
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS/SUPPLEMENT, VOL. 31, NO. 9, SEPTEMBER 2013 299

A Naming Scheme for P2P Web Hosting
Md. Faizul Bari, Md. Rakibul Haque, Reaz Ahmed, Raouf Boutaba, Fellow IEEE,

and Bertrand Mathieu, Senior Member IEEE

Abstract—The peer–to–peer paradigm has great potential
of providing the next generation Web hosting infrastructure.
Profound advancements in P2P technology in the last decade
have proven its capability to provide functionality similar to
traditional client–server systems at a much larger scale with
relatively lower cost. Existing centralized website hosting tech-
nology has a number of inherent deficiencies including scalability,
single point of failure, administration overhead, hosting expenses,
etc. P2P Web hosting can effectively address these problems and
hence open a new era for next generation Web hosting. However
peer availability and content location are highly dynamic in a P2P
network. This dynamism raises a number of research challenges
related to naming, addressing, indexing, and searching in a P2P
environment. In this paper we identify the practical requirements
for devising a secure, persistent, and human–friendly naming
scheme for P2P Web hosting and propose a novel naming scheme
that satisfies all these requirements. We also present extensive
simulation results validating the accuracy, scalability and fault-
resilience of the proposed naming scheme.

Index Terms—P2P web hosting, P2P name resolution, nam-
ing scheme, name persistence, secure naming, human-friendly
naming.

I. INTRODUCTION

PROFOUND advancements in P2P technology in the last
decade have proven its capability to provide function-

ality similar to traditional client–server systems at a much
larger scale with relatively lower cost. Content distribution,
on-demand video streaming and distributed computing are
among the application domains where P2P technology has
been successfully applied. However, the applicability of P2P
systems for Web hosting is still a largely unexplored area.

Contemporary Web hosting technology is built around a
client–server architecture, which has a number of inherent
deficiencies including scalability, single point of failure, ad-
ministration overhead, hosting expenses, etc. If websites were
distributed over a P2P network then there would be virtually
no limitation on the number of users who could concurrently
access a popular website. Flash crowd is still an inherent
problem for the Web. This problem can be mitigated with a
P2P architecture as many peers will be hosting a website and

Manuscript received March 1, 2012; revised July 21, 2012.
Md. F. Bari, Md. R. Haque, and R. Ahmed are with the David R. Cheriton

School of Computer Science, University of Waterloo, 200 University Avenue
West, Waterloo, Ontario, Canada N2L 3G1 (e-mail: faizulbari@gmail.com).

R. Boutaba is with the David R. Cheriton School of Computer Science,
University of Waterloo, 200 University Avenue West, Waterloo, Ontario,
Canada N2L 3G1, and the Division of IT Convergence Engineering, Pohang
University of Science and Technology (POSTECH), Pohang 790-784, Korea
(e-mail: rboutaba@cs.uwaterloo.ca).

B. Mathieu is with Orange Labs, Lannion, France (e-mail:
bertrand2.mathieu@orange.com).

Digital Object Identifier 10.1109/JSAC.2013.SUP.0513027

content caching will be done intrinsically by the system. More-
over, such a system will provide an uncensored platform that
will promote freedom of speech, which can have significant
societal and political impact. Content Distribution Networks
(CDNs) attempt to overcome some of these problems by
storing the same content at geographically distributed locations
around the globe. However, the number of locations where a
content can be stored is limited by the span of the CDN and
this kind of service is only available for a fee. In turn, a P2P
Web hosting platform can easily span the entire globe without
deploying many expensive high–end servers. It can provide
the same level of service by disseminating content over
geographically distributed peers in the network at virtually
no cost.

Various research challenges including naming, name res-
olution, indexing, searching, content placement, availability,
etc. need to be solved before P2P technology can be applied
for serverless Web hosting. In this work we mostly focus on
naming and name resolution. Later, we plan to incorporate
works on the other related problems and build those solu-
tions around the naming scheme presented here. A suitable
naming scheme for P2P Web hosting should support names
that are persistent and independent of spatial and temporal
scope. Names should directly reference the content instead
of depending on the peer that hosts it. After a name is
attached to a content it should remain valid as long as the
underlying content is available. Existing references should
not be broken when a content is moved between domains or
network locations. Security should be attached to the content
itself instead of depending on the peer hosting it. A user
receiving a content should be able to ensure the authenticity
and integrity of the content from the associated security
information without being required to trust the peer. This will
enable any peer holding a valid copy (replica) of a content to
serve as a valid source. A related research issue is providing
persistent bookmarking in a P2P environment. Whenever a
user visits a website he may want to bookmark it for later
visits. Implementing bookmarking in the P2P environment is
not trivial as websites can be replicated over multiple peers.
The name resolution process should be able to identify content
replicas hosted on multiple peers using the same name. The
name registration and resolution system should be distributed,
fault–tolerant, secured, and scalable. This mandates the use
of sophisticated techniques for responsibility assignment, load
balancing, data synchronization, authentication, authorization,
and management of stale content.

Our earlier work in [1], proposed a naming scheme that
supports persistent names which are either secure or human
friendly but not both. Here we have extended that work in

0733-8716/13/$31.00 c© 2013 IEEE

300 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS/SUPPLEMENT, VOL. 31, NO. 9, SEPTEMBER 2013

several ways. Our major contributions in this paper are the
design of a scalable naming scheme that supports names that
are persistent, secure, and human friendly all at the same time
and the flexible embedding of organizational structure in a
name to permit seamless content movement between domains.
We have also proposed a detailed architectural design with
streamlined overlay and system–level APIs along with two
generic performance enhancement mechanisms namely group
information caching and message aggregation for reducing
routing overhead.

The rest of the paper is organized as follows. Some prelim-
inaries essential for a better understanding of this work are
presented in Section II. Section III provides a brief description
of our P2P Web hosing architecture. Our naming scheme is
presented in Section IV and principle system processes are
described in Section V. Section VI discusses the rationale
behind the major design decisions made in the system. Ex-
perimental results and evaluations are reported in Section VII.
Section VIII presents related work and finally we conclude in
Section IX.

II. BACKGROUND

The name resolution mechanism presented in this work
uses Plexus [2], [3]. Like other Distributed Hash Table (DHT)
techniques Plexus supports efficient routing which scales loga-
rithmically with network size. In addition, support for approx-
imate matching is built into the Plexus routing mechanism,
which is not easily achievable by other DHT techniques. To
cope up with churn in P2P systems, Plexus supports multipath
routing and efficient replica placement. Plexus delivers a high
level of fault-resilience by using replication and redundant
routing paths. Because of these advantages we have incor-
porated Plexus routing at the core of our naming system. In
this section we present the basic concepts of Plexus indexing
and routing mechanism.

Plexus Content Advertisement and Discovery: In Plexus
keywords are mapped to Bloom filters [4] (or bit-vectors). A
Hamming distance based technique derived from the theory
of Linear Covering Codes (LCC) [5] is used for routing. The
keyword to Bloom filter mapping process retains the notion of
similarity between keywords, while Hamming distance based
routing delivers deterministic results and efficient bandwidth
usage.

In Plexus, advertisements and queries are routed to two
different sets of peers in such a way that the queried set
of peers and the advertised set of peers have at least one
peer in common, whenever a query pattern is within a pre–
specified Hamming distance of an advertised pattern. As
explained in Fig. 1(a), a linear covering code (C) partitions
the entire pattern space F

n
2 into Hamming spheres, represented

by hexagons. A codeword (ci ∈ C) is selected as the unique
representative for all the patterns within its Hamming sphere.
To facilitate approximate matching in Plexus, an advertisement
pattern, say P ; is mapped to all codewords, denoted by
A (P), that are within a pre–specified Hamming distance,
say s, from P . Mathematically A (P) can re represented
as, A (P) = Bs(P) ∩ C = {Y |Y ∈ C ∧ d(Y, P) ≤ s},
where Bs(P) is the Hamming sphere of radius s centred at
P and d(Y, P) = |Y ⊕ P | is the Hamming distance between

Y and P . Similarly, a query pattern, say Q, is mapped to
a set of codewords Q(Q) = Bt(Q) ∩ C, for some pre–
specified Hamming distance t. It is shown in [2] that there
will be at least one common codeword in A (P) and Q(Q),
if d(P,Q) ≤ s+ t− 2f , where f is the covering radius of C.
In other words, by looking into the codewords in Q(Q), one
should be able to find all advertised patterns within Hamming
distance s+ t− 2f from Q.

