitioning is to
embed VMs exchanging high volumes of data in the same
data center. This significantly reduces the traffic carried by
the backbone, and thereby improves requests’ acceptance
ratio. We then propose a simple yet efficient algorithm for
assigning partitions to data centers based on electricity
prices, data centers’ PUEs, availability of renewables, and
the carbon footprint per unit of power.

To the best of our knowledge, this is the first effort to
address VDC embedding problem over a distributed
infrastructure taking into account energy efficiency as well
as environmental considerations.

The remainder of this paper is organized as follows: In
Section 2, we present related works relevant to ours. We
then describe the proposed management framework in
Section 3. We provide a mathematical formulation of the
VDC embedding problem across a distributed infrastruc-
ture in Section 4. Section 5 presents a detailed description of
the proposed algorithms for VDC partitioning and embed-
ding. Section 6 discusses the simulation results showing the
effectiveness of Greenhead. We finally provide concluding
remarks in Section 7.

2 RELATED WORK

In this section, we survey relevant research in the literature.
We classified previous work into three related topics,
namely: VDC embedding within a single data center,
virtual network embedding, and workload scheduling
across geographically distributed data centers.

2.1 VDC Embedding within a Single Data Center

So far, only few works have addressed the VDC embedding
problem. For instance, Guo et al. [5] proposed a data center
network virtualization architecture called SecondNet that
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incorporates a greedy algorithm to allocate resources to
VDCs. Ballani et al. [2] proposed two abstractions for VDCs,
namely a virtual cluster and an oversubscribed virtual
cluster. They developed Oktopus, an implementation of
those abstractions that uses a greedy algorithm for mapping
virtual resources to a tree-like physical topology. Finally,
Zhani et al. [4] presented VDC Planner, a resource
management framework for data centers that leverages
dynamic VM migration to improve the acceptance ratio of
VDCs, and thereby increases InP’s revenue. They also
proposed a VDC consolidation algorithm to minimize the
number of active physical servers during low-demand
periods. Unfortunately, the above proposals cannot be
directly applied to allocate resources in multiple data
centers due to the large size of the resulting topology. In
addition, for a distributed environment, different consid-
erations should be taken into account such as carbon
footprint of the data centers and variability of electricity
prices over time and between different locations.

The only work we are aware of that addressed multidata
center embedding problem is that of Xin et al. [10]. They
proposed an algorithm that uses minimum k-cut to split a
request into partitions before assigning them to different
locations. However, this work has only aimed at load
balancing the workload through request partitioning with-
out considering other objectives like revenue maximization,
backbone network usage optimization, energy efficiency,
and green IT. Furthermore, it does not consider constraints
on the VM placement.

2.2 Virtual Network Embedding

Virtual network embedding has been extensively studied in
the literature. It basically aims at embedding virtual nodes
(mainly routers) and links on top of a physical backbone
substrate. Current proposals have addressed the embedding
problem either in a single domain (i.e., a backbone owned
and managed by a single InP) or in multiple domains (i.e.,
multiple networks managed by different InPs).

In the single domain case, the InP tries to embed the
virtual networks while aiming to achieve multiple objec-
tives including: 1) minimizing the embedding cost [11], 2)
maximizing the acceptance ratio and revenue [12], [13], and
3) improving energy efficiency [14], [15].

In the multidomain case, the request is provisioned
across multiple domains belonging to different InPs. Houidi
et al. [16] proposed a centralized approach where the SP
first splits the request using Max-Flow Min-Cut based on
prices offered by different InPs then decides where to place
the partitions. Chowdhury et al. [17] proposed a distributed
embedding solution called PolyVine. In PolyVine, the
virtual network request is sent to a single InP, which tries
to allocate as much resources as possible in his own
network before forwarding the unembedded nodes and
links to a neighboring provider. The process continues
recursively until the whole request is embedded.

The above proposals on virtual network embedding
cannot be directly applied to the VDC embedding problem
for many reasons. While a virtual network can be made of
tens of nodes (mainly routers), a VDC, expected to be
similar to a real data center, may comprise thousands of
nodes of different types (e.g., VMs, virtual switches and
routers). There is, therefore, a definite need for developing

new solutions able to embed large-scale VDCs and to

consider the diversity of resources. Finally, previous

works do not take advantage of the variability of

electricity prices between different locations and also

ignore environmental considerations.