In a complete Plexus network, each peer is responsible for
one codeword. Thus the maximum number of peers allowed in
a Plexus network is bounded by the number of codewords in
the linear code used for deploying the network. In this work,
we use the second-order Reed Muller code, RM(2, 6), which
can support about four million (222) peers in the overlay.

Plexus Routing: Consider an (n, k, d) linear covering
code C with generator matrix GC = [g1, g2, . . . , gk]

T . To
route using this code, a peer responsible for codeword X ,
has to maintain links to (k + 1) peers with codewords
X1, X2, . . . , Xk+1, computed as follows:

Xi =

{
X ⊕ gi 1 ≤ i ≤ k

X ⊕ g1 ⊕ g2 ⊕ . . .⊕ gk i = k + 1
(1)

Now, the routing process in Plexus can be best explained
by the example in Fig. 1(b), which shows the possible routes
from peer X to peer Y = g2 ⊕ g3 ⊕ g5 (any codeword Y can
be generated from any other codeword X as follows: Y =
(X ⊕ gi1 ⊕ gi2 ⊕ . . .⊕ git), where gi1 , gi2 , . . . git ∈ G and ⊕
is bitwise XOR operation). Peer X will forward the message
to any of X2(= X ⊕ g2), X3(= X ⊕ g3) or X5(= X ⊕ g5),
which are one hop nearer to Y than X . If the message is
forwarded to X2 then X2 can route the message to Y via
X23(= X ⊕ g2 ⊕ g3) or X25(= X ⊕ g2 ⊕ g5). In such an
overlay, it is possible to route a query from any source to any
destination codeword in k

2 or fewer routing hops [2].
In the Plexus protocol, a peer say Y replicates its indices

to peer YK+1. In presence of failure a peer’s replica can be
reached in just 2 extra hops, which can be explained using
the example of Fig. 1(c). Here peer X is attempting to route a
query to peer Y , which has failed. When a neighbour (Y ′) of
Y detects the failure, it forwards the query to its own replica
Y ′
K+1 in one hop. Next peer Y ′

K+1 forward the query to peer
Y ’s replica YK+1 in one hop.

III. ARCHITECTURE

Our P2P web hosting system is based on a super peer
based architecture, where regular peers provide disk space
for content storage and super peers index meta information.
Fig. 2 presents an overview of our three tier architecture.
Tier–1 is the hosting network (i.e., the Internet). Tier–2 is the
group overlay, where peers are grouped together based on their
diurnal connectivity patterns. These groups provide persistent
storage for Web content. Tier–3 is the Plexus overlay, which
provides the Plexus routing protocol and full–text indexing
support of content and metadata. The Plexus overlay also
provides registration and resolution services for three types
of names: Peer ID (pID), Group ID (gID), and P2P Resource
Locator (pRL) to reference peers, groups, and websites respec-
tively. Both pIDs and gIDs are unique and remain unchanged
across connectivity sessions. When a peer joins the system for

SUPPLEMENT: EMERGING TECHNOLOGIES IN COMMUNICATIONS — PART 1 301

Advertisement, P Query, Q

Hamming sphere, Bf (•)

Codeword in

Codeword in

codeword ci

pattern

Bs(P) Bt(Q)

(a) Hamming distance based indexing. (b) Possible routing paths between peer X and Y.

Y' Y

YK+1
Y 'K+1X

93/15

(c) Routing under failure.

Fig. 1. Core concepts in Plexus.

the first time, the user provides his public key and the hash
of his public key is used as the pID, which makes it unique
depending on the fact that each user has a unique public key.
For groups, randomly generated Universally Unique Identifiers
(UUIDs) are used as gIDs, which are generated and managed
by the group overlay. Our Web hosting system provides the
following interface to the end user

• Publish: Used by end users to publish a website.
• Search: Provides keyword based search functionality.
• Resolve: Used to resolve a pRL (bookmark).
• Refresh: Resets expiry timers associated with a website.
• Remove: Removes a website from the network.
Expiry timers are associated with each index and when the

timer expires the corresponding index is removed from the
network. These timers are reset whenever the corresponding
website is accessed by any peer.

A. Group Overlay

Regular peers with intermittent connectivity and relatively
low connection speed collaborate with each other in small
groups. These groups are formed based on the diurnal con-
nectivity patterns of the peers. Peers having complementary
or mutually exclusive (possibly with small overlap) uptime
patterns are placed in the same group. As a result, at least
one peer is always online for each group and can serve the
websites published by the members of its group. This peer
is called the group leader and if multiple peers in the same
group are online at the same time then the peer having the
smallest pID is chosen as the group leader. The responsibility
of a group leader is two–fold: (i) ensure content availability
while the publishing peer is offline and (ii) keep the published
content and associated index uptodate by periodically refresh-
ing them using the refresh function provided by the Plexus
overlay. The mechanism for group formation, maintenance,
and content replication between groups is beyond the scope
of this paper. Our ongoing work on diurnal availability based
group management can be found in [6]. The group overlay
supports the following functions:

• Store: Used to store Web content in a group.
• Find: Retrieves Web content associated with a pRL.
• Remove: Takes a pRL as input and removes the associ-

ated Web content.

B. Plexus Overlay

Peers with relatively longer uptime and higher bandwidth
are promoted to Super Peers. The super peers participate in
group formation and website hosting similar to regular peers.
In addition, super peers collaborate with each other using the

Plexus routing protocol (Section II) to index website keywords
and meta information for responding to future search queries.

The Plexus overlay maintains five kinds of indices, which
are described below:

• keyword → pRLs: When publishing a website, a pub-
lisher may provide a list of keywords. The Plexus over-
lay maintains keyword to pRL mapping for each such
keyword. Websites with the same keyword are grouped
together, which results in each keyword mapping to a list
of relevant pRLs.

• pRL → Metadata: Metadata associated with each web-
site is indexed against its pRL. Metadata contains security
related information that is used for content authentication
and authorization.

• pID → gID: While joining the network a peer also
joins an availability group. The group stores and provides
access to a peer’s content while it is offline. To keep track
of which peer belongs to which group, each peer’s group
ID (gID) is indexed against its pID.

• gID → gInfo: Group information (gInfo) such as list of
group members, storage capacity, currently alive peers,
etc. is indexed against each group’s gID. This information
is used for selecting a group for new peers and finding
currently alive peer (group leader) in a group.

• pID → Uptime: For adapting to the dynamism in peer
connectivity patterns, uptime of each peer is tracked
and indexed against its pID. This information is used to
reorganize peers among the availability groups to ensure
24x7 availability.

The Plexus overlay uses these indices to provide various
functionality required for Web hosting. A brief description of
these functions is provided below:

• Register: Used to register a pRL with our system.
• Resolve: given a pRL finds out the IP:port pair of the

currently alive peer hosting the Web content.
• Advertise: given a set of keywords and pRL, publishes

keyword to pRL mappings in the Plexus overlay.
• Query: takes a set of keywords as input and returns a

set of related pRLs.
• Refresh: used to refresh the expiry timer of the metadata

associated with a pRL.
• Remove: used to remove an index from the overlay.

To summarize, 24x7 content availability is ensured by
the group overlay and the Plexus overlay provides routing,
indexing, name registration and resolution services. While a
peer is offline, its group leader takes on the responsibility of
serving its published content and keep the data and associated
index fresh in the network.