2.3 Workload Placement in Geographically
Distributed Data Centers

Several works have addressed the problem of workload

placement in geographically distributed data centers. They

either aimed at reducing energy costs [18], [19], [20], or

minimizing the carbon footprint [21], [22] or both [23].
Generally, energy costs are cut down by taking

advantage of the variability of electricity prices between

different data centers and even at the same location over

time. The carbon footprint is reduced by following the

renewables available during some periods of the day. For

instance, Zhang et al. [18] used a model predictive control

framework for service placement. Services are dynamically

placed in data centers and migrated according to the

demand and price fluctuation over time while considering

the migration cost and the latency between services and

end users. Qureshi et al. [20] addressed the problem of

replica placement and request routing in content distribu-

tion networks (CDN). They aimed at reducing electricity

costs by dynamically placing data at locations with low

electricity prices. Gao et al. [24] addressed the same

problem, but they aimed at minimizing energy costs,

carbon footprint, and the delay between end users and

the location of the data. Liu et al. proposed a framework for

workload assignment and dynamic workload migration

between data centers that minimizes the latency between

end users and services while following renewables and

avoiding using power from the electricity grid [21], [22]. Le

et al. [25] proposed a workload assignment framework

across multiple data centers that minimizes the costs of

energy consumed by IT and cooling equipment depending

on the fluctuations of electricity prices and the variability of

the data centers’ PUEs.
However, the main limitation of the aforementioned

proposals is that they ignore the communication patterns

and the exchanged data between the VMs. This makes such

approaches not applicable for embedding VDCs since we

need also to consider bandwidth and delay requirements

between the VDC components.
In summary, our work is different from traditional

virtual network and VDC embedding proposals since it

considers resource allocation for VDCs across the whole

infrastructure including data centers and the backbone

network connecting them. It also differs from service

placement works since we are provisioning all types of

resources including computing, storage, and notably

networking (i.e., bandwidth and delay).
To the best of our knowledge, this work is the first effort

to address a VDC embedding across a distributed infra-

structure while considering the usage of the backbone

network, the variability of electricity prices, energy effi-

ciency as well as environmental considerations.
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3 SYSTEM ARCHITECTURE

In this work, we consider a distributed infrastructure
consisting of multiple data centers located in different
regions and interconnected through a backbone network
(see Fig. 2). The entire infrastructure (including the
backbone network) is assumed to be owned and managed
by the same infrastructure provider. Each data center
may operate on on-site renewable energy (e.g., wind,
solar) and resorts to electricity grid only when its on-site
renewable energy becomes insufficient. Unfortunately,
renewables are not always available as they depend on
the data center location, the time of the day and external
weather conditions. While renewable energy has no
carbon footprint, energy from the Grid is usually
produced by burning coal, oil, and gas, generating high
levels of carbon emissions. As a result, whenever
electricity is drawn from the Grid, the cloud provider
has to pay a penalty proportional to the generated carbon
emission. The generated carbon depends on the source of
power used by the electric grid supplier, which could be
a renewable source or a conventional one or a mix of
both. Furthermore, it is also worth noting that prices of
the grid electricity differ between regions and they even
vary over time in countries with deregulated electricity
markets.

As shown in Fig. 2, an SP sends the VDC request
specifications to the InP, which has the responsibility of
allocating the required resources. Naturally, the cloud
provider will make use of its distributed infrastructure
with the objective of maximizing its revenue and minimiz-
ing energy costs and carbon footprint; this is where our
proposed management framework, Greenhead, comes into
play. Greenhead is composed of two types of management
entities: 1) a central controller that manages the entire
infrastructure and 2) a local controller deployed at each
data center to manage the data center’s internal resources.

The central management entity includes five components
as depicted in Fig. 2:

. The Partitioning Module is responsible for splitting a
VDC request into partitions such that interpartition
bandwidth is minimized. The aim of this module is
to reduce the number of virtual links provisioned

between data centers. Each partition is supposed to
be entirely embedded into a single data center. The
motivation behind such partitioning will be ex-
plained in Section 5.1.

. The Partition Allocation Module is responsible for
assigning partitions to data centers based on runtime
statistics collected by the monitoring module. It
ensures that all partitions are embedded while
achieving cost effectiveness, energy efficiency, and
green IT objectives such as reducing energy costs
from the power grid and maximizing the use of
renewable sources of energy.

. The Inter-Data Center Virtual Link Allocation Module
allocates virtual links in the backbone network.
Those virtual links connect VMs that have been
assigned to different data centers.

. The Monitoring Module is responsible for gathering
different statistics from the data centers. The
collected information includes PUE, resource utiliza-
tion, outdoor temperature, electricity price, and the
amount of available renewable energy.

. The VDC Information Base contains all information
about the embedded VDCs including their partitions
and mapping either onto the data centers or the
backbone network.

Regarding the local controller at each data center, its

main role is to manage the resources within the data

center itself. Specifically, it allocates resources for a

partition of a VDC as requested by the central controller.

If the embedding is not possible (for example, due to

unavailability of resources), the local controller notifies

the central controller. Subsequently, the partition alloca-

tion module will attempt to find another data center able

to embed the rejected partition. It is worth noting that

different resource allocation schemes can be deployed

locally at the data centers (e.g., VDC planner [4],

SecondNet [5], Oktopus [2]). Finally, each local controller

has to report periodically statistics including PUE,

temperature, resource usage, and availability of renew-

ables to the central controller.
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4 PROBLEM FORMULATION

In this section, we formally define the VDC embedding

problem across multiple data centers as an integer linear

program (ILP). Table 1 describes the notations used in our

ILP model.
We assume that time is divided into slots ½1; . . . ; T �. The

metrics characterizing each data center (e.g., PUE, electricity

price) are measured at the beginning of each time slot and

are considered constant during the corresponding time slot.