302 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS/SUPPLEMENT, VOL. 31, NO. 9, SEPTEMBER 2013

R
eg

is
te

r
R

es
ol

ve
A

dv
er

tis
e

Q
ue

ry
R

ef
re

sh
R

em
ov

e

St
or

e
Fi

nd
R

em
ov

e

Hosting Network

Group Overlay

Tier-1

Tier-2

Tier-3

pu
bl

is
h

se

ar
ch

 re

so
lv

e
re

fr
es

h

re
m

ov
e

Stores Content

Plexus Overlayey ord pR s
pR etadata

p g
g g nfo

p ptime

O
ve

rla
y

In
te

rf
ac

e

Sy
st

em

In
te

rf
ac

e

End User

Fig. 2. System architecture.

Website Data

Data Digest

H
A

SH

Name Digest H
A

SH

Content
Digest

Meta Digest

XORXOR

Content Package

Metadata

AliasPKKeywords

Organizational
Embedding

Content Signature

HASH

pRL

/hierarchical/human/friendly/labelHASH(PPK)

Signed by PSK

Fig. 3. Structure of a content package.

IV. NAMING SCHEME

Website names or pRLs are human friendly, persistent, and
secured. These features are achieved by utilizing the metadata
associated with each content (Fig. 3). Content combined with
metadata is called a “Content Package” and a requesting peer
receives this package as a unit. A content package contains
web data, pRL, metadata, and content signature as shown in
Fig. 3. The pRL is composed of two parts: the first part is the
pID (hash of publisher’s pubic key, PPK); and the second part
is the hierarchical and human friendly label assigned by the
publisher. Three SHA–1 digests namely: Data Digest, Name
Digest, and Meta Digest are created by hashing the website
data, pRL, and metadata respectively. These digests are then
XOR’d to create the content digest, which is then signed by the
publisher’s secret key (PSK) to create the content signature.
This is then used to verify the authenticity and integrity of
the content. The rest of this section describes how various
information stored in the content package is used to support
human friendly, persistent, and secured pRLs.

Human Friendly Naming: As shown in Fig. 3, the
second part of a pRL is always human friendly. The first part
is the hash of the publisher’s public key and therefore is not
human friendly. However, when our client application shows
the pRL to an end user it replaces the public key hash with
the AliasPK provided in the metadata to make the whole
pRL human friendly. The end user also has the option to
replace the publisher provided alias with an alias of his own
choice. For example, the actual pRL for one of Bob’s web-
page is 9f9...9d8/how-to-assign-a-page-name.
Now Alice’s client application replaces Bob’s public key

Organizational EmbeddingOrganizational Embedding

AliceInc/9f9...9d8 TrudyInc/9f9...9d8

Digital digest signed by
li e n s i ate ey

Digital digest signed by
dy n s i ate ey

Fig. 4. Organizational embedding of a website.

hash with the provided alias Bob (or any other alias
configured by Alice), so that his webpage pRL reads
Bob/how-to-assign-a-page-name. Our application
saves the mapping between the hash and the alias in both ways
so that Alice can type in the alias instead of the hash in the
browser address bar. This aliasing scheme opens up opportu-
nities for name forgery, which can be prevented by consulting
a Public Key Infrastructure (PKI) to get the true identity of
the publisher. Aliasing can also cause name conflicts between
legitimate parties. In that case, Alice can determine which pRL
she wants to browse by looking at the additional metadata
(e.g., keywords, organizational information, etc.) associated
with the content.

Persistent Naming: In our naming system pRLs are
independent of the hosting peer. A site can be hosted by
any peer in the network and still be identified by the same
pRL. Furthermore, pRLs are not bounded by organizational
boundaries. Organizational embedding of a pRL is encoded
in the metadata (Fig. 3), while the pRL itself is attached to
the owner of the content. The organizational embedding field
also contains public key chaining information to attach a pRL
to its owner as well as to owner’s organization. For example,
Bob works at “Alice Inc.” and has a website with pRL
9f9...9d8/how-to-assign-a-page-name. This in-
formation is embedded in the metadata (Fig. 4). When Bob
moves to “Trudy Inc.”, he retains his original website pRL
and only changes the organizational embedding field in the
metadata as shown in Fig. 4.

Secured Naming: Both authenticity and integrity of a
content can be verified by a receiver using the associated
content signature under the assumption that an out–of–band
Global PKI or Web of Trust (WoT) system exists which can
be used to retrieve and verify public keys. Keeping the public

SUPPLEMENT: EMERGING TECHNOLOGIES IN COMMUNICATIONS — PART 1 303

key management system separate from the Web hosting system
makes it possible for both systems to evolve without being
affected by one another. Upon receiving a content, a receiver
computes the content digest using the public key and content
signature. He also computes the content digest from the pRL,
Web data, and metadata as shown in Fig. 3. If the two content
digests match, the content is ensured to be both authentic
and unaltered. The authenticity of the content is ensured by
the public/secret key based cryptography system, while the
integrity is ensured by the collision resistance properties of
the hash function. However, malicious content modifications
will be undetectable by this system if the publisher’s secret
key is compromised. Issues like secret key compromises and
revocation mechanisms are out of the scope of this paper and
hence not discussed here.

V. SYSTEM PROCESSES

Our Web hosting architecture provides five methods (i.e.,
publish, search, resolve, refresh, and remove) for the end
users to interact with the system. These methods use various
functions provided by the overlays (Fig. 2) to perform their
tasks. Interactions between overlays and operation sequences
of these methods are shown in Fig. 5. Here, peer A, B, and
C are super peers in the Plexus overlay. Peer B, D, and E
are group leaders of three different availability groups in the
group overlay. Peer B is participating in both Plexus and group
overlay and peer X is the initiator in our examples. In-detail
description of these methods is given below:

A. Publish

Suppose Peer X belongs to availability group G and wants
to publish a website S with keywords r and s and metadata
M .

• Register: (Step a) Peer X contacts a super peer A
and provides the website name SpRL and metadata M
to register. (Step b) Super peer A finds out the super
peer (B) responsible (Section II) for indexing SpRL

and instructs it to store the SpRL to metadata mapping
(SpRL → M) in its index store. (Step c) Successfully
storing the mapping, super peer B returns a positive
acknowledgement to peer X .

• Advertise: (Step d) Peer X contacts super peer A and
provides the website name SpRL and associated keywords
r and s to advertise. (Step e) Super peer A finds out
the super peers (B and C) who are responsible for
indexing the keywords r and s respectively. Then it
instructs them to store the r → SpRL and s → SpRL

mappings respectively. (Step f) Upon successfully storing
these mappings, super peer B and C return positive
acknowledgements to X .

• Store: (Step g) Peer X requests a super peer A for the
IP:port pair of group G’s leader. (Step h) Super peer A
requests super peer (C), who is responsible for indexing
group G’s group information (GgInfo). (Step i) Receiving
the request, super peer C looks up the IP:port pair of the
group leader (here peer E) in its local index store and
returns this information to peer X . (Step j) In this step,
peer X directly transfers its Web content to peer E.

Fig. 5. System processes.

B. Search

Suppose Peer X is searching for a website with keyword
r.

• Query: (Step a) Peer X contacts a super peer A and
provides the keyword r it wants to search. (Step b) Super
peer A finds the super peer (C) responsible for indexing
keyword r and forwards the query request to C. (Step
c) Upon receiving this request, super peer C constructs
a list of relevant pRLs. Then it looks up the metadata
associated with each pRL (shown as a single request to
super peer B for simplicity) and returns a list of (pRL,
Metadata) pairs to peer X .