Thus, for readability, we omit the time reference in all

variables defined in the remainder of this section.
The physical infrastructure is represented by a graph

GðV [W;EÞ, where V denotes the set of data centers and

W the set of nodes of the backbone network. The set of

edges E represents the physical links in the backbone

network. Each link is characterized by its bandwidth

capacity and propagation delay.
A VDC request j is represented by a graph GjðV j; EjÞ.

Each vertex v 2 V j corresponds to a VM, characterized by

its CPU, memory, and disk requirements. Each edge e 2 Ej

is a virtual link that connects a pair of VMs. It is

characterized by its bandwidth demand bwðeÞ and propa-

gation delay dðeÞ. Furthermore, each VDC j has a lifetime

Tj. We assume the revenue generated by VDC j, denoted by

Rj, to be proportional to the amount of CPU, memory, and

bandwidth required by its VMs and links. Let R denote the

different types of resources offered by each node (i.e., CPU,

memory and disk). The revenue generated by VDC j can be

written as follows:

Rj ¼
X
v2V j

X
r2R

Cr
j ðvÞ � �r þ

X
e02Ej

bwðe0Þ � �b
 !

; ð1Þ

whereCr
j ðvÞ is the capacity of VM v belonging to the VDC j in

terms of resource r, and �r and �b are the selling prices of a

unit of resource type r and a unit of bandwidth, respectively.

Furthermore, we assume that each VM v 2 V j may have
a location constraint. Therefore, it can only be embedded
in a particular set of data centers. To model this constraint,
we define

zjik ¼
1 If the VM k of the VDC j can be;

embedded in data center i;
0 Otherwise:

8<
:

as a binary variable that indicates whether a VM k of to
VDC j can be embedded in a data center i.

The problem of embedding a given VDC j across the
infrastructure involves two steps:

. First, assign each VM k 2 V j to a data center. Hence,
we define the decision variable xjik as

xjik ¼
1 If the VM k of the VDC j is

assigned to data center i
0 Otherwise:

8<
:

. Second, embed every virtual link belonging to Ej

either in the backbone network if it connects two
VMs assigned to different data centers or within the
same data center, otherwise. To do so, we define the
virtual link allocation variable fe;e0 as

fe;e0 ¼
1 If the physical link e 2 E is used to

embed the virtual link e0 2 Ej

0 Otherwise:

8<
:

Finally, the ultimate objective of the InP when embed-
ding a VDC request is to maximize its profit defined as the
difference between the revenue (denoted by Rj) and the
total embedding cost, which consists of the embedding cost
in the data centers (denoted by Dj) plus the embedding cost
in the backbone network Pj. Hence, our problem can be
formulated as an ILP with the following objective function:

Maximize Rj � ðDj þPjÞ ð2Þ

Subject to the following constraints (3)-(8):

. A VM has to be assigned to a data center that
satisfies its location constraints:

xjik � z
j
ik; 8k 2 V j; 8i 2 V : ð3Þ

. A VM is assigned to one and only one data center:X
i2V

xjik ¼ 1; 8k 2 V j: ð4Þ

. The capacity constraint of the backbone network
links should not be exceeded:X

e02Ej

fe;e0 � bwðe0Þ � sbwðeÞ; 8e 2 E; ð5Þ

where sbwðeÞ is the residual bandwidth of the
backbone network link e.

. The required propagation delay for every virtual
link allocated in the backbone should be satisfied:
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X
e2E

fe;e0 � dðeÞ � dðe0Þ; 8e0 2 Ej: ð6Þ

. The flow conservation constraint given by

fe1;e0 � fe2;e0 ¼ xdðe1Þdðe0Þ � xsðe2Þsðe0Þ;8e1; e2 2 E;
dðe1Þ ¼ sðe2Þ; 8 e0 2 V j;

ð7Þ

where sðeÞ and dðeÞ denote the source and destina-
tion of link e, respectively.

. Furthermore, the central controller should also
ensure that each data center is able to accommodate
VMs and virtual links assigned to it. To model this
constraint, let Gj

iðV
j
i ; E

j
i Þ denote a partition from Gj,

where V j
i and Ej

i are the set of VMs and virtual links
belonging to VDC j and assigned to data center i.
They can be written as

V j
i ¼

�
k 2 V j j xjik ¼ 1

�
;

Ej
i ¼

�
e0 2 Ej j sðe0Þ 2 V j

i and dðe0Þ 2 V j
i

�
:

We define the function

EmbediðGj
iÞ ¼

1 If data center i can
accommodate V j

i and Ej
i

0 Otherwise:

8<
:

Hence, to ensure that the data center i can host the
assigned VMs and links, we should satisfy:

xjik � Embedi
�
Gj
i

�
; 8k 2 V j; 8i 2 V : ð8Þ

Let us now focus on the expression of the embedding
costs Dj and Pj in the data centers and the backbone
network, respectively. Recall that these costs are part of the
objective function.