• Resolve: (Step d) Peer X selects one of the pRLs from
the query result and contacts super peer A to resolve
the selected pRL (SpRL). (Step e) Super peer A extracts
the pID (SpID) of the publishing peer P from SpRL

and finds out the super peer (B) who is responsible for
indexing SpID . Then super peer A requests super peer B
for the IP:port pair of peer P ’s group leader. (Step f) Upon
receiving this request, super peer B looks up the group
ID (PgID) for peer P . Then B finds out the super peer
(C) responsible for indexing PgID and requests C for the
IP:port pair of the group leader (here peer D). (Step g)
Super peer C returns the IP:port pair of peer D to peer
B, which then caches and forwards this information to
peer X .

• Find: (Step h) Peer X requests D for desired content.
(Step i) Peer D directly transfers the requested Web
content to peer X .

304 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS/SUPPLEMENT, VOL. 31, NO. 9, SEPTEMBER 2013

C. Refresh

Suppose that Peer X belongs to availability group G and
published a website S with keywords r and s and metadata
M . Now, peer X wants to refresh its published indices.

(Step a) Peer X contacts a super peer A and provides it with
the website name SpRL it wants to refresh. (Step b) Super peer
A finds the super peers (B and C) responsible for indexing
all related information (i.e., metadata, keywords, uptime, gID,
and gInfo) to SpRL and forwards the refresh request to them.
(Step c) Upon receiving this request, super peer B and C
refresh all expiry timers and super peer C (responsible for
indexing gID) forwards the refresh request to group leader D
who is storing the Web content. (Step d) After successfully
completing the above operations B, C, and D return positive
acknowledgement to peer X .

To avoid repetition the Resolve and Refresh methods are
not discussed in detail. The system level Resolve method
is just a wrapper for the Resolve method provided by the
Plexus overlay. This method is used to resolve a given pRL
(previously saved bookmarks) to the current group leader’s
IP:port pair. The Remove method follows the same steps as
the Refresh method, but it instructs peers to remove indices
instead of refreshing them.

VI. DESIGN RATIONALE

Namespace Management: Three separate namespaces
are managed in our system, namely pID, gID, and pRL. The
pID namespace is managed by the Plexus overlay, which does
not require to perform any explicit checks to ensure pID
uniqueness. A pID is inherently unique as it is generated by
hashing its publisher’s public key. The group overlay has the
responsibility of managing the gID namespace. Group IDs are
basically UUIDs, which are generated by the group leaders
when a new group is formed. Finally, the pRL namespace is
managed in a distributed manner by the super peers partici-
pating in Plexus routing. The first part of each pRL is the pID
(which is unique) and the second part is the human friendly
label, which is unique within a publisher’s domain. So, the
overall pRL is always unique and there is no need to perform
any uniqueness checks during name registration.

Diurnal Connectivity Based Grouping: Contemporary
P2P replication mechanisms attempt to ensure content avail-
ability by creating multiple replicas and distributing them
over the network. All of these mechanisms involve a trade–
off between content availability and efficient storage utiliza-
tion. Diurnal connectivity based peer grouping provides a
replication scheme where replicas are hosted by peers with
disjoint uptime distributions. At any given time there will be
only a predetermined number of replicas in the network. This
enables us to maximize content availability while minimizing
replication overhead. Our ongoing work in this regard can be
found in [6].

Group Information Caching: Group information is
cached for speeding up the name resolution process. In the
resolve function (Fig. 5), when super peer B receives the
response for the gID resolution operation from super peer C
(Step g) it caches the IP:port pair of the group leader against
the corresponding pID. Hence, subsequent resolution requests

for the same pID can be served directly from the cache. This
process reduces the number of hop counts for name resolution
by half. Cache entries are associated with expiry timers and
a cache entry is purged whenever the timer expires or the
requesting peer fails to contact the group leader with the
returned IP:port pair. In Fig. 5, when peer X fails to contact
peer D it informs peer C and then peer C performs Step f
again to obtain the IP:port of the current group leader and
returns it to peer X .

Message Aggregation: Besides offering approximate
matching and efficient routing, Plexus has the inherent ca-
pability of path aggregation for multicast routing. Here the
path aggregation capability of Plexus is extended from single
source multicasting to the multi–source case. This extension
can be explained using an airport analogy. Each airport works
as a hub. Transit passengers from different sources gather at an
airport and depart on different outgoing flights matching their
destinations. Similarly, each Plexus peer acts as a routing hub.
Each Plexus message contains a number of target codewords.
These codewords are used to route the messages to the
appropriate receiver. As explained in Fig. 1(b), the number
of alternate paths between a pair of source and target peers
is combinatorially related to the distance between them. After
receiving an incoming message a peer accumulates it in a
message queue for a very small period of time instead of
instantly forwarding it. Target codeword lists of the messages
in the queue are combined to form a master target list. Then
Plexus routing is applied to select the next hop neighbours and
the targets in the master list are distributed over the selected
neighbours. This approach significantly reduces the number of
messages in the network.

Index Refresh: Expiry timers are associated with each
index and whenever a timer expires the corresponding index is
removed from the network. An expiry timer can be refreshed
in two ways: (i) whenever any peer looks up that index and (ii)
explicit refresh performed by the publishing peer itself or by
the leader of the availability group where the associated Web
content is stored. The publishing peer is primary responsible
for this task. However, the responsibility is delegated to the
group leader when the publishing peer goes offline.

Security Model: Our security model revolves around the
publisher. Authentication and authorization schemes are tied
to the public/private key pair of the publisher. This model
removes the dependency on a single host to perform operations
on the content. The publisher can login from any host to
publish new content or modify old ones. Security information
is attached to the content itself, which makes it possible to
serve the content from any host without introducing security
holes. Our public key based naming system provides the split
between content identifier and location, while placing the
content at the core of the security model allows a user to place
his trust directly on the content instead of the peer actually
hosting it. A PKI based solution may suffer from performance
issues due to computational and network overhead for signa-
ture verification. However, these problems can be avoided by
using a Simple Distributed Security Infrastructure (SDSI) [7]
or a Web of Trust (WoT) [8] based security model. We can also
utilize other variations of PKI [9] that impose fewer resource
requirements on the participating devices.

SUPPLEMENT: EMERGING TECHNOLOGIES IN COMMUNICATIONS — PART 1 305

 0

 2

 4

 6

 8

 10

 12

0K 100K 200K 300K 400K 500K

In
de

x
C

ou
nt

/P
ee

r

Name Count

Network Size 100K

With Replication
Without Replication

(a) Index count per peer.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

A
ve

ra
ge

 H
op

 C
ou

nt
/N

am
e

R
eg

is
tr

at
io

n

Network Size

Name Count 100K

Unmodified Plexus
With Aggregation

(b) Name registration hop count.

 0.1

 1

 10

10K 20K 30K 40K 50K 60K 70K 80K 90K 100KA
ve

ra
ge

 H
op

 C
ou

nt
 (

Lo
g

S
ca

le
)/

N
am

e
R

eg
is

tr
at

io
n

Network Size

Name Count 100K

Unmodified Plexus
With Aggregation

(c) Name registration hop count.

 2

 4

 6

 8

 10

 12

 14

 16

 18

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

A
ve

ra
ge

 H
op

 C
ou

nt
/N

am
e

R
es

ol
ut

io
n

Name Resolution Rate

Network Size 100K

Unmodified Plexus
With Aggregation

With Caching
With Aggregation & Caching

(d) Name resolution hop count.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

A
ve

ra
ge

 H
op

 C
ou

nt
/N

am
e

R
es

ol
ut

io
n

Network Size

Name Count 100K

Unmodified Plexus
With Aggregation

With Caching
With Aggregation & Caching

(e) Name resolution hop count.

 0.1

 1

 10

 100

10K 20K 30K 40K 50K 60K 70K 80K 90K 100KA
ve

ra
ge

 H
op

 C
ou

nt
 (

Lo
g

S
ca

le
)/

N
am

e
R

es
ol

ut
io

n

Network Size

Name Count 100K

Unmodified Plexus
With Aggregation

With Caching
With Aggregation & Caching

(f) Name resolution hop count.

Fig. 6. Index load and hop count for name registration and resolution.

VII. EXPERIMENTAL EVALUATION

A. Simulation Methodology

We have measured various performance metrics under di-
verse network conditions to evaluate the scalability, routing
performance, and fault-tolerance capabilities of our naming
system. Measurements have been taken under varied network
size, number of published names, name resolution rate, peer
session time, peer failure rate, and index refresh period. All
experiments are done using a queuing model based cyclic
simulator, where each peer is explicitly modelled using a
message queue. In each cycle every peer gets a fair chance
to process its message queue in parallel with other peers. A
syllable–based name generator is used to create a synthetic
collection of human friendly names, which are used as pRLs in
our experiments. The distribution of name resolution requests
follows a Zipf distribution, which is frequently used to model
distribution of content popularity in the Internet [10].

B. Measurement Matrix

To evaluate the scalability of our naming system three
performance metrics are measured: (i) number of indices
stored per peer, (ii) effect of group information caching and
message aggregation, and (iii) average number of routing
hops required per name registration and resolution. The first
measure shows us the uniformity of storage load distribution
over the peers. The second and third measures highlight
the performance of Plexus routing and effectiveness of the
proposed optimization schemes: group information caching
and message aggregation. The fault tolerance of our naming
system is measured under two failure models: (i) peer churn,
and (ii) peer failure. We have measured the average number
of routing hops and percentage of successful name resolutions
under both failure models.

C. Scalability

1) Index Load: Fig. 6(a) shows the average number (with
99% confidence intervals) of pRL indices stored per peer with
and without replication. For this experiment, network size is
kept fixed at 100K and the number of published names is
increased from zero to 500K. It is evident from the figure
that the average number of indices per peer varies linearly
with the number of published names and the distribution is
uniform. The error bars also confirm the uniform distribution
of indices over the peers. For example, with 400K names the
average index count is approximately 8 and we can say with
99% confidence that it varies by at most 1. Replication doubles
the storage load per peer as each index gets stored in two peers
but this scheme provides fault–tolerance against peer churn
and failure.

2) Message Aggregation: In this experiment we measure
the impact of group information caching and message ag-
gregation on name resolution. Fig. 6(d) shows the average
hop count per name resolution where the network size is kept
fixed at 100K peers and the number of name resolutions is
varied from 10K to 100K. Hop counts for four different cases
are shown: (i) unmodified Plexus, (ii) Plexus with caching,
(iii) Plexus with message aggregation, and (iv) Plexus with
both message aggregation and caching. Caching (Section VI)
reduces hop count to almost half, as group information can be
served from caches instead of performing a Plexus lookup. The
hop counts for unmodified Plexus and Plexus with caching do
not vary with number of names, because the number of routing
hops depends only on network size and not on the number of
published names. As explained in Section VI, with message
aggregation the average hop count drops significantly and
keeps dropping with increasing name resolution rate. As the
name resolution rate increases so does the amount of accumu-

306 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS/SUPPLEMENT, VOL. 31, NO. 9, SEPTEMBER 2013

lated messages in a peer’s queue. A peer can apply aggregation
on a larger population of messages, which eventually results in
a reduction in hop count. Combining aggregation with caching
further decreases resolution hop count. However the reduction
is not significant because aggregation packs together lookup
messages for both group ID and group leader, which get
processed in parallel.

3) Routing Hop: Fig. 6(b) and Fig. 6(c) show the average
number of hops required per name registration in normal and
log scale, respectively. Here the network size is increased from
10K to 100K while publishing 100K names. From Fig. 6(b)
we can conclude that average hop count for unmodified Plexus
does not increase significantly with increasing network size. In
fact it increases logarithmically with network size as explained
in Section II and shown in Fig. 6(c). The curves with caching
are omitted for name registration as each name is registered
exactly once and caching has no impact. With message aggre-
gation, average hop count is significantly reduced as explained
before but it seems to increase sublinearly with increasing
network size. Hop count for name resolution is almost twice
the hop count of name registration, as name resolution involves
two lookup steps: (i) peer ID to group ID and (ii) group
ID to group leader’s IP:port pair. On the contrary, name
registration requires routing only one message to store the
peer ID to group ID mapping at the target peer. Fig. 6(e)
and Fig. 6(f) show the average number of hops required per
name resolution in normal and log scale, respectively. Here the
network size is increased from 10K to 100K while publishing
100K names. Hop counts for four different cases are shown:
(i) unmodified Plexus, (ii) Plexus with caching, (iii) Plexus
with message aggregation, and (iv) Plexus with both message
aggregation and caching. Hop counts for unmodified Plexus
and Plexus with caching increase logarithmically with network
size as shown in Fig. 6(f). Message aggregation significantly
reduces the name resolution hop count while showing similar
characteristics as the name registration case with increasing
network size. With both message aggregation and caching,
hop count is reduced but not as significantly as before.

D. Fault Tolerance

To measure the fault tolerance of our naming system exper-
iments are done under two failure models: (i) peer churn, and
(ii) peer failure. Under the peer churn model, peer session
times (time between a join and leave event) are modelled
according to the Weibull distribution and peers join and leave
events are timed according to a Poisson process [11]. Median
session times between 15∼120 minutes are considered for
performance evaluation following real network measurement
data presented in [11], [12]. In the peer failure model, peers go
offline uniformly at random locations in the network without
any peer joins. During these experiments indices are not
refreshed to assess the impact of multipath route selection
mechanism of Plexus. All experiments are performed with and
without replication to evaluate the fault–resilience gained by
using a replica. The effect of refresh rates on percentage of
successful name resolutions is also measured along with its
messaging overhead.

1) Performance Under Churn: Fig. 7(a) shows the average
hop count per name resolution against median session time,
where session time represents the time between a peer’s
joining and leaving the network. We have shown the average
hop counts for six different cases (as listed in the figure) while
varying the median session time from 15 to 120 minutes. As
median session time increases the network becomes more and
more stable and as a result the average hop count decreases. It
is clear from the figure that the network reaches steady state
when the median session time is 60 minutes. For a median
session time less than 30 minutes the average hop count is
high because of two reasons: reduced number of alternate
routing paths and many hops being spent in locating lost
names. The group information caching approach is mostly
affected by small median session time as cached information
becomes quickly unavailable in the network. The impact of
caching keeps decreasing with reduced median session time.
The hop count for unmodified Plexus and Plexus with message
aggregation is increased by approximately 4 hops even with
median session time of 15 minutes, which can be explained
from Fig. 1(c). Plexus can route to the replica of a peer in
2 additional hops. As name resolution involves two Plexus
lookups, the average hop count is increased by at most 4.
Both caching and aggregation improves average hop count but
the impact of aggregation is most significant. The impact of
replication is evident from Fig. 7(a). Replication significantly
reduces the average hop count in all cases (as explained
in Section II). Even without replication both caching and
message aggregation improves average hop counts. However
message aggregation achieves significantly better performance
than caching. Fig. 7(b) shows the percentage of successful
name lookups under churn with and without replicas. Without
replication, resolution success rate never reaches 100% even
with a median session time of 120 minutes. However with
replication, the success rate nearly reaches 99% with a median
session time around 30 minutes and almost 100% with a
median session time of 40∼45 minutes. We obtain optimal
performance when replication is used and the median session
time is around 60 minutes.