The cost of embedding in the data centers. In this work,
we evaluate the request embedding cost in the data centers
in terms of energy and carbon footprint costs. To do so, we
first evaluate the amount of power required to embed the
partition Gj

i in a data center i denoted by Pj
i .

Let Pj
i;IT denote the amount of power consumed only by

IT equipment (i.e., servers and switches) to accommodate
Gj
i (expressed in kilowatt). This amount of power depends

mainly on the local allocation scheme, the current mapping,
and the availability of resources at data center i. The power
consumed at the data center i by IT equipment and other
supporting systems (e.g., cooling) to accommodate the
partition Gj

i can be computed as

Pj
i ¼ P

j
i;IT � PUEi; ð9Þ

where PUEi is the power usage effectiveness of data center
i. The mix of power used in data center i is given by

Pj
i ¼ P

j
i;L þ P

j
i;D; ð10Þ

where Pj
i;L and Pj

i;D denote, respectively, the on-site
consumed renewable power and the amount of purchased
power from the Grid. Note that the amount of on-site
consumed power should not exceed the amount of
produced power, which is captured by Pj

i;L � RNi, where

RNi is the amount of residual renewable power in data
center i expressed in kilowatt.

Hence, the embedding cost (expressed in dollar) of the
partition Gj

i in data center i can be written as

Dji ¼ P
j
i;L � �i þ P

j
i;D � ð�i þ �iCiÞ; ð11Þ

where �i is the on-site renewable power cost in data center i
expressed in dollars per kilowatt-hour ($/kWh), �i is the
electricity price in data center i expressed in dollars per
kilowatt-hour ($/kWh), Ci is the carbon footprint per unit
of power used from the Grid in data center i expressed in
tons of carbon per kWh (t/kWh), and �i is the cost per unit
of carbon ($/t). Note that �i includes the upfront invest-
ment, maintenance, and operational costs.

Finally, the total embedding cost of request j in all
available data centers can be written as follows:

Dj ¼
X
i2V
Dji : ð12Þ

The cost of embedding in the backbone network. Virtual
links between the VMs that have been assigned to different
data centers should be embedded in the backbone network.
Let Pj denote the cost incurred by the InP to accommodate
those virtual links. We assume that it is proportional to their
bandwidth requirements and the length of physical paths to
which they are mapped. It is given by

Pj ¼
X
e02Ej

X
e2E

fe;e0 � bwðe0Þ � cp; ð13Þ

where cp is the cost incurred by the InP per unit of
bandwidth allocated in the backbone network.

The above embedding problem can be seen as a
combination of the bin-packing problem and the multi-
commodity flow problem, which are both known to be NP-
hard. In addition, to use an ILP solver, one should know the
embedding costs of all possible partitions of the VDC graph
in all data centers. This means that each local controller has
to provide the central management framework with the
embedding cost of every possible partition. This may result
in a large computational overhead not only at local
controllers, but also at the central controller since the
number of possible partitions can be significant, especially
for large-scale VDC requests. Therefore, a solution that is
both efficient and scalable is required.

In the next section, we present our solution that, first,
divides the VDC request into partitions such that the inter-
partition bandwidth is minimized. Note that minimizing
the interpartition bandwidth aims at reducing the band-
width usage within the backbone network. Once, the
partitioning is completed, we, then, use a greedy algorithm
that places the obtained partitions in data centers based on
location constraints and embedding costs that consider
energy consumption, carbon footprint, electricity prices and
PUEs of the different facilities. Finally, the algorithm
optimally connects them through virtual links across the
backbone network.

5 VDC PARTITIONING AND EMBEDDING

As mentioned earlier, our solution consists of two stages:
1) VDC partitioning, and 2) partition embedding. In the
following, we present these two stages.
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5.1 VDC Partitioning

Before starting the embedding process, the VDC partition-
ing module splits the VDC request into partitions such
that the interpartition bandwidth is minimized. This
allows to minimize the bandwidth usage inside the
backbone network.

Our motivation stems from three main observations: 1) the
cost of the inter-data center network accounts for 15 percent of
the total cost, which is much higher than the cost of the intra-
data center network [7], 2) wide-area transit bandwidth is
more expensive than building and maintaining the internal
network of a data center [26], and 3) the inter-data center
network might become a bottleneck, which will eventually
reduce the acceptance ratio of VDC requests. Hence, to reduce
the operational costs and avoid inter-data center eventual
bottleneck, it is highly recommended to reduce the inter-data
center traffic [8].

The VDC partitioning problem reduces to the weighted
graph partitioning problem, which is known to be NP-
Hard [27]. Hence, we propose to use the Louvain algorithm
[28]. We chose the Louvain algorithm because it is a
heuristic algorithm that determines automatically the
number of partitions and has low time complexity of O(n

log n). Furthermore, it is shown to provide good results [28].
The objective of the Louvain algorithm is to maximize

the modularity, which is defined as an index between �1

and 1 that measures the intrapartition density (i.e., the sum
of the links’ weights inside partitions) compared to the
interpartition density (sum of the weights of links between
partitions). In fact, graphs with high modularity have dense
connections (i.e., high sum of weights) between the nodes
within partitions, but sparse connections across partitions.