2) Performance Under Failure: Fig. 7(d) shows the average
hop count for six different cases (as listed in the figure)
per name resolution against percentage of failed peers. We
have failed zero to 50% peers in this experiment. As more
peers fail the average hop count keeps increasing as the
number of alternate routing paths is reduced and many hops
are spent in locating lost names. However the network can
perform satisfactorily even in presence of 30% peer failure.
Success rate remains close to 100% (Fig. 7(e)) though at the
expense of increased routing overhead. The impact of caching
and message aggregation is quite significant up to 30% peer
failures, while message aggregation outperforms caching in all
cases. The impact of replication is best reflected in presence
of failures (Fig. 7(d)). Replication significantly reduces the
average hop count in all cases. With replication the average
hop count is almost constant up to 40% failures because the
replica of a failed node can be reached in only two extra hops
as explained in Fig. 1(c). The percentage of successful name
resolutions under continuous peer failure is shown in Fig. 7(e).
Using replication the success rate falls slowly and even with

SUPPLEMENT: EMERGING TECHNOLOGIES IN COMMUNICATIONS — PART 1 307

 0

 5

 10

 15

 20

 25

 30

 35

 40

15m 30m 45m 60m 75m 90m 105m 120m

A
ve

ra
ge

 H
op

 C
ou

nt
/N

am
e

R
es

ol
ut

io
n

Median Session Time

Network Size 100K and Name Count 100K

Without Replication
With Replication

Caching Without Replication
Caching With Replication

Aggregation Without Replication
Aggregation With Replication

(a) Avg. hop count/resolution (churn).

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

15m 30m 45m 60m 75m 90m 105m 120m

%
 o

f S
uc

ce
ss

fu
l N

am
e

R
es

ol
ut

io
n

Median Session Time

Network Size 100K and Name Count 100K

Without Replication
With Replication

(b) % of successful resolution (churn).

 20

 30

 40

 50

 60

 70

 80

 90

 100

0m 10m 20m 30m 40m 50m 60m

%
 o

f S
uc

ce
ss

fu
l N

am
e

R
es

ol
ut

io
n

Median Session Time

Network Size 100K and Name Count 100K

Without Index Refresh
Refresh Period = 10 Minutes
Refresh Period = 20 Minutes
Refresh Period = 30 Minutes

(c) % of successful resolution.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

0% 10% 20% 30% 40% 50%

A
ve

ra
ge

 H
op

 C
ou

nt
/N

am
e

R
es

ol
ut

io
n

Peer Failure Percentage

Name Count 100K

Without Replication
With Replication

Caching Without Replication
Caching With Replication

Aggregation Without Replication
Aggregation With Replication

(d) Avg. hop count/resolution (failure.)

 30

 40

 50

 60

 70

 80

 90

 100

 110

0% 10% 20% 30% 40% 50%

%
 o

f S
uc

ce
ss

fu
l N

am
e

R
es

ol
ut

io
n

Peer Failure Percentage

Name Count 100K

Without Replication
With Replication

(e) % of successful resolution (failure).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600

M
es

sa
ge

 C
ou

nt
/S

ec
on

d

Index Refresh Period

Network Size 100K and Name Count 100K

Unmodified Plexus
With Aggregation

 100

 150

 200

 250

 300

 350

 400

 15 20 25 30 35 40 45 50

(f) Message overhead for index refresh.

Fig. 7. Name resolution under peer churn and failure.

40% peer failures around 90% success is achieved. However
without replication, the success rate falls sharply dropping
below 90% even with just 20% failures.

3) Effect of Index Refresh: As explained in Section VI, the
index refresh operation is used to replenish expired indices
from the network. This feature provides a trade–off between
name availability and message overhead for performing re-
fresh. A small refresh period increases both name availabil-
ity and message overhead. Whereas a large value decreases
message overhead but increases percentage of lost names.
Fig. 7(c) and Fig. 7(f) show the effect of refresh rate on
the percentage of successful name resolutions and incurred
message overhead, respectively. In these experiments both the
network size and number of published names are kept fixed
at 100K. From Fig. 7(c) we can see that with a refresh period
of 10 minutes the percentage of successful name resolutions
reaches nearly 100% very quickly. Even with a median session
time of just 5 minutes our name resolution system is able to
obtain approximately 100% success rate. For refresh periods of
20 and 30 minutes the rate of improvement is relatively slower
and they achieve close to 100% success rates around median
session times of 30 and 40 minutes, respectively. Fig. 7(f)
shows the number of messages that need to be exchanged
over the whole network per second while varying the refresh
period from 10 to 600 minutes. It is evident from the figure
that the message load drops sharply with increasing refresh
period up to 100 minutes and after that it starts to leveloff. It
is also clear from the figure that message aggregation almost
halves the message overhead. From the zoomed portion of the
figure we can see that if we move from a refresh period of
10 minutes to 20 minutes, the message overhead drops from
∼650 to ∼300 messages per second. A refresh period of 20
minutes also provides satisfactory performance in terms of

percentage of successful name resolutions. This seems to be a
good operating point for our system under current conditions.

VIII. RELATED WORK

Existing P2P systems (e.g., BitTorrent [13], Kazaa [14],
etc.) either use randomly generated IDs or host IP, Port pairs to
reference peers. In most of these systems, peers are considered
to be memoryless, i.e., peers are not assumed to retain any
knowledge about the overlay network from their previous
sessions. Therefore, the requirement for assigning persistent
names to peers is not important. But for P2P Web hosting we
have to ensure persistent names for both peers and websites.
None of the existing P2P name assignment schemes can ensure
persistent IDs across connectivity sessions [15], whereas our
naming scheme ensures persistent and secured IDs for both
content and peers. Several research works, including [7], [16],
focus on implementing DNS lookup using P2P systems. All
of these works use DHT-based techniques for P2P lookup for
conventional websites hosted on the Internet. However, P2P
web hosting requires resolving a name to the address of a live
peer currently hosting the website in the network.

Hash based naming is also used by BitTorrent to identify
content chunks. Our architecture, however, uses public key
hashes as name prefixes and ensures content and index avail-
ability by utilizing diurnal uptime patterns of peers instead of
using trackers. Besides, BitTorrent is not suitable for hosting
regular websites as Web objects are quite small compared to
large media files typically shared by BitTorrent. It is efficient
in handling files that require minutes or hours rather than
seconds to download. BitTorrent uses a significant amount
of time to try out and compare different connections which
introduces significant latency. While this latency is negligible

308 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS/SUPPLEMENT, VOL. 31, NO. 9, SEPTEMBER 2013

for large media files, it may overwhelm the download time
required for small images embedded in webpages.

Web browsing over P2P networks is investigated by
FreeNet [17], FlashBack [18], and Web2Peer [19] under the
assumptions that only static webpages are hosted and page
replicas are independent. Webpage availability is increased
through replication over the P2P network. In all of these
systems, the P2P network is used for locating and caching
webpages and Internet Web servers still serve as the source
of webpages cached in the P2P system. The challenge of
achieving persistent names for content shared in a P2P network
has not been addressed so far.

Digital Object Identifier (DOI) [20] provides persistent and
unique DOI links for electronic documents on the Internet.
However the architecture of DOI is centralized and requires
human intervention for maintaining the DOI links up–to–date.
Data Oriented Network Architecture (DONA) [21] proposes
to replace DNS names with flat, self–certifying names. Name
resolution is done by the route–by–name paradigm using
DNS like hierarchically organized Resolution Handlers (RHs).
Network of Information (NetInf) [22] follows the same naming
scheme as DONA but instead of replacing DNS, it resolves
NetInf names to DNS names (URLs). Though these schemes
provide security against name thefts, names are no longer
human-friendly. The naming schemes proposed by DONA
and NetInf can not be adapted for P2P web hosting for the
following reasons: (i) due to dynamism of content location
in a P2P networks, establishing a DONA like hierarchically
organized RH infrastructure will be very expensive in terms
of computation and network overhead, (ii) DONA proposes to
replace DNS whereas NetInf proposes to build a persistent and
secured naming layer on top of existing DNS infrastructure.
Neither of these schemes is suitable for resolving a name
to the address of a live peer currently hosting the website
in the network. While we borrowed the idea of using self–
certifying names from DONA, our naming scheme is different
from both DONA and NetInf in the following ways: (i) our
naming scheme supports human–friendly names, (ii) name
resolution is performed by peers within the same network
without depending on a secondary resolution infrastructure
(e.g., DNS), and (iii) name persistence is maintained by peers
with intermittent uptimes without using any stable servers
(e.g., RHs in DONA). A secured naming scheme for Informa-
tion Centric Networking (ICN) [24] has been proposed in [23].
This scheme forwards each name to a designated authority
for verifying the name–to–IP mapping. This type of name
to authority relationship is impossible to maintain in a P2P
network due to content and peer dynamism.