In a nutshell, the original Louvain algorithm proceeds as
follows. Initially, every node is considered as a partition.
The algorithm then considers each node and tries to move it
into the same partition as one of its neighbors. The
neighboring node is chosen such that the gain in modularity
is maximal. Then a new graph is built by considering the
partitions found during the first phase as nodes and by
collapsing interpartitions links into one link (the weight of
the new link is equal to the sum of the original links’
weights). The same process is applied recursively to the
new graph until no improvement in the modularity is
possible. For more details on the original version of the
Louvain algorithm, refer to [28].

However, one should note that this algorithm is not
directly applicable to the VDC partitioning problem since it
does not take into account location constraints.

Indeed, two VMs with two different location constraints
should not be assigned to the same data center, and hence
they have to belong to different partitions. However, the
Louvain algorithm may not separate them, which results in
nonfeasible solutions. To address this limitation, we
modified the Louvain algorithm to take into account
location constraints in the partitioning process. The result-
ing heuristic algorithm, called Location-Aware Louvain
Algorithm (LALA) is described in Algorithm 1. Basically,
LALA prevents moving a node from one partition to
another whenever the location constraint could be violated.

Algorithm 1. Location-Aware Louvain Algorithm (LALA).
1: IN: GjðV j; EjÞ: The VDC request to partition

2: repeat

3: Put every edge of G in a single partition

4: Save the initial modularity

5: while Nodes moved between partitions do

6: for all v 2 Gj do

7: Find the partition P such as if we move v from

its partition to P :
8: -Get a maximum modularity increase

9: -There will not be two nodes with different

location constraints in P

10: if such a partition P exists then

11: Move v to the partition P

12: end if

13: end for

14: end while

15: if current modularity > initial modularity then

16: End false

17: Change Gj to be the graph of partitions

18: else

19: End true

20: end if

21: until End

Note that, unlike previous approaches in the literature,
where the number of partitions is known [10] or based on
star-shaped structures detection [29], LALA determines the
number of partitions as well as the shape and size of the
partitions based on the modularity.

Once the VDC partitioning is completed, the second step
is to assign the partitions to the data centers in such a way
to minimize the operational costs as well as the carbon
footprint, and provision virtual links across the backbone
network to connect them. In what follows, we describe the
partition placement algorithm.

5.2 Partition Embedding Problem

Once a request GjðV j; EjÞ is partitioned, the resulting
partitions that are connected through virtual links can be
seen as a multigraph Gj

MðV
j
M;E

j
MÞ, where V j

M is the set of
nodes (partitions) and Ej

M is the set of virtual links
connecting them. The next step is to embed this multigraph
in the infrastructure.

Note that at this stage, we can use the ILP formulation
introduced in Section 4 by replacing the VDC request Gj by
its graph of partitions Gj

M . However, even if the VDC
partitioning process significantly reduces the number of
components (partitions rather than VMs) to be embedded,
the above formulated ILP is still NP-hard. Therefore, we
propose a simple yet efficient heuristic algorithm to solve
the ILP problem.

Algorithm 2 describes the proposed partition embedding
algorithm. For each partition v 2 V j

M , we build the list of
data centers able to host it based on the location constraints
(lines 6-8). The idea is to start by assigning the location-
constrained partitions first then select the most cost effective
data centers that satisfy these constraints. For each partition
v 2 V j

M to embed, the central management entity queries the
local controller of each data center s that satisfies the
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location constraints to get the embedding cost of v. The cost
is returned by the remote call getCostðs; vÞ, which includes
both power and carbon footprint costs as described in (11).
The next step is to select the data center that will host the
partition v (lines 10-14). The selected data center is the one
that incurs the lowest embedding cost (provided by the
procedure getCostðs; vÞ), and where it is possible to embed
virtual links between v and all previously embedded
partitions (denoted by NðvÞ). Hence, the requirements of
all virtual links in terms of bandwidth and delay are
satisfied (achieved when LinksEmbedPossibleðs; vÞ ¼ true).
Furthermore, links between the partition v and other
partitions assigned to different data centers are embedded
in the backbone network using the shortest path algorithm
(lines 19-21).

Algorithm 2. Greedy VDC embedding across data centers.

1: IN: GðV [W;EÞ, Gj
MðV

j
M;E

j
MÞ

2: OUT: Assign each partition in V j
M to a data center,

embed the links between the partitions assigned to
different data centers in the backbone network

3: for all i 2 V do

4: ToDC½i�  fg
5: end for

6: for all v 2 V j
M do

7: Sv  fi 2 V =i satisfies the location constraintg
8: end for

9: for all v 2 V j
M do

10: i s 2 Sv with the smallest cost getCostðs; vÞ, and

LinksEmbedPossibleðs; vÞ ¼ true
11: if no data center is found then

12: return FAIL

13: end if

14: ToDC½i�  ToDC½i� [ fvg
15: for all k 2 NðvÞ do

16: if k 2 ToDC½i� then

17: ToDC½i�  ToDC½i� [ fevkg
18: else

19: if 9l 6¼ i 2 V = k 2 ToDC½l� then

20: Embed evk in G using the shortest path

21: end if

22: end if

23: end for

24: end for

25: return ToDC

If the whole multigraph is successfully embedded,
Algorithm 2 provides the mapping of all the partitions to
the data centers as well as the mapping of the virtual links

that connect them in the backbone network. The complex-
ity of this algorithm is OðjV j

M j � jV jÞ, where jV j
M j is the

number of partitions and jV j is the number of data
centers.