IX. CONCLUSION

In this paper we have presented a secure, persistent, and
human–friendly naming scheme for P2P Web hosting. Our
proposed naming system is distributed, efficient, scalable,
and fault tolerant. Through simulations we have shown that
our index publishing scheme achieves close to uniform load
distribution. We have also introduced two optimizations to the
original Plexus protocol: caching and message aggregation to
reduce the number of routing hops. We have also investigated
the fault resilience of our naming system under two failure

models and showed that our naming system performs rea-
sonably well under realistic operational conditions. While we
address the issues related to naming and name resolution here,
the successful realization of a P2P Web hosting infrastructure
requires a number of research problems to be addressed
including efficient full-text indexing, intelligent searching,
distributed ranking, security, privacy, ensuring availability, etc.
In our future research we intend to address these problems. We
have developed our naming system based on a content centric
security model, which intrinsically supports verification of
publisher authenticity and content integrity. A very interesting
research direction can be the exploration of the interplay
between content based security and existing P2P security
mechanisms in the literature. Though our naming scheme is
designed for P2P Web hosting, we believe that it can be
extended for naming any persistent service over P2P networks.

ACKNOWLEDGMENT

This work was supported in part by the Natural Science and
Engineering Council of Canada (NSERC) under its Strategic
program, in part by Orange Labs France, and in part by the
WCU program through the Korea Science and Engineering
Foundation funded by the Ministry of Education, Science and
Technology (Project No. R31-2008-000-10100-0).

REFERENCES

[1] M. F. Bari, M. R. Haque, R. Ahmed, R. Boutaba, and B. Mathieu,
“Persistent naming for P2P web hosting,” in Proc. IEEE Int. Conf. Peer-
to-Peer Comput. (P2P), Aug. 2011, pp. 270–279 [Online]. Available:
http://dx.doi.org/10.1109/P2P.2011.6038745

[2] R. Ahmed and R. Boutaba, “Plexus: A scalable peer-to-peer protocol
enabling efficient subset search,” IEEE/ACM Trans. Netw., vol. 17, pp.
130–143, Feb. 2009.

[3] ——, “Distributed pattern matching: A key to flexible and efficient P2P
search,” IEEE J. Sel. Areas Commun., vol. 25, no. 1, pp. 73–83, 2007.

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, pp. 422–426, July 1970.

[5] G. Cohen, Covering Codes, vol. 54. North Holland, 1997.
[6] N. Shahriar, M. Sharmin, R. Ahmed, M. M. Rahman, R. Boutaba, and

B. Mathieu, “Diurnal availability for peer-to-peer systems,” in Proc.
IEEE CCNC, 2012, pp. 619–623.

[7] S. Ajmani, D. E. Clarke, C.-H. Moh, and S. Richman, “ConChord:
Cooperative SDSI certificate storage and name resolution,” in LNCS:
Peer-to-Peer Systems, Springer, Jan. 2002, vol. 2429/2002, pp. 141–154.

[8] “Explanation of the web of trust of PGP,” [Online]. Available: http:
//www.rubin.ch/pgp/weboftrust.en.html

[9] Y. Lee, J. Lee, and J. Song, “Design and implementation of wireless PKI
technology suitable for mobile phone in mobile-commerce,” Comput.
Commun., vol. 30, no. 4, pp. 893–903, Feb. 2007 [Online]. Available:
http://dx.doi.org/10.1016/j.comcom.2006.10.014

[10] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy,
“An analysis of Internet content delivery systems,” SIGOPS Oper. Syst.
Rev., vol. 36, pp. 315–327, Dec. 2002 [Online]. Available: http://doi.
acm.org/10.1145/844128.844158

[11] S. C. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn
in a DHT,” in Proc. USENIX Annual Tech. Conf., General Track, 2004,
pp. 127–140.

[12] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proc. 6th ACM SIGCOMM Conf. Internet Measurement,
2006, pp. 189–202.

[13] B. Cohen, “Incentives build robustness in bittorrent,” in Proc. Workshop
Economics Peer-to-Peer Syst., 2003, vol. 6, pp. 68–72.

[14] K. Ross, J. Liang, and R. Kumar, “Understanding Kazaa,” Polytechnic
University Brooklyn, Tech. Rep., 2004.

[15] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,” IEEE Commun.
Surveys Tutorials, vol. 7, no. 2, pp. 72–93, quarter 2005.

SUPPLEMENT: EMERGING TECHNOLOGIES IN COMMUNICATIONS — PART 1 309

[16] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” SIGCOMM Comput. Commun. Rev., vol. 32,
no. 4, pp. 73–86, 2002.

[17] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A dis-
tributed anonymous information storage and retrieval system,” Lecture
Notes Computer Sci. (LNCS), vol. 2009, pp. 46–66, 2001.

[18] M. Deshpande, A. Amit, M. Chang, N. Venkatasubramanian, and
S. Mehrotra, “Flashback: A peer-to-peer web server for flash crowds,”
in Proc. 27th Int. Conf. Distrib. Comput. Syst., 2007.

[19] H. B. Ribeiro, L. C. Lung, A. O. Santin, and N. L. Brisola, “Imple-
menting a peer-to-peer web browser for publishing and searching web
pages on the Internet,” in Proc. Int. Conf. Advanced Inf. Netw. Appl.,
2007, pp. 754–761.

[20] N. Paskin, “Digital object identifier (DOI R©) system,” Encyclopedia
Library Inf. Sci., 2008.

[21] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 181–192,
Aug. 2007.

[22] C. Dannewitz, J. Golic, B. Ohlman, and B. Ahlgren, “Secure naming
for a network of information,” in Proc. IEEE Conf. Computer Commun.
Workshops (INFOCOMM), Mar. 2010, pp. 1–6.

[23] W. Wong and P. Nikander, “Secure naming in information-centric
networks,” in Proc. ACM Re-Architecting Internet Workshop, 2010,
pp. 12:1–12:6 [Online]. Available: http://doi.acm.org/10.1145/1921233.
1921248

[24] Md. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and B. Mathieu,
“A survey of naming and routing in information-centric networks,” IEEE
Commun. Mag., vol. 50, no. 12, pp. 44–53, Dec. 2012.

Md. Faizul Bari is a Ph.D. candidate in the David
R. Cheriton School of Computer Science at the
University of Waterloo. He received M.Sc. and
B.Sc. degrees in computer science and engineering
from the Bangladesh University of Engineering and
Technology (BUET) in 2009 and 2007, respectively.
He also holds the position of Assistant Professor
at BUET. He has served as a reviewer for many
international conferences and journals. His research
interests include P2P networks, future Internet archi-
tectures, and cloud computing. He is the recipient of

the Ontario Graduate Scholarship, Presidents Graduate Scholarship, and David
R. Cheriton Graduate Scholarship at the University of Waterloo.

Md. Rakibul Haque received his B.Sc. and M.Sc.
degrees in computer science and engineering from
the University of Dhaka and Bangladesh Univer-
sity of Engineering and Technology in 2005 and
2009, respectively. He earned the MMath (master
of mathematics) degree in computer science from
the University of Waterloo, Canada, in 2012. He has
done research on P2P web hosting and decentralized
ranking mechanisms with Prof. Raouf Boutaba. Cur-
rently, Rakibul is working as a software developer
at Nth Gen Software Inc., Toronto, Canada. His

research interests include peer-to-peer networks, cloud computing, and future
Internet architectures.