6 PERFORMANCE EVALUATION

To evaluate the performance of Greenhead, we run
extensive simulations using realistic topology and para-
meters. In the following, we present the setting of the
conducted simulations, the performance metrics that we
evaluated as well as the obtained results.

6.1 Simulation Settings

6.1.1 Physical Infrastructure

We consider a physical infrastructure of four data centers
situated in four different states: New York, Illinois,
California, and Texas. The data centers are connected
through the NSFNet topology as a backbone network [30].
NSFNet includes 14 nodes located at different cities in the
United States. Each data center is connected to the backbone
network through the closest node to its location. We assume
all NSFNet links have the same capacity of 10 Gbps [8], [31].
As illustrated in Fig. 3, the electricity price, the available
renewable energy, and the carbon footprint per unit of
power drawn from the Grid not only depends on the
location but are also subject to change over time.

In our experiments, we simulate two working days (i.e.,
48 hours). We use electricity prices reported by the US
Energy Information Administration (EIA) in different
locations [32]. The amount of power generated during two
days are extracted from [33]. To evaluate the carbon
footprint generated at each data center, we use the values
of carbon footprint per unit of power provided in [34]. We
also use real solar and wind renewable energy traces
collected from different US states [33], and considered the
on-site renewable power cost to be �i ¼ 0:01=kWh; 8i [35],
[36]. To evaluate PUEs of the different data centers, we
adopted the technique described in [37].

6.1.2 VDC Requests

In our simulations, similarly to previous works [4], [11],
[12], [13], [16], VDCs are generated randomly according to a
Poisson process with arrival rate �. Their lifetime follows an
exponential distribution with mean 1=�. This mimics a real
cloud environment, where VDCs could be allocated for a
particular lapse of time depending on the SP requirements.
This is the case for Amazon EC2, for example, where a SP
can dynamically create VMs and use them only for a
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specific duration. The number of VMs per VDC is

uniformly distributed between 5 and 10 for small-sized

VDCs and 20 and 100 for large-sized VDCs. Two VMs

belonging to the same VDC are directly connected with a

probability 0.5 with a bandwidth demand uniformly

distributed between 10 and 50 Mbps and a delay uniformly

distributed between 10 and 100 milliseconds. In addition, in

each VDC, a fraction of VMs, denoted by Ploc 2 ½0; 1�, is

assumed to have location constraints.

6.1.3 The Baseline Approach

Since, previous proposals on virtual network embedding

and VDC embedding are not directly applicable to the

studied scenario (see Section 2), we developed a baseline

embedding algorithm that does not consider VDC parti-

tioning. The baseline algorithm maps a VDC to the physical

infrastructure by embedding its VMs and links one by one.

In other words, it applies the Greenhead embedding

algorithm, while considering each single VM as a partition.

6.1.4 The Simulator

We developed a C++ discrete event simulator for the central

and local controllers, consisting of about 3,000 lines of code.

The exchange between the central controller and the local

controllers is implemented using remote procedure calls.

The results are obtained over many simulation instances for

each scenario, with a margin of error less than 5 percent, then

we calculate the average value of performance metrics. We

do not plot confidence intervals for the sake of presentation.

6.1.5 Performance Metrics

To compare our approach to the baseline, we evaluate

several performance metrics including the acceptance ratio,

the revenue, energy costs, the carbon footprint, and the

backbone network utilization. In particular, the acceptance

ratio is defined as the ratio of the number of embedded

VDCs to the total number of received VDCs (i.e., including

embedded and rejected VDCs). It is given by

At ¼
Ut
Nt
; ð14Þ

where Ut and Nt are the number of VDC requests that have

been embedded and the total number of received VDCs up

to time t, respectively. The instantaneous revenue at a

particular time t is given by

RðtÞ ¼
X
j2QðtÞ

Rj; ð15Þ

where QðtÞ is the set of VDC requests embedded in the

infrastructure at time t and Rj as defined in (1). The

cumulative revenue up to time t, denoted by CRðtÞ, can

then be written as

CRðtÞ ¼
Z t

0

RðxÞ dx: ð16Þ

The instantaneous power, carbon footprint and backbone

network cost is given by

CðtÞ ¼
X
j2QðtÞ

Djt þPj; ð17Þ

where Djt is defined in (12). Note that we add the time slot
in the subscript to the definition of the Djt since we are
considering the variations between different time slots. The
cumulative cost up to time t can be written as

CCðtÞ ¼
Z t

0

CðxÞ dx: ð18Þ

Naturally, the instantaneous and cumulative profits are
given by the difference between the instantaneous revenue
and cost, and the cumulative revenue and cost, respectively.

Finally, to compare Greenhead resource allocation
scheme to other schemes, we define the cumulative
objective function at time t as the sum of objective function
values associated to the VDCs embedded at that time. It can
be written as

BðtÞ ¼
X
j2QðtÞ

ðRj � ðDj þ PjÞÞ; ð19Þ

where Rj � ðDj þ PjÞ is the objective function score of
embedding VDC j as defined in (2).

6.2 Simulation Results

Through extensive experiments, we first show the effec-
tiveness of our framework in terms of time complexity,
acceptance ratio, revenue, and backbone network utiliza-
tion. Then, we study the utilization of available renewable
energy in the different data centers. Finally, we investigate
the carbon footprint and we discuss how to spur develop-
ment of green infrastructure.

6.2.1 Greenhead Provides Near-Optimal Solution within

a Reasonable Time Frame

First, we compare Greenhead to an optimal solution
provided by an ILP solver, as well as to the baseline in
terms of computational time and solution quality (i.e.,
cumulative objective function). In our first set of simula-
tions, we fixed the arrival rate � to eight requests per hour,
the average lifetime 1=� to 6 hours and the fraction of
location-constrained VMs Ploc to 0.15. The experiments were
conducted on a machine with a 3.4-GHz dual core processor
and 4-GB RAM running Linux Ubuntu. To compute the
optimal solution, we developed a C++ implementation of
the branch-and-bound algorithm.

Fig. 4 compares the cumulative objective function (19) of
the aforementioned algorithms for small-sized VDC re-
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quests consisting of fully connected 5-10 VMs. We can
observe that the mean values obtained for Greenhead are
very close or even overlap with the values obtained with the
ILP solver. This means that the Greenhead approach
provides a solution close to the optimal one. We can also
see that Greenhead improves the cumulative objective
function value by up to 25 percent compared to the baseline.

Table 2 reports the average computation time needed to
partition and embed a VDC request. The results show that
Greenhead takes a very short time to partition and embed
a VDC request (less than one millisecond for small-sized
VDCs and up to 31 millisecond for larger VDCs). On the
other hand, the ILP solver takes more than 13 seconds for
small-sized VDCs. The Baseline, however, needs the least
computation time since no partitioning is performed. Note
that, the results for the optimal solution in large-sized
VDCs were not reported since the solver was not able to
find the optimal solution due to memory outage.

6.2.2 Improve Backbone Network Utilization,

Acceptance Ratio, and Revenue

In the second set of experiments, we compare Greenhead to
the baseline approach in terms of acceptance ratio,
instantaneous revenue and backbone network utilization.
To do so, we, first, fixed the arrival rate � to eight requests
per hour, the average lifetime 1=� to 6 hours and the
fraction of location-constrained VMs Ploc to 0.15, and we
simulated the infrastructure for 48 hours. Results are
illustrated in Fig. 5. From this figure, we can see that
Greenhead achieves, on average, 40 percent higher accep-
tance ratio than the baseline (see Fig. 5a) and up to 100
percent more instantaneous profit (see Fig. 5b). Although
both schemes lead to almost the same utilization of the
backbone network on average (see Fig. 5c), they differ in the
fact that Greenhead avoids embedding virtual links with
high bandwidth demand in the backbone network thanks to
the partitioning algorithm. Hence, it ensures that the
embedded requests consume as less bandwidth as possible
inside the backbone network. This is confirmed by Fig. 5d,

which compares the average used bandwidth per request
inside the backbone network for both schemes. It is clear
that requests embedded by Greenhead use on average 40
percent less bandwidth in the backbone network than the
baseline algorithm.

Figs. 6 and 7 show the performance results when varying
the arrival rate � and Ploc, respectively.

From Fig. 6, we can notice that as the arrival rate increases,
more requests are embedded, which results in higher
revenue. At the same time, the acceptance ratio goes down
since there is no room to accept all the incoming requests. It is
also clear from this figure that the acceptance ratio as well as
the revenue are always higher for Greenhead compared to
the baseline.

However, this benefit is reduced when Ploc ¼ 0 as shown
in Fig. 7. In fact, when there are no location constraints, the
VDCs can be hosted in any data center, and hence, their
placement is only driven by the availability of renewables,
the electricity price, and the carbon footprint. In practice, if
the data centers are not overloaded, any particular VDC is
entirely hosted in the same data center. This results in low
backbone network utilization as shown in Fig. 7c. On the
other hand, when Ploc ¼ 1, all the VMs have to be placed as
required by the SP. As a result, the Greenhead is not able to
perform any optimization. Finally, when the fraction of the
constrained VMs is between 0 and 1, the Greenhead has
more freedom to decide of the nonconstrained VMs
placement. In this case, Greenhead is able to optimize VDCs
allocation and significantly improve the acceptance ratio and
revenue compared to the baseline.