Reaz Ahmed is an Associate Professor at the
Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technol-
ogy (BUET), Dhaka, Bangladesh. He received his
Ph.D. degree in computer science from the Univer-
sity of Waterloo in 2007. He received the M.Sc.
and B.Sc. degrees in computer science from BUET
in 2002 and 2000, respectively. He received the
IEEE Fred W. Ellersick award in 2008. His research
interests include future Internet architectures, wide
area service discovery, and content sharing peer-to-

peer networks with focus on search flexibility, efficiency, and robustness.

Raouf Boutaba received M.Sc. and Ph.D. degrees
in computer science from the University Pierre &
Marie Curie, Paris, in 1990 and 1994, respectively.
He is currently a professor of computer science
at the University of Waterloo and a distinguished
visiting professor at the division of IT convergence
engineering at POSTECH. His research interests
include network, resource, and service management
in wired and wireless networks. He is the founding
editor–in–chief of the IEEE TRANSACTIONS ON

NETWORK AND SERVICE MANAGEMENT (2007–
2010) and is on the editorial boards of other journals. He has received several
best paper awards and other recognitions such as the Premier’s Research
Excellence Award, the IEEE Hal Sobol Award in 2007, the Fred W. Ellersick
Prize in 2008, and the Joe LoCicero and Dan Stokesbury awards in 2009. He
is a fellow of the IEEE.

Bertrand Mathieu has been a senior researcher
at France Telecom, Orange Labs, since 1994. He
received a Diploma of Engineering from Toulon,
an M.Sc. degree from the University of Marseille,
and a Ph.D. degree from the University Pierre et
Marie Curie, Paris. His research activities are related
to dynamic overlay networks, P2P networks, and
information centric networking. He has contributed
to several national and European projects, and has
published more than 30 papers in international con-
ferences, journals, and books. He is a member of

several conference technical program committees and is an IEEE and SEE
Senior Member.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslonPro-Bold
 /ACaslonPro-BoldItalic
 /ACaslonPro-Italic
 /ACaslonPro-Regular
 /ACaslonPro-Semibold
 /ACaslonPro-SemiboldItalic
 /AdobeFangsongStd-Regular
 /AdobeHeitiStd-Regular
 /AdobeKaitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobeSongStd-Light
 /AGaramondPro-Bold
 /AGaramondPro-BoldItalic
 /AGaramondPro-Italic
 /AGaramondPro-Regular
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Aharoni-Bold
 /Algerian
 /Andalus
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Aparajita
 /Aparajita-Bold
 /Aparajita-BoldItalic
 /Aparajita-Italic
 /ArabicTypesetting
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BirchStd
 /BlackadderITC-Regular
 /BlackoakStd
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScriptMT
 /BrushScriptStd
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ChaparralPro-Bold
 /ChaparralPro-BoldIt
 /ChaparralPro-Italic
 /ChaparralPro-Regular
 /CharlemagneStd-Bold
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CooperBlackStd
 /CooperBlackStd-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /DaunPenh
 /David
 /David-Bold
 /DFKaiShu-SB-Estd-BF
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /DokChampa
 /Dotum
 /DotumChe
 /Ebrima
 /Ebrima-Bold
 /EccentricStd
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EuphemiaCAS
 /FangSong
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Gabriola
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Gautami-Bold
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GiddyupStd
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gisha
 /Gisha-Bold
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoboStd
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /IskoolaPota
 /IskoolaPota-Bold
 /JasmineUPC
 /JasmineUPCBold
 /JasmineUPCBoldItalic
 /JasmineUPCItalic
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi
 /Kalinga
 /Kalinga-Bold
 /Kartika
 /Kartika-Bold
 /KhmerUI
 /KhmerUI-Bold
 /KodchiangUPC
 /KodchiangUPCBold
 /KodchiangUPCBoldItalic
 /KodchiangUPCItalic
 /Kokila
 /Kokila-Bold
 /Kokila-BoldItalic
 /Kokila-Italic
 /KozGoPro-Bold
 /KozGoPro-ExtraLight
 /KozGoPro-Heavy
 /KozGoPro-Light
 /KozGoPro-Medium
 /KozGoPro-Regular
 /KozMinPro-Bold
 /KozMinPro-ExtraLight
 /KozMinPro-Heavy
 /KozMinPro-Light
 /KozMinPro-Medium
 /KozMinPro-Regular
 /KristenITC-Regular
 /KunstlerScript
 /LaoUI
 /LaoUI-Bold
 /Latha
 /Latha-Bold
 /LatinWide
 /Leelawadee
 /Leelawadee-Bold
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMT-Bold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LithosPro-Black
 /LithosPro-Regular
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothic
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal
 /Mangal-Bold
 /Marlett
 /MaturaMTScriptCapitals
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MeiryoUI
 /MeiryoUI-Bold
 /MeiryoUI-BoldItalic
 /MeiryoUI-Italic
 /MesquiteStd
 /MicrosoftHimalaya
 /MicrosoftJhengHeiBold
 /MicrosoftJhengHeiRegular
 /MicrosoftNewTaiLue
 /MicrosoftNewTaiLue-Bold
 /MicrosoftPhagsPa
 /MicrosoftPhagsPa-Bold
 /MicrosoftSansSerif
 /MicrosoftTaiLe
 /MicrosoftTaiLe-Bold
 /MicrosoftUighur
 /MicrosoftYaHei
 /MicrosoftYaHei-Bold
 /Microsoft-Yi-Baiti
 /MingLiU
 /MingLiU-ExtB
 /Ming-Lt-HKSCS-ExtB
 /Ming-Lt-HKSCS-UNI-H
 /MinionPro-Bold
 /MinionPro-BoldCn
 /MinionPro-BoldCnIt
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Medium
 /MinionPro-MediumIt
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /Mistral
 /Modern-Regular
 /MongolianBaiti
 /MonotypeCorsiva
 /MoolBoran
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldCond
 /MyriadPro-BoldCondIt
 /MyriadPro-BoldIt
 /MyriadPro-Cond
 /MyriadPro-CondIt
 /MyriadPro-It
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Narkisim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /NuevaStd-BoldCond
 /NuevaStd-BoldCondItalic
 /NuevaStd-Cond
 /NuevaStd-CondItalic
 /Nyala-Regular
 /OCRAExtended
 /OCRAStd
 /OldEnglishTextMT
 /Onyx
 /OratorStd
 /OratorStd-Slanted
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlantagenetCherokee
 /Playbill
 /PMingLiU
 /PMingLiU-ExtB
 /PoorRichard-Regular
 /PoplarStd
 /PrestigeEliteStd-Bd
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RosewoodStd-Regular
 /SakkalMajalla
 /SakkalMajallaBold
 /ScriptMTBold
 /SegoePrint
 /SegoePrint-Bold
 /SegoeScript
 /SegoeScript-Bold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /SegoeUI-Light
 /SegoeUI-SemiBold
 /SegoeUISymbol
 /ShonarBangla
 /ShonarBangla-Bold
 /ShowcardGothic-Reg
 /Shruti
 /Shruti-Bold
 /SimHei
 /SimplifiedArabic
 /SimplifiedArabic-Bold
 /SimplifiedArabicFixed
 /SimSun
 /SimSun-ExtB
 /SnapITC-Regular
 /Stencil
 /StencilStd
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TektonPro-Bold
 /TektonPro-BoldCond
 /TektonPro-BoldExt
 /TektonPro-BoldObl
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TraditionalArabic
 /TraditionalArabic-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga
 /Tunga-Bold
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Utsaah
 /Utsaah-Bold
 /Utsaah-BoldItalic
 /Utsaah-Italic
 /Vani
 /Vani-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vijaya
 /Vijaya-Bold
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Vrinda-Bold
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