6.2.3 Maximize Renewables’ Usage

To illustrate how our proposed framework exploits the
renewables in the different data centers, we studied the
power consumption across the infrastructure and particu-
larly the usage of renewable energy. Fig. 8 shows the total
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TABLE 2
Computation Time for Greenhead, the Baseline, and

the ILP Solver (in Milliseconds)

Fig. 5. Greenhead versus the baseline. (� ¼ 8 requests/hour, 1=� ¼ 6 hours, Ploc ¼ 0:15, duration = 48 hours.)

Fig. 6. Acceptance ratio and revenue for different arrival rates
(Ploc ¼ 0:10).



power consumption across the infrastructure for both
Greenhead and the baseline approach. It is clear from this
figure that Greenhead consumes much more power than
the baseline since it accepts more VDC requests. We can
also see that it uses up to 30 percent more renewable power
than the baseline.

Fig. 9 shows the impact of the fraction of location-
constrained VMs on the power consumption across the
infrastructure. We can notice that, as the fraction of
constrained nodes increases, Greenhead uses more power
from the Grid. For instance, with Ploc ¼ 0, Greenhead uses
100 percent of available renewables. However, when Ploc is
getting higher, up to 15 percent of the available renewables
are not used. This is due to the fact that the VMs with
location constraints can only be embedded in specific data
centers, which may not have available renewables. Conse-
quently, more power is drawn from the Grid.

6.2.4 Reduce Energy Consumption and Carbon

Footprint Per Request

Fig. 10 compares the obtained results for both schemes for
all studied metrics. We can observe that Greenhead
improves up to 40 percent the acceptance ratio which
translates into 48 percent more profit. Furthermore, Green-
head uses up to 15 percent more renewables and reduces
the consumed power per request by 15 percent compared to
the baseline approach. In addition, we can notice that, while
Greenhead boosts significantly the profit up to 48 percent, it
generates the same amount of carbon footprint compared to
the baseline approach.

6.2.5 Green Infrastructure Is Possible Through Tuning,

at the Expense of Power Cost

Finally, Fig. 11 shows the impact of varying the cost per unit
of carbon (�i ¼ �; 8i 2 V ) on the carbon footprint in the

whole infrastructure as well as the total power cost. In this
experiment, � is set equal to 8 request/hour and Ploc equal
to 0.1. From this figure, we can see that a tradeoff between
the carbon footprint and the power cost can be achieved. In
addition, we can notice that an InP can set a carbon
footprint target to reach by choosing the corresponding
value of �. For instance, one can reduce the carbon footprint
by 12 percent while increasing the power cost by only 32
percent by setting � to 80 $=t.

It is worth noting that nowadays, the carbon cost is
imposed by governments as a carbon tax whose cost is
between 25 and 30 $ [38], [39], [40]. According to Fig. 11,
such a cost is not enough to force InPs to reduce their
carbon footprint.

To explain the power cost increase when reducing the
carbon footprint, let us explore Fig. 12, which presents the
power consumption in different data centers. From this
figure, we can notice that for small values of � (i.e.,
� � 160 $), Greenhead uses more the data centers in Illinois
and New York. These two data centers have low electricity
prices (see Fig. 3) but high carbon footprint (0.0006 ton/
Kwh and 0.0005 ton/Kwh, respectively). However, as �
increases, Greenhead uses the data center in California since
it has the smallest carbon footprint per unit of power (0.0003
ton/Kwh), but a higher electricity price (on average, 100
percent higher compared to New York data center).

Consequently, we can conclude that: 1) to reduce data
centers’ carbon footprint, governments should consider
much higher carbon taxes, and 2) using Greenhead, a
socially-responsible InP should consider higher carbon
costs, even by artificially increasing these costs, to force
Greenhead to use environment-friendly data centers to
reduce the carbon footprint.

7 CONCLUSIONS

The last few years witnessed a massive migration of
businesses, services, and applications to the cloud. Cloud
providers take advantage of the worldwide market to
deploy geographically distributed infrastructures and en-
large their coverage. However, multiple data centers
consume massive amounts of power. Furthermore, their
carbon footprint is a rapidly growing fraction of total
emissions. In this paper, we proposed Greenhead, a holistic
resource management framework for embedding VDCs
across a geographically distributed infrastructure. The
goal of Greenhead is to find the best tradeoff between
maximizing revenue, reducing energy costs, and ensuring
the environmental friendliness of the infrastructure. The
key idea of the proposed solution is to conquer the
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complexity of the problem by partitioning the VDC request
based on the bandwidth requirements between the VMs.
The partitions and the virtual links connecting them are
then dynamically assigned to the infrastructure data centers
and backbone network to achieve the desired objectives.

We conducted extensive simulations for four data
centers connected through the NSFNet topology. The
results show that Greenhead provides near-optimal solu-
tion within a reasonable computational time frame and

improves requests’ acceptance ratio and InP revenue by up

to 40 percent while ensuring high usage of renewable

energy and minimal footprint per request.
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